您所在的位置: 上海有色 > 有色金属产品库 > 铝合金铸造脱模剂 > 铝合金铸造脱模剂百科

铝合金铸造脱模剂百科

铝锭脱模剂

2017-06-06 17:49:58

铝锭脱模剂是一种重要的工具,让我们对它进行下介绍。电解铝铝锭模脱模剂(水性)一、用途  本脱模剂是一种米白色脱模剂,适用于铝锭脱模使用。二、特点及性能特点:  具有良好的触变性和悬浮性,发气量低,涂刷时不流淌,存放时不易沉淀。  含固量高,烘干时间短。  烘干时途层不开裂、不起皮,涂层表面强度好。性能:  外观米白色液状  波美度(Be’)95-110  密度(g/cm)2.20-2.40  24小时后悬浮性(%)>98使用方法及注意事项  本脱模剂因具有良好的触变性,外观比较稠厚,但稍加外力搅拌则粘度下降(变稀),因此无需急于加水稀释,使用前只要在盛器中加以搅拌即可使用,或按所需用量从搅拌均匀的桶中舀出稀释后使用,若  喷涂需要稀释时,可加入适量水加以调稀,一般加入5-10%为宜。  本脱模剂可采用刷涂或喷涂,不可用于浸涂。  本脱模剂烘干温度范围150-500度。  本脱模剂如用喷灯或煤气表面干燥时,不可将火焰集中在局部区域,以免温度过高。  脱模剂(参考值)  可涂面积m/kg涂层厚度mm  0.7-0.80.30-0.35包装与储存  包装采用塑料桶,每桶净重50公斤。  脱模剂应放置在室内阴凉处,冬季应防止脱模剂冻结,脱模剂保存期6个月。铝锭模脱模剂(油性)  本产品为银灰色油性脱模剂  使用方便,可在生产线上直接喷(刷)涂。  保护铝锭模免受铝(锌)水的直接冲击,增长锭模寿命。  使铝(锌)锭易脱模,且表面光亮。使用方便  铸完上批铝锭后,趁模具热时,清理干净锭表面,待模具稍冷却至150-200度,冷模需加温至150-200度,将本品喷涂或刷涂在锭模上。脱模剂使用前必须彻底搅拌均匀,薄薄的喷(刷)二到三次,喷薄薄的一层完全覆盖,待载体中的油份在高温下挥发后,脱模剂铸锭机即可进入正常运行,喷(刷)涂过程中,若觉得脱模剂太稠,可用煤油稀释,最大倍数1:1。  包装:15公斤/桶  储存:存放于干燥通风处  保质期:十二个月通过了解铝锭脱模剂,我们对其有了更深入的了解,之后的操作也会更加的得心应手。 

铜合金脱模剂

2017-06-06 17:50:04

铜合金脱模剂  铜合金精炼除渣剂HS-10该精炼除渣剂用于各种牌号的黄铜在熔炼时作精炼除气覆盖除渣之用(如:黄杂铜、锰黄铜、硅黄铜、铝青铜、铜铸卫浴洁具、铜锭、铜棒、铜线、铅带、铜管材、铜阀门等熔炼过程中作精炼覆盖除渣之用),除气、除渣能力强,熔渣与铜液分离性好,浮渣松散,容易扒除。晶粒细化作用明显,提高黄铜合金各铸件的机械性能和表面质量,提高卫生洁具的气密性,耐压性,表面光洁度及需要抛光的卫生洁具和工艺品。本产品对熔炉,坩埚和熔炼工具无侵蚀作用  脫模劑HS-T50   本產品是一種灰黑色的乳液狀石墨脫模劑,適用於銅壓力造成型脫模,因本產品長時間放置易產生部分沉澱,固在使用之前應儘量攪拌均勻,確保脫模劑性能穩定 (長時間放置易產生沉澱,攪拌溶解后不影響其特性) 主要特性外觀:灰黑色乳液,        比重:1.23      主要性能 1、有良好的潤滑脫模性能  2、對模具有優良的隔熱降溫作用,根據不同鑄件工藝的出模特點,能分別提高模具壽命二至四倍左右  3、在高溫下不燃燒,無腐蝕,無有害氣體,消除環境污染,改善勞動條件    4、提高鍛件質量,能增加表面光潔度  5、懸浮性強,成膜均勻,塗層附著力高 主要優點: 1、潤滑性最優。 2、傳熱快 3、脫模性佳。 4、超細微粒。  铜合金脱模剂用于压铸过程中铸件的脱模及表面成型,提高卫生洁具的气密性,耐压性,表面光洁度及需要抛光的卫生洁具和工艺品。

铝压铸脱模剂应用技术

2018-12-12 09:36:37

铝合金压铸,包括铝、镁、锌合金系列压铸产品,广泛应用于汽车、电信、摩托车、家电等行业。铝合金压铸脱模剂,是生产工艺中必须使用的助剂。由于制品的体积尺寸不同、结构复杂程度不同、制品的后加工要求不同,对脱模剂的要求也各不相同。  锌合金材料加温熔化(铝熔点660.4℃),在液态下经高压注入模具型腔,并在短时间内开模顶件出模。为保证制品的顺利脱模,必须在注射前在模具型腔表面喷涂脱模剂。  铝合金压铸脱模剂必须满足下列要求:  1、 油。作为金属间隔离的有效材料,有机硅油是理想的选择。这种硅油须具备耐高温、不影响后加工性能(如铝制品涂装)的特性。  2、 水性。由于模具处在高温状态,任何溶剂型的脱模剂都是不合适的。以水作为分散介质,到高温环境中,水份迅速蒸发,脱模有效物均匀分布于模腔表面。成膜均匀,附着力强,耐高温冲刷,脱模性能好。  3、 乳化液。选择合适的乳化剂乳化硅油,防止其高温下碳化。以保持制品和模腔表面的清洁。  4、 对铸件、模具设备均无腐蚀。铸件制品轮廊清晰,表面光洁无痕,不影响涂装。挥发物无烟,无毒,不污染环境,无损操作人员健康。

铸造铝合金

2019-01-02 09:52:54

可用金属铸造成形工艺直接获得零件的铝合金。    该类合金的合金元素含量一般多于相应的变形铝合金的含量。     据主要合金元素差异有四类铸造铝合金。    (1)铝硅系合金,也叫“硅铝明”或“矽铝明”。有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在10%-25%。有时添加0.2%-0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。有时添加适量的铜和镁,能提高合金的力学性能和耐热性。此类合金广泛用于制造活塞等部件。    (2)铝铜合金,含铜4.5%-5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。    (3)铝镁合金,密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。    (4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。在铸造条件下,该合金有淬火作用,即“自行淬火”。不经热处理就可使用,以变质热处理后,铸件有较高的强度。经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。

铝合金铸造准备

2019-01-11 15:43:41

铸造准备检查与确认的工作内容:    (1)温度控制(以转注流程的温降确定保温炉、在线除气箱、过滤箱以及铸造流槽前端的各点温度控制);    (2)铝液转注流程中各对接口、事故流口的密封及事故箱的到位、容量与干燥情况;    (3)转注流槽、铸造流槽、漏斗(分配袋)、控流筏、打渣箱及工具的加热和干燥情况;    (4)铸造传动控制系统包括液压、仪表的运行与显示情况;    (5)结晶器光洁程度、安放位置和引锭头的位置及干燥情况(包括润滑);    (6)冷却水的调试检查及水温情况;    (7)生产合金、规格的工艺参数确认等等,这些是每个铸次不可忽略的工作。    除此之外有的铸造准备还要有针对性,根据所生产的合金、规格及以往生产、质量所存在的问题,有的放矢,采取必要的对应措施。    铸造主要工艺参数的设定要根据铸造时间或铸造长度,把握各工艺参数的对应关系。要根据每铸次各方面的实际情况进行综合调整,尤其是针对某些质量缺陷进行优化。

铝合金铸造工艺性能

2019-02-28 11:46:07

铝合金铸造工艺功能,一般理解为在充溢铸型、结晶和冷却过程中体现最为杰出的那些功能的归纳。流动性、缩短性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造要素、合金加热温度、铸型的杂乱程度、浇冒口体系、浇口形状等有关。   (1) 流动性   流动性是指合金液体充填铸型的才能。流动性的巨细决议合金能否铸造杂乱的铸件。在铝合金晶合金的流动性最好。   影响流动性的要素许多,首要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的底子要素为浇注温度及浇注压力(俗称浇注压头)的凹凸。   实践出产中,在合金已断定的情况下,除了强化熔炼工艺(精粹与除渣)外,还有必要改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下进步浇注温度,确保合金的流动性。   (2) 缩短性   缩短性是铸造铝合金的首要特征之一。一般讲,合金从液体浇注到凝结,直至冷到室温,共分为三个阶段,分别为液态缩短、凝结缩短和固态缩短。合金的缩短性对铸件质量有决议性的影响,它影响着铸件的缩孔巨细、应力的发作、裂纹的构成及尺度的改变。一般铸件缩短又分为体缩短和线缩短,在实践出产中一般使用线缩短来衡量合金的缩短性。   铝合金缩短巨细,一般以百分数来表明,称为缩短率。   ①体缩短   体缩短包含液体缩短与凝结缩短。   铸造合金液从浇注到凝结,在最终凝结的当地会呈现微观或显微缩短,这种因缩短引起的微观缩孔肉眼可见,并分为会集缩孔和涣散性缩孔。会集缩孔的孔径大而会集,并散布在铸件顶部或截面厚大的热节处。涣散性缩孔描摹涣散而细微,大部涣散布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部涣散布在晶界下或树枝晶的枝晶间。   缩孔和疏松是铸件的首要缺点之一,发作的原因是液态缩短大于固态缩短。出产中发现,铸造铝合金凝结规模越小,越易构成会集缩孔,凝结规模越宽,越易构成涣散性缩孔,因而,在规划中有必要使铸造铝合金契合次序凝结准则,即铸件在液态到凝结期间的体缩短应得到合金液的弥补,是缩孔和疏松会集在铸件外部冒口中。对易发作涣散疏松的铝合金铸件,冒口设置数量比会集缩孔要多,并在易发作疏松处设置冷铁,加大部分冷却速度,使其一起或快速凝结。   ②线缩短   线缩短巨细将直接影响铸件的质量。线缩短越大,铝铸件发作裂纹与应力的趋向也越大;冷却后铸件尺度及形状改变也越大。   关于不同的铸造铝合金有不同的铸造缩短率,即便同一合金,铸件不同,缩短率也不同,在同一铸件上,其长、宽、高的缩短率也不同。应根据具体情况而定。   (3) 热裂性   铝铸件热裂纹的发作,首要是因为铸件缩短应力超过了金属晶粒间的结合力,大多沿晶界发作从裂纹断口调查可见裂纹处金属往往被氧化,失掉金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。   不同铝合金铸件发作裂纹的倾向也不同,这是因为铸铝合金凝结过程中开端构成完好的结晶结构的温度与凝结温度之差越大,合金缩短率就越大,发作热裂纹倾向也越大,即便同一种合金也因铸型的阻力、铸件的结构、浇注工艺等要素发作热裂纹倾向也不同。出产中常选用让步性铸型,或改善铸铝合金的浇注体系等办法,使铝铸件防止发作裂纹。一般选用热裂环法检测铝铸件热裂纹。   (4) 气密性   铸铝合金气密性是指腔体型铝铸件在高压气体或液体的效果下不渗漏程度,气密性实践上表征了铸件内部安排细密与纯洁的程度。   铸铝合金的气密性与合金的性质有关,合金凝结规模越小,发作疏松倾向也越小,一起发作分出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如下降铸铝合金浇注温度、放置冷铁以加速冷却速度以及在压力下凝结结晶等,均可使铝铸件的气密性进步。也可用浸渗法阻塞走漏空地来进步铸件的气密性。   (5) 铸造应力   铸造应力包含热应力、相变应力及缩短应力三种。各种应力发作的原因不尽相同。   ①热应力   热应力是因为铸件不同的几许形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处构成压应力,导致在铸件中残留应力。   ②相变应力   相变应力是因为某些铸铝合金在凝结后冷却过程中发作相变,随之带来体积尺度改变。首要是铝铸件壁厚不均,不同部位在不一起间内发作相变所构成的。   ③缩短应力   铝铸件缩短时遭到铸型、型芯的阻止而发作拉应力所构成的。这种应力是暂时的,铝铸件开箱是会主动消失。但开箱时刻不妥,则常常会构成热裂纹,特别是金属型浇注的铝合金往往在这种应力效果下简单发作热裂纹。   铸铝合金件中的残留应力下降了合金的力学功能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只需铸件结构规划合理,铝铸件的残留应力一般较小。   (6) 吸气性   铝合金易吸收气体,是铸造铝合金的首要特性。液态铝及铝合金的组分与炉料、有机物焚烧产品及铸型等所含水分发作反响而发作的被铝液体吸收所构成的。   铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。当含碱金属杂质时,氢在铝液中的溶解度明显增加。   铸铝合金除熔炼时吸气外,在浇入铸型时也会发作吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,分出剩余的气体,有一部分逸不出的气体留在铸件内构成气孔,这就是一般称的“针孔”。气体有时会与缩孔结合在一起,铝液中分出的气体留在缩孔内。若气泡受热发作的压力很大,则气孔表面润滑,孔的周围有一圈亮光层;若气泡发作的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细调查又具有缩孔的特征。   铸铝合金液中含氢量越高,铸件中发作的针孔也越多。铝铸件中针孔不只下降了铸件的气密性、耐蚀性,还下降了合金的力学功能。要取得无气孔或少气孔的铝铸件,关键在于熔炼条件。若熔炼时增加掩盖剂维护,合金的吸气量大为削减。对铝熔液作精粹处理,可有用操控铝液中的含氢量。

铝合金的铸造应力

2019-01-02 14:54:40

铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。      ①热应力 热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。      ②相变应力 相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。      ③收缩应力 铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。      铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。

什么是铝合金铸造工艺

2019-01-11 15:44:00

铝合金具有密度低、强度高、韧性好和耐腐蚀等优点,在航空航天工业中被广泛用作结构材料,同时,也正在积极开发作为汽车先进材料而应用于高档轿车发动机。    铸造工艺是传统铝合金主要制备方法,但已难以满足制备高性能铝合金的需要。靠前,传统工艺已经难以进一步提高强度、塑性、刚度、耐热性和耐腐蚀性;第二,在追求高性能的过程中,铸造工艺成本由于增添设备和成品率下降而迅速上升;第三,由于合金含量上升,塑性往往降低,因而后续压力加工成本上升、成品率降低。    因此,生产的高成本大大提高了先进铝合金的使用门槛,严重影响整体市场规模的发展。在这些方面,喷射成形工艺正好具有性能和综合成本的双重优势,可使先进铝合金的使用门槛降低,还可以进一步提高性能,在一定范围内实现以铝代钢,从而迅速培育先进铝合金的市场,并反过来促进喷射成形工艺获得规模成本优势。因此,喷射成形工艺将成为先进铝合金的主要生产工艺。

什么叫铝合金铸造工艺

2018-12-29 16:57:09

铝合金具有密度低、强度高、韧性好和耐腐蚀等优点,在航空航天工业中被广泛用作结构材料,同时,也正在积极开发作为汽车先进材料而应用于高档轿车发动机。     铸造工艺是传统铝合金主要制备方法,但已难以满足制备高性能铝合金的需要。第一,传统工艺已经难以进一步提高强度、塑性、刚度、耐热性和耐腐蚀性;第二,在追求高性能的过程中,铸造工艺成本由于增添设备和成品率下降而迅速上升;第三,由于合金含量上升,塑性往往降低,因而后续压力加工成本上升、成品率降低。     因此,生产的高成本大大提高了先进铝合金的使用门槛,严重影响整体市场规模的发展。在这些方面,喷射成形工艺正好具有性能和综合成本的双重优势,可使先进铝合金的使用门槛降低,还可以进一步提高性能,在一定范围内实现以铝代钢,从而迅速培育先进铝合金的市场,并反过来促进喷射成形工艺获得规模成本优势。因此,喷射成形工艺将成为先进铝合金的主要生产工艺。

铝合金铸造的缺陷修复

2018-12-27 16:25:52

铝合金在生产过程中,容易出现缩孔、砂眼、气孔和夹渣等铸造缺陷。如何修复铝合金铸件气孔等缺陷呢?如果用电焊、氩焊等设备来修补,由于放热量大,容易产生热变形等副作用,无法满足补焊要求。    冷焊修复机是利用高频电火花瞬间放电、无热堆焊原理来修复铸件缺陷。由于冷焊热影响区域小,不会造成基材退火变形,不产生裂纹、没有硬点、硬化现象。而且熔接强度高,补材与基体同时熔化后的再凝固,结合牢固,可进行磨、铣、锉等加工,致密不脱落。冷焊修复机是修补铝合金气孔、砂眼等细小缺陷的理想方法。

铝合金重力铸造常见缺陷

2018-04-26 18:22:39

一、缩孔这种缺陷常发生在铸件的肥厚部分,或者厚薄交接处。有时铸件表面发白,实际上就是缩松。产生的原因:结晶过程中铸件补缩不够;引入合金液的位置不对;金属型各部位的温度不恰当,不符合顺序凝固的原则;涂料不当或涂料脱落;浇注温度过高;浇注速度太快;铸件冷却太慢;铸件毛边太大。防止办法:在铸件厚大部位设置冒口,冒口的大小、高度要适宜,达到最后凝固,提高冒口的补缩作用;沿铸件四周均匀分布内浇道,或从冒口根部开设补充浇道进行补充浇注;调整金属型各部分的温度规范,便于铸件顺序凝固;按铸件工作部分和浇冒口部位不同要求选用不同的涂料成分及涂料厚度,脱料要均匀补上;适当降低浇注温度;减慢浇注速度;在容易产生缩松的部位,嵌上铜冷铁或通气塞,以加速冷却。二、冷隔这种缺陷一般产生在较大的水平表面的薄壁铸件上,以及合金最后汇流处。铸件出型后经过震砂,进行外观检查即可发现。产生的原因:模具温度过低;铝液温度过低;模具排气不良;浇注系统设计不良,内浇口数量少、截面过小;浇注速度太慢或浇注中断;铸件设计壁厚太薄或缺少适当的圆角。防止办法:适当提高模具温度;适当提高铝液浇注温度;气体不易排出的部位上设置通气槽或排气塞,保持排气良好;适当增加内浇口数量和内浇口的截面;适当提高浇注速度,避免铝液浇注中断;按铸件设计工艺性要求设计合理的最小壁厚和铸造圆角。三、气孔气孔往往产生在铸件的上部且经常发生在铸件凸出部分的表面。铸件内部隐蔽的气孔,必须通过X光透视,以及在铸件进行加工时发现。产生的原因:浇注速度太快,卷入空气;模具排气气不良;铝液流动过快;熔化温度过高;合金除气不良;浇注温度过高;砂芯不干、排气不良或发气量太大。防止办法:平稳地浇注金属液;于金属型气体不易排除的部位增设排气槽或排气塞,并经常清理;浇注时浇包尽量靠近浇口杯;严格控制铝液温度防止超温;铝液正确地进行除气;泥芯应烘干,排气孔应畅通,泥芯返潮后应补烘,特大的泥芯中间应挖空;金属型涂料后应等涂料干燥后才能浇注。四、裂纹裂纹多数出现在铸件的内夹角处,厚薄断面过渡的部位;合金液引入铸件的部位和发生铸造应力最大的部位可用着色检查、气密性试验、X光检查发现。铝铸件上冷裂纹,在清理砂芯后进行外观检查便可发现。产生的原因:铸件上有尖角,厚薄相差悬殊;模具局部过热或浇注温度过高;冷铁安放不正确;铸件补缩不良;防止办法:改进设计,清除铸件尖角,尽量使铸件壁厚均匀过渡并倒圆角;正确地选择浇口,浇道的位置,控制浇注温度、涂料厚度,正确放置冷铁,增大冒口补缩能力;在模具冒口部位上涂石棉保温涂料。五、偏析偏析一般分布在铸件厚大部分的中心部位及上部,做宏观分析时可以发现。产生的原因:浇注前铝液成分未搅拌均匀;浇注温度过高;金属型温度过高,涂料不均匀,太厚。防止办法:浇注前尽量使合金液搅拌均匀;适当降低浇注温度和金属型的预热温度;在冷却慢的部位设计冷铁、通气塞或采用气冷、水冷;添加阻碍合金产生偏析的元素;将铸件壁厚适当减薄,以加快凝固。

铝合金热顶电磁铸造技术

2019-01-14 14:52:56

热顶电磁铸造法与普通电磁铸造法的区别在于采用特制的屏蔽罩结构,并在其内部用耐火材料制成热顶约束液柱顶部熔体成型,也就是热顶兼有屏蔽罩的功能。  热顶电磁铸造技术具有如下优点:  (1)与电磁铸造技术相比,热顶具有约束部分液柱成型的作用。金属液面位置的控制相比之下更为容易,并有利于液柱高度的稳定。  (2)热顶截面由于由下到上逐渐增大,在铸造过程中金属液浇注量的增减对液柱高度的影响明显减弱,从而增强了液柱高度和铸锭尺寸的稳定性。  (3)热顶有利于金属液的浇注,减弱了浇流对金属液柱的冲击力。  (4)由于液-固界面处的液柱仍依靠电磁力约束成半悬浮状态,保证了铸锭侧表面在自由表面状态下凝固,并未削弱液穴内的电磁搅拌作用,继承了电磁铸造铸锭表面光亮、内部组织致密的优点。  热顶电磁铸造技术即充分发挥了普通电磁铸造和电磁连铸的优点,又增强了系统的可操作性,其磁场强度和电磁压力分布合理,能有效控制铸锭夹杂,提高铸锭表面和内部质量。

铸造铝合金化学成份

2019-01-02 16:33:43

序号    合金牌号 合金   代号                               主要元素,wt%Si Cu Mg Zn Mn Ti 其它 Al1 ZAlSi7Mg ZL101 6.5~7.5   0.25~0.45         余量2 ZAlSi7MgA ZL101A           0.08~0.20   余量3 ZAlSi12   6.5~7.5   0.25~0.45         余量4 ZAlSi9Mg ZL102         0.2~0.5     余量5 ZAlSi5Cu1Mg ZL104 10.0~13.0 1.0~1.5           余量6 ZAlSi5Cu1MgA ZL105     0.17~0.35         余量7 ZAlSi8Cu1Mg ZL105A 8.0~10.5 1.0~1.5           余量8 ZAlSi7Cu4 ZL106 4.5~5.5 1.0~1.5 0.4~0.6   0.3~0.5 0.10~0.25   余量9 ZAlSi12Cu2Mg1 ZL107 4.5~5.5 3.5~4.5 0.4~0.55         余量10 ZalSi12Cu1Mg1Ni1 ZL108 7.5~8.5 1.0~2.0 0.3~0.5   0.3~0.9   Ni 0.8~1.5 余量11 ZAlSi5Cu6Mg ZL109 6.5~7.5 0.5~1.5           余量12 ZAlSi9Cu2Mg ZL110 11.0~13.0 5.0~8.0 0.4~1.0         余量13 ZAlSi7Mg1A ZL111 11.0~13.0 1.3~1.8 0.8~1.3   0.10~0.35 0.10~0.35 Be 0.04~0.07(a) 余量14 ZAlSi5Zn1Mg ZL114A 4.0~6.0   0.2~0.5 1.2~1.8   0.10~0.20 Sb 0.1~0.25 余量15 ZAlSi8MgBe ZL115 8.0~10.0   0.4~0.6       Be 0.15~0.40 余量16 ZAlcu5Mn ZL116 6.5~7.5   0.45~0.60     0.10~0.30   余量17 ZAlCu5MnA ZL201 4.8~6.2 4.5~5.3 0.4~0.65   0.6~1.0 0.15~0.35   余量18 ZAlCu4 ZL201A 6.5~8.5 4.8~5.3 0.35~0.55   0.6~1.0 0.15~0.35   余量19 ZAlCu5MnCdA ZL203   4.0~5.0         Cd 0.15~0.25 余量20 ZAlCu5MnCdVA ZL204A ZL205A         4.6~5.3 4.6~5.3                 0.6~0.9 0.3~0.5 0.15~0.35 0.15~0.35 Cd 0.15~0.25 V 0.05~0.3 Zr 0.05~0.2 B 0.005~0.06 余量  21     ZAlRE5Cu3Si2   ZL207         3.0~5.4                 0.9~1.2         Ni 0.2~0.3 Zr 0.15~0.25 RE 4.4~5.0(b)   余量  22 ZAlMg10   1.6~2.0   0.15~0.25         余量23 ZAlMg5Si1 ZL301               余量  24 ZAlMg8Zn1 ZL303       1.0~1.5 0.1~0.4   Be 0.03~0.1 余量25 ZAlZn11Si7 ZL305     9.5~11.0 9.0~13.0   0.1~0.2   余量26 ZAlZn6Mg ZL401 ZL402 0.8~1.3 6.0~8.0     4.5~5.5 7.5~9.0 0.1~0.3 0.5~0.65 5.0~6.5   0.15~0.25 Cr 0.4~0.6 余量

铸造铝合金的应用

2019-03-08 12:00:43

牌号 用处举例ZL101 适用于砂型、金属型和熔模铸造等工艺办法,制作形状杂乱、壁厚较薄或要求气密的接受中等载荷的零件,如支臂、支架、液压元件、附件壳体,仪器外壳等。ZL101A 可用于飞机发起机动的各种机匣,泵体、壳体等。ZL102 用于形状杂乱、作业温度在200以下要求高气密性接受低载荷的零件,如外表壳体、活塞、制动器外壳等。ZL104 适用于砂型或金属型铸造形状杂乱的薄壁零件,合适制作中等载何而作业温度不超越180的零件,如机匣、结构、缸体等ZL105 适于铸造形状较杂乱和接受中等载荷,作业温度至250的各种发起机零件和附件零件如汽缸件、机匣、油泵壳体等ZL108 ZL109 用于发起机活塞等高温下(≤250)作业的零件。当要求热膨胀系数小,强度高,耐磨性高时,也可采用。ZL111 用于形状杂乱,接受高载荷,气密性要求高的大型零件。ZL201 适用于制作接受较高载荷或在175-300下作业的,形状不太杂乱的零件,如飞机的外挂架、支臂等ZL201A 接受较大载荷、作业温度达300、中等杂乱程度的高强度铸件,如梁、框、肋和轮毂等ZL203 用于形状简略,接受中等静载荷 和冲击载荷,作业温度不超越200,并要求切削性杰出的零件,如曲轴箱、支架、飞轮盖等。ZL204A 是一种新式合金,其使用规模和作业条件与ZL201A类似,但具有更高的强度功能,其作业温度限于200以下。该合金已用于替代2A14制作重要部件,还可用于飞机承力部件,如各种梁、框等。ZL205A T5状况用于承力构件,如和飞机的梁框、支臂、支座等零件,减轻分量;并可替代2A50等锻铝,削减工时; T6状况用于接受大载荷零件,可替代2A14锻件。也可替代中碳钢,做雷达的横轴等; T7状况合金用于在腐蚀气氛中作业的承力构件,如替代45号钢制作超高压线路架线中轮。ZL207 用于制作作业温度达400并要求气密的零件,如飞机空气分配器和电动活门壳体等,可替代铜或钛合金,明显减轻分量,降低成本。ZL301 用于要求耐蚀性高的飞翔器零件ZL303 在对耐蚀性有特殊要求的条件下(海水或其他腐蚀介质)或作业温度较高(200)时用。如水上飞机的一些承载不大的零件或装修件。ZL401 用于外表薄壳体压铸零件,作业温度不宜超越200ZL402 用于接受高的静载荷和冲击载荷而又不便于进行热处理的零件,亦可用于要求同腐蚀介质触摸和尺度稳定性高的零件,如高空飞翔氧气调节器等。

铸造铝合金缺陷及分析

2019-01-15 09:51:35

一 氧化夹渣   缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现   产生原因:   1.炉料不清洁,回炉料使用量过多   2.浇注系统设计不良   3.合金液中的熔渣未清除干净   4.浇注操作不当,带入夹渣   5.精炼变质处理后静置时间不够   防止方法:   1.炉料应经过吹砂,回炉料的使用量适当降低   2.改进浇注系统设计,提高其挡渣能力   3.采用适当的熔剂去渣   4.浇注时应当平稳并应注意挡渣   5.精炼后浇注前合金液应静置一定时间   二 气孔 气泡   缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔 气泡可通过X光透视或机械加工发现气孔 气泡在X光底片上呈黑色   产生原因:   1.浇注合金不平稳,卷入气体   2.型(芯)砂中混入有机杂质(如煤屑、草根 马粪等)   3.铸型和砂芯通气不良   4.冷铁表面有缩孔   5.浇注系统设计不良   防止方法 :   1.正确掌握浇注速度,避免卷入气体。   2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量   3.改善(芯)砂的排气能力   4.正确选用及处理冷铁   5.改进浇注系统设计   三 缩松   缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍 断口等检查方法发现  产生原因:   1.冒口补缩作用差   2.炉料含气量太多   3.内浇道附近过热   4.砂型水分过多,砂芯未烘干   5.合金晶粒粗大   6.铸件在铸型中的位置不当   7.浇注温度过高,浇注速度太快   防止方法:   1.从冒口补浇金属液,改进冒口设计   2.炉料应清洁无腐蚀   3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用   4.控制型砂水分,和砂芯干燥   5.采取细化品粒的措施   6.改进铸件在铸型中的位置降低浇注温度和浇注速度   四 裂纹   缺陷特征 :   1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现   2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生   产生原因:   1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊   2.砂型(芯)退让性不良   3.铸型局部过热   4.浇注温度过高   5.自铸型中取出铸件过早   6.热处理过热或过烧,冷却速度过激   防止方法:   1.改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡   2.采取增大砂型(芯)退让性的措施   3.保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计   4.适当降低浇注温度   5.控制铸型冷却出型时间   6.铸件变形时采用热校正法   7.正确控制热处理温度,降低淬火冷却速度   气孔分析   压铸件缺陷中,出现较多的是气孔。   气孔特征。有光滑的表面,形状是圆形或椭圆形。表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。   (1)气体来源   1) 合金液析出气体—a与原材料有关 b与熔炼工艺有关   2) 压铸过程中卷入气体­—a与压铸工艺参数有关 b与模具结构有关   3) 脱模剂分解产生气体­—a与涂料本身特性有关 b与喷涂工艺有关   (2)原材料及熔炼过程产生气体分析   铝液中的气体主要是氢,约占了气体总量的85%。   熔炼温度越高,氢在铝液中溶解度越高,但在固态铝中溶解度非常低,因此在凝固过程中,氢析出形成气孔。   氢的来源:   1) 大气中水蒸气,金属液从潮湿空气中吸氢。   2) 原材料本身含氢量,合金锭表面潮湿,回炉料脏,油污。   3) 工具、熔剂潮湿。   (3)压铸过程产生气体分析   由于压室、浇注系统、型腔均与大气相通,而金属液是以高压、高速充填,如果不能实现有序、平稳的流动状态,金属液产生涡流,会把气体卷进去。   压铸工艺制定需考虑以下问题:   1) 金属液在浇注系统内能否干净、平稳地流动,不会产生分离和涡流。   2) 有没有尖角区或死亡区存在?   3) 浇注系统是否有截面积的变化?   4) 排气槽、溢流槽位置是否正确?是否够大?是否会被堵住?气体能否有效、顺畅排出?   应用计算机模拟充填过程,就是为了分析以上现象,以作判断来选择合理的工艺参数。   (4)涂料产生气体分析   涂料性能:如发气量大对铸件气孔率有直接影响。   喷涂工艺:使用量过多,造成气体挥发量大,冲头润滑剂太多,或被烧焦,都是气体的来源。   (5)解决压铸件气孔的办法   先分析出是什么原因导致的气孔,再来取相应的措施。   1) 干燥、干净的合金料。   2) 控制熔炼温度,避免过热,进行除气处理。   3) 合理选择压铸工艺参数,特别是压射速度。调整高速切换起点。   4) 顺序填充有利于型腔气体排出,直浇道和横浇道有足够的长度(>50mm),以利于合金液平稳流动和气体有机会排出。可改变浇口厚度、浇口方向、在形成气孔的位置设置溢流槽、排气槽。溢流品截面积总和不能小于内浇口截面积总和的60%,否则排渣效果差。   5) 选择性能好的涂料及控制喷涂量。   解决缺陷的思路   由于每一种缺陷的产生原因来自多个不同的影响因素,因此在实际生产中要解决问题,面对众多原因到底是非功过先调机?还是先换料?或先修改模具?建议按难易程度,先简后复杂去处理,其次序:   1) 清理分型面,清理型腔,清理顶杆;改善涂料、改善喷涂工艺;增大锁模力,增加浇注金属量。这些靠简单操作即可实施的措施。   2) 调整工艺参数、压射力、压射速度、充型时间、开模时间,浇注温度、模具温度等。   3) 换料,选择质优的铝合金锭,改变新料与回炉料的比例,改进熔炼工艺。   4) 修改模具,修改浇注系统,增加内浇口,增设溢流槽、排气槽等。   例如压铸件产生飞边的原因有:   1) 压铸机问题:锁模力调整不对。   2) 工艺问题:压射速度过高,形成压力冲击峰过高。   3) 模具问题:变形,分型面上杂物,镶块、滑块有磨损不平齐,模板强度不够。解决飞边的措施顺序:清理分型面→提高锁模力→调整工艺参数→修复模具磨损部位→提高模具刚度。从易到难,每做一步改进,先检验其效果,不行再进行第二步。   压铸件常见缺陷影响因素   影响因素 常见缺陷   欠铸 气泡 变形 缩孔气孔 裂纹 冷隔 夹渣 粘模 擦伤 因素类别 产生根源   比压 √   √       √ B 压铸机   压射速度 √ √           B   建压时间 √   √       B   压室充满度 √ √   √       B   1-2速度交接点 √ √   √       B   凝固时间   √   √       B   模具温度 √ √   √ √   √   C 模具   模具排气 √ √   √   √     A   浇注系统不正确     √     √   A   模具表面处理不好   √       √ A   铸造斜度不够   √   √   √ √ A   铸造硬度不够           √ √ A   浇注温度 √ √     √     C 现场操作   浇注金属量 √   √       C   金属含杂质         √   C   涂料   √ √ √ √ √ √ √ √ C   注:A类因素:取决于模具设计与制造。   B类因素:大都取决于压铸机性能及压铸参数选择

铸造铝合金的分类

2018-12-28 15:58:36

铸造铝合金具有与变形铝合金相同的合金体系,具有与变形铝合金相同的强化机理(除应变硬化外),同样可分为热处理强化型和非热处理强化型两大类。铸造铝合金与变形铝合金的主要差别在于:铸造铝合金中合金化元素硅的最大含量超过多数变形铝合金中的硅含量。铸造铝合金除含有强化元素之外,还必须含有足够量的共晶型元素(通常是硅),以使合金有相当的流动性,易于填充铸造时 铸件的收缩缝。      目前,铸造铝合金在国际上无统一标准。各国(公司)都有自己的合金命名及术语,美国铝业协会的分类法如下:      1XX.X:控制非合金化的成分;      2XX.X:含铜且铜作为主要合金化元素的铸造铝合金;      3XX.X:含镁或(和)铜的铝硅合金;      4XX.X:二元铝硅合金;      5XX.X:含镁且镁作为主要合金化元素的铸造铝合金,通常还含有铜、镁、铬、锰等元素;      6XX.X:目前尚未使用;      7XX.X:含锌且锌作为主要合金化元素的铸铝合金;      8XX.X:含锡且锡作为主要合金化元素的铸铝合金;      9XX.X:目前尚未使用。     尽管世界各国已开发出了大量供铸造的铝合金,但目前基本的合金只有以下6类:      1、AL-CU合金;      2、AL-CU-SI合金;      3、AL-SI合金;      4、AL-MG合金;      5、AL-ZN-MG合金;      6、AL-SN合金

浅谈铸造锻造铝合金轮毂

2018-12-25 13:45:32

随着时间的增长,铝合金轮毂的诸多优点也被越来越多的人认知和接受,装车量也随之提升。最近有卡友反应市面出现了一种相对便宜的铸造铝合金轮毂,那么这种铸造铝合金轮毂和锻造铝合金轮毂之间有什么差别呢?   铸造轮毂工艺相对简单 适合批量生产成本较低   低压铸造是生产铝轮毂的最基本方法,也比较经济,较为常见的有低压铸造和高反压模铸。低压铸造就是把熔化的金属浇铸在模子里成型并硬化,冷却后的毛坯再经过车床精细加工抛光的程序最终得到成品。   高反压铸造是较为先进的铸造方法,用高真空产生的吸力把溶化后的金属吸进模具,这样做有利于保持恒温和排除杂质,铸件内没有气孔而且密度均匀,强度相对低压铸造更高。铸造工艺流程相对简单适合大批量生产有利降低成本。   锻造轮毂工艺复杂 成本较高但性能更好   锻造是目前制造铝轮毂的最先进的方法,锻造铝合金轮毂是以一定的压力把一块铝锭在热状态下,用大型锻压机反复锻压成一个轮毂毛坯。锻压过后再对毛坯进行旋压处理,这道工序的作用就是把轮圈的宽度进行拉伸,以达到对应标准,经过旋压工艺过后轮毂已基本成型,之后再经过车床精加工,打磨喷漆之后就能得到成品铝合金轮毂。   正因为锻造工艺复杂,锻造设备昂贵,(一台大型锻压机的成本就要数千万元),所以锻造轮毂的成本也就相对较高。   金相分析 锻造轮毂性能更好   图中我们可以看到下面锻造轮毂的切面非常的光滑,金属晶粒排列紧密无粗糙感,而铸造的铝合金轮毂金属晶粒排列松散,同时金属颗粒较大切面有很强的粗糙感。  在显微镜下观察,右侧铸造轮毂金属分子排列松散颗粒较大,左侧锻造铝合金轮毂的金属分子排列非常紧密。金属分子排列的越紧密,轮毂的韧性就越高,抗冲击力,强度,承载性就越好。  外观难以区分 重量有差别   锻造轮毂和铸造轮毂在外观上几乎无法分别,只是在金属特性上有较大差别,锻造轮毂的韧性,抗冲击力,强度,承载能力相对铸造轮毂更高,两者在散热性能上没有太大的差别。但是铸造轮毂普遍要比锻造轮毂重20%左右。   编后语   虽然铸造铝合金轮毂和锻造铝合金轮毂对比有些许差别,但用最新工艺生产的铸造轮合金轮毂的性能性能已经很接近锻造轮毂,卡友们可根据自己的车辆工况选择合适自己的铝合金轮毂,但要谨防一些无良商家用铸造轮毂冒充锻造轮毂销售。

铸造铝合金的缺陷(三)

2018-12-27 09:30:02

三.缩松   缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍 断口等检查方法发现。   产生原因:  1.冒口补缩作用差  2.炉料含气量太多  3.内浇道附近过热  4.砂型水分过多,砂芯未烘干  5.合金晶粒粗大  6.铸件在铸型中的位置不当  7.浇注温度过高,浇注速度太快  防止方法:  1.从冒口补浇金属液,改进冒口设计  2.炉料应清洁无腐蚀  3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用  4.控制型砂水分,和砂芯干燥  5.采取细化品粒的措施  6.改进铸件在铸型中的位置降低浇注温度和浇注速度删除

铸造铝合金的缺陷(一)

2018-12-27 09:30:02

一.氧化夹渣   缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现。    产生原因:  1.炉料不清洁,回炉料使用量过多  2.浇注系统设计不良  3.合金液中的熔渣未清除干净  4.浇注操作不当,带入夹渣  5.精炼变质处理后静置时间不够  防止方法:  1.炉料应经过吹砂,回炉料的使用量适当降低   2.改进浇注系统设计,提高其挡渣能力  3.采用适当的熔剂去渣  4.浇注时应当平稳并应注意挡渣  5.精炼后浇注前合金液应静置一定时间。删除

铸造铝合金的缺陷(二)

2018-12-27 09:30:02

二.气孔、气泡   缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔 气泡可通过X光透视或机械加工发现气孔 气泡在X光底片上呈黑色。  产生原因:  1.浇注合金不平稳,卷入气体  2.型(芯)砂中混入有机杂质(如煤屑、草根 马粪等)  3.铸型和砂芯通气不良  4.冷铁表面有缩孔  5.浇注系统设计不良  防止方法 :  1.正确掌握浇注速度,避免卷入气体。  2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量  3.改善(芯)砂的排气能力  4.正确选用及处理冷铁  5.改进浇注系统设计删除

铸造用铝合金之化学成份

2019-01-02 15:29:20

AC系列 Cu Si Mg Zn Fe Mn Ni Ti Pb Sn Cr ALAC1A 4.00 ~ 5.00 > 1.20 > 0.15 > 0.30 > 0.40 > 0.30 > 0.05 > 0.25 > 0.05 > 0.05 > 0.05 BALAC1B 4.00 ~ 5.00 > 0.20 0.20 ~ 0.35 > 0.10 > 0.30 > 0.10 > 0.05 0.05 ~ 0.30 > 0.05 > 0.05 > 0.05 BALAC2A 3.00 ~ 4.50 4.00 ~ 6.00 > 0.25 > 0.50 > 0.70 > 0.50 > 0.30 > 0.20 > 0.15 > 0.05 > 0.15 BALAC2B 2.00 ~ 4.00 5.00 ~ 7.00 > 0.50 > 1.00 > 0.80 > 0.50 > 0.35 > 0.20 > 0.20 > 0.10 > 0.20 BALAC3A > 0.25 10.00 ~ 13.00 > .015 > 0.30 > 0.70 > 0.35 > 0.10 > 0.20 > 0.10 > 0.10 > 0.15 BALAC4A > 0.25 8.00 ~ 10.00 0.35 ~ .060 > 0.25 > 0.40 .030 ~ 0.60 > 0.10 > 0.20 > 0.10 > 0.05 > 0.15 BALAC4B 2.00 ~ 4.00 7.00 ~ 10.00 > 0.50 > 1.00 > 0.80 > 0.50 > 0.35 > 0.20 > 0.20 > 0.10 > 0.20 BALAC4C > 0.25 6.50 ~ 7.50 .030 ~ 0.45 > 0.35 > 0.40 > 0.35 > 0.10 > 0.20 > 0.10 > 0.05 > 0.10 BALAC4CH > 0.20 6.50 ~ 7.50 0.25 ~ 0.40 > 0.10 > 0.17 > 0.10 > 0.05 > 0.20 > 0.05 > 0.05 > 0.05 BALAC4D 1.00 ~ 1.50 4.50 ~ 5.50 0.45 ~ 0.60 > 0.30 > 0.50 > 0.50 > 0.20 > 0.20 > 0.10 > 0.05 > 0.15 BALAC5A 3.40 ~ 4.50 > 0.60 1.30 ~ 1.80 > 0.15 > 0.70 > 0.35 1.70 ~ 2.30 > 0.20 > 0.05 > 0.05 > 0.15 BALAC7A > 0.10 > 0.20 3.60 ~ 5.50 > 0.15 > 0.25 > 0.60 > 0.05 > 0.20 > 0.05 > 0.05 > 0.15 BALAC7B > 0.10 > 0.20 9.60 ~ 11.00 > 0.10 > 0.25 > 0.10 > 0.05 > 0.20 > 0.05 > 0.05 > 0.15 BALAC8A 0.80 ~ 1.30 11.00 ~ 13.00 0.80 ~ 1.30 > 0.15 > 0.70 > 0.15 0.80 ~ 1.50 > 0.20 > 0.05 > 0.05 > 0.10 BALAC8B 2.00 ~ 4.00 8.50 ~ 10.50 0.60 ~ 1.50 > 0.50 > 0.80 > 0.50 0.10 ~ 1.00 > 0.20 > 0.10 > 0.10 > 0.10 BALAC8C 2.00 ~ 4.00 8.50 ~ 10.50 1.60 ~ 1.50 > 0.50 > 0.80 > 0.50 > 0.50 > 0.20 > 0.10 > 0.10 > 0.10 BAL AA系列 Cu Si Mg Zn Fe Mn Ti Sn Cr 其它 其它 ALX201.0 4.2~5.2 0.1 0.15~0.55 0.4 0.15 0.4 0.15~0.35     0.05g 0.01 剩余354.0 1.6~2.0 8.6~9.4 0.4~0.6 0.1 0.2 0.1 0.20 -- -- 0.05 0.15 "355.0 1.0~1.5 4.5~5.5 0.4~0.6 0.3 0.6 0.5 0.25 -- 0.25 0.05 0.15 "C355.0 1.0~1.5 4.5~5.5 0.4~0.6 0.3 0.6 0.5 0.25 -- 0.25 0.05 0.15 "356.0 0.25 6.5~7.5 0.2~0.4 0.35 0.6 0.35 0.25 -- -- 0.25 0.05 "A356.0 0.20 6.5~7.5 0.2~0.4 0.10 0.2 0.10 0.20 -- -- 0.25 0.05 "357.0  0.20 6.5~7.5 0.45~0.6 0.05 0.15 0.03 0.2 -- -- 0.05 0.15 "A357.0   0.20 6.5~7.5 0.4~0.7 0.1 0.2 0.1 0.1~0.2 -- -- 0.5f 0.15 "359.0 0.20 8.5~9.5 0.5~0.7 0.1 0.2 0.1 0.2 -- -- 0.05 0.15 "A443.0    0.30  4.5~6.0 0.05 0.5 0.8 0.50 0.25 -- 0.25 -- 0.25 "514.0 0.15 0.35 3.5~4.5 0.15 0.5 0.35 0.25 -- -- 0.05 0.15 "520.0    0.25  0.25 9.5~10.6 0.15 0.3 0.15 0.25 -- -- 0.05 0.15 "535.0  0.05 0.15 6.2~7.5 -- 0.15 0.10~0.25 0.10~0.25 -- -- 0.05 0.15 "A535.0 0.10 0.20 6.5~7.5 -- 0.2 0.1~0.25 0.25 -- -- 0.05 0.15 "A712.0 0.35~0.65 0.15 0.6~0.8 6.0~7.0 0.5 0.05 0.25 ---- 0.05 0.15 "771.0 0.1 0.15 0.8~1.0 6.5~7.5 0.15 0.1 0.1~0.2 -- 0.06~0.2 0.05 0.15 "*注g: Ag :0.4~1.2%

铸造铝合金物理性能

2019-01-02 15:29:17

合金代号密度ρ /g·cm-3熔化温度范围 /℃20~100℃时平均线膨胀系数α /μm·(m·K)-1100℃时比热容с /J·(kg·K)-125℃时热导率λ /W·(m·K)-120℃时电导率κ (%IACS)20℃时电阻率ρ /nΩ·mZL1012.66577~62023.08791513645.7ZL101A2.68557~61321.49631503644.2ZL1022.65577~60021.18371554054.8ZL1042.65569~60121.77531473746.8ZL1052.68570~62723.08371593646.2ZL1062.73—21.4963100.5——ZL1082.68———117.2——ZL1092.68—19963117.22959.4ZL1112.69—18.9————ZL2012.78547.5~65019.5837113—59.5ZL201A2.83547.5~65022.6833105—52.2Zl2022.91—22.09631343452.2ZL2032.80—23.08371543543.3ZL204A2.81544~65022.03————ZL205A2.82544~63321.9888113——Zl2062.90542~63120.6—155—64.5ZL2072.83603~63723.6—96.3—53Zl2082.77545~64222.5—155—46.5ZL3012.55—24.5104792.12191.2ZL3032.60550~65020.09621252964.3ZL4012.95545~57524.0879———ZL4022.81—24.7963138.235—

铸造铝合金的缺陷(四)

2018-12-27 09:30:02

缺陷特征:  1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现  2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生  产生原因:  1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊  2.砂型(芯)退让性不良  3.铸型局部过热  4.浇注温度过高  5.自铸型中取出铸件过早  6.热处理过热或过烧,冷却速度过激  防止方法:  1.改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡  2.采取增大砂型(芯)退让性的措施    3.保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计  4.适当降低浇注温度  5.控制铸型冷却出型时间  6.铸件变形时采用热校正法  7.正确控制热处理温度,降低淬火冷却速度  气孔分析:压铸件缺陷中,出现最多的是气孔。  气孔特征。有光滑的表面,形状是圆形或椭圆形。表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。12后一页删除

铝合金车轮挤压铸造工艺

2019-02-28 10:19:46

现在,国内卡丁车(相似碰碰车)都从国外进口,其间铝合金车轮是一个重要零件。曩昔,国外选用压力铸造出产该铸件,铸件质量差,且成品率低,劳动强度大。针对该铸件的结构特色和功能要求,怎么进步其产品质量、下降原材料耗费、节约能源、进步劳动出产率及下降铸件本钱,是当时出产中的要害。从研发的状况可知,选用揉捏铸造替代压力铸造是往后制作铝合金车轮卓有成效的工艺。  1 车轮材料、要求及铸件规划   图1所示为铝合金车轮零件图。车轮不只有较高的功能要求,并且形状非常杂乱。图1 车轮零件图   车轮材料的化学成分(质量分数)为:1.5%~3.5%的Cu,10.5%~12.0%的Si,<0.3%的Mg,<1.0%的Zn,<0.5%的Mn,<1.3%的Fe,<0.5%的Ni,<0.5%的Sn,其他为Al。力学功能要求:σb>276 MPa,σs>115 MPa,σ>4.4%,HB>92。   该车轮内外形的尺度精度较高,都应加放加工余量及余块。按揉捏铸造工艺的要求,把形状杂乱的车轮零件图规划如图2所示的铸件图。   由该图可见,为便于从铸件内孔脱出及简化模具加工,把本来的阶梯轴孔规划成圆柱形中心孔,其直径为φ30 mm,内壁斜度为3°[1]。图2 车轮铸件图   2 模具结构及规划参数[1] 2.1 揉捏铸造模具结构   铝合金车轮揉捏铸造的模具结构如图3所示。它首要有凸模、右凹模、顶杆镶块和左凹模组成所要求的型腔。左凹模和右凹模别离固定在左凹模定模板和右凹模动模板上,左凹模定模板用螺钉紧固鄙人模板上,右凹模动模板经过侧缸在导柱上施行敞开及闭合。图3 车轮揉捏铸造模具   1.上模板 2.凸模固定板 3.凸 模 4.导 柱 5.右凹模 6.右凹模动模板   7.垫 板 8.下模板 9.顶杆镶块 10.左凹模 11.左凹模定模板   选用2000 kN油压机改装进行揉捏铸造,其作业进程是:将定量的合金熔液浇入型槽后,固定在活动横梁上的凸模以必定速度向下挤入型腔,压力达必定数值后保压;铝合金凝结后卸压,凸模经过作业缸的回程向上移动,顶杆镶块经过下顶缸从铸件内向下退出,直到悉数脱离铸件之后,再用侧缸敞开右凹模,取出铸件。   2.2 模具规划的首要参数   (1) 空隙 凸模与左、右凹模之间的空隙要恰当。过小则因凸模与凹模的安装差错而相碰或咬住;过大则合金熔液经过空隙喷出,构成事端;或许在空隙中发生纵向毛剌,减小加压作用,阻止卸料。合理的空隙与加压开端时刻、加压速度、压力巨细、工件尺度及金属材料有关。依据实践出产经历,单边空隙取0.1 mm。   (2) 脱模斜度 合金熔液在凸模压力下凝结成铸件,冷却后紧包在凸模及顶杆镶块上。为了便于凸模及顶杆镶块脱出,故在凸模及顶杆镶块上设有3°的脱模斜度。因为铸件外形呈圆状,且分在左、右两片凹模,只需右凹模向右移动必定间隔,铸件就易从左凹模取出,故不用设置脱模斜度。   (3) 排气 在左、右两片凹模彻底闭合后,合金熔液因缓慢地浇入型腔,型腔中气体可根本排出。揉捏铸造时,留在凸模导向部分的少数气体,经过凸模与凹模之间的空隙排出。   (4) 模具材料 揉捏铸造是在必定的压力和必定的温度下进行的,不存在像压铸模那样遭到金属液的冲刷。作业压力比压铸时高,只需求模具在高温下有必定的抗压强度即可。别的,为了避免与合金熔液触摸的模具表面发生热疲惫裂纹,左右凹模、凸模及顶杆镶块均选用3Cr2W8V合金模具钢制作,热处理后硬度为HRC48~52,型腔表面进行软氮化处理。   3 揉捏铸造的工艺参数   揉捏铸造是铸锻结合的工艺,其出产工艺进程是:合金的熔化、模具的预备(整理、预热、喷涂润滑剂)、金属的浇注、液态金属的加压、压力的坚持、压力的去除及铸件的取出等。   为确保铸件质量,须合理挑选工艺参数[1~2]。   (1) 比压 压力巨细对铸件的物理力学功能、铸造缺点、安排、偏析、熔点及相平衡等都有直接影响。所以断定成形有必要的单位压力是很重要的。假如比压过小,铸件表面与内涵质量都不能到达技术指标;比压过大,对功能的进步不非常显着,还简单使模具损坏,且要求较大合模力的设备。揉捏铸造实验是在2 000 kN油压机上进行的。实验证明,适合于本铝合金车轮揉捏铸造的比压应在50~60 MPa范围内选取。   (2) 加压开端时刻 从车轮揉捏铸造实验的成果来看,其加压开端时的间隔时刻过长,铸件的强度及伸长率下降。现用的开端加压时刻是3~5 s,较为适宜。   (3) 加压速度 揉捏铸造要求必定的加压速度,在或许状况下,以加压速度快一点为好。加压速度快,则凸模能很快地将压力施加于金属上,便于成形、结晶和塑性变形。但也不宜过快,不然会使部分合金熔液的表面发生飞溅及涡流,使铸件发生缺点,以及在凸、凹模之间的空隙中流出过多的合金熔液,构成难以去除的纵向毛刺。因而,有必要使凸模缓慢地压入液态金属中。因为运用的油压机作业进给速度较慢,故使用作业行程的速度进行限制。   (4) 保压时刻 压力坚持时刻首要取决于铸件厚度,在确保成形和结晶凝结条件下,保压时刻以短为好。可是保压时刻过短,则铸件内部简单发生缩孔,假如保压时刻过长,则会延伸出产周期,添加变形抗力,下降模具运用寿命。   考虑本车轮的壁厚状况,揉捏铸造的保压时刻选用12 s左右。   (5) 模具预热温度 模具若不预热,合金熔液注入型腔后会很快凝结,导致来不及加压;但预热温度也不能过高,不然会延伸保压时刻,下降出产率,一起也不利于喷涂润滑剂。对本车轮揉捏铸造模具的预热温度为200~300℃,通常是用火油喷灯进行加热。   (6) 合金浇注温度 浇注温度过高或过低都对合金成形有显着影响。过低,合金极易凝结,所需单位压力大;过高,易发生缩孔。有必要指出,揉捏铸造合金的浇注温度要比砂型浇注温度高。一般期望把浇注温度控制在比较低的数值,因为揉捏铸造时期望消除气孔、缩孔和疏松。在浇注温度低时,气体易于从合金熔液内部逸出,很少留在金属中,易于消除气孔。此外,也可削减缩孔构成时机,一起因为浇注温度较低,金属溢出较少,可削减毛刺。对本车轮揉捏铸造的浇注温度选用720~740℃为较适宜。   (7) 润滑剂 润滑剂的作用是维护模具,进步铸件表面质量和便于从模具内取出铸件。选用机油石墨润滑剂,即5%的200~300意图石墨粉加入到95%机油中,拌和均匀即可。用喷喷涂在模具型腔表面上,其厚度为0.05~0.1 mm,过厚会影响铸件表面质量。   (8) 冷却 揉捏铸造卸压后,一般应当即脱模,故铸件的出模温度较高。为了避免高温的铸件空冷时在薄壁与厚壁的交界处发生裂纹,应将出模后的铸件当即放入砂堆中,待冷却到150℃以下时再取出空冷。

铝合金铸造模具的技术要求

2019-01-02 09:41:17

1)化学成分合金的化学成分应符合GB/T 15114-1994的规定。    2)力学性能   ①当采用铸造模具试样检验时,其力学性能应符合GB/T 15114-1994规定②当采用铸造模具本体检验时,其指定部位切取试样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定。   3)铸造模具尺寸   ①铸造模具的几何形状和尺寸应符合铸件图样的规定。   ②铸造模具的尺寸公差应按GB/T 6414-1999的规定执行。有特殊规定和要求时,须在图样上注明。   ③铸造模具有形位公差要求时,可参照表5;其标注方法按GB/T 15114-1994的规定。   ④铸造模具的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,被包容面以大端为基准;待加工表面:包容面以大端为基准,被包容面以小端为基准,有特殊规定和要求时,须在图样上注明。   4)铸造模具需要机械加工时,其加工余量按GB/T 15114-1994的规定执行。若有特殊规定和要求时,其加工余量须在图样上注明。   5)表面质量   ①铸造模具表面粗糙度应符合GB/T 15114-1994的规定。   ②铸造模具不允许有裂纹、欠铸、疏松、气泡和任何穿透性缺陷。   ③铸造模具允许有擦伤、凹陷、缺肉和网状毛刺等缺陷。但其缺陷的程度和数量应该与供需双方同意的标准相一致。   ④铸造模具的浇口、飞边、溢流口、隔皮、顶杆痕迹等应清理干净。但允许留有痕迹。   ⑤若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置、分型线的位置、浇口和溢流口的位置等由生产厂自行规定,否则图样上应注明或由供需双方商定。   ⑥铸造模具需要特殊加工的表面,如抛光、喷丸、镀铬、涂覆、阳极氧化、化学氧化等须在图样上注明或由供需双方商定。

铜合金铸造

2017-06-06 17:50:02

科技名词定义中文名称:铸造铜合金 英文名称:cast copper alloy 定义:以铜为基的铸造合金。各种成分的铜合金的结晶特征不同,铸造性能不同,铸造工艺特点也不同。1、锡青铜:结晶特征是结晶温度范围大,凝固区域宽。铸造性能方面流动性差,易产生缩松,不易氧化。工艺特点是壁厚件采取定向凝固(顺序凝固),复杂薄壁件、一般壁厚件采取同时凝固。2、铝青铜和铝黄铜:结晶特征是结晶温度范围小,为逐层凝固特征。铸造性能方面流动性较好,易形成集中缩孔,极易氧化。工艺特点是铝青铜浇注系统为底注式,铝黄铜浇注系统为敞开式。3、硅黄铜:结晶特征是介于锡青铜和铝青铜之间。铸造性能最好(在特殊黄铜中)。工艺特点是顺序凝固工艺,中注式浇注系统,暗冒口尺寸较小。(一)用于生产铸件的铜合金。多数铸造铜合金不能进行压力加工,例如铸造铍青铜和铸造锡青铜(Cu5Sn5Zn5Pb),这类合金塑性极差,不能进行压力加工。铸造铍青铜主要用作防爆工具、模具、海底电缆中继器的结构件、焊接电极等。铸造锡青铜,铸造铝青铜,铸造黄铜主要用作轴瓦、轴套、衬套、轴承、齿轮、管件等。铸造铜合金在工艺美术品方面得到广泛应用,古代青铜器就是一个典型例子。   (二)ZCuZn38Mn2Pb2   标准:GB/T 1176-1987   ●特性及适用范围:   有较高的力学性能和耐蚀性,耐磨性较好,可切削性能良好。   ●化学成份:   铜 Cu :57.0~60.0   锡 Sn :≤2.0(不计入杂质总和)   锌 Zn:其余   铅 Pb:1.5~2.5   铅 Pb:1.5~2.5   铝 Al:≤1.0(不计入杂质总和)   铁 Fe:≤0.8(杂质)   锰 Mn:1.5~2.5   铍 Sb :≤0.1(杂质)   注:杂质总和≤2.0   ●力学性能:   抗拉强度 σb (MPa):≥245   伸长率 δ5 (%):≥10   硬度 :≥685HB   ●热处理规范:加热温度1050~1100℃;浇注温度980~1000℃。   ●铸造方法:   S-砂型铸造、J- 金属 型铸造、La-连续铸造、Li离心铸造

各国铸造铝合金牌号对照

2019-01-02 14:54:46

各国铸造铝合金牌号对照 右键下载:各国铸造铝合金牌号对照17号用.pdf

铝合金重力铸造模具的应用分析

2019-01-14 14:52:56

先进设备固然是保证产品质量必不可少的因素,但模具在铸造中的作用同样非常重要。尤其对铝合金汽车零部件生产企业来说,模具的准确度和耐久性对产品质量的影响非常明显。  黑色金属铸造,模具更多的是为了形成铸型型腔,一般情况模具本身并不直接与金属液接触,尤其对于形状复杂的非金属模铸造件更是如此,与灼热金属液接触的是造型材料,主要是型砂,这使造型材料成为影响铸件质量的主要因素。而铝合金重力铸造则不同,由于铝合金熔点较低,铸造性能好,在大量生产时,铸件的外形一般是由模具直接形成的,如发动机的铝合金缸体、缸盖等,这不仅有利于提高劳动生产率,而且更重要的是通过调节模具不同部位的温度分布,来控制铸件的组织结构和晶粒大小,提高铸件质量,同时,避免了大量使用造型材料而带来的环境污染,改善了车间的劳动条件。  随着铸件形状复杂程度不同,铝合金重力铸造模具也各不相同。即使是同一零件,采用不同的铸造工艺,模具形式也往往不同,但不管怎样,铝合金重力铸造模具还是有其共性的。  首先,必须选择合适的铸造工艺,铸造工艺的优劣直接关系到铸件质量和工艺出品率的高低。国内有些模具制造厂,已开始使用凝固模拟来进行铸造工艺辅助设计,通过对充型和凝固过程的计算机模拟,发现易产生铸造缺陷的热结部位并予以克服,这对提高铸造工艺设计的可靠性,有效防止模具在调试过程中不必要的返工,是十分重要和有效的。  其次,模具要有好的容热能力。符合要求的较厚实的模架和模块,不仅是模具寿命的有效保证,而且对于模具连续工作过程中温度场的调节都具有非常重要的作用。一些模具厂,为了降低成本,节约用料,一味地降低模具的有效厚度以达到减轻重量的目的,殊不知这不仅大大降低了模具的使用寿命,而且使铸件易于变形,影响铸件尺寸精度,严重时将导致铸件批量报废,给铸造厂造成损失,更严重的是损害了模具厂自身的声誉。  第三,模具要有较可靠的冷却系统和拔气系统。通过冷却,不仅可有效提高劳动生产率,而且可调节铸件温度场、控制铸件冷却速度,进而影响铸件内部组织结构和晶粒尺寸、实现有效控制铸件机械性能的目的。顾名思义,拔气,就是人为地将型腔内部的气体排到型腔外以减少铸件产生气孔类缺陷的可能。同时,通过加装排气塞也可以调剂局部小区域的模温,对防止和克服铝合金开裂和缩陷有很重要的作用。

铝合金铸造温度、铸造速度、冷却强度与铸锭质量的关系

2019-01-02 14:54:44

铸造工艺参数主要有铸造温度、铸造速度、冷却强度,其次是液位高度、铸造开始与结束条件等。     1 铸造温度     铸造沏度通常是指液体金属从保温炉通过转注工具注入结晶器过程中具确良好流动性所需要的温度。但是,目前铝合金熔铸大部分已应用了在线除气与过滤装置,铸造温度仍然按上述的概念是不够 全面与正确的。实践证明,在线除气装置中液体温度不同具除气效果也不同。因此,要考虑在线除气装置除气效果对液体温度的要求。另外,还应考虑液体在结晶器内的气体析出情况,因铸造温度低,液体在结晶器内的气体来不及上浮逸出液面,造成气孔、疏松,还可能产生灾渣及冷隔等铸锭质量缺陷、铸造温度最高不宜超过熔炼温度。铸造温度过高会导致铸造开始时漏铝。底部裂纹与拉裂,还可能产生羽毛品组织缺陷,又因为转注工具长度不同而液体温降不同,在线装首有加热点,液体在转注过程中温度变化起伏大,所以科学规范铸造温度应指注入结晶器内的液体温度一般情况下铸造温度比合金的实际结晶温度高50℃~70℃,1 x x x、3x x x系铝合金在铸造过机中过渡带较窄,铸造温度宜偏高;而2x x x、7x x x系合金的过渡带较宽.铸造温度宜偏低。     2 铸造速度     连续铸造时,单位时间铸锭成形的长度称为铸造速度。老式铸造通常是一个铸次为—个固定铸造速度;而现代铸造是曲线铸造速度,即铸造开始与铸造过程不是同一个铸造速度:铸造速度的快与慢对铸锭裂纹、铸锭表面质量、铸锭组织和性能有很大影响,在保证铸锭质量的前提下,应采用最高的铸造速度。老式铸造法为解决某些合金及规格铸锭的裂纹问题,铸造时采用铺底或回火的工艺方法;而现代铸造法则采用曲线铸锭速度,取代了老式铸造的铺底或回火工艺,它既减少了一些辅助设施,又节省了人力与减轻劳动强度,还可以避免——些铸锭表面质量缺陷铸造速度的选择是依据所生产合金的特性与铸锭截面尺寸而定。一般规律足冷裂纹倾向性较大的合金及铸锭规格,应提高铸造速度;而热裂纹倾向较大的合金及铸锭规格,则应降低铸造速度     3 冷却强度     冷却强度也称为冷却速度。冷却强度不但对铸锭的裂纹有影响,而且对铸锭的组织影响更大、随着冷却强度的增大,铸锭结晶速度提高,晶内结构更加细化;随着冷却强度增人,铸锭液穴变浅。过渡带尺寸缩小.使金属补缩条件得到改善,减少或消除了铸锭中的疏松、气孔等缺陷.铸锭致密度提高:另外还可以细化一次品化合物的尺寸,减小区域偏析的程度。     老式铸造法多采用分体结晶器,尤其是铸造扁铸锭时.水套与结晶器是分开的。随着铸造工艺技术的发展,现代铸造法的结晶器是一体的。用老式结晶器铸造时冷却水消耗量大,因为老式结晶器供 水不是封闭的,一部分冷却水敞火而起不到冷却作用,而且一次冷却与二次冷却的冷却强度差别人,不可避免的产生一些铸锭质量缺陷;而用现代结晶器铸造时.冷却水消耗量小.实践证明它仅是老式结晶 器用水量的70%左右。目前国外多采用低液位结晶器铸造,其目的就是提高冷却强度,减少或消除一次冷却后气隙区的加热现象,因此几乎不存在二次冷却的淬火情况、扁铸锭普通铸造已经将结晶器高度 降至100人,当然这需要操作者有很高的操作水平或增设液位白动控制系统。   冷冲却强度对冷却水温度的要求是不可忽视的,通常情况下,冷却水温设定在20度,但是由于地区气候条件。供水设施条件及厂房温度等不同导致变化较大,因而出现地区性或季节性铸锭质量缺陷。现代结晶器供水系统带有脉冲或交叉变相功能,均由工艺编程决定,因此冷却强度可依据铸造工艺需要设定为曲线,特别是针对某些低温塑性不好的硬合金,铸造时冷裂纹和热裂纹几乎同时存在,附加挡水板系统,使铸锭表面温度升高到拉伸变形塑性温度,消除铸锭冷裂纹,工艺上再采取防止热裂纹措施,即可以获得优质铸锭。

各国铸造铝合金牌号对照(一)

2019-03-08 12:00:43

类别 我国 前苏联 美国 英国 法国 原联邦德国 日本 JIS ISOGB YB HB ГOCT ASTM UNS ANSI AA SAE BS BS/L NF AIRLA DIN铝硅合金 ZL101 ZL11 HZL101 AЛ9,AЛ9B A03560 A13560 356.0 A356.0 323 — — A-S7G AS7G03 G—AlSi7Mg (3.2371.61) AC4C AlSi7MgZL102 ZL7 HZL102 AЛ2 A14130 A413.0 305 LM20 4L33 A-S13 — G—AlSi12 (3.2581.01) AC3A AlSi12ZL104 ZL14 — AЛ3,AЛ3B — — — — — — — — AC2B —铝硅合金 ZL104 ZL10 HZL104 AЛ4,AЛ4B A03600 A13600 360.0 A360.0 309 L L75 A— S9G A—S10G AS10G G—AlSi10Mg (3.2381.01) AC4A AlSi9Mg AlSi10MgZL105 ZL13 HZL105 AЛ5 A03550 C33550 355.0 C355.0 322 LM16 3L78 — — G—AlSi5Cu AC4A —ZL106 — — AЛ14B A03280 A03281 328.0 328.1 331 LM-24 — — — G—AlSi8Cu3 (3.2151.01) AC4D —ZL107 — — AЛ-6 AЛ-7B A03190 A03191 319.0 326 LM4 LM21 L79 A— S5UZ A—S903 — G—AlSi6Cu4 (3.2151.01) AC4B —ZL108 ZL8 — — — SC122A(旧) LM2 — — — — — —ZL109 ZL9 — AЛ30 A03360 A03361 336.0 336.1 — LM13 — A—S12UN — — AC8A AlSi12CuZL110 ZL3 — AЛ10B —   — LM1 — — — G—AlSi(Cu) — —ZL111 — — AЛ4м A03541 A03540 354.0 — — — — — — — —