您所在的位置: 上海有色 > 有色金属产品库 > 加工铝合金用什么刀具

加工铝合金用什么刀具

抱歉!您想要的信息未找到。

加工铝合金用什么刀具专区

更多
抱歉!您想要的信息未找到。

加工铝合金用什么刀具百科

更多

钨铜合金用哪种刀具铣削?

2019-05-30 19:57:04

 钨铜合金用哪种刀具铣削?    铜钨合金电火花电极、铜钨合金高压放电管电极、铜钨合金电子封装材料、本公司还供给定做各种异硬度:98RHRB,导电率:35%IACS,软化温度:900℃。    总述了近年来国内外钨铜合金材料制备技能方面的首要发展,并介绍了最新研制成功的几种新式钨铜合通常被称为伪合金或假合金因而,它既具有钨的高强度、高硬度、低膨胀系数等特性。    核技能:检测集装箱体系的钨合金准直器、60Co及其他辐射的屏蔽钨合金容器、地质勘察屏蔽γ射线钨工业探伤γ射线屏蔽钨合金准直器 电器:电触点、空气断路器触点、集成电路基板等 。

铝合金中加入锆有什么用?

2018-07-27 18:42:44

锆是一种浅灰色金属,具有高熔点,耐腐蚀的特性,外观与钢相似。在用于制造活塞的铝合金中加入锆,可改善其热性能,锆含量在0.2%时,铝合金开始结晶的湿度高于含2%硅和3.25%锰的铝合金。在铝合金结晶时,锆可作为减速剂,合金开始结晶温度为400℃,如果锰的含量为0.8%时,则铝合金的结晶温度提高到500℃,锰铜铝合金中加入锆能改善其锻行,同时也提高了结晶的温度。在铝合金中加入0.04%的锆,在加强铝合金的负荷作用下的抗破坏能力时不会影响合金的蠕变极限。在铁铝合金中加入锆添加剂,可是结晶粒细化,而添加了0.81%的锆使得合金强度提高。在铝镁合金中添加3%的锆,使得合金有更好的耐腐蚀性能。以上即为锆元素在铝合金中的部分作用,锆元素对铝合金的结晶行为、综合性能都有明显的影响变化。

铝合金加工

2017-06-06 17:50:10

  铝合金的加工工艺,硅对硬质合金有腐蚀作用。虽然一般将超过12%Si的铝合金称为高硅铝合金,推荐使用金刚石刀具,但这不是绝对的,硅含量逐渐增多对刀具的破坏力也逐渐加大。因此有些厂商在硅含量超过8%时就推荐使用金刚石刀具。       硅含量在8%-12%之间的铝合金是一个过渡区间,既可以使用普通硬质合金,也可以使用金刚石刀具。但使用硬质合金应使用经PVD(物理镀层)方法、不含铝元素的、膜层厚度较小的刀具。因为PVD方法和小的膜层厚度使刀具保持较锋利的切削刃成为可能(否则为避免膜层在刃口处异常长大需要对刃口进行足够的钝化,切铝合金就会不够锋利),而膜层材料含铝可能使刀片膜层与工件材料发生亲合作用而破坏膜层与刀具基体的结合。因为目前的超硬镀层多为铝、氮、钛三者的化合物,可能会因硬质合金基体随膜层剥落时少量剥落造成崩刃。     铝合金是工业中应用最广泛的一类 有色金属 结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。    纯铝的密度小(ρ=2.7g/m3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。 添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。       更多有关铝合金加工请详见于上海 有色 网

铝活塞加工刀具材料的合理选用

2019-01-15 09:49:23

刀具材料性能的优劣是影响加工表面质量、切削加工效率、刀具寿命的基本因素。切削加工时,直接担负切削工作的是刀具的切削部分。刀具切削性能的好坏大多取决于构成刀具切削部分的材料、切削部分的几何参数及刀具结构的选择和设计是否合理。切削加工生产率和刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大程度上都取决于刀具材料的合理选择。正确选择刀具材料是设计和选用刀具的重要内容之一。    每一品种刀具材料都有其特定的加工范围,只能适用于一定的工件材料和切削速度范围。不同的刀具材料和同种刀具加工不同的工件材料时刀具寿命往往存在很大的差别,例如:加工铝活塞时,金刚石刀具的寿命是YG类硬质合金刀具寿命的几倍到几十倍;YG类硬质合金刀具加工含硅量高、中、低的铝合金时其寿命也有很大的差别。所以,合理选用刀具是成功进行切削加工的关键。每一种刀具材料都有其较佳的加工对象,即存在切削刀具与加工对象的合理匹配问题。     1 刀具材料应具备的性能    1.1 高的硬度和耐磨性    硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。切削金属所用刀具的切削刃硬度,一般都在60HRC以上。耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,其耐磨性就越好。组织中的硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越好。耐磨性还与材料的化学成分、强度、显微组织及摩擦区的温度有关。可用公式表示材料的耐磨性WR:WR=KIC0.5E-0.8H1.43式中:H——材料硬度(GPa)。硬度愈高,耐磨性愈好。     KIC——材料的断裂韧性(MPa·m½)。KIC愈大,则材料受应力引起的断裂愈小,耐磨性愈好。     E——材料的弹性模量(GPa)。E很小时,由于磨粒引起的显微应变,有助于产生较低的应力,耐磨性提高。    1.2 足够的强度和韧性    要使刀具在承受很大压力,以及在切削过程经常出现的冲击和振动条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。    1.3 高的耐热性(热稳定性)    耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温条件下保持一定的硬度、耐磨性、强度和韧性的性能。     刀具材料还应具有在高温下抗氧化的能力以及良好的抗粘结和抗扩散的能力,即刀具材料应具有良好的化学稳定性。1.4 良好的热物理性能和耐热冲击性能    刀具材料的导热性愈好,切削热愈容易从切削区散走,有利于降低切削温度。     刀具在断续切削或使用切削液时,常常受到很大的热冲击(温度变化剧烈),因而刀具内部会产生裂纹而导致断裂。刀具材料抵抗热冲击的能力可用耐热冲击系数R表示,R的定义是为:     R=λσb(1-µ)/Eα    式中:λ——导热系数;     σb——抗拉强度;     µ——泊松比;     E——弹性模量;     α——热膨胀系数。     导热系数大,使热量容易散走,降低刀具表面的温度梯度;热膨胀系数小,可减少热变形;弹性模量小,可以降低因热变形而产生的交变应力的幅度;有利于材料耐热冲击性能的提高。     耐热冲击性能好的刀具材料,在切削加工时可以使用切削液。    1.5 良好的工艺性能    为了便于刀具的制造,要求刀具材料具有良好的工艺性能,如锻造性能、热处理性能、高温塑性变形性能、磨削加工性能等。    1.6 经济性    经济性是刀具材料的重要指标之一,优质刀具材料虽然单件刀具成本很高,但因其使用寿命长,分摊到每个零件的成本则不一定很高。因此在选用刀具材料时要综合考虑其经济效果。     2 刀具材料     2.1 高速钢    高速钢是一种加入了较多的钨、钼、铬、钒等合金元素的高合金工具钢。高速钢具有较高的强度和韧性,并且具有一定的硬度和耐磨性。适合各类刀具的要求。高速钢刀具制造工艺简单,容易磨成锋利切削刃,因此尽管各种新型刀具材料不断出现,高速钢刀具在金属切削中仍占较大的比例。可以加工有色金属和高温合金。由于高速钢具有以上性能,活塞加工中的铣浇冒口、铣横槽及铣膨胀槽用铣刀、钻油孔用钻头等刀具都为高速钢材料。    2.2 硬质合金    硬质合金是由难熔金属碳化物(如WC、TiC、TaC、NbC等)和金属粘结剂(如Co、Ni等)粉末经粉末冶金的方法制成。     由于硬质合金中都含有大量的金属碳化物,这些碳化物都有熔点高、硬度高、化学稳定好、热稳定性好等特点,因此,硬质合金材料的硬度、耐磨性、耐热性都很高。常用硬质合金的硬度为89~93HRA,比高速钢的硬度(83~86.6HRA)高,在800~1000℃时尚能进行切削。在540℃时,硬质合金的硬度为82~87HRA,在760℃时,硬度仍能保持77~85HRA。因此,硬质合金的切削性能比高速钢高得多,刀具耐用度可提高几倍到几十倍,在耐用度相同时,切削速度可提高4~10倍。     目前我公司使用的硬质合金刀具主要是YG类(WC-TiC-Co)中的YG6和YGX。YT类(WC-TiC-Co)中的YT15等硬质合金用于活塞粗加工、半精加工和部分精加工工序。    2.3 金刚石    金刚石是目前已知矿物材料中硬度较高、热传导性较好的物质,与各种金属、非金属材料配对摩擦的磨损量仅为硬质合金的1/50~1/800,是制作切削刀具较理想的材料。然而,天然单晶金刚石仅用于制作首饰及某些有色金属的超精密加工。刀具用人造大颗粒单晶金刚石尽管目前De Beers公司、住友电工等均已工业化生产,但还没有进入大量应用阶段。     金刚石刀具的切削刃非常锋利(这对切下极小断面的切屑是很重要的),刃部粗糙度很小,摩擦系数又低,切削时不易产生积屑瘤,加工表面质量高。加工有色金属时,表面粗糙度可达到Ra0.012µm,加工精度可达到IT5级以上。     金刚石刀具有三种:天然单晶金刚石刀具、整体人造聚晶金刚石刀具、金刚石复合刀具。天然金刚石刀具由于成本较高等原因,在实际生产中应用较少。人造金刚石是通过合金触媒的作用,在高温高压下由石墨转化而成。金刚石复合刀片是在硬质合金基体上经过高温、高压等先进工艺烧结一层约0.5~1µm厚的金刚石,这种材料是以硬质合金做基体,其机械性能、热传导性和膨胀系数都近似于硬质合金,基体上的人造多晶金刚石磨料中的金刚石晶体呈不规则排列,其硬度和耐磨性在各个方向都是均匀的。     聚晶金刚石(简称PCD)是由经过筛选的人造金刚石微晶体在高温高压下烧结而成。在烧结过程中,由于添加剂的加入,使金刚石晶体间形成以TiC、SiC、Fe、Co和Ni等为主要成分的结合桥。金刚石晶体以共价键的结合形成牢固地嵌于结构桥构成的坚强骨架中,使PCD的强度和韧性都大大提高,其硬度约为9000HV,抗弯强度为O.21~0.48GPa,导热系数为20.9J/cm·sµ℃,热膨胀系数为3.1×10-6/℃。现在使用的聚晶金刚石刀具大多是PCD与硬质合金基体烧结形成的复合体,即在硬质合金基体上烧结上一层PCD。PCD的厚度一般为0.5mm和0.8mm,由于底层为硬质合金,焊接方便;又由于PCD结合桥的导电性,使得PCD便于切割加工成各种形状,制成各种刀具,成本远远低于天然金刚石。     聚晶金刚石(PCD)可加工各种有色金属和极耐磨的高性能非金属材料,如铝、铜、镁及其合金,硬质合金,纤维增强塑料,金属基复合材料,木材复合材料等。PCD刀具材料中金刚石晶粒平均尺寸不同,对性能产生的影响也不同,晶粒尺寸越大,其耐磨性越高。在相近的刃口加工量下,晶粒尺寸越小,则刃口质量越好。选用晶粒尺寸为10~25µm的PCD刀具,可以500~1500m/min的高速切削Si含量12~18%的硅铝合金,晶粒尺寸8~9µm的PCD加工Si含量小于12%的铝合金。超精密加工,则应选用晶粒尺寸小的PCD刀具。PCD的耐磨性在超过700℃时会减弱,因其结构中含有金属Co,会促进“逆向反应”即由金刚石向石墨转变。PCD有较好的断裂韧性,可以进行断续切削,可以以2500m/min的高速端铣Si含量10%的铝合金。    可利用金刚石材料的高硬度、高耐磨性、高导热性及低摩擦系数实现有色金属及耐磨非金属材料的高精度、高效率、高稳定性和高表面光洁度加工。在切削加工有色金属时,PCD刀具的寿命是硬质合金刀具的几十倍甚至几百倍,是目前铝活塞精密加工的理想刀具。例如:精车活塞环槽、精镗活塞销孔、精车活塞外圆、精车活塞顶面等工序。    2.4 立方氮化硼    聚晶立方氮化硼(PCBN)是由CBN微粉与少量粘结相(Co,Ni或TiC、TiN、Al203)在高温高压下加入催化剂烧结而成的。它具有很高的硬度(仅次于金刚石)和耐热性(1300~1500℃),优良的化学稳定性、比金刚石刀具高得多的热稳定性(达1400℃)和导热性,低的摩擦系数,但其强度较低。与金刚石相比,PCBN的突出优点是热稳定性高得多,可达1200℃(金刚石为700~800℃),可承受较高的切削速度;另一个突出优点是化学惰性大,与铁族金属在1200~1300℃下也不起化学反应,可用于加工钢铁。因此,PCBN刀具主要用于高效加工黑色难加工材料。     PCBN刀具除了具有以上的特点外,还有以下几项优点:①硬度高,特别适合于加工从前只能磨削的HRC50以上的淬硬钢、HRC35以上的耐热合金和HRC30以下而其它刀具很难加工的灰口铸铁。②与硬质合金刀具相比,切削速度高,可实现高速高效切削。③耐磨性好,刀具耐用度高(为硬质合金刀具的10~100倍),能获得较好的工件表面质量,实现以车代磨。不足之处在于PCBN刀具的抗冲击性能较硬质合金差,因此,使用时应注意提高工艺系统的刚性,尽量避免冲击切削。     PCBN可制成整体的刀片,也可与硬质合金结合制成复合刀片。PCBN复合刀片是在硬质合金基体上烧结一层0.5~1.0mm厚的PCBN,其性能兼有较好的韧性和较高的硬度及耐磨性。     PCBN的性能主要与CBN的粒度、CBN的含量及结合剂种类有关,按其组织大致可分为两大类:一类是由CBN晶粒直接结合而成,CBN含量高(70%以上),硬度高,适用于耐热合金、铸铁和铁系烧结金属的切削加工;另一类是以CBN晶粒为主体,通过陶瓷结合剂(主要有TiN、TiC、TiCN、AlN、Al203等)烧结而成,这类PCBN中CBN含量低(70%以下),硬度低,适用于切削加工淬硬钢。     在我公司,立方氮化硼刀具被用于镶铸铁环活塞的车削铸铁环槽工序中,同时也应用于活塞立体靠模的加工中。    2.5 陶瓷    陶瓷刀具材料的主要优点是:     有很高的硬度与耐磨性,常温硬度达91~95HRC;     有很高的耐热性,在1200℃高温下硬度为80HRC;而且高温条件下抗弯强度、韧性降低极少;     有很高的化学稳定性,陶瓷与金属亲合力小,高温抗氧化性能好,即使在熔化温度下也不与钢相互作用。因而刀具的粘结、扩散、氧化磨损较少;     有较低的摩擦系数,切屑不易粘刀,不易产生积屑瘤。    陶瓷刀的缺点是:     脆性大,强度与韧性低,抗弯强度只有硬质合金的1/2~1/5,因此使用时必须选择合适的几何参数与切削用量;避免承受冲击负荷,以防崩刃与破损;此外,陶瓷刀导热率低,仅为硬质合金的1/2~1/5,热膨胀系数却比硬质合金高10~30%,抗热冲击性较差。     目前,陶瓷刀具还没有应用于铝活塞加工过程中。     3 小结    刀具材料的发展对切削技术的进步起着决定性的作用。本文介绍了切削中所使用的金刚石、聚晶立方氮化硼、陶瓷、硬质合金、高速钢等刀具材料的性能及适用范围。刀具损坏机理是刀具材料合理选用的理论基础,刀具材料与工件材料的性能匹配合理是切削刀具材料选择的关键依据,要根据刀具材料与工件材料的力学、物理和化学性能选择刀具材料,才能获得良好的切削效果。就活塞在切削加工时的刀具材料选用作了阐述。     高速钢:活塞加工中铣浇冒口、铣横槽及铣膨胀槽用铣刀,钻油孔用钻头等都为高速钢材料。     硬质合金:YG、YD系列硬质合金刀具被广泛应用于铝活塞加工的各个工序中,特别是活塞粗加工和半精加工工序。     立方氮化硼:立方氮化硼刀具被用于镶铸铁环活塞的车削铸铁环槽工序中。同时也应用于活塞立体靠模的加工中。     金刚石:金刚石刀具可利用金刚石材料的高硬度、高耐磨性、高导热性及低摩擦系数实现有色金属及耐磨非金属材料的高精度、高效率、高稳定性和高表面光洁度加工。在切削铝合金时,PCD刀具的寿命是硬质合金刀具的几十倍甚至几百倍,是目前铝活塞精密加工的理想刀具,已经应用于精车活塞环槽、精镗活塞销孔、精车活塞外圆、精车活塞顶面及精车活塞燃烧室等精加工工序中。

汽车用铝合金材料

2018-12-29 11:29:07

汽车车身用铝合金材料主要包括2000系、5000系、6000系合金板材、型材、管材及高性能铸铝,不同受力部位采用不同型号的铝合金材料。     骨架部分:车身受力最大的部分,采用2000系或7000系材料,可热处理强化。     蒙皮部分:车身次要的受力部位,采用5000系或6000系材料。     车门部分:采用5000系或6000系材料。     底板部分:采用5000系或6000系材料。     内饰部分:采用1000系或5000系材料,无热处理强化。     座椅部分:采用2000系或6000系材料,可热处理强化。     铸件:采用高性能铸铝合金,可热处理强化。     铝合金板材主要有2000系、5000系和6000系合金。     2000系合金是一种热处理可强化的铝合金,具有优良的锻造性、较高的强度和良好的焊接性能,很好的烘烤强化效应,但其抗腐蚀性则比其他系列的铝合金差。目前,2036和2022合金已部分用于汽车车身板材。     5000系合金是一种热处理不可强化的铝合金,具有良好的抗腐蚀性和焊接性能,但退火状态下在加工变形时可能产生吕德斯线和延迟屈服,因此主要用于车身内板等形状复杂的部位。     6000系合金属于热处理可强化铝合金,具有较高的强度、较好的塑性和优良的耐腐蚀性。与钢板相比,6000系2T4态板材的屈服强度和抗拉强度相近,硬化系数甚至超过钢板。目前,6009、6010和6016铝合金由于其塑性好,并在成形后的喷漆烘烤过程中可实现人工时效而获得较高强度等特征,被用于汽车车身外板和内板。奥迪A8的车身板采用了本系铝合金。另外,为增强汽车的缓冲能力和增强抗疲劳强度,德国VAW、日本KOK、中国西南铝业均以此系合金为基础,研制和开发了高性能的汽车用铝板和铝型材。目前,6000系合金为车身板主力。

铝合金加工厂

2017-06-06 17:50:10

以下是经上海 有色 网提供铝合金加工厂:  铝合金是工业中应用最广泛的一类 有色金属 结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。     纯铝的密度小(ρ=2.7g/m3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。 添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。  铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。     铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、建筑用门窗等。     铝合金按加工方法可以分为形变铝合金和铸造铝合金。形变铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。     一些铝合金可以采用热处理获得良好的机械性能,物理性能和抗腐蚀性能。     铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金,铝锌合金和铝稀士合金,其中铝硅合金又有简单铝硅合金(不能热处理强化,力学性能较低,铸造性能好),特殊铝硅合金(可热处理强化,力学性能较高,铸造性能良好)。  更多有关铝合金加工厂请详见于上海 有色 网

为什么用铜棒?

2019-03-06 11:05:28

为什么用铜棒?

什么是造船用钢

2018-12-17 09:42:58

造船用钢是指用于制造海船和大型内河船体结构的钢、由于船体结构一般采用焊接方法制造,所以要求造船钢有较好的焊接性能.此外,还要求有一定的强度.韧性和一定的耐低温及腐蚀性能.过去主要采用低碳钢作为造船用钢.近来,已大量采用普通低合金钢.已有的钢种如12锰船.16锰船,15锰钒船等钢种.这些钢种有强度高、韧性好.容易加工和焊接.耐海水腐蚀等综合特性,可成功地用来制造万吨远洋巨轮。.

钛铝合金是什么?钛铝合金简介

2018-06-04 18:30:39

钛铝合金是一种银白色的金属,钛铝合金有很多优良性能。钛的密度为4.54g/cm3,比钢轻43% ,比久负盛名的轻金属镁稍重一些。机械强度却与钢相差不多,比铝大两倍,比镁大五倍。钛耐高温,熔点1942K,比黄金高近1000K,比钢高近500K。钛铝合金 主要应用在真空镀膜行业,钛铝合金可以做成一定比例的合金靶材,可以作为磁控溅射镀膜的原材料。钛铝合金制成的飞机,承载旅客能力更强;钛铝合金制成的潜艇,不仅能抵抗海水腐蚀,而且能抗深层水压,其下潜深度比不锈钢潜艇增加80%。

PCD刀具切削SAE327硅铝合金工艺研究

2019-01-15 09:49:27

1 SAE327的材料特点和切削难点   SAE327为铸造硅铝合金,是制冷压缩机连杆的主要材料。主要元素含量Si7~8.6%。Cu1~2%,Mg0.25%~0.6%,Mn0.5%~0.8%。抗拉强度>230MPa,硬度110~130HB,延伸率>1%。其晶格由高塑性的Al和高脆性的初晶Si组成。切削加工时,Al的塑性大,熔点低,易在工件表面与刀尖接触处产生积屑瘤,随后与破碎的初晶Si一起使工件部分表皮剥落,形成刀痕,使工件表面粗糙度变差。同时由于高硬度的Si含量较高,刀具也容易磨损。目前对压缩机效率值COP的要求不断提高,为减少往复式活塞压缩机内摩擦并降低输入功率值,连杆孔与曲轴间需要保证极小的摩擦系数和很高的表面接触率,要求圆度≤2µm,表面粗糙度≤Ra0.4,尺寸精度≤2µm,使用传统切削办法很难达到如此高的要求,因而在压缩机零件中一直是较为难加工的铝合金材料。   2 PCD的基本特点及高速干切削技术   随着聚晶金刚石(PCD)刀具技术和高速切削技术的发展,针对SAE327的切削性能,我们使用PCD刀具对连杆孔进行高速干式镗削,较好地解决了问题。PCD材质稳定,使用性能可以预测,故比天然金刚石更合适于作为切削刀具。PCD具有目前较高的硬度和耐磨性,具有非常锋利的刀刃,有很好的导热性,线膨胀系数很小,摩擦系数也小。但其主要缺点是强度低,脆性大,抗冲击能力差。因此一般不用于断续切削和重负荷切削。采用PCD刀具加工铝合金时,由于金刚石硬度高,表面与金属亲和力小,且刀具一般抛光成镜面,不易产生积屑瘤,加工尺寸稳定性以及表面质量都很好。在Ra0.02~0.32µm的条件下,可获得5~7级精度。   铝合金传热系数高,线膨胀系数大,在加工过程中会大量吸收切削热,使工件发生热变形,而且铝合金硬度和熔点都较低,因此加工过程中切屑容易与刀具发生“胶焊”或粘连,形成积屑瘤,这都是传统铝合金干切削中遇到的较大难题。解决的较好办法是采用高速干切。高速切削中,95%的热量都传给了切屑,切屑在与前刀面接触的界面上会被局部熔化,形成一层极薄的液态膜,因而切屑很容易在瞬间被切离工件,大大减少切削力和产生积屑瘤,而且工件基本可以保持常温。既可以提高生产率,又改善了表面质量。   3 PCD镗刀加工SAE327的切削性能   我们使用PCD刀具对SAE327进行高速干镗孔,经过反复切削试验对其工艺进行摸索和总结。加工连杆孔的情况基本如下:同一只镗刀中,硬质合金刀头用于粗加工,PCD刀片精加工,单边余量为0.05mm。连杆组件大孔中间两边有0.5mm的缝隙,孔表面中间有f5mm油孔,由于加工表面非连续,应属于断续切削。无切削液的干切,有压缩空气喷射清除切屑。   1)切削速度的影响   切削试验表明,PCD切削速度与SAE327孔表面粗糙度关系很大。在实际生产中,为保证较低的表面粗糙度,可以采用较高的切削速度。但切削速度达到一定程度之后,由于高速条件下系统刚性和平衡性问题,表面粗糙度不但无法再继续下降,反而略有升高,而且机床功率要增加很多。所以一般情况下经济切削速度维持在140~180m/min之间即可,追求过高的切削速度是没有必要的。   2)进给速度的影响   试验表明,PCD进给速度与SAE327孔表面粗糙度之间有一定的关系。为综合保证较低的表面粗糙度和较高的生产率,选择合适的进给速度是重要的,应避开粗糙度为较高点时的进给速度。合适的进给速度也与PCD的刀具角度和刀尖型式有关。   3)刀具几何型式的影响   针对PCD的脆性缺点,而且我们加工剖分式连杆,孔中间有一定的缝隙,因此刀刃的几何参数应该尽量考虑减小崩刃的可能。一般刀尖顶刃形式分为小圆弧、大圆弧、直线形、多边形折线。切削实际表明:顶刃小圆弧的挤光作用对表面粗糙度的下降是有益的。虽然此时PCD刀尖不锋利,但切削效果却比锋利时还要好些。此时粗糙度由原来的Ra0.3~0.33µm降低到Ra0.15~0.18µm,这对提高连杆与曲轴之间的表面接触率,减少摩擦是有利的。精切SAE327时,可选择PCD镗刀的前角g00°,后角a010°~15°,主偏角kr=50°~70°,刃倾角ls=0°。安装时镗刀头安装孔对镗刀杆中心可以有偏心以保证实际切削的前角更大些。   4)刀具与机床系统   PCD高速切削系统是一个复杂的综合系统,除了PCD刀具自身外,仍需要注意切削系统的其它部分。机床主轴与刀具的接口是非常关键的环节,它直接影响加工精度的稳定性。我们将连杆镗床镗刀柄与机床主轴的接口采用HSK32C。其主要优点是:采用锥面与端面过定位的结合形式,能有效地提高结合刚度;具有良好的高速性能;1:10锥度与7:24锥度相比较短,楔形效果好,故有较强的抗扭能力,且能抑制因振动产生的微量位移,这一点对系统刚性非常重要。   生产事实证明,使用HSK刀柄具有较高的重复安装精度,对于提高离机对刀与上机后的一致性和增加刀具与主轴的配合刚性,其作用是关键的。同时为提高刀具系统的刚性,在满足容屑和排屑的情况下,尽量使刀杆直径与被加工孔直径接近。   我们对连杆精镗床进行了主轴的改进,配置径向和轴向液体静压轴承,刚度高,承载能力强,阻尼特性好,切削试验表明:配置静压轴承效果是很好的,提高静压压力对加工出较高的表面质量是有利的。较终确定使用高压齿轮泵供油,压力高达4.5MPa,主轴近端径向跳动   4工艺系统中需要注意的其它问题   防止高速切削振动:对高速回转的镗刀进行动平衡。减少高速旋转时由于刀具不平衡量造成的离心力振动,对提高工件表面质量是必要的,切削实际表明:经过动平衡的PCD镗刀系统与不经平衡的刀具系统相比,表面粗糙度下降Ra9,1~0,5mm,并有效减少了表面波纹度。   在实际加工中,连杆孔表面有时出现波纹。表面波纹度是介于形状误差和粗糙度之间的一种中间状态,目前还无标准明确判定。产生的主要原因是加工系统的微振动。在高速切削中,由于系统刚性不足造成的往往是表面波纹。除刀具本身结构刚度和平衡性影响之外,其中结合面之间的接触刚度是主要原因。除了主轴HSK接口外,试验表明:使用组合可调节式镗刀比较容易出现波纹,而使用整体式镗刀出现的此类情况较少。如要避免表面波纹,应尽量避免采用模块组合式镗刀。一般组合镗刀虽然微调节方便,但由于制造精度限制及不能预紧,在高速加工时会发生由于结合面之间接触刚度不足造成的颤振,影响表面质量,严重时还会影响尺寸精度,对大批量生产非常不利。整体式刀具在这点上就有其优势,一旦调整好基本可以长时间地放心使用。   对于高速旋转的刀具,消除或减弱产生自激振动的因素是非常重要的。在实际生产中比较简单有效的方法是适当减小后角a0,在后刀面上磨出消振棱增加切削阻尼,镗孔时使刀尖低于工件轴线获得小后角。顶刃磨出小圆弧也提高了切削系统的阻尼特性。