您所在的位置: 上海有色 > 有色金属产品库 > 铝合金挤压模具 > 铝合金挤压模具百科

铝合金挤压模具百科

铝合金挤压模具的表面强化处理

2019-01-11 15:44:08

工业铝型材中挤压模具在挤压力大.温度高的条件下使用,且承受着强烈的摩擦磨损。尽管选用优质的耐热工具钢作模具材料,但经传统的热处理后,其硬度、耐磨性及热疲劳抗力等性能仍不高。致使模具使用寿命不长,此外,由于表面硬度低,易于被磨损,工作带表面光洁度逐渐降低,而且抗粘合性能差,工作带易粘合小馅瘤。这格导致被挤出的型材表面出现麻点、划痕甚至擦伤,严重地影肉建筑铝型材的表面质量。    对铝型材挤压模具施行恰当的表面强化处理是改善模具使用性能、延长使用寿命的较有效的方法之一。气体氮化是早期的一种模具表面强化处理技术,但由于氮化处理时间长且氮化层质脆,所以对改善铝型材挤压模具的使用寿命效果不理想。    我国挤压模具表面强化处理技术还是比较落后的,与国外先进水乎相比有比较大的差距。由于近年来我国铝型材特别是建筑铝型材工业的飞速发展,使人们对铝型材挤压模具表面强化问题予以极大的重视,纷纷开展挤压模具表面强化处理新工艺的研究工作。

大型铝合金挤压型材挤压模具设计制作与修理

2018-12-27 09:37:01

大型铝合金挤压型材挤压模具设计制作与修理 右键下载:大型铝合金挤压型材挤压模具设计制作与修理.pdf删除

怎样提高铝合金型材挤压模具的质量

2018-12-29 16:57:09

一、 铝型材模具上机前工作带必须经过研磨抛光,工作带一般要求抛光至镜面。对模具工作带的平面度和垂直度装配前要进行检查。氮化质量的好坏一定程度上决定了工作带抛光的光洁度。模具腔内必须用高压气以及毛刷清理干净,不得有粉尘或杂质异物,否则极易在金属流的带动下拉伤工作带,使挤压出来的型材产品出现面粗或划线等缺陷。   二、 挤压生产时模具保温时间一般在2-3小时左右,但不能超过8小时,否则模具工作带氮化层硬度会降低而导致上机时不耐磨引起型材表面粗糙,严重的会引起划线等缺陷。   三、 采用正确的碱洗(煮模)方法。模具卸模后,此时模具温度在500°C以上,如果立即浸入碱水中,由于碱水温度要比模具温度低得多,如果模具温度下降迅速,模具极易发生开裂现象。正确方法是等卸模后将模具在空气中放置到100°-150°C再浸入碱水中。   四、 优化挤压工艺。要科学延长模具寿命,合理使用模具进行生产是不容忽视的一个方面。由于挤压模具的工作条件极为恶劣,在挤压生产中一定要采取合理的措施来确保模具的组织性能。   五、 挤压模具使用前期必须对模具进行合理的表面渗氮处理过程。表面渗氮处理能使模具在保持足够韧性的前提下大大提高模具的表面硬度,以减少模具使用时的产生热磨损。需要注意的是表面渗氮并不是一次就可以完成的,在模具服役期间必须进行3-4次的反复渗氮处理,一般要求渗氮层厚度达到0.15mm左右。   六、 模具使用上采用由低到高再到低的使用强度。模具刚进入服役期时,内部金属组织性能还处于浮动阶段,在此期间应采用低强度的作业方案,以使模具向平稳期过渡。   七、 加强模具在挤压生产过程中的使用维护记录,完善每套模具的跟踪记录档案和管理。挤压模具从入厂验收到模具使用结束报废,这中间时间短则几个月,长的达一年以上。基本上来讲,模具的使用记录也记载着型材生产的各个过程。   八、 选择合适的挤压机型进行生产。进行挤压生产前,需对型材截面进行充分计算,根据型材截面的复杂程度,壁厚大小以及挤压系数λ来确定挤压机吨位大小。   九、铝合金型材 挤压机截面本身就千变万化,并且铝挤压行业发展到今天,铝合金具有重量轻,强度好等重要优点,目前已经有许多行业采用铝型材来代替原有材料。由于部分型材的特殊导致模具由于型材截面特殊,设计和制作难度较大。   十、 合理选择 铝型材锭坯及加热温度。要严格控制挤压锭坯的合金成分。目前一般企业要求铸锭晶粒度达到一级标准,以增强塑性和减少各项异性。

铝合金拉杆的热挤压工艺与模具设计

2019-01-14 14:52:52

1引言  高压开关产品零件品种多、改型频繁,拉杆是LW8-35SF6型户外断路器中的关键零件,要求具有较高的导电、导热性能和良好的力学性能,以降低能耗和提高产品的可靠性铝合金材料不仅导电导热性好、力学性能优良,而且比强度高、密度小,因而在高压电器零部件的制造中,除采用铜及其合金外,大量采用铝合金。研究表明,对于综合性能要求较高的一类功能件,如拉杆、接头、导体、触头座等,一般采用铝合金挤压棒(管)经切削加工制成,2A50合金就是其中常用材料之一。2A50合金在热态下具有良好的可塑性,可通过铸造、挤压等变形工艺改善组织,提高性能,且可以热处理强化,工艺性较好,因而成为高压开关类零部件的优选材料。  拉杆的挤压件如图1所示,传统上采用棒料直接切削加工而成,材料的利用率一般在16%-40%,浪费严重、效率低。新工艺采用杆部反挤头部正挤的复合热挤压方法,能使坯料尺寸精度大幅度提高,毛坯重量减轻72%以上,产品的导电率、硬度及强度等完全达到设计标准。  2拉杆热挤压工艺分析  拉杆零件材料为2A50(LD5)合金,属于A1-Mg-Si-Cu系,具有良好的锻造性能,在热态下易变形,且抗蚀性能、焊接性能和切削性能良好,中等强度,塑性很好闭。在生产过程中,将圆柱形毛坯表面涂上水剂石墨,然后感应加热至490℃,放入组合凹模的模具中挤压成形。工作前把模具预热至250℃左右,每次挤压前,需向模腔喷洒润滑剂。挤压变形后可进行固溶时效热处理,以提高其硬度,固溶温度为(515±5)℃,时间为3h,时效温度为(160±5)℃,时间为5h。  拉杆挤压可以采用正挤压或反挤压的方法成形杆部。由于拉杆变形程度大,且杆部长径比大于7,正挤压时,金属的流动方向与凸模运动方向相同,坯料与凹模之间存在摩擦力,则挤压力中不仅有变形力,还包括该摩擦力。在坯料与凹模温度过高及润滑不良时,因坯料与凹模之间有相对运动,会进一步增大挤压力。由于该零件的杆部较长,直接顶出时容易失稳弯曲.若间接顶出模具结构复杂,操作困难加。  采用一次复合挤压成形工艺,即杆部反挤头部正挤的复合挤压成形工艺可以解决上述问题,其工艺流程如图2所示。由于采用了杆部反挤,坯料与凹模之间无相对运动产生的摩擦力,从而降低了挤压力。该方案模具结构简单,生产效率高YA23-315四柱式多功能液压机活动横梁到工作台面距离为1250mm,行程长,凸模设计为中空结构,成形杆部的模腔在凸模上,可以完成脱模。拉杆热挤压工艺的生产过程是:下料-加热-挤压-热处理-精加工。  3拉杆热挤压工艺设计  3.1模具结构及工作过程  热挤压工艺设计是热挤压模具设计的靠前步,直接影响到制件质量、生产效率、模具寿命、生产成本等。根据挤压件形状,凸模设计为空心状,采用二层组合凹模结构。复合热挤压模具结构如图3所示,挤压时.先将坯料放人凹模型腔内.随着凸模4的下行,坯料在组合式凹模内正挤成形,同时杆部反挤成形,随着挤压变形力逐渐增大,当金属正向流动到顶件器时,头部成形结束,此时金属反向继续流动。当挤压完成后,上模回程,工件留在凹模7中,压力机下缸动作,通过顶杆11将头部大直径部分顶出凹模7,即可完成脱模。工件头部内形与顶件器口之间应留有一定的斜度,以保证工件与顶件器不发生抱死现象,顶杆1兼作头部正挤压的凹模。  3.2坯料尺寸的计算  根据拉杆零部件的要求,考虑到2A50在热处理后的零件尺寸和留机加工余量,挤压件内外各留2mm的单边加工余量。根据原材料供货情况,决定在生产中坯料采用Φ90mm的棒料,高度取85mm。  3.3许用变形程度的计算  采用热挤压成形工艺,需对材料的许用变形程度进行验证,许用变形程度用断面收缩率ε来表示挤压过程中毛坯的变形程度为:  3.4挤压力的计算  在此复合挤压中,凸模下行,挤压力克服金属的变形阻力及毛坯与模具之间的摩擦力,金属开始流人型腔,拉杆头部预先成形,金属流经转弯处杆部反挤;凸模继续下行,当杆部成形结束时,挤压力达到较大,其复合挤压力为P复=P反。  4模具结构特点及工作过程中应注意的问题  本工艺采用一次挤压成形,采用通用模架,凹模设计为二层组合结构。实际生产证明,该模具结构简单、使用方便。通过改变凸模与顶件器,可以挤压出不同头部形状和杆部直径及长度的零件。  由于凸模为空心结构,截面积小,单位挤压力高,又长时间工作在高温状态,易变形,因此,应采用热强度较高的3Cr2W8V材料,热处理硬度50-55HRc。凹模采用单层预紧结构,凹模材料选5CrNiMo,热处理硬度44-84HRC。凹模预紧圈要求不高,材料选40Cr就可以了,热处理硬度24-46HRC。  设计合理的人模角度和工作带宽度,便于金属流动,以尽量减小金属与模具间的摩擦力,降低挤压力。凹模尺寸与顶件器应有斜度,工作中保持凹模与制件有一定的摩擦力,又不影响开模后制件脱模,同时应注意模具的预热。保证锥面摩擦的均匀,以避免在挤压过程中拉杆头部的偏移。在反挤过程中要保证坯料与模具的清洁度和间隙尺寸,减少成层和气泡  采用杆部反挤头部正挤的复合挤压工艺生产高压开关零件LW8-35SF6铝合金拉杆是一种值得推广的新工艺,不仅工艺合理,而且操作方便。该工艺较大限度地利用了3150k油压机的设备能力,一次成形顶出,模具结构简单、通用性强,且挤压力小,特别适用于变形程度较大的长杆件的热挤压成形。新工艺的采用,使生产效率大大提高,同时对于在小设备上生产成形变形程度较大的其他类似长杆零件有很好的借鉴意义。

铝合金型材挤压工模具的使用与维护

2019-01-02 09:41:30

(1)用先进的仪器仪表在线和离线检测模子的尺寸精度、硬度和表面粗糙度。检测验收合格的模具进行登记,人库上架,使用时领出抛光模孔工作带,并将导流模、型材模、模垫进行组装检查,确认无误时发到机台加热;   (2)工模具上机前加热温度规定:挤压筒:400~450℃,挤压垫:350℃ ,模垫:350~400℃,平模:450~470℃,分流模:460~480℃,保温时间按模具厚度计算(l.5~2 分钟/mm);   (3)工模具在炉内加热时间不允许超过10 小时,时间过长,模孔工作带容易腐蚀或变形;   (4)在铝合金型材挤压开始阶段,需缓慢加压力,因为冲击力很可能引起堵模。如果发生堵模时,需立即停机,以防压烂模孔工作带;   (5)模子卸机后,待冷至150~180℃ 时再放人碱槽煮,因为模子在高温下碱煮,容易被热浪冲击开裂。并应采用先进的蚀洗方法,以回收节省碱液,缩短腐蚀时间和实现无污染清洗;   (6)修模工在对分流模装配时,应用铜棒轻轻颠打,不允许用大铁锤猛击,避免用力过大,震烂模具;   (7)模具氮化前需对模孔工作带仔细抛光至表面粗糙度Ra0.8~0.4μm;   (8)模子氮化前要求清洗干净,不允许有油污带入炉内;氮化工艺要合理(依设备特性与模具材料而定),氮化后表面硬度为HV900~1200,氮化层过厚、过硬会引起氮化层剥落。一套模具一般允许氮化3~5 次;复杂的高倍齿散热器型材模不进行氮化工序;   (9)对老产品的新模子、棒模、圆管模可不经试模直接进行氮化处理;新产品及复杂型材模必须经试模合格后才能进行氮化处理;   (10)新模试模合格后,最多挤压10 个铸锭就应卸机进行氮化处理,避免将工作带拉出沟槽;两次氮化之间不可过量生产,一般平模为60~100 个锭,分流模为40~80 个锭为宜,过多会将氮化层拉穿。   (11)使用后的模子抛光后,涂油人库保管。

镁合金型材挤压模具研究

2019-01-15 09:51:32

镁及镁合金具有质量轻,比强度高,弹性模具小,导热性能好,易于回收,对环境污染小等优点,在汽车、机械电子、航空航天、国防军工、交通运输等领域具有重要的应用价值。镁合金塑性成形困难,通常采用具有优良的变形力学条件的挤压方法成形。随着科学技术的进步,市场对制品质量的要求不断提高,模具在镁合金挤压成形中占的重要地位。文献资料表明,国内外对镁合金挤压模具结构的研究较少,特别是对型材挤压模具研究尚未见报道。本试验通过不同的模具结构对镁合金型材挤压成形过程的影响进行探讨。   1 模具结构特点与挤压成形工艺   由于高温下挤压镁合金所需的变形力较大,而且散热片型材带有较高的齿,因此,高温挤压中模具容易在悬臂处出现断裂、压塌等失效现象。本研究以计算机用散热片型材(图1)为研究对象,采用三种典型的模具进行镁合金的挤压成形研究。模具材料选用4Cr5MoSiV1 2008_08/temp_08080511396019.jpg">   1.1 模具结构特点   平模是生产实心型材的较普通的一种模具,其结构简单,成形所需挤压力大。图2是在平模基础上改进了的锥形模结构,与平模相比,锥模中的锥角有助于金属变形时的流动,可降低挤压力。   图3是前置式模具。其特点是上模的两个分流孔对称分布,焊合室在下模;同时由于上模的分流桥对下模悬臂部分的遮挡作用,减小了挤压力对下模悬部位的直接冲击作用,达到保护模具作用。   图4是桥式模具。其下模是一个简单的矩形孔,上模模芯上有若干个成形槽,对镁合金超导流和成形作用。与前置式模具相比,这种模具结构中没有悬臂,模芯与下模矩形孔互相配合,挤压中成形散热片上的齿。作用力全部转移到上模的矫和模芯上,从而保证了模具强度。  1.1  挤压成形工艺   挤压设备为3MN立式油压挤压机。镁合金铸锭尺寸直径82mmX150mm,铸锭的加热温度依据镁合金的相图、塑性图及再结晶图定为420℃,挤压速度控制在15mm/s~25mm/s之间,挤压筒和模具的预热温度分别为350℃和400℃。   2 试验结果及分析   图5和表1分别是图1所示制品在挤压试验中挤压力与行程的关系曲线和模具结构与较大挤压力间的关系。  图5可知:锥形模在挤压行程达到7mm左右,挤压力达到较大值1850kn,前置式模具和桥式模具在挤压行程达到12mm左右时,挤压力分别达到较大值2400kn和2800kn。在挤压的初始阶段,挤压力随行程的增加而急剧升高,使用锥形模具挤压时,挤压力达到极值所需行程较长,这是因为制品挤出前有一个金属充满模具焊合室及金属的焊合过程,因此,挤压力的峰值出现得较晚且较大。三种模具结构形式,其载荷与行程曲线的形状基本上是一致。  由图5可知,模具结构对挤压影响较大,桥式模所需要的挤压力较大,前置式模具次之,所需挤压较小的的是锥模挤压。   锥模挤压成形过程中,锥形腔起着导流作用,且金属成形过程中无需焊合,原所需的挤压力相对来说要小些。从结构上来说,由于组合模比锥模多一个分流和焊合过程,故组合模比平模和锥模所需的挤压力要大。   桥式模具结构有模芯,且模芯上有多条成形制品的导流槽,金属材料在导流槽中焊合所需的力较大,相应的挤压力也大。   采用各种模具挤出的AZ31镁合金散热片的制品如图6所示。由于采用桥式模具和前置式模具挤出过程经过分流和焊合过程,为确定制品的焊合情况,采用电子扫描镜观察分析金属在模具焊合室和型材焊合部位微观组织形貌。结果表明,制品在焊合部位没有焊缝,在焊合区的组织致密,与基体组织无明显差别,说明焊合状况较好。   前置式分流模在试验后悬臂处未出现任何塌陷及其他变形。虽然所需根的挤压力较大,但由于分流桥对悬臂的遮挡起了保护作用,故模具悬臂未出现任何变形。   桥式模具成形较困难。挤压过程中金属在模具芯头上导流槽处的流动阻力较大,使金属流出模孔困难;同时由于产品的不同部位壁厚差别较大,金属流动不均匀,造成模具芯头的受力不均匀,对芯头产生很大的剪切力和扭矩,导致挤压较大。   3  结论   1 在所设计的三种模具挤压过程中,锥模所需的压力较小,前置保护模次之,桥式模具的较大。   2 锥模和前置保护模成形质量较好,桥式模由于金属的模芯上的小槽处流动阻力大,挤压焊合困难,导致成形时所需挤压力很大。   3 从组合模结构挤压成形来看,AZ31镁合金在焊室中是能够完全焊合的,用扫描电镜观察焊合室部位和制品焊合处发现,其组织致密,与基体组织无明显差别,焊合质量较好,说明组合模挤压AZ31镁合金散热器是可行的,可推广应用于其他实心型材或中空型材制品的挤压成形。

挤压工模具的翻新

2018-12-28 09:57:22

为了节约贵重的工模具资料,削减加工工时,进步工模具的运用寿命,降低生产成本,除了修正东西和模具以外,某些已失效或作废的工模具可“废物利用”,某些过期的工模具可“旧件复生”。当前工厂里常用的办法有:   (1)大件改小。如将大标准的实心揉捏轴、穿孔针、揉捏垫片等改成小标准运用。   (2)小件改大。如将小标准的揉捏筒作业内套、空心垫片、棒材和管材模孔等改成大标准运用。   (3)补接、补焊。首要用于长形件的拼接。   (4)部分替换。如替换揉捏筒的某一层套;替换组合模中的上模或下模等。   (5)从头热处理和从头下料加工。将已废的大型东西(如大型揉捏轴、揉捏针等)从头退火。锯切成模子、揉捏垫片、模支承、小型揉捏轴、揉捏针或揉捏筒内套等工模具坯料,然后,按常规技术加工成合格的工模具运用。   ?

挤压模具对铝合金型材组织条纹缺陷的措施

2018-12-26 09:46:11

通过实验证明:挤压模具的正确设计、精心加工、合理修模、及时氮化是防止组织条纹缺陷的关键措施。   a.挤压模具正确设计,合理布局分流孔,合理确定工作带的长度,及其长度变化的过渡,模桥滴水形,合理的焊合角,使焊合点落在焊合室平面上,在保证模具芯头刚度,强度的情况下,加深焊合室的深度或扩大焊合室的断面积,必要时采用“沉桥”,是防止组织条纹缺陷的基础措施。155幕墙主立柱的模具,由三家企业提供,其焊合室的深度分别为15mm、16mm、18mm,生产的型材都产生组织条纹,有一家将焊合室的深度提高为25mm,大大减轻了组织条纹的严重程度;   b.模具应严格按图纸要求加工,尤其是注意提高分流孔的表面光度及模桥呈滴水形,改善固体金属流动状态,减少摩擦热;   c.对于产生组织条纹的模具挤压时,修模工应到现场了解模具出料情况,确定正确修模方案;修模工是手艺人,身怀绝技,亲自观察型材出料瞬间的状态要比观察型材出料料头来确定修模方案的效果好得多;   d.挤压模具按规定及时进行氮化,确保固体金属合理的流动状态;130系列幕墙主立柱产生组织条纹严重,形成头号急件。查该模具卡片(质量档案)后,发现该模具以前多次上机,每次质量很好,顺利按计划完成任务,只是在高温快速挤压后,使模具氮化层受损,然后上机十四次,累积挤压了四百多支铸棒,而没有进行氮化。对该模具进行氮化后,确保固体金属合理的流动状态,消除了组织条纹缺陷。删除

铝合金型材挤压模具在型材加工工艺的影响

2019-01-08 13:39:58

铝合金型材挤压模具在铝型材挤压工序中举足轻重,是保证产品成形,使其具有正确形状、尺寸和精度的基本工具。在实际生产中,正对挤压过程中可能会出现一些问题。 一、有缝角或焊合不良产生的影响: 空心铝合金型材采用平面分流组合模挤压工艺,这种工艺在型材的生产中相对来说加深了难度,金属经过分流、焊合的过程,所以空心型材是存在焊合线的。 产生缝隙的原因有两个:一是分流孔、焊合室狭小,金属供流不足,金属在焊合室没有形成足够的静水压力,产品未焊合好而流出模孔,导致制品存在焊合缝隙; 二是过量润滑和不良润滑引起空心型材焊合不良导致。 二、铝合金型材壁出现下凹或上凸的弓形面出现的原因 1、空心铝合金型材壁下凹弓形面产生原因:铝合金型材模芯工作带低于下模模孔工作带,模芯工作带的有效长度过短所引起。 2、空心铝合金型材壁外凸产生原因:模具使用时间过长,模芯工作带严重磨损,出现沟槽,加大了摩擦阻力,金属流动缓慢引起空心型材壁外凸。 三、铝合金型材表面条纹产生 挤压型材外表面出现条纹,在阳极氧化后表现更为明显。该缺陷多见于型材壁厚差大的部位、分流桥下金属的焊合部位和内侧带有“枝杈”处及螺纹孔处的背面上。 产生原因: 1、型材内侧的“枝杈”和螺纹孔部位因金属供流不足或过量引起表面条纹; 2、模具分流桥下的焊合区部位引起的型材表面条纹; 3、型材断面图设计存在的问题,由于型材的壁厚差大,工作带长度突变处的部位在阳极化后产生条纹状色差; 4、因机台冷却能力不够,造成阳极化后黑色斑纹区域; 5、铸坯本身的质地不好,影响挤压材阳极化后条纹色差。 四、铝合金型材弯曲和扭拧不合理表现的方式: 1、模芯和下模孔的工作带配合不合理,引起型材各部位金属流速不均; 2、对称空心型材模的分流孔大小和位置加工不对称,金属供流不均衡,引起金属流速不均匀; 3、分流孔加工不规整或者在模芯上有阻碍物阻碍金属流动。 修正方法: 1、用适当的方法打磨模芯或分流孔的出口部位,必要时适当扩大这些分流孔使供料均衡; 2、用打磨方法去掉阻碍物

怎样修好铝型材挤压模具

2018-12-19 17:40:03

怎样修好模具?概括来讲就是:正确的分析和判断、合理调整金属的流速。  挤压模具修正的主要工作是:采用调整金属流量分配比例(如:分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。  金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的。从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。

铝合金型材挤压模具试模及铝挤压过程中注意事项

2018-12-28 11:21:17

1、在铝合金型材挤压模具试模及铝挤压过程中要重点注意到以下几方面:   A.铝合金型材挤压前模温棒温的确定,是否达到挤压温度的要求、加温有无透芯(加温炉内模具的摆放很重要,模具与模具之间要有一定的加温间隙)。   B.铝挤压模具一定要对准中心位,从而避免压塌、塞模的现象产生。   C. 针对不同的铝合金型材模具要选用合适的挤压速度,避免过快过急造成出料不畅。D.在铝合金型材挤压的过程中我们还要注意铝棒的质量,避免因铝棒杂质问题造成模具崩损的情况发生等等。   2.铝挤压模具修模是一个很重要的环节,但是修模首先要考虑的就是其强度,要在保证铝挤压模具强度的基础上进行修模。不到最后的程度一般不采用烧焊,因为烧焊对模具寿命有着重大的影响。尤其是工作带的烧焊,极易造成寿命的缩短。对于型材快慢的修复,一般采用将慢的地方修快而不采用将快的地方阻慢。至此,在模具构造上减负,一定程度上能保证其寿命。当然,提高修模水平减少试模次数也是提升模具使用寿命的方法之一。   3.在煲模的过程中,特别要注意取冲料的环节,尤其是在一些螺丝孔或较为脆弱的地方,不然,很容易冲烂模具。   4.铝挤压模具的搬运过程要谨慎进行,避免磕碰到工作带等地方。在模具入仓之前,务必要清洁干净,认真细致深入地对模具进行检查,有无细小裂痕和破损。   5.对于生产完的模具务必对其工艺数据进行有效管理,例如修模的方案,加工的细节,挤压的工艺等。因为这些都能成为后续补充模具或类似模具的复制对象,这样可以有效提升模具的上机合格率。   总之,挤压模具寿命的提升有赖于设计、制造、使用及后续维护等过程的完美链接。靠单一的环节并不能有效的达到目的,通过各环节的有效整合,相信在模具寿命方面能得到相应的提升。

挤压模具原因造成的挤压大帽

2018-12-25 14:53:30

挤压模具原因造生的大帽一般是模面不平导致剪切不净,铝逐步向外粘连后造成的,以下是几个挤压模具的原因可能导致挤压大帽:   1、挤压模具端面不平或有缺损口使锁紧面有缝隙,铝窜流。模具缺损口要及时补焊,模面一定要铣平。   2、进料腔外接圆太大(模距过短),模筒锁紧面积就小------进料腔外接圆同筒壁距离正常留单边10mm 极限不少于5mm,挤压比过高的模具不要简单地只用扩大分流腔的办法来卸压。用这样的挤压模具生产时上下左右中心一定要对齐,防止模距再出现偏差。   3、挤压模具没有铣水口,模具闭合面太大,单位面积受压值偏小---小于出口压力,模面跑铝粘铝后剪切不净,造成模面不平。此种大帽很难做干净。注意筒面要适当涂油不再粘铝,模面的铝是可多次剪切掉的,在模面上筒的压痕处可涂油,使模面跑铝不粘模具,剪切切除。做到偶有小飞边就算成功。   4、挤压模具水口尺寸小于筒工作面尺寸,筒模闭合面积就小,也易损筒工作面。注意小机模具改装到大机台时模具水口直径同大筒工作面直径的大小。   5、挤压模具厚度不够,挤压筒受力在模套上了。模具和模套厚度要符合前3后1原则,即模具导流面要突出模套1mm。------模套永远不直接受挤压力的,否则,模套易损易变形。   6、模套和模具配合间隙过大,间隙内粘铝导致剪切不净而使模面不平。这种情况一般常见于从小机台改装过来的模具。   7、挤压比过高,出口阻力大于挤压力,锁紧面不平,铝从锁紧面流出。此种情况多数会发生闷车现象,可适当提高棒温和模温,筒温。必要时可对模套甚至垫片作加温处理后再上机生产,同时,可适当减短棒长,减少定尺。铝棒过短时可冲压生产而不要一味增加棒温,棒温高也易出帽,也限制了速度的提升。

铝合金挤压之挤压类型简介

2019-01-14 11:15:20

一:正向挤压(正挤压)    挤压过程中制品流出方向与挤压轴运动方向相同的挤压方法称为正挤压,如图1-2a所示。正挤压是较基本的挤压方法,以其技术成熟、工艺操作简单、生产灵活性大、可获得优良表面的制品等特点,成为铝及铝合金材料成形加工中较广泛使用的方法之一。正挤压又可按照图1一所示的其他分类方法进一步细分,如分为平面变形挤压、轴对称变形挤压和一般三维变形挤压,或分为冷挤压、温挤压和热挤压等。    正挤压的基本特征是,挤压时坯料与挤压筒之间产生相对滑动,存在有很大的外摩擦,且在大多数情况下,这种摩擦是有害的,它使金属流速不均匀,从而给挤压制品的品质带来不利影响,导致挤压制品头部与尾部、表层部与中心部的组织性能不均匀;使挤压能耗增加,一般情况下挤压筒内表面上的摩擦能耗占挤压能耗的30%--40%,甚至更高;由于强烈的摩擦发热作用,限制了铝及铝合金中低熔点合金挤压速度的提高,加快了挤压模具的磨损。    二:反向挤压(反挤压)    金属挤压时制品流出方向与挤压轴运动方向相反的挤压,称为反挤压,如图在1-2b所示。反挤压主要用于铝及铝合金(其中以高强度铝合金的应用相对较多)管材和型棒材热挤压成形,以及各种铝合金材料零部件的冷挤压成形。反挤压时,金属坯料与挤压筒之间无相对滑动,所需挤压力小,挤压能耗较低,因而在同样能力的设备七,反挤压可以实现更大变形程度的挤压变形,或挤压变形抗力更高的合金。与正挤压不同,反挤压时金属流动主要集中在模孔附近的区域,因而沿制品长度方向金属的变形较均匀。但是,反挤压技术和操作较为复杂,问隙时间较正挤压长,挤压制品的表面品质难以控制,需要专用的挤压设备和工具等,反挤压的应用受到一定局限。但近年来,随着专用反挤压机的研制成功和工模具技术的发展,铝合金的反挤压获得了越来越广泛的应用。2.3复合挤压法    复合挤压法将正向挤压法和反向挤压法的特点结合起来,生产断面形状为圆形、方形、六方形、齿形、花瓣形的双杯类、杯杆类和杆杆类挤压件,也可以制造等断面的不对称挤压件。复合挤压法是正挤压时使锭坯的一部分金属的流动方向与挤压轴的运动方向相同,而另一部分金属的流动方向与挤压轴的运动方向相反。

如何修好铝型材挤压模具

2018-12-20 09:35:33

铝型材挤压模具修正的主要内容包括:调整金属流量分配比例(如:模具分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。  金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的,从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:  a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;  b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。  如何修好铝型材挤压模具,总结来讲就是:正确的分析和判断、合理调整金属的流速。

绿色建筑铝合金结构挤压型材模具设计与制造研究

2019-01-11 15:42:57

内容提要:    绿色建筑铝合金结构型材的品种多,规格范围广,形状复杂,模具设计制造技术含量高,生产技术难度大。本文仅选一种典型的难度较大的型材为例,对其模具的设计方案、制造工艺和创新点进行分析讨论,对模具的挤压效果与使用寿命进行对比。可见优质模具在铝合金结构挤压型材产业化批量生产中起着重大的作用。    关键词:绿色建筑铝合金结构挤压材大型双孔厚壁管材(空心型材)模具设计与制造特殊新结构宽展分流模模具使用寿命    1.绿色建筑铝合金结构挤压型材模具特点与技术难度分析    1.1概述    绿色建筑铝合金结构挤压材品种多达百余种,而且规格范围广,现代绿色建筑用铝合金挤压材大多是不需要机械加工,而直接作为零部件来与相关件配合使用的,所以尺寸精度和形位精度要求都很高。结构材包括管材(包括圆管材、方管材和异形管材,且都是厚壁管;各种异形型材(包括空心型材、实心型材和半空心型材,且壁厚差大),成形难度大;以及各种特殊棒材。结构材的合得奖号大多是6061、6005A、6082等中强度铝合金,还有2xxx、5xxx和7xxx等高强度高韧性铝合金。铝合金建筑结构挤压材要求有高的力学性能,b300MPa,优良的可焊性、耐磨耐蚀性和可冷弯成形性等综合性能。而且要求产业化批量生产。因此,要求不同形式的特殊结构的模具,如特殊导流模、特种宽展分流模才能确保不同产品的成形和尺寸精度,而且要求高的使用寿命(要求使用寿命提高2-3倍),确保其批量生产。以下仅从百余种挤压材中选取一种外接圆尺寸大、有横向加强筋、成形难度较大的双孔厚壁管材WYY0770模具为例,来讨论铝合金建筑结构挤压材模具的设计与制造技术特点,WYY0770双孔管材断面见图1。图1.绿色建筑结构挤压材—WYY0770产品图   1.2 铝合金结构挤压材模具特点与技术难度分析  (1)绿色建筑结构铝合金挤压材品种多、形状复杂、尺寸变化大,因此要求设计制造不同规格、不同结构、不同形式的优质模具,才能实现铝合金结构挤压材产业化大批量生产,因此需要进行大量的试验开发工作。  (2)绿色建筑铝合金结构挤压材要求产业化大批量生产,首要关键就是提高模具使用寿命,本研制课题要求挤压模具的使用寿命要求在原有基础上提高2-3倍,难度是十分大的。  (3)带有横向加强筋的双孔厚壁管的横向加强筋很难充料,需要一种特殊结构的宽展导流模与分流模经两段扩展加大金属流覆盖模孔和合理的分配金属流量,以及优化挤压工艺才能保证双管厚壁管的成形,技术难度很大,特别是大型的厚壁双孔管的成形和同时要求保证焊合质量则更难。  (4)绿色建筑结构铝合金挤压材的尺寸与形位精度都要求达到高精级或超高精级水平,需要一种特殊结构的模具才能保证型材成形,并达到高精度,而且要保证模具有足够的强度,不变形、不开裂、不压塌,有足够使用寿命,难度是非常大的。  (5)绿色建筑结构铝合金挤压材要求表面光洁、尺寸和形位精度高,而且使用寿命长,因此需要采用高质量的模具钢及严格的模具热处理工艺和表面处理工艺,机加工全部实施CNC工艺规程,才能获得具有高强度、高韧性、高精度、低的表面粗糙度的优质模具。WYY0770大型双孔厚壁管材模具的设计依据与技术要求   (1)WYY0770大型双孔厚壁管材的合金状态为6005FT6,挤压材经精密水、雾、气淬火+人工时效后交货,要求型材的尺寸与形位精度达到超高精级水平,b300MPa,并具有良好的力学性能、耐磨、耐蚀、可焊、可冷弯成形性等综合性能。   (2)WYY0770挤压材为大型双孔厚壁管(见图1),双孔厚壁管的特点是容易发生严重的壁厚差和平面间隙,双孔管因充料不足而壁厚尺寸不够,WYY0700双孔管为宽450mm,高200mm的方管内有一条横向加强筋。使单孔方管变成双孔管,其难度就在于这条横向加强筋的充料不足,而且要求有高的焊合质量,用普通的分流模是达不到挤压双孔管技术要求的,必须设计一种特殊的组合模才能保证成形和达到精度要求。   (3)WYY0770大型双孔管材在7000吨挤压机生产,挤压筒直径为418mm,型材的外接圆(498mm)大于挤压筒直径(418mm),这就需要设计制作一种特殊的多级扩展挤压模,扩大分流模焊合室的外接圆,才能保证型材成型及尺寸精度与平面间隙尺寸要求。如果选用460mm挤压筒生产,金属流动与平衡会有所改善。   (4)WYY0770双孔管的4个外角为,8个内角同样要求为,形位公差值已高于GB5237高精级规定,需要反复计算与平衡金属流量的分配才能保证角度精度。用户要求保证该型材两个角度精度是为了确保型材顺利装卸和整体的平直度,模具的设计制造的确有极大难度。   (5)要求选择优良的模具材料,先进的热处理和表面处理工艺,确保模具的使用寿命提高2-3倍。3. 绿色建筑铝合金结构型材WYY0770模具的设计制造技术方案与提高使用寿命的措施与创新点分析   WYY0770型材在7000t挤压机上采用418mm(方案Ⅰ)挤压筒和460mm挤压筒(方案Ⅱ)进行挤压生产,其模具设计、制作技术分析如下。3.1 WYY0770大型双孔管模具设计依据与设计方案参数见表1和表2。 表1WY0700大型双孔管的模具设计依据参数表方案合金 状态双孔管截面积Cm2外接圆 直径mm执行标准及 精度等级挤压机吨位t挤压筒直mm比压 MPa挤压比 l变形率%Ⅰ6005FT6145.225f492.5GB5237 高精级7000f4185109.4589.4Ⅱ6005FT6145.225f492.5GB5237 高精级7000f46042111.4491.3

铝型材挤压模具的性能要求

2018-12-27 16:25:57

A、硬度和红硬性(热稳定性):硬度是模具的重要指标。模具在工作中承受应力的作用下,保持形状和尺寸不会迅速发生变化。红硬性是指模具在受热或高温下工作,能保持组织和性能的稳定,具有抗软化的能力。   B、耐磨性:模具在工作中要承受相当大的压应力和摩擦力,要求模具仍能保持其形状尺寸不变,持久耐用。   C、强度和韧性:模具在工作中承受负荷以及冲击、震动等复杂应力。要求模具应具有足够高的强度和一定的韧性。强度太高,模具易开裂;强度太低,模具容易塌陷。因此,要求强度和韧性有一个最佳配合,否则,会造成模具的早期失效。   D、还要考虑模具的高温强度、热疲劳、导热性及耐磨性。

铝合金精密挤压技术

2019-01-15 09:51:27

摘要:介绍铝合金精密挤压的特点和技术要求,以及一些小型精密铝合金型材实例   关键词:铝合金;精密挤压;技术要求   现代许多工业设备仪器如精密仪器、弱电设备中的部分零件要求小型的、薄壁的、断面尺寸非常准确的铝型材,对其尺寸公差要求非常严格。型材的壁厚较小的只有0.4 mm,其公差要求为±0.04mm。挤压生产过程对设备、工模具、工艺要求相当严格。通常把这种挤压技术称为精密挤压 【1-3】。   1 精密铝挤压型材实例   有一些小型精密铝型材的公差比JIS标准中特殊级的公差还小一半以上,一般精密铝型材要求的尺寸公差在±0.04~±0.07mm之间。部分小型精密挤压铝型材的断面示于图1。 2008_10/temp_08102309374658.jpg">   图1 小型精密铝型材断面举例   电位差计用的精密铝型材断面为“︼”型材重量30 g/m,断面尺寸公差范围为±0 07 mm。织机用的精密铝型材断面为“■”,断面尺寸公差为±0.04mm,角度偏差小于0.5°,弯曲度为0.83×L。   A1050、A1100、A3003、A6061、A6063(低、中强度合金)小型精密挤压型材的较小壁厚0.5mm,较小断面积20mm2。A5083、A2024、A7075、(中、高强度铝合金)小型精密挤压型材的较小壁厚0.9mm,较小断面积110mm2。   小型精密铝型材尺寸公差举例如图2所示。  图2 精密铝型材尺寸公差举例  尺寸/mm 尺寸允许公差/mm   JIS特殊级 小型、精密   A 2.54 ±0.15 ±0.07   B 1.78 ±0.15 ±0.07   C 3.23 ±0.19 ±0.07   2 精密挤压技术要求   一般说,铝合金热挤压变形程度大,挤压温度和速度的变化、挤压设备的对中性、工模具的变形等都容易对型材尺寸的精度产生影响,而且它们相互影响因素很难克服。图3列出精密挤压的影响因素。     2.1 对工模具的要求   模具是影响挤压制品尺寸精度较直接的因素,要保证挤压制品在生产中断面尺寸不变或变化很小,必须使模具的刚性、耐热性、耐磨性达到一定的要求。  图3  挤压型材精度影响因素   首先要保证模具在高温高压下不易变形,有很高的耐热性,对精密挤压而言更为严格,要求在工作温度(500℃左右)下,模具材料的屈服强度不小于1200N/mm2。其次需要有高的耐磨性,这主要决定于氮化层硬度和厚度,一般要求氮化层的硬度在1150HV以上,氮化层深度在0.25 mm~0.45mm之间,而氮化后模具尺寸的变化应在0.02mm以内。   对于断面有悬壁的实心型材和空心型材,还要考虑模具的弹性变形,为了使模具保证一定的刚度,可以考虑适当增加模具的厚度或配形状相似的专用垫。   为控制型材开口尺寸的变化,可以在模子上开导流槽来控制金属的流动,如图4所示。  图4 模子上开导流槽   2.2 对挤压工艺要求   挤压方法对制品的精度有影响。正向挤压一般容易出现前端(开始挤出部分)比后端的壁厚较大的现象,反向挤压制品的前后端壁厚变化很小,如图5所示。因此采用反相挤压较容易控制制品尺寸的精度。   挤压制品在热状态下冷却会产生收缩变形.其变形量S%为:   沿挤压方向的位置/m  图5 A7075合金挤压型材的尺寸变化  式中:  s%——收缩率;  lt——热状态的断面尺寸;  l0——冷却后的断面尺寸;  a——热膨胀系数;  Te——挤压温度;  Ts——周围环境温度。  由(l)式可知,温度的变化会引起制品尺寸的变化,温度变化越大,其变形量越大,因此要保证制品尺寸的准确,挤压机应有Tips控制系统(等温挤压系统)。即采用等温挤压。如挤压机没有这种装置,对铝棒可采用梯度加热,做到近似等温挤压,总之要保证制品前后端温度一致或相差较小。  另外,从(1)式可以看出,挤压温度越高,产生的变形越大,因此在保证制品力学性能情况下,尽可能来用较低的挤压温度。  挤压速度的变化也会使制品的尺寸发生变化,特别是有开口的制品易引起开口尺寸的变化,应采用等速挤压、现代挤压机一般都有Fi控制系统(等速挤压控制系统)。  制品从挤压模孔出来的冷却至关重要,必须保持均匀、恒定的冷却速度,使制品的收缩保持一致。  2.3 对设备的要求  挤压机的品质影响挤压制品的精度。一般要求挤压机张力柱为预应力的整体结构,设备的刚度和对中性要好,一般挤压轴、挤压筒、模具、送料机械手之间较大允许偏差小于1.5mm,通常控制在1.2mm以内。对于精密挤压而言,模具、挤压筒、挤压杆中心偏差应小于0.2mm用于精密挤压的挤压机应有等温挤压控制系统和等速挤压控制系统,至少应有等速挤压控制。   除此之外,模具应有冷却装置,确保模具在一定温度下的刚性、耐磨性和尺寸的稳定性。  2.4 对铸棒材质的要求   铸棒的成分、组织不均匀,有夹杂、偏析、晶粒粗大等缺陷都会影响金属的流动和变形,使制品的尺寸发生变异。对于精密挤压而言,对铸棒的材质要求更为严格,必须经过均匀化处理,晶粒应控制在一级以内。   3 结束语   精密挤压是一项综合性技术。要求模具的材质、设计、制造非常严格;挤压机必须是先进的设备;根据不同的制品断面选择不同的挤压方法和工艺;铝棒需经均匀化处理,其组织、性能必须均匀。只有这样才能满足精密挤压的要求。

铝型材挤压模具设计

2019-01-11 10:52:02

模具,是以特定的结构形式通过一定方式使材料成型的一种工业产品,同时也是能成批生产出具有一定形状和尺寸要求的工业产品零部件的一种生产工具。大到飞机、汽车,小到茶杯、钉子,几乎所有的工业产品都必须依靠模具成型。用模具生产制件所具备的高精度、高一致性、高生产率是任何其它加工方法所不能比拟的。模具在很大程度上决定着产品的质量、效益和新产品开发能力。所以模具又有“工业之母”的荣誉称号。    铝型材是采用铝及铝合金为主要原料加工制造而成的生活用品、工业用品的统称。而铝型材应用又比较广泛,旧有建筑改造需求较大,目前中国存量住房中约有40%建造于1990年代以前,随着国内经济的发展和人民生活水平的提高,对住房的改善性需求逐步增加,带动建筑更新、改造,从而促进对建筑铝型材的大量需求。欧洲、北美和日本的铝型材消费结构中,工业耗用比例分别为60%、55%和40%左右,高于我国目前32%左右的耗用比例,消费结构差异较大,预示着我国工业铝型材消费具有较大的增长空间。铝型材在工业领域主要应用于交通运输业(包括汽车制造业、轨道交通业)、装备和机械设备制造业、耐用消费品业等,目前分别在我国铝型材应用中占比约10%、10%和12%。

浅谈多孔挤压模具生产要素

2019-01-09 09:33:47

铝挤压多孔模是提高生产效率的有效方法,较能影响多孔模生产的环节包括模具设计、模具制作、挤压生产和模具维修,本文简短介绍各环节的注意事项和生产经验。 1  模具设计 1.1 模具型腔缩水给定: 先按单孔缩水原则给出整体缩水(不同合金缩水率不同,如6063材质缩水率为1%),再按模孔摆放位置给出抵消模具弹变的预变形量,如图; 1.2 模具结构设计 1.2.1型腔放置 双孔型腔一般放置方法有:左右出料(对称或同向)和上下出料(对称或同向)。 三孔型腔一般放置方法有:三孔平放出料、品字形出料、倒品字形出料。 其它多孔型腔摆放基本按双孔和三孔原理放置。 对称出料:入料和出料完全一致,模具设计上长短不需考虑,挤压后锯为便于表面处理操作方便,需使用多个不同的料框存放素材,影响后锯人员工作效率。 同向出料:各孔出料方向一致,不需要在后锯进行特别区分,后锯人员操作比较简单,但对设计流速要求高,各孔出料长短较难控制。 1.2.2分流孔设计 现有多孔模较常用多孔单独供料和多孔整体供料两种结构。如图:多孔单独供料结构(图3):挤压时先把整棒分成两支一模一样的仿形棒,再进入分流孔。优点:各孔出料长短差异小,模具防弹变能力强。缺点:经济性较低。相对其它结构需要更大的模具规格,同规格铝棒直径生产型材外截圆小。 多孔整体供料结构(图4):挤压时铝流直接进入各分流孔,通过单独的焊合室达到各型孔的供料平衡。优点:经济性高,模具设计时布孔方便。缺点:各孔出料长短差异大,需要更高的加工精度;模具防弹变能力较弱。 1.2.3桥厚设计 桥厚(图6)与桥跨(5)成正比。桥跨越长,桥厚越厚,模具需更好的强度保证,模具规格随之增大,挤压力也会增加,因此只需保证足够铝流焊合,桥跨越短越好。1.3 工作带给定 个人认为型材流出快慢主要靠分流孔的配比,工作带只作为辅助成形,但是“U”字型料的开口,“T”字形部位色差和大平面表面质量与工作带给定有较大关系。工作带比例一般在壁厚的1.2——3.5倍。 1.4 材料选择 多孔模较单孔模前者在挤压过程中弹变更大,为模具的稳定及使用寿命提供好的基础,需要选用韧性较好的钢材。 2  制作加工 2.1 加工要点 大部分使用CNC加工,除慢走线割型腔、外圆,电火花加工下模工作带及清角。上模工作带需做出高低点;加工下模工作带时各孔需同时放电加工。模具配全止口采用间隙配合,配合间隙一般在0.02mm——0.06mm之间。 2.2 热处理要点 硬度保持在48——50HRC之间,模具上任意位置硬度相差在2HRC之间。注意硬度检测时取点位置,避免影响模具强度和贴合支撑。 3  挤压工艺 3.1 挤压工艺参数 多孔模较容易出现出料长短不均,为不影响修模判断,挤压工艺必须按标准执行。模具各位置点温度差异在5℃以内。通过调整挤速和铝棒温度来达到出口温度持续一致,6063材质挤压出口型材温度控制在520℃——530℃。挤压速度(挤压机主缸前进速度)应按阶段调整,订单完成前较后两支棒进行提速,记录提速后情况,找寻较大挤压速度,我司目标型材流出速度为30m/min。 我司挤压参数如表3.2 分料装置使用 为防止在挤压过程中各孔挤出的型材出现相互刮擦现象,需要在接料台安装多组分料装置,给每支挤出的型材创造一个单独的运动区间,避免相互接触,减少因擦划伤造成的报废。如图73.3 冷却风速调整: 型材在接料台流出时常会出现刀弯现象,造成各孔型材分料后再重叠在一起,同时矫直拉伸率会变大才能削除刀弯现象,造成型材擦划伤、矫直过度表面桔皮和尺寸达不到要求。为达到同时冷却,可在接料台加装气管或出口使用氮气冷却方式。 4  模具维修 多孔模较大问题在于各孔出料长短和壁厚不均,模具维修靠前步要仔细检查模具,确认各模孔完全符合图纸要求,再做修模方案,模具维修理念为以快修慢、先修长短再修形状。 5  结束语 影响多孔模出料原因有设计因素、模具加工、挤压设备精度、工艺和操作等原因,其中模具加工、挤压设备精度、工艺和操作都可以直接管控,确保符合标准,只有这样才能真实反映模具设计问题以及后续的稳定生产。根据几年的生产跟踪,多孔模生产较单孔模效率提升50%以上,特别是单次订单量大的型材,多孔挤压效率远远超出单孔挤压效率,因此多孔模生产对生产效率提升有较大优势。 每家公司都有自己的主打产品,但也有很多产品单次订单量不多,如单次订单量少,用双孔模挤压棒数过少会造成生产成本过高,未来可能实现一模多型的模具,特别是现有穿条隔热料,两个穿条子件一般都会同时接到订单,若能实现一模多型,可以减少生产中的很多流转环节。 因此多孔模的开发仍有很大的发展空间,也有很多技术提升空间,需要同行业相互沟通,共同努力,推动铝行业发展。 来源:Lw2016论坛文集 作者:肖文辉,颜廷柱

如何才能修好铝型材挤压模具

2019-01-10 10:47:01

想要修好铝型材挤压模具,除了需要具备正确的分析与判断,还需要合理调整金属的流速大小。   我们先从挤压模具的主要工作入手。挤压模具修正的主要工作是:采用调整金属流量分配比例(如:分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。   接下来是金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的。从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。   只有真正具备了以上的要求,才能具备修好铝型材挤压模具。

铝型材挤压模具制模技术

2019-01-11 09:43:31

铝型材挤压工模具的制造也是决定其品质和使用寿命的关键因素之一。由于铝挤压工模具具有一系列特点,因此对铝型材模具制模技术提出了一些特殊要求:    (1)由于铝合金挤压工模具的工作条件十分恶劣,在挤压过程中需要经受高温、高压、高摩擦的作用,因此,要求使用高强耐热合金钢,而这些钢材的熔炼、铸造、锻造、热处理、电加工、机械加工和表面处理等工艺过程都非常复杂,这给模具加工带来了一系列的困难。    (2)为了提高工模具的使用寿命和保证产品的表面品质,要求模腔工作带的粗糙度达到0.8-0.4μm,模子平面的粗糙度达到1.6μm以下,因此,在制模时需要采取特殊的抛光工艺和抛光设备。    (3)由于挤压产品向高、精、尖方向发展,有的型材和管材的壁厚要求降到0.5mm左右,其挤压制品公差要求达到±0.05mm,为了挤压这种超高精度的产品,要求模具的制造精度达到0.01mm,采崩传统的工艺足根本无法制造出来的,因此,要求更新工艺和采用新型专用设备。    (4)铝型材断面十分复杂,特别是超商精度的薄壁空心铝型材和多孔空心壁板铝型材,要求采用特殊的挤压模具结构,往往在一块模子上同时开设有多个异形孔腔,各截面的厚度变化急剧,相关尺寸复杂,圆弧拐角很多,这给模具的加工和热处理带来了很多麻烦。    (5)铝型材挤压产品的品种繁多,批量小,换模次数频繁,要求模具的适应性强,因此,要求提高制模的生产效率,尽量缩短制模周期,能很快变更制模程序,能准确无误地按图纸加工出合格的模了,把修模的工作量减少到较低程度。    (6)由于铝合金挤压产品应用范围日趋广泛,规格范围十分宽广,因此,有轻至数千克的外形尺寸为100mm×25mm的小模子,也有重达2000kg以上的外形尺寸为1800mm×450mm的大模子。有轻至几千克的外形尺寸为65mmx800mm的小型挤压轴,也有重达100t以上外形尺寸为2500mmx2600mm的大型挤压筒。工模具的规格和品质上的巨大差异,要求采用完全不同的制造方法和程序,采用完全不同的加工设备。    (7)挤压工模具的种类繁多,结构复杂,装配精度要求很高,除了要求采取特殊的加工方法和采用特殊的设备以外,尚需采用特殊的工装卡具和刀具以及特殊的热处理方法。    (8)为了提高工模具的品质和使用寿命,除了选择合理的材料和进行优化设计以外,尚需采用较佳的热处理工艺和表面强化处理工艺,以获得适中的模具硬度和高的表面品质,这对于形状特别复杂的难挤压制品和特殊结构的模具来说显得特别重要。    由此可见,挤压模具的加工工艺小同于一般的机械制造工艺,而是一门难度很大涉及面很广的特殊技术。为了制造出高质量和高寿命的模具,除了要选择和制备优质的模具材料外,尚需要制定合理的冷加工工艺、电加工工艺、热处理工艺和表面处理工艺。

铝合金挤压管材分类归纳

2018-12-29 16:56:50

分类一:按管材的壁厚分    可分为:薄壁管和厚壁管。     分类二:按按规格为    可分为:大径后壁管,大径薄壁管和小径薄壁管。     分类三:按断面变化情况分    可分为: 恒断面管和变断面管材。     分类四:按生产方法分    可分为:热挤压管、冷挤压管、康福姆挤压管、热轧管、冷轧管、冷拉管、旋压管、冷弯管、焊接管、螺旋管、盘管拉伸管、双金属管、粘接管等。     分类五:按用途分    可分为:军用和民用导管、壳体管、容器管、钻探管、套管、波导管、散热管、汽车岐管、冷凝管、蒸发器管、喷嘴管、农业灌溉管、旗杆、电线杆、集电弓杆等。     分类六:按铝型材面积形状分    可分为:圆形管、椭圆形管、滴形管、扁圆管、方形管,矩形管、六角形管、八角形管、五角形管、梯形管、带筋管及其他异形管。

铜合金模具

2017-06-06 17:50:08

        铜合金是专业应用于塑料模具冷却镶件和拉伸模具镶件的材料,在塑料模具中完全替代铍铜合金的新兴材料,其突出特点是 价格 低廉,质量优于现在广泛采用的铍铜合金,是塑料模具制作中替代铍铜合金,降低模具成本的划时代产品.   銅合金的主要特性如下:    一、硬度高HRC40-50度,加工不必熱處理。    二、CA-2H銅合金摩擦係數低於鋼。減少工作模具的摩擦產生的熱量,有效的提高模具的壽命(是鋼模、鑄鐵的3~7倍)和產品的表面質量(徹底解決拉伸過程中的拉痕、拉絲現象),取消拉伸後的拋光工序;拉伸過程中不需油性潤滑劑,水性即可,減少去油工序。    三、優良的熱傳導性(比模具鋼優越3~7倍)。避免拉伸過程中材料流動較大的部位過熱,確保塑料制品快速及均勻地冷卻,減少制品的變形及能量,降低模具開模時間,有效提高生產效率(20%-25%),材料內部組織均勻,無氣孔、砂眼等缺陷。    四、特別是不?鋼制品的拉伸中有較強的優勢。例如:滾桶洗衣機不?鋼端板,燃氣爐臺面,吸油煙機殼體、微波爐內膽,不?鋼水槽等拉伸產品,特別是不?鋼的拉伸,一般模具材料需要2次或共4次拉伸,然後焊接打磨完成雙槽的拉伸,採用我公司合金銅材料只需要雙槽同時2次拉伸就可完成全部拉伸作業,同時產品無拉痕等缺陷。詳細可到我公司網站。    五、兩次拉伸之間不需要退火處理,提高拉伸後的產品的質量,降低了產品成本。      采用高导热率的铜合金模具可以使制造车间拥有更高的生产效率,既能节约资金,又能提高产品质量。一些汽车保险杠和仪表板的生产企业已经采用了这种材料的模具并取得了显著的生产效益。与普通的工/模具钢相比,由于铜基合金材料的成本较高,因此在模具生产中,很多模具制造厂至今还没有找到更好的办法以合理地使用高导热率的铜合金材料,但实际上,使用高导热率的铜合金在节省时间和提高效率等方面的效益是非常显著的。 

如何合理使用及维修铝材挤压模具,增加模具寿命

2019-01-02 16:39:00

铝型材挤压模具的寿命已成为我国铝型材工业发展的主要瓶颈。铝型材挤压模具的设计与制造成本占总生产成本的20%左右,是铝型材挤压工业变数多、发展快的关键技术之一,涉及了材质、设计、制造、检测、修模、管理等诸多环节,也是发展潜力较大的领域之一。  不同的铝合金模具设计使用极限次数相差也很大,一般数千次到数十万次不等。这与模具的材料及热处理,铝合金的材料,形状及精度要求等等关系很大,具体可查阅相关行业相关产品的设计规范。  如何才能更合理地使用这类分流模具?我们可以从以下几方面入手:  1、严格执行铝型材生产工艺规章  必须严格按照相应的铝型材挤压工艺执行,开机过程中铝棒炉中段温度设定在530-550℃,出口段温度设定在480-500℃,保温时间要足够,确保铝棒够温且透心(即心部及表面都够温),避免因为铝棒温度表里不一(心部温度不足)而使模具弹性变形增大,从而加剧“偏壁”和“长短不一”的现象发生,甚至使挤压模具发生塑性变形而报废。  2、确保“三心合一”  挤压筒中心、挤压杆中心和模座中心目视必须同心,不允许有明显的偏心现象,否则会影响制品各处的流速,甚至影响制品成型或者使挤压制品左右两支长短相差更大而无法挤压生产。  3、合理选用支承垫  必须选择大小适当的双孔专用支承垫,以减小下模的弹性变形,使挤压制品成型稳定,尺寸变化小;而且必须在模具出炉前把双孔专用支承垫找好备用,以免模具出炉后因为找支承垫耗时过长而使模具降温过多而出现闷车。  4、加强铝型材挤压过程中的信息反馈  A:挤压模具塞模的信息反馈  塞模的原因有很多种,没有经过专门训练的人一般难以表达清楚,最好经过相应的修模人员亲自查看过后并找到原因才可以煲模。  B:出料成型情况反馈  除了要有挤压模具号码标识清楚的料头之外,还要在料头上标识料头难以看出来的整体流向情况,如a、“相交出料”(表示在实际挤压过程中是两孔内侧慢外侧快引起);b、“相离出料”(表示在实际挤压过程中是两孔内侧快外侧慢引起);c、“左长右短”表示左支长右支短,并且要注明长短相差的量,因为中断锯到出料口的距离大约6米,所以通常“A米/6米”的形式表示长短相差的分量为每6米就相差A米,这样完善准确的表达才有利于修模人员的正确判断和维修。  C:尺寸超差的信息反馈  遇到出料成型正常但是尺寸超差的情况,必须取一段样品做好完整的正确的标识(挤压模具编号、出料方向、尺寸缺陷等等),其中任何一项标识错误都可能会导致修错模具,所以必须高度注意。  只有这样完整的使用情况信息反馈,才有利于修模人员的正确判断和维修,才能提高模具维修的效率,才能减少修模次数和不必要的试模。  5、模具损坏检查  ①选用制造成型模具零件的材料不适应工作条件要求,造成模具工作一段时间后变形,腐蚀或严重磨损。  ②安装、拆卸成型模具中零件时,用锤子敲击零件,造成模具零件变形或光洁面被破坏、工作面有撞击伤痕。  ③分流锥角过大,对熔料流动阻力大,造成分流锥支架筋折断。  ④口模、芯轴的工作面硬度低,使光洁面磨损严重,造成表面粗糙。  ⑤调整模具时,工作程度有错误会造成模具调整螺钉折断,口模或定径套变形,不能使用。

如何合理使用铝型材挤压模具

2019-01-11 09:43:31

铝型材挤压模具的寿命已成为我国铝型材工业发展的主要瓶颈。铝型材挤压模具的设计与制造成本占总生产成本的20%左右,是铝型材挤压工业变数多、发展快的关键技术之一,涉及了材质、设计、制造、检测、修模、管理等诸多环节,也是发展潜力较大的领域之一。   如何才能更合理地使用这类模具,我们可以从以下几方面入手。   (1)严格执行铝型材生产工艺规章   必须严格按照相应的铝型材挤压工艺执行,开机过程中铝棒炉中段温度设定在530-550℃,出口段温度设定在480-500℃,保温时间要足够,确保铝棒够温且透心(即心部及表面都够温),避免因为铝棒温度表里不一(心部温度不足)而使模具弹性变形增大,从而加剧“偏壁”和“长短不一”的现象发生,甚至使挤压模具发生塑性变形而报废。   (2)确保“三心合一”   挤压筒中心、挤压杆中心和模座中心目视必须同心,不允许有明显的偏心现象,否则会影响制品各处的流速,甚至影响制品成型或者使挤压制品左右两支长短相差更大而无法挤压生产。   (3)合理选用支承垫   必须选择大小适当的双孔专用支承垫,以减小下模的弹性变形,使挤压制品成型稳定,尺寸变化小;而且必须在模具出炉前把双孔专用支承垫找好备用,以免模具出炉后因为找支承垫耗时过长而使模具降温过多而出现闷车;   (4)加强铝型材挤压过程中的信息反馈   A:挤压模具塞模的信息反馈   塞模的原因有很多种,没有经过专门训练的人一般难以表达清楚,较好经过相应的修模人员亲自查看过后并找到原因才可以煲模。   B:出料成型情况反馈   除了要有挤压模具号码标识清楚的料头之外,还要在料头上标识料头难以看出来的整体流向情况,如a、“相交出料”(表示在实际挤压过程中是两孔内侧慢外侧快引起);b、“相离出料”(表示在实际挤压过程中是两孔内侧快外侧慢引起);c、“左长右短”表示左支长右支短,并且要注明长短相差的量,因为中断锯到出料口的距离大约6米,所以通常“A米/6米”的形式表示长短相差的分量为每6米就相差A米,这样完善准确的表达才有利于修模人员的正确判断和维修。   C:尺寸超差的信息反馈:   遇到出料成型正常但是尺寸超差的情况,必须取一段样品做好完整的正确的标识(挤压模具编号、出料方向、尺寸缺陷等等),其中任何一项标识错误都可能会导致修错模具,所以必须高度注意。   只有这样完整的使用情况信息反馈,才有利于修模人员的正确判断和维修,才能提高模具维修的效率,才能减少修模次数和不必要的试模。

挤压常用铝合金的挤压性能(典型)

2019-01-02 16:39:00

合金 挤压性指数(6063=100) 可否挤压空心型材 典型状态1100 150 可 H1121200 140 可 H1122014 20 不可 T42017 20 不可 T42024 15 不可 T43003 110 可 H1123203 110 可 H1125A06 9 不可 H1125454 40 不可 H1125083 20 不可 H1126061 65 可 T66N01 70 可 T56063 100 可 T57003 50 可 T57N01 40 可 T57075 10 不可 T6511

铝型材挤压模具设计分析

2019-01-09 11:26:51

近年来,随着我国大规模的基建投资和工业化进程的快速推进,铝型材全行业的产量和消费量迅猛增长,而我国也一跃成为世界上较大的铝型材生产基地和消费市场。经过长达近10年的高速增长,我国铝型材行业步入了新的发展阶段,并展现出了诸多新的发展趋势。    而且,随着建筑、交通、汽车以及太阳能和LED等产业的迅速发展,对铝合金挤压产品的高精度、高性能要求与日俱增,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习和积累、不断地改造和创新。    模具设计是重要环节,因此,须对挤压型材模具设计进行系统分析,并通过生产实践逐步解决问题。    一.铝型材模具设计的六大要点    1.铝挤压件的尺寸分析    挤压件的尺寸及偏差是由模具、挤压设备和其他有关工艺因素决定的。其中,受模具尺寸变化的影响很大,而影响模具尺寸变化的原因有:模具的弹性变形、模具的升温、模具的材料及模具的制造精度和模具磨损等。    (1)铝型材挤压机吨位的选择    挤压比是以数值表示模具实现挤压的难易,一般来说,挤压比在10-150之间是可适用的。挤压比低于10,产品机械性能低;反之,挤压比过高,产品容易出现表面粗糙或角度偏差等缺陷。实心型材常推荐挤压比在30左右,中空型材在45左右。    (2)外形尺寸的确定    挤压模具的外形尺寸是指模具的外圆直径和厚度。模具的外形尺寸由型材截面的大小、重量和强度来确定。    2.挤压模具尺寸的合理计算    计算模孔尺寸时,主要考虑被挤压铝合金的化学成分、产品的形状、公称尺寸及其允许公差、挤压温度,以及在此温度下模具材料与被挤压合金的线膨胀系数,产品断面上的几何形状的特点,及其在拉伸矫直时的变化,挤压力的大小及模具的弹性变形等因素。    对于壁厚差很大的型材,其难于成形的薄壁部分及边缘尖角区应适当加大尺寸。    对于宽厚比大的扁宽薄壁型材及壁板型材的模孔,桁条部分的尺寸可按一般型材设计,而腹板厚度的尺寸,除考虑公式所列的因素外,尚需考虑模具的弹性变形与塑性变形及整体弯曲、距离挤压筒中心远近等因素。此外,挤压速度、有无牵引装置等对模孔尺寸也有一定的影响。    3.合理调整金属的流动速度    所谓合理调整,就是在理想状态下,保证制品断面上每一个质点应以相同的速度流出模孔。    尽量采用多孔对称排列,根据型材的形状,各部分壁厚的差异和比周长的不同及距离挤压筒中心的远近,设计不等长的定径带。一般来说,型材某处的壁厚越薄,比周长越大,形状越复杂,离挤压筒中心越远,则此处的定径带应越短。    当用定径带仍难于控制流速时,对于形状特别复杂、壁厚很薄、离中心很远的部分可采用促流角或导料锥来加速金属流动。相反,对于那些壁厚大得多的部分或离挤压筒中心很近的地方,就应采用阻碍角进行补充阻碍,以减缓此处的流速。此外,还可以采用工艺平衡孔、工艺余量,或者采用前室模、导流模、改变分流孔的数目、大小、形状和位置来调节金属的流速。    4.保证足够的模具强度    由于挤压时模具的工作条件十分恶劣,所以,模具强度是模具设计中的一个非常重要的问题。除了合理布置模孔的位置、选择合适的模具材料、设计合理的模具结构和外形之外,准确地计算挤压力和校核各危险断面的许用强度也是十分重要的。    目前,计算挤压力的公式很多,但经过修正的别尔林公式仍有工程价值。挤压力的上限解法,也有较好的适用价值,用经验系数法计算挤压力比较简便。    至于模具强度的校核,应根据产品的类型、模具结构等分别进行。一般平面模具只需要校核剪切强度和抗弯强度;舌型模和平面分流模则需要校核抗剪、抗弯和抗压强度,舌头和针尖部分还需要考虑抗拉强度等。    强度校核时的一个重要的基础问题是,选择合适的强度理论公式和比较准确的许用应力。近年来,对于特别复杂的模具,可用有限元法来分析其受力情况与校核强度。    5.工作带宽度尺寸    确定分流组合模的工作带要比确定半模工作带复杂得多,不仅要考虑到型材壁厚差、距中心的远近,而且必须考虑到模孔被分流桥遮蔽的情况。处于分流桥底下的模孔,由于金属流进困难,工作带必须考虑减薄些。    在确定工作带时,首先要找出在分流桥下型材壁厚较薄处即金属流动阻力较大的地方,此处的较小工作带定为壁厚的两倍,壁厚较厚或金属容易达到的地方,工作带要适当考虑加厚,一般按一定的比例关系,再加上易流动的修正值。    6.模孔空刀结构    模孔空刀就是模孔工作带出口端悬臂支承的结构。型材壁厚t≥2.0mm时,可采用加工容易的直空刀结构;当t<2mm时,或者带有悬臂处,可用斜空刀。    二.模具设计中的常见问题    1.二级焊合室的作用    挤压模具在铝型材挤压生产中起到至关重要的作用,直接影响挤压产品的质量。然而,在实际生产中,挤压模具的设计更多依赖设计师的经验,模具设计质量难以保证,需要多次试模和修模。    根据模具设计的不足,提出在下模开设二级焊合室优化设计方案,弥补模具加工中打供料不到位的缺陷,避免了供料不足引起的开口、收口及出材前后形状不一等缺陷,并有效地解决了设计中速度分布不均的问题。从而在优化方案中,型材截面上的温度分布和应力分布更加均匀,对出材有较大改善。    2.二级导流的作用    在挤压模具设计中,对于壁厚差很大的实心型材,采用二级导流。例:初始模具设计由普通的模子和模垫组成,靠前次上机非常不理想,角度偏小、薄壁部分尺寸超薄、超小。模具返修即使加大薄壁部分、打低工作带仍然不理想。    针对初始模具设计的不足,第二次采用导流板设计,提出在模子开设二级导流优化设计方案,有效地解决了初始模具设计中速度分布不均的问题。    具体通过对薄壁部导流直冲,厚壁部分在出料口宽展30度,并将厚壁部分模孔尺寸稍微加大尺寸,另将模孔尺寸90度角预收口开为91度,定径工作带也适当作了些修改。    三.小结    经过不断地学习、积累,不断地查询相关的模具设计资料,经过改造、创新来优化模具设计,并通过生产实践来验证是否成功。

如何提高铝材产量延长挤压模具寿命

2018-12-28 11:21:19

铝型材正常模具正常寿命   模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。   模具寿命与模具类形和结构有关,它是一定时期内模具材料性能、模具设计与制造水平.模具热处理水平以及使用及维护水平的综合反映。模具寿命的高低在一定程度上反映一个地区、一个国家的冶金工业、机械制造工业水平。   模具失效形式及机理   但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。   (1)磨损失效   模具在服役时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分为以下几种:   (2)断裂失效   模具出现大裂纹或分离为两部分和数部分丧失服役能力时,成为断裂失效。断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。   脆性断裂又可分为一次性断裂和疲劳断裂。   (3)塑性变形失效   模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。在高温下服役的模具,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。   随着铝行业趋势的发展,近年来大家都在寻求更优更好的发展模式以提高效率、节约成本、增加效益。对于铝型材的产出挤压模具无疑是一个重要的控制节点。要提高其寿命当然是一个系统性的问题,在实际的生产使用过程中,一般将从优化设计、模具加工、使用维护等最主要的几个方面着手。   一、优化设计   对于挤压模具来讲,设计的水准直接影响着出料的状况更在一定程度上关乎着模具的使用寿命。挤压模的设计首先是要根据型材情况选择一个合适的挤压比确定机台吨位和孔数,使之设计出来的分流孔形成一个出料平衡的状态,另外要尽量的避免应力集中的设计构造,要使模具各部分受力均匀以保证其稳定。下面就几个典型的实际例子简要说明:对于(如图1)这样的型材,在设计时一般会在悬臂处设计有桥位避免直冲,因其这类模具容易偏塌。   对于悬臂两边壁厚差较大的一般会设计成高低工作带(如图2),这样能有效的调节两边的流量,可以一定程度的避免偏塌。   一些工头较小的模具容易偏摆或断裂,通常会设计成零下空刀(如图3),有效增加其强度。   针对工头较复杂螺丝孔又较多的工头一般上空刀会适当加长,目的是加强螺丝孔位置的强度。鉴于热处理更好的淬透模具、更好的释放应力及更好的加温透彻等因素,对于一些大型的方管、矩形工头中间会加钻孔(如图4)。   如果型材对角线较长且为方管类型,一般会将上模厚度加厚以更好的保证其强度,桥位也将适当加宽,从而有效的避免过早的裂角等问题。 12后一页

几种铝型材挤压模具的优化设计

2018-12-25 13:45:15

前 言:铝型材生产的质量和效率与挤压模的设计和结构密切相关,笔者根据几年来的工作实践和生产经验,简要介绍几种在实际生产中经常出现问题的铝材挤压模的优化设计实践,与同行们共讨论。    1、部分大断面空心型材模具的优化 断面空心比较大的空心型材在常规设计情况下,常出现大面起波,平面间隙超差,明显焊缝等缺陷,出现这些问题,通常是缘于模具设计结构的不合理性。为此,笔者在模具设计上:上模采用偏桥,下模在料仓内加凸筋的设计方案。 由于在生产过程中,型材大面起波、平面间隙超差等缺陷-般是因为大面分流孔接近中心,金属流速快而引起的,因此在焊合室中大面模孔前置一适当长度的凸筋,这样,当金属流向模孔时,凸筋象一道矮墙对金属的流动起到阻碍作用,若阻碍作用太过,也便于修模。 同时,相应地对某些焊缝的质量也起到了优化作用。 对于一些矩形腔,长宽比比较大的方管型材,焊合线常明显的出现在大面装饰面上。现可将对称式桥改为偏桥式,焊缝是由于金属流动通过分流孔在分流桥下进入摸孔前没有得到充分焊合而形成的。获得高强优质焊缝当然是我们理想所在。但是如果在生产过程中,焊缝不可避免的出现在型材大面或装饰面上,那不妨使其尽量远离大面或装饰面。在如(图1-2)形式分流孔情况下,使模桥中线向外偏移,(a:b=2:1、a1=a2)。通常,由于大面分流孔中的金属流动速度快,当分流桥的形式设计为偏桥式时,这样,增加了大面分流孔中的料流向两侧填充的空间,且随着分流桥中心线的向外偏移,则料流焊台位置也随之外移。因此,这样即调整了大面金属流速,又使焊缝远离中心大面。    2、双模孔易偏壁空心型材模具的优化 通常情况下,无论两模孔是上下排放,还是左右排放,都会由于靠近中心一侧的金属流速快,供料充足而使上模模芯向外发生弹性变形造成型材远离中心一则壁薄的偏壁缺陷。因此在模具设计过程中,在型材断面尺寸放量时,将通常产生偏壁的断面尺寸预先留出偏移余量。如果两模孔共用中心分流孔,为了两模孔的供料保证相对稳定,在料仓中两孔中间位置可以加一隔板式分流筋,也有利于修模。    3、小开口、悬壁面积大的平面型材模具的优化 此种型材在通常全面直给料的平面模设计情况下,很容易出现悬臂弹性变形大,以至于发生断裂、掉块等情形。此种情况下,可以将其设计成吊芯模,只是修模不很容易。有些型材开口非常小,几乎闭合,此种可采用组合模式,但开口处需要配合紧密。 一般的开口小,恳臂面积大的平面型材可将直给供料板设计为桥式供料板或悬壁桥式供料板、将受力的悬壁面置于桥下,这样可以对型材悬臂进行保护,当金属料流填充模孔时,来自供料板的金属流通过桥式供料板的桥对悬臂的遮挡不用直接作用其上,即减轻了模具悬臂所承受的正压力,从而改善悬臂的受力状态。延长了模具的使用寿命。    4、长厚比比较大的长断面平面型材模具的优化设计 因型材长厚比比较大,壁厚有时比较薄,靠近中心的金属流速比较快,仅仅用工作带的长短来调整模孔各处的料流速度是有限的,所以易产生变形缺陷。现采用(图4-2)所示的桥式供料饭,这样可以有效的调整中间的金属流速,从而使模孔各处料流速度均衡,能够收到良好效果。    5、结论     实践证明,以上几种铝型挤压模具设计的优化在实际生产中都是行之有效的。挤出的铝合金型材较之过去相比,成形好、尺寸精度、易保证、表面质量也得到了良好的改善。从而,大大提高了型材挤压的生产效率和降低了产品生产成本。 对于铝型材产品挤压模具设计,随着社会各行业的飞速发展,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习、积累,不断地改造和创新。删除

铝合金铸造模具的技术要求

2019-01-02 09:41:17

1)化学成分合金的化学成分应符合GB/T 15114-1994的规定。    2)力学性能   ①当采用铸造模具试样检验时,其力学性能应符合GB/T 15114-1994规定②当采用铸造模具本体检验时,其指定部位切取试样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定。   3)铸造模具尺寸   ①铸造模具的几何形状和尺寸应符合铸件图样的规定。   ②铸造模具的尺寸公差应按GB/T 6414-1999的规定执行。有特殊规定和要求时,须在图样上注明。   ③铸造模具有形位公差要求时,可参照表5;其标注方法按GB/T 15114-1994的规定。   ④铸造模具的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,被包容面以大端为基准;待加工表面:包容面以大端为基准,被包容面以小端为基准,有特殊规定和要求时,须在图样上注明。   4)铸造模具需要机械加工时,其加工余量按GB/T 15114-1994的规定执行。若有特殊规定和要求时,其加工余量须在图样上注明。   5)表面质量   ①铸造模具表面粗糙度应符合GB/T 15114-1994的规定。   ②铸造模具不允许有裂纹、欠铸、疏松、气泡和任何穿透性缺陷。   ③铸造模具允许有擦伤、凹陷、缺肉和网状毛刺等缺陷。但其缺陷的程度和数量应该与供需双方同意的标准相一致。   ④铸造模具的浇口、飞边、溢流口、隔皮、顶杆痕迹等应清理干净。但允许留有痕迹。   ⑤若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置、分型线的位置、浇口和溢流口的位置等由生产厂自行规定,否则图样上应注明或由供需双方商定。   ⑥铸造模具需要特殊加工的表面,如抛光、喷丸、镀铬、涂覆、阳极氧化、化学氧化等须在图样上注明或由供需双方商定。