光纤激光器在铝合金IT构件产品中的应用
2019-03-04 10:21:10
跟着手机、平板电脑、笔记本等消费类电子产品的更新开展,很多新工艺、新材料、新结构得到了运用,而铝合金具有质量轻、强度高、耐腐蚀、成型性好等长处,被广泛运用于制造各种消费类电子产品结构件,并选用激光脉冲点焊工艺进一步加工。在运用激光进行脉冲点焊时,焊点极易发生裂纹,构成焊接强度下降,稳定性也大大下降。传统的CO2、YAG等接连激光器焊接铝合金尽管能够防止裂纹的发生,可是传统激光器光束质量差、体积巨大、维护费用高、光电转化功率低,在必定程度上约束了其在消费类电子产品上的运用。尤其是消费类电子产品的结构件都具有厚度薄、体积小、精度高级特色,选用传统接连激光器焊接时易发生变形大、焊穿、烧熔等问题。
光纤激光器的快速开展为处理这一难题带来了关键,光纤激光器诞生于20世纪60年代,受其时技能条件约束,开展比较缓慢。自1988年Snitzer等人提出双包层光纤以来,依据这种包层泵浦技能的光纤激光器和放大器获得了快速开展,光纤激光器的输出功率水平快速进步,并广泛运用于高精度激光加工、激光医疗、光通信及国防等范畴。
相对于传统激光器,光纤激光器光束质量好、体积小、精度高、光电转化功率高。在焊接消费类电子产品的铝合金结构件时,能够很好地防止传统激光器焊接时存在的一些缺点和问题。在此将光纤激光器和在消费类电子产品铝合金结构件上运用广泛的脉冲激光器进行比照研讨,以断定光纤激光器是否能够成功运用于此类产品上。
试验材料和设备
(1)试验材料
试验选取了具有代表性的5052铝合金作为材料,并分析其化学成分,成果如表1所示。材料厚度为0.8mm,焊接接头为搭接接头。
(2)试验设备
试验所用脉冲激光器为YAG灯泵功率反应脉冲激光器,激光器功率300W,其外观如图1所示。光纤激光器选用单模光纤激光器,激光功率500W,外观如图2所示。 图1:YAG脉冲激光焊接机
图2:500W光纤激光器
试验进程中选用金相分析法评价焊接质量,经过拉力测验评价焊接强度,并经过丈量焊后工件外观尺度的办法评价焊接变形。试验中的焊接参数如表1、表2所示。 焊接缺点
铝合金激光焊接的首要缺点是气孔和裂纹,这点在脉冲激光焊接时表现得尤为显着。一般以为铝合金激光焊接发生的气孔首要是孔和低熔沸点合金元素蒸腾导致的气孔。铝合金线膨胀系数高,焊接应力大,又是共晶型合金,易发生热裂纹。尤其是激光脉冲点焊时,单个脉冲效果时刻短,热循环速度快,裂纹倾向很大。而选用光纤激光器接连缝焊铝合金时,因为熔池存在时刻大大延伸,改进了焊接应力以及低熔点物质对焊接裂纹的影响,极大地削减了焊接进程中发生裂纹的倾向。一起,熔池存在时刻的延伸也有利于熔池中气体的排出,削减焊接气孔的构成。 图3:脉冲激光器铝合金点焊焊点与光纤激光器缝焊焊缝金比较照
脉冲激光器铝合金点焊焊点与光纤激光器缝焊焊缝金比较照如图3所示,由图3可知,光纤激光器接连缝焊条件下,裂纹和气孔都得到了显着的改进。强度和稳定性
焊接裂纹会显着下降焊接接头的强度,对产品的实用性和可靠性有巨大影响,是较有损害的焊接缺点之一。铝合金脉冲激光点焊时,裂纹是影响焊接强度的一个重要因素,因为裂纹的不可防止性以及不规律性,构成铝合金点焊的强度远远低于材料自身的强度,而且各个焊接产品之间的强度差异也很大,稳定性较差。而光纤激光器接连焊接方法焊接铝合金能够防止焊接裂纹的发生,有用进步焊缝的强度和稳定性。
光纤激光器和脉冲激光器焊接同一铝合金产品的焊接拉力进行比照。经核算,光纤激光器的均匀拉力是脉冲激光器的3.9倍,而拉力数据的标准偏差只要脉冲激光器的1/3。结合图3的金相分析可知,光纤激光器的焊缝结合部位的宽度比脉冲点焊小得多,可是拉力能到达脉冲激光器的近4倍,这是因为:(1)光纤激光器焊缝在长度方向上仍有延伸,实践的有用结合面积并不比脉冲焊点小;(2)脉冲焊点的气孔和裂纹等焊接缺点构成其焊接强度远低于母材强度,而光纤激光器焊缝的强度挨近母材。因而,光纤激光器在焊接该类型产品时,比较脉冲激光器能够有用进步强度和稳定性。
焊接功率
因为光纤激光器缝焊的拉力大大高于脉冲激光点焊,这为进步焊接功率供给了空间,经过减小焊缝条数和焊缝长度,能够在较高的焊接功率条件下,完成与脉冲激光点焊相同乃至更高的焊接拉力。
在实践操作进程中,经过合理优化焊接参数、焊缝条数、长度以及焊接方位等,光纤激光器分段接连缝焊工艺完全能够代替原有的脉冲激光点焊工艺。依据实践出产中的统计数据,该工艺获得了原有脉冲激光点焊工艺3倍以上的出产功率,一起,将焊接拉力进步到原有脉冲激光点焊工艺的1.5倍以上。
焊接变形
铝合金线膨胀系数大,易发生焊接变形。激光焊接铝合金的变形量相对较小,可是在焊接IT构件类精细程度较高的产品时,即便细小的变形仍然会发生较大的影响,需求进行防备操控。一般选用传统接连激光器进行缝焊的热输入量都要大于脉冲激光点焊,因而变形量也会比脉冲激光点焊大。而光纤激光器因为具有优异的光束质量,光斑更小,能量更会集,能够以更快的速度和更小的热输入量进行焊接,因而产品变形相对传统接连激光器更小。
因为光纤激光器具有上述特色,一起光纤激光器焊接铝合金IT构件产品时的强度远高于脉冲激光器,经过合理优化光纤激光器的焊接参数、焊缝条数、焊缝长度以及散布方位,在满意工件的强度要求的一起,削减了焊接进程中注入工件的全体热量,以到达进一步减小工件焊接热变形的意图。经丈量,光纤激光器缝焊工件的全体焊接变形量超出脉冲激光点焊3.5%,相对脉冲激光点焊工艺差异不显着,能够满意实践需求。
产品外观
IT构件类产品对外观都有较高的要求,而铝合金材料受元素偏析、表面粗糙度、氧化层等影响,构成工件表面激光吸收率不一致,这种现象对激光脉冲点焊影响较大。选用脉冲激光点焊时简单呈现未焊合、飞溅、烟尘等问题,影响产品外观和功能,需求进行二次整理。 图4:脉冲激光器点焊与光纤激光器缝焊外观比照
脉冲激光器点焊焊点与光纤激光器缝焊焊缝的外观比照如图4所示。光纤激光器接连缝焊铝合金时,焊接进程愈加平稳,不易发生飞溅和烟尘,无需进行二次整理,在外观和工序上均优于脉冲激光器。
定论
(1)选用光纤激光器接连缝焊铝合金IT构件产品能够防止脉冲激光点焊经常呈现的焊接裂纹、气孔等缺点,大大进步了焊接强度及其稳定性。
(2)经过优化光纤激光器的焊接参数、焊缝条数、焊缝长度以及散布方位,能够减小焊接变形,进步出产功率。
(3)光纤激光器焊接铝合金IT构件时,焊缝滑润漂亮,不易发生飞溅、烟尘等,不需求进行二次整理,削减了出产工序。
(4)光纤激光器的分段缝焊工艺在焊接强度、全体外观、出产功率等方面均优于脉冲激光器的点焊工艺,而且在变形量与脉冲激光器适当,完全能够替代普通脉冲激光器在铝合金IT构件产品上的运用,具有较高的运用价值。
铝合金
2017-12-27 11:04:39
铝合金通常使用铜、锌、锰、硅、镁等合金元素,20世纪初由德国人Alfred Wilm发明,对飞机发展帮助极大,一次大战后德国铝合金成分被列为
国家机密
。跟普通的碳钢相比有更轻及耐腐蚀的性能,但抗腐蚀性不如纯铝。在干净、干燥的环境下铝合金的表面会形成保护的氧化层。造成电偶腐蚀(Galvanic corrosion)加速的情况有:铝合金与不銹钢接触的情况、其他金属的腐蚀电位比铝合金低或是在潮湿的环境下。如果铝和不銹钢要一同使用必须在有water-containing systems或是户外安装两金属间电子或电解隔离。铝合金的成分需要向美国铝业协会(Aluminium Association,AA)注册。许多组织公布更具体制造铝合金的标准,包括美国汽车工程协会(Society of Automotive Engineers,SAE)特别是航空标准,还有美国材料试验协会(American Society for Testing and Materials,ASTM)。铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶 铝合金及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 纯铝的密度小(ρ=2.7g/cm3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。
铝合金知识
2018-12-27 11:13:36
铝合金化学成分: 硅 镁 铁 铜 锰 锌 铬 钛 其它
铝合金分两大类:一为铸造铝合金,有铝硅系、铝铜系、铝镁系、铝锌系合金。二为变形铝合金,其中又分为两类:热处理不强化型铝合金,有铝锰系、铝镁系合金;热处理强化型铝合金,有铝镁硅系、铝铜镁系、铝铜镁锌系等。
铝合金电镀
2017-06-06 17:50:10
铝合金是工业中应用最广泛的一类
有色金属
结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。铝合金电镀工艺:铝合金压铸件毛坯→毛坯检验→机械抛光→汽油或三氯乙烯除油→凉干→上夹具→化学除油及碱腐蚀→温水清洗→冷水洗→流水中清洗→酸蚀→水洗→流水中清洗→浸H·S·F溶液→水洗→流水清洗→镀光亮镍(最好带电入槽)→水洗→流水中清洗→5%H2SO4溶液中活化→水洗→流水中清洗→镀枪黑色→水洗→流水中清洗→化学钝化→水洗→流水中清洗→烘干(5~10分钟)→下夹具→检验→浸漆或喷漆。国内枪黑色电镀工艺大都是锡镍合金镀层,也有锡钴合金镀层。其镀液有3种类型:氟化物型、氰化物型、焦磷酸盐型,从环保安全考虑,我们选择焦磷酸盐型枪黑色电镀工艺。铝合金电镀的镀后处理:铝合金压铸件枪黑色电镀后,必须立即水洗,并钝化、烘干。钝化能提高镀层抗蚀能力,在烘箱中烘干的过程就是镀层坚膜的过程。
6063铝合金
2017-06-06 17:50:11
6063铝合金的融化温度是655度以上,6063铝型材挤压温度是棒温490-510,挤压筒420-450,一般来说,每个挤型材的温度设计都不一样的,但大概都是在这个范围:模温470-490,根据自身的状况来设定。 6063铝主要合金元素为镁与硅,具有极佳的加工性能、优良的可焊接性、挤出性及电镀性、良好的抗腐蚀性、韧性,易于抛光、上色膜,阳极氧化效果优良,是典型的挤压合金。 6063铝合金型材以其良好的塑性、适中的热处理强度、良好的焊接性能以及阳极氧化处理后,表面华丽的色泽等诸多优点而被广泛应用于建筑型材、灌溉管材、供车辆、台架、家具、升降机、栅栏等用的管、棒、型材。 6063铝合金的国家标准:GB/T 3191-1998。属于Al-Mg-Si系合金,使用范围广泛,特别是建筑业离不开此合金,是最有前途的合金。耐蚀性好,焊接性优良,冷加工性较好,并具有中等强度。 6063铝合金性能: 抗拉强度 σb (MPa):130~230 6063的极限抗拉强度为124 MPa 受拉屈服强度 55.2 MPa 延伸率25.0 % 弹性系数68.9 GPa 弯曲极限强度228 MPa Bearing Yield Strength 103 MPa 泊松比0.330 疲劳强度 62.1 MPa 固溶温度是:520℃[4] 退火温度为:415℃×(2-3)h以28℃/h降温速度从415℃冷至260℃ 熔化温度:615~655℃ 比热容:900 6063铝合
金属
低合金化的Al-Mg-Si系高塑性合金。具有诸多可贵特点: 1.热处理强化,冲击韧性高,对缺可不敏感。 2.有极好的热塑性,可以高速挤压成结构复杂.薄壁.中空的各种型材或锻造成结构复杂的锻件,淬火温度范围宽,淬火敏感性低,挤压和锻造脱模后,只要温度高于淬火温度。即可用喷水或穿水的方法淬火。薄壁件(6<3mm)还可以实行风淬。 3.焊接性能和耐蚀性优良,无应力腐蚀开裂倾向,在热处理可强化型铝合金中,Al-Mg-Si系合金是唯一没有发现应力腐蚀开裂现象的合金。4.加工后表面十分光洁,且容易阳极氧化和着色。其缺点是淬火后若在室温停放一段时间在时效,会对强度带来不利影响(停放效应)。 6063铝合金广泛用于建筑铝门窗、幕墙的框架,为了保证门窗、幕墙具有高的抗风压性能、装配性能、耐蚀性能和装饰性能,对铝合金型材综合性能的要求远远高于工业型材标准。 在国家标准GB/T3190中规定的6063铝合金成分范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在很大范围内波动,以致型材的综合性能会无法控制。因此,优选6063铝合金的化学成分成为生产优质铝合金建筑型材的最重要的一环。 合金元素的作用及其对性能的影响 6063铝合金是AL-Mg-Si系中具有中等强度的可热处理强化合金,Mg和Si是主要合金元素,优选化学成分的主要工作是确定Mg和Si的百分含量。
5083铝合金
2017-06-06 17:50:11
5083铝合
金属
于Al-Mg-Si系合金。 5083铝合金耐蚀性好,焊接性优良,冷加工性较好,并具有中等强度。5083的主要合金元素为镁,具有良好的成形加工性能、抗蚀性、焊接性,中等强度,用于制造飞机油箱、油管、以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品、电器外壳等。 AL-Mn系合金,是应用最广的一种防锈铝,这种合金的强度高,特别是具有抗疲劳强度:塑性与耐腐蚀性高,不能热处理强化,,在半冷作硬化时塑性尚好,冷作硬化时塑性低,耐腐蚀好,焊接性良好,可切削性能不良,可抛光。用途主要用于要求高的可塑性和良好的焊接性,在液体或气体介质中工作的低载荷零件,如邮箱,汽油或润滑油导管,各种液体容器和其他用深拉制作的小负荷零件:线材用来做铆钉。 美国铝业协会(AA)对变形铝及铝合金的牌号表示方法,既四位数字代号表示方法,早在1957被接纳为美国国家标准(ANSIH35.1),美国主要的铝材生产企业逐渐都采用这种牌号表示方法,以后,美国军用标准(MIL),美国汽车工程师协会(SAE),美国材料与试验协会(ASTM)等都相继采用,还在推广到其他国家。1970年又以AA标准的这套四位数字代号为基础,产生了变形铝及铝合金的国际四位数字体系牌号,简称为IDS。由此,AA标准的变形铝及铝合金部分也成为国际性标准。 5083铝合金的使用范围广泛,特别是建筑业,是最有前途的合金。
3003铝合金
2017-06-06 17:50:10
3003铝合金是应用最广的一种防锈铝 3003铝合金力学性能: 抗拉强度 σb (MPa) ) 140-180 条件屈服强度 σ0.2 (MPa) )≥115 试样尺寸:所有壁厚 注:管材室温纵向力学性能 3003铝合金主要特征及应用范围:为AL-Mn系合金,这种合金的强度不高(稍高于工业纯铝),不能热处理强化,故采用冷加工方法来提高它的力学性能:在退火状态有很高的塑性,在半冷作硬化时塑性尚好,冷作硬化时塑性低,耐腐蚀好,焊接性良好,可切削性能不良。用途主要用于要求高的可塑性和良好的焊接性,在液体或气体介质中工作的低载荷零件,如油箱,汽油或润滑油导管,各种液体容器和其他用深拉制作的小负荷零件:线材用来做铆钉。 3003铝合金成分主要是铝和锰。具体的: 硅Si:0.60 铁Fe: 0.70 铜Cu:0.05-0.20 锰Mn:1.0-1.5 锌Zn:0..10 铝Al:余量 铝的密度很小,仅为2.7 g/cm,虽然它比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等。这些铝合金广泛应用于飞机、汽车、火车、船舶等制造工业。此外,宇宙火箭、航天飞机、人造卫星也使用大量的铝及其铝合金。例如,一架超音速飞机约由70%的铝及其铝合金构成。船舶建造中也大量使用铝,一艘大型客船的用铝量常达几千吨。 铝的导电性仅次于银、铜,虽然它的导电率只有铜的2/3,但密度只有铜的1/3,所以输送同量的电,铝线的质量只有铜线的一半。铝表面的氧化膜不仅有耐腐蚀的能力,而且有一定的绝缘性,所以铝在电器制造工业、电线电缆工业和无线电工业中有广泛的用途。 3003铝合金常应用在外包装,机械部件,冰箱,空调通风管道等潮湿环境下,该产品具有良好的防锈能力。 3003铝合金的国家标准(GB/T 3880-2006),适用于铝合金板带材料的统一标准。
2024铝合金
2017-06-06 17:50:11
2024铝合金的密度为2.73 g/cm3; (0.098 lb/in3)。 2024,国内通常叫做2A12,相当于LY12,通用的板材标准为AMS-QQ-A-250/4(非包铝);AMS-QQ-A- 2024铝合金250/5(包铝),2024的合金元素为铜,被称为硬铝,具有很高的强度和良好的切削加工性能,但耐腐蚀性较差。广泛应用于飞机结构(蒙皮、骨架、肋梁、隔框等)、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他各种结构件,为Al-Cu-Mg系。 2024铝为铝-铜-镁系中的典型硬 铝合金,其成份比较合理,综合性能较好。很多国家都生产这个合金,是硬铝中用量最大的。温度高于125°C,2024合金的强度比7075合金的还高。热状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。广泛用于飞机结构、铆钉、卡车轮毂、螺旋桨元件及其他种种结构件。 2024铝合金由于有高强度和好疲劳强度,被广泛应用在航空器结构上,尤其是机翼与机身结构下的受到张力的地方。 2024铝的特点是:强度高,有一定的耐热性,可用作150°C以下的工作零件。 2024铝合金的热处理工艺:状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。
6061铝合金
2017-06-06 17:50:10
6061铝合
金属
于Al-Mg-Si系合金,中等强度,具有良好的塑性和优良的耐蚀性。特别是无应力腐蚀开裂倾向,其焊接性优良,耐蚀性及冷加工性好,是一种使用范围广.很有前途的合金。可阳极氧化着色,也可涂漆上珐琅,适应作建筑装饰材料。其含有少量Cu,因而强度高于6063的,但淬火敏感性也比6063高,挤压之后不能实现风淬,需要重新固溶处理和淬火时效,才能获得较高的强度。 6061铝合金的主要合金元素是镁与硅,并形成Mg2Si相。若含有一定量的锰与铬,可以中和铁的坏作用;有时还添加少量的铜或锌,以提高合金的强度,而又不使其抗蚀性有明显降低;导电材料中还有少量的铜,以抵销钛及铁对导电性的不良影响;锆或钛能细化晶粒与控制再结晶组织;为了改善可切削性能,可加入铅与铋。在Mg2Si固溶于铝中,使合金有人工时效硬化功能。6061铝合金中的主要合金元素为镁与硅,具有中等强度、良好的抗腐蚀性、可焊接性,氧化效果较好。 美铝6061-T651是6系合金的主要合金,是经热处理预拉伸工艺的高品质铝合金产品;美铝6061具有加工性能极佳、良好的抗腐蚀性、韧性高及加工后不变形、上色膜容易、氧化效果极佳等优良特点。 主要用途:广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建筑、船舶、电车、铁道车辆。 代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 6061铝合金的热处理工艺是1)_快速退火:加热温度350~410℃;随材料有效厚度的不同,保温时间在30~120min之间;空气或水冷。2)高温退火:加热温度350~500℃;成品厚度≥6mm时,保温时间为10~30min、<6mm时,热透为止;空气冷。3)低温退火:加热温度150~250℃;保温时间为2~3h;空气或水冷。
铝合金加工
2017-06-06 17:50:10
铝合金的加工工艺,硅对硬质合金有腐蚀作用。虽然一般将超过12%Si的铝合金称为高硅铝合金,推荐使用金刚石刀具,但这不是绝对的,硅含量逐渐增多对刀具的破坏力也逐渐加大。因此有些厂商在硅含量超过8%时就推荐使用金刚石刀具。 硅含量在8%-12%之间的铝合金是一个过渡区间,既可以使用普通硬质合金,也可以使用金刚石刀具。但使用硬质合金应使用经PVD(物理镀层)方法、不含铝元素的、膜层厚度较小的刀具。因为PVD方法和小的膜层厚度使刀具保持较锋利的切削刃成为可能(否则为避免膜层在刃口处异常长大需要对刃口进行足够的钝化,切铝合金就会不够锋利),而膜层材料含铝可能使刀片膜层与工件材料发生亲合作用而破坏膜层与刀具基体的结合。因为目前的超硬镀层多为铝、氮、钛三者的化合物,可能会因硬质合金基体随膜层剥落时少量剥落造成崩刃。 铝合金是工业中应用最广泛的一类
有色金属
结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 纯铝的密度小(ρ=2.7g/m3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。 添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。 更多有关铝合金加工请详见于上海
有色
网
稀土铝合金
2017-06-06 17:50:03
稀土铝合金稀土铝合金是在铝合金中加入微量稀土元素,可以显著改善铝合金的金相组织,细化晶粒,去除铝合金中气体和有害杂质,减少铝合金的裂纹源,从而提高铝合金的强度,改善加工性能,还能改善铝合金的耐热性、可塑性及可锻性,提高硬度、增加强度和韧性。稀土元素的加入使得稀土铝合金成为一种性能优良、用途广泛的新型材料,目前稀土铝合金的
产量
已近全国铝
产量
的1/4。稀土元素在铝合金中的作用稀土元素非常活泼,极易与气体(如氢)、非
金属(如硫)及
金属
作用,生成相应的稳定化合物。稀土元素的原子半径大于常见的
金属
如铅、镁等,在这些
金属
中的固溶度极低,几乎不能形成固溶体。一般认为,稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非
金属
有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在长大的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。稀土铝合金的应用由于稀土独特的物理、化学性质开发出了众多的含稀土的合金材料,不但大量用于军事工业、农业、轻工业、手工业和交通运输业,也广泛用作建筑材料、家庭生活用具和体育用品等。稀土铝合金能大大提高合金的强度、硬度、韧性,还会使表面氧化膜结构发生变化,从而使产品表面光亮、美观,提高产品的耐腐蚀性能。目前我国在民用铝制品工业中已用来制造洗衣机内缸等。以上是稀土铝合金介绍,更多信息请详见上海
有色金属
网。
铝合金价
2017-06-06 17:49:52
铝合金价的关注源于它的需求,铝合金的需求在目前而言还是非常巨大的。是由于它的性质可用于多种情况下。且发展迅速。铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、建筑用门窗等。铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。纯铝分冶炼品和压力加工品两类,前者以化学成份Al表示,后者用汉语拼音LU(铝、工业用的)表示。铝和铝合金经加工成一定形状的材料统称铝材,包括板材、带材、箔材、管材、棒材、线材、型材等。更多铝合金价格的查询可登陆上海有色网的铝专区!
稀土铝合金
2017-06-02 16:38:42
稀土
铝合金[有色商机
:
铝合金锭]RE containing aluminium alloy指含稀土
金属
的铝合金,主要是指Al-RE系合金。工业Al-RE系合金主要是含有4.4%~5%稀土的铸造铝合金,如Al-RE-Cu-Si-Mn-Ni-Mg合金,含有多种过渡元素,成分、组织复杂。工作温度可达400℃,是广泛使用的热强性最好的铸造铝合金。室温力学性能低,铸造工艺性能良好,可用于砂型、金属型铸造,生产形状复杂的高温下长期工作的零件,如发动机附机壳体、阀门等。 在铝合金中加入微量稀土元素,可以显著改善铝合金的金相组织,细化晶粒,去除铝合金中气体和有害杂质,减少铝合金的裂纹源,从而提高铝合金的强度,改善加工性能,还能改善铝合金的耐热性、可塑性及可锻性,提高硬度、增加强度和韧性。稀土元素的加入使得稀土铝合金成为一种性能优良、用途广泛的新型材料,目前稀土铝合金的产量已近全国铝产量的1/4。稀土元素非常活泼,极易与气体(如氢)、非金属 (如硫)及金属作用,生成相应的稳定化合物。稀土元素的原子半径大于常见的金属如铅、镁等,在这些金属中的固溶度极低,几乎不能形成固溶体。一般认为,稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非金属有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在长大的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。以下就这3方面的作用详细介绍。1.精炼、净化作用稀土元素的脱氧能力比强脱氧剂Al、Mg、Ti等强,微量稀土就能使〔O〕脱到<lppm(即<10-4%)。稀土的脱硫能力也相当强,可以生成RES或RE2S3,生成物主要取决于稀土与硫的活度或溶解度。稀土元素在金属液中还可以与氧和硫同时发生反应生成RE2O2S型硫化物。稀土元素还能与P、Sn、As等低熔点金属元素化合,生成REP、RESn、REAs等化合物。这些稀土化合物都具有熔点高、比重轻,当它们的熔点高于金属冶炼温度时,能上浮一部分成渣,它们微小的质点则成为铝结晶过程的异质晶核,而留在固态金属内的部分则能降低其危害性。稀土对氢的的吸附力特别大,能大量吸附和溶解氢,稀土与氢的化合物熔点较高,并且弥散分布于铝液中,以化合物形成的氢不会聚集形成气泡,大大降低铝的含氢量和针孔率。2.变质作用变质处理是指在金属及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。变质剂又称晶粒细化剂或孕育剂。稀土元素的原子半径为0.174 ~0.204mm,大于铝原子半径(0.143mm)。稀土元素比较活泼,它熔于铝液中,极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长的速度增大,同时还在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。此外,铝与稀土形成的化合物在金属液结晶时作为外来的结晶晶核,因晶核数的大量增加而使合金的组织细化。研究表明:稀土对铝合金具有良好的变质效果。例如,合金化的7005铝合金铸锭本身就呈十分细小的组织。同时值得一提的是,稀土的变质作用具有长效及重熔稳定性的特点,比用钠(Na)、锶(Sr)等变质剂具有明显优点。稀土的变质作用只受共晶硅变化的影响。?3.合金化作用? 稀土在铝合金中的强化作用主要有细晶强化、有限固溶强化和稀土化合物的第二相强化等。当稀土加入量不同时,稀土在铝合金中主要以三种形式存在:固熔在基体α(Al)中;偏聚在相界、晶界和枝晶界;固熔在化合物中或以化合物形式存在。当稀土含量较低时(低于0.1%),稀土主要以前两种形式分布。第一种形式起到了有限固溶强化的作用,第二种形式增加了变形阻力,促进位错增殖,使强度提高。加入稀土后合金的铸态组织中合金晶粒明显减少,二次枝晶间距有可能细化,稀土与Al、Mg、Si等元素形成的金属间化合物呈球状和短棒状分布在晶界或界内,组织中有大量位错分布。当稀土含量大于0.3%?,后一种存在形式开始占主导地位。这时,稀土与合金中的其他元素开始形成许多含稀土元素的新相,同时使第二相的形状、尺寸发生变化,可能使得第二相从长条状等形状转变成短棒状粒子出现,粒子的尺寸也变得比较细小,且呈弥散分布。大部分含稀土元素的第二相都出现了粒子化、球化和细化的特征,这种变化在一定程度上都强化了铝合金。?铝合金加入稀土元素后性能的变化随着稀土元素加入量的增加,铝合金的强度、塑性均有所提高。这主要得益于稀土元素对合金组织的改善以及弥散的稀土化合物强烈的沉淀强化效应等。添加稀土元素可以导致合金断裂过程中裂纹萌生位置与扩展途径发生改变,有利于合金的韧化。同时铝合金中随稀土含量的增加,抗拉强度、硬度提高,而延伸率略有下降。由此可见,伴随稀土的加入,合金的机械性能大有改善。稀土元素的加入也可以改善铝合金的铸造性能。这是因为铁是铝合金中非常有害的杂质,万分之几的Fe就能形成Al+FeAl3的
新型真空高压铸铝车身结构件的材料研发
2019-03-11 13:46:31
跟着人们对环保和乘用车轻量化需求的日益增长,传统车身结构件的坏处也日益闪现。传统的车身结构件,一般是用结构钢板,冲压成型后进行焊 接,或运用紧固件衔接。这样的结构重量大,衔接点多,需求多道工序才干取得杂乱的车身结构。 如改用轻合金薄壁大型铸件,一方面可取得明显的减重效果;另一方面,因为只运用一个零件即可取得杂乱的结构,然后削减了成型和衔接环节。 据此,为某高级轿车规划开发的新式零件 “Shock Tower”,就是以减重为首要方针,并将杂乱的结构经过铸造一体成型的全新规划。Shock Tower 又可称为前轮罩,它是衔接车身和底盘的重要结构件。其形状如图1所示,三维均约500 mm,绝大部分部位壁厚仅约3 mm。 Shock Tower 除了强度要求外(抗拉≥180MPa, 屈从≥120MPa),也触及到多种衔接技能,特别是一些铆钉的衔接,如图2 所示,要求材料具有至少10% 的断后伸长率,否则将发作不行承受的开裂。 1 选材战略 1.1 汽车行业常见铸铝工艺的分析 现在汽车行业常用的铸铝件,首要是经过高、低压铸造取得的,传统的重力浇注反而不多。 关于 Shock Tower 这样形状杂乱的大型薄壁件,假如选用重力或低压铸造,因为充型速度有限,铝汤将在金属模的快速冷却下,在充型完结前即很多凝结,然后构成浇缺乏或冷隔等缺点。 高压铸铝件(以下简称“压铸件”),是将铝汤在大吨位的压机推进下完结充型,然后在金属模中快速凝结,以取得细微的晶粒和较高的强硬度。其特色是成型好、凝结快、作业效率高、强硬度高,但遍及缺点就是脆性大,一般断后伸长率都低于3%。 运用凝结潜热高的铝硅合金高压铸造 Shock Tower,能够给铝汤供给满意的充型速度和凝结时刻以保证充型。但10%的断后伸长率要求,关于压铸件而言是史无前例的应战。一般铝硅合金可经过蜕变和热处理来改进共晶硅相(以下简称“硅 相”),使针片状的硅相圆润,来进步塑性。但关于压铸件,还存在以下两个问题。 金属模薄壁件凝结速度快,会影响蜕变效果; 压铸件在充型时,铝汤会裹入很多气体,除发作气孔外,还会在后期热处理时发作铸件近表面气泡兴起问题,如图 3 所示。这是因为铸件凝结后再 进行热处理,气孔将因高温而胀大,合金也因高温 而软化。而此刻已没有凝结时的金属模具阻挠,所以简单在铸件表面构成鼓包。严峻的鼓包,除影响外观外,也将在受载时成为应力会集点,或许导致裂纹从鼓包处来源。所以传统压铸件一般不进行热处理操作。 1.2 打破传统的真空高压铸铝 将压铸模具抽为真空,就能够明显削减充型时裹入的气体。这样在凝结成型后再对零件进行固溶和人工时效热处理,可不发作鼓包问题。而此刻因为硅相经热处理后颗粒更圆润,然后能够明显进步材料塑性,到达断后伸长率规划目标。 这样的真空高压铸造件,除保留了压铸件固 有的长处外,还能够适用铆接、焊接(相同因裹入气领会构成焊接气孔和鼓包)等更灵敏的衔接方 式,用于要求高塑性、耐性等多种受载场合,是对压铸工艺具有历史意义的改造。 华中科技大学的材料成形与模具技能国家重 点实验室也成功地运用铝镁合金 ZL101 - T6 完结 了真空压铸件的试制。这以后研制的某轿车底盘 件,断后伸长率可达 7.3%,是国内十分成功的范 例。但需大批量出产 10% 以上的真空压铸件,在国内尚鲜有先例。 2 成分规划 2.1 传统压铸件的成分特色 为保证充型才干、抗热裂和削减缩孔,传统压铸件一般选用高硅的铝合金。一起为进一步进步强度,铜和镁元素也是常常增加的。 镁元素与硅构成的Mg2Si硬质相,需经过恰当的热处理,才干起到杰出的强化效果。而Al2Cu硬质相,即便不进行热处理也能起到明显的强化效果。所以传统压铸件更多倾向于增加铜元素。 压铸件为削减粘模,铁含量一般较高。但铁 元素在铝合金中易构成针状脆性相,如图 4 所示,也是导致压铸件脆性高的原因之一。 蜕变剂对硅相的蜕变效果如图 5 所示。但因为压铸件凝结速度快,会削弱蜕变效果。加上传统压铸件对塑性要求低,所以一般都不增加等蜕变剂。 2.2 真空压铸件改进元素的增加 因为 Shock Tower 对塑性要求高,其成分规划 应不同于传统的压铸件。尽管为保证铸造功能, 坚持了以硅元素为主(硅含量取 8% ~12%,在真空压铸条件下此含量的铸造功能和强度都较好),但进行了以下改进立异: (1)铜元素下降了塑性,改为以镁元素为首要强化元素,经过热处理取得所需机械功能。 (2)经过增加元素,对硅相形状进行先期的改进。 (3)经过增加较多含量的锰元素,以削减含铁脆性相对机械功能的影响。 综上所述,终究拟定的铝合金牌号为:AL-C-D-Si10MnMg。详细成分目标因触及公司技能秘要,在此不予揭露。 3 热处理准则 尽管从成分规划进步行了蜕变处理,但仍是需求对Shock Tower进行热处理,才干进一步进步性 能,特别是材料塑性,以到达断后伸长率规划目标。 3.1 铸造铝合金一般热处理办法 铸造铝合金的热处理,是经过固溶和时效等进程来改动铸件的金相安排,操控强化相的形状、 巨细、散布和数量,以取得希望的材料功能的办法。按美国金属手册的界说,首要热处理准则有: T4:固溶热处理后,没有饱尝冷加工,经过室温时效使其机械功能安稳化。一般强度较低。 T5:从高温成型工艺冷却后,比方铸造或揉捏后,没有饱尝冷加工,经过人工时效(沉积热处 理),而得到改进的机械功能和尺度安稳性,能获 得较高的强度。特别是没有经过固溶处理,节省 了动力、时刻,并削减了淬火时的变形和剩余 应力。 T6:固溶热处理后,没有饱尝冷加工,经过人工时效(沉积热处理),而得到改进的机械功能和尺度安稳性,往往是为了取得最高的强度。 T7:固溶热处理后,经过人工时效(沉积热处 理)到达过时效的程度。安稳化热处理尽管会使 强度下降,但可进步塑性、尺度安稳性和抗应力腐蚀的才干。 3.2 Shock Tower 热处理准则的建立 关于 Shock Tower,首要最多的强化相是共晶 硅相。铸造态(以下简称为“F”态)安排中的共晶 硅蜕变效果如因快速凝结而不行抱负,应经过适 当的热处理,将共晶硅颗粒化、圆润化。这样下降 了尖利安排的应力会集,可起到进步塑性和强度 的效果。 其次,关于铝镁硅合金,无论是铸铝合金仍是 用于塑性变形加工的变形铝合金,Mg2Si 也是其主 要的强化相。未经热处理的 Mg2Si往往较集结,呈 粗大的骨骼状,如图 6 左上图所示。这样的 Mg2Si 起到的效果更接近于脆性的夹杂物,很难对机械功能有好的奉献。经过适宜的热处理,能够使 Mg2Si 在铝基体中均匀弥散地散布,且颗粒细微, 一般用金相显微镜很难观察到,如图 6 右上图所 示。这样的安排可强化基体,进步材料机械功能。 Shock Tower 有必定的强度要求,且塑性要求 十分高。先期的实验发现T4强度太低,而T6塑性不能合格。且关于这样的大型薄壁零件,假如 进行固溶处理,零件变形将十分严峻。T7 尽管要 固溶,但强度和塑性都能满意规划。与不必固溶 处理的 F 和 T5 状况比较,强度要求都能满意,但 断后伸长率仅 T7 状况的才干安稳合格,如表 1 所 示。经过金相安排能够看到,经蜕变处理的真空 压铸件,再进行 T7 热处理,已很难找到针片状的 共晶硅相,如图 7 所示。尽管共晶硅相的长大会 构成强度的下降,但圆润的形状将明显进步材料 塑性变形才干。 终究 Shock Tower 挑选的热处理准则是 T7,并 经过特殊的固溶淬火工艺和特制零件夹详细系, 处理了大型薄壁件在热处理进程中的变形问题。 详细工艺参数细节因触及公司技能秘要,在此不 予揭露。 4 零件试制验证 经过 CAE 等手法进行了模具规划,终究完结 了实践铸件,如图 8、9 所示。图 9 中标记为3#的 区域,是相对较易发作内部缺点的部位。 经 T7 热处理后的 Shock Tower 样件,除成分 和静拉伸功能均契合规划目标外,零件表面也进 行了目视检测,未发现鼓包缺点。对规划要求区 域进行了 X - RAY 内部缺点检测,也均满意ASTM E505-level1级水平,图10即为3#区域的X-RAY检测相片。至此,真空高压铸铝件Shock Tower的材料研制作业基本完结。 5 结语 本文依据新式车身结构件 Shock Tower 在减 重和机械功能等方面的规划要求,选用打破传统的真空高压铸铝工艺,并进行了相应的成分规划 和热处理拟定,成功完结了满意零件规划要求的 高塑性压铸铝材料研制。 本项意图研制成功,不仅是对传统压铸工艺 的一次重大打破。关于乘用车轻量化结构规划, 运用轻金属铸件替代传统钢架结构,也给予了很有价值的学习。
5086铝合金
2019-02-28 11:46:07
铝镁合金还有铝锰合金统称为防锈铝,由于两者中间的合金成分都有添加他们防腐功能,铝锰合金代表是3003,3004,3105,铝镁合金依据镁合金的含量的凹凸依次为5005 5252 5251 5050 5052 5754 5083 5056 5086等等。5086铝板典型用处:用于需求有高的抗腐蚀性、杰出的可焊接性和中等强度的场合,比如船只、轿车和飞机板可焊接件;需求严厉防火的压力容器、制冷设备、电视塔、装探设备、交通运输设备、零件、装甲等。
5086铝板供货状况:O、H112、H116、H111、H321、H32,H36,H38
稀土铝合金
2017-06-06 17:50:11
稀土铝合金 RE containing aluminium alloy 泛指含稀土
金属
的铝合金,主要指Al-RE系合金。工业Al-RE系合金主要是含有4.4%~5%稀土的铸造铝合金,如Al-RE-Cu-Si-Mn-Ni-Mg合金,含有多种过渡元素,成分、组织复杂。工作温度可达400℃,是广泛使用的热强性最好的铸造铝合金。室温力学性能低,铸造工艺性能良好,可用于砂型、
金属
型铸造,生产形状复杂的高温下长期工作的零件,如发动机附机壳体、阀门等。1.精炼、净化作用稀土元素的脱氧能力比强脱氧剂Al、Mg、Ti等强,微量稀土就能使〔O〕脱到<lppm(即<10-4%)。稀土的脱硫能力也相当强,可以生成RES或RE2S3,生成物主要取决于稀土与硫的活度或溶解度。稀土元素在
金属
液中还可以与氧和硫同时发生反应生成RE2O2S型硫化物。稀土元素还能与P、Sn、As等低熔点
金属
元素化合,生成REP、RESn、REAs等化合物。这些稀土化合物都具有熔点高、比重轻,当它们的熔点高于
金属
冶炼温度时,能上浮一部分成渣,它们微小的质点则成为铝结晶过程的异质晶核,而留在固态
金属
内的部分则能降低其危害性。稀土对氢的的吸附力特别大,能大量吸附和溶解氢,稀土与氢的化合物熔点较高,并且弥散分布于铝液中,以化合物形成的氢不会聚集形成气泡,大大降低铝的含氢量和针孔率。2.变质作用变质处理是指在
金属
及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。变质剂又称晶粒细化剂或孕育剂。稀土元素的原子半径为0.174 ~0.204mm,大于铝原子半径(0.143mm)。稀土元素比较活泼,它熔于铝液中,极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长的速度增大,同时还在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。此外,铝与稀土形成的化合物在
金属
液结晶时作为外来的结晶晶核,因晶核数的大量增加而使合金的组织细化。研究表明:稀土对铝合金具有良好的变质效果。例如,合金化的7005铝合金铸锭本身就呈十分细小的组织。同时值得一提的是,稀土的变质作用具有长效及重熔稳定性的特点,比用钠(Na)、锶(Sr)等变质剂具有明显优点。稀土的变质作用只受共晶硅变化的影响。3.合金化作用稀土在铝合金中的强化作用主要有细晶强化、有限固溶强化和稀土化合物的第二相强化等。当稀土加入量不同时,稀土在铝合金中主要以三种形式存在:固熔在基体α(Al)中;偏聚在相界、晶界和枝晶界;固熔在化合物中或以化合物形式存在。当稀土含量较低时(低于0.1%),稀土主要以前两种形式分布。第一种形式起到了有限固溶强化的作用,第二种形式增加了变形阻力,促进位错增殖,使强度提高。加入稀土后合金的铸态组织中合金晶粒明显减少,二次枝晶间距有可能细化,稀土与Al、Mg、Si等元素形成的
金属
间化合物呈球状和短棒状分布在晶界或界内,组织中有大量位错分布。当稀土含量大于0.3%,后一种存在形式开始占主导地位。这时,稀土与合金中的其他元素开始形成许多含稀土元素的新相,同时使第二相的形状、尺寸发生变化,可能使得第二相从长条状等形状转变成短棒状粒子出现,粒子的尺寸也变得比较细小,且呈弥散分布。大部分含稀土元素的第二相都出现了粒子化、球化和细化的特征,这种变化在一定程度上都强化了铝合金。稀土铝合金能大大提高合金的强度、硬度、韧性,还会使表面氧化膜结构发生变化,从而使产品表面光亮、美观,提高产品的耐腐蚀性能。目前我国在民用铝制品工业中已用来制造洗衣机内缸等。
稀土铝合金
2017-06-06 17:50:03
稀土铝合金RE containing aluminium alloy指含稀土
金属
的铝合金,主要是指Al-RE系合金。工业Al-RE系合金主要是含有4.4%~5%稀土的铸造铝合金,如Al-RE-Cu-Si-Mn-Ni-Mg合金,含有多种过渡元素,成分、组织复杂。工作温度可达400℃,是广泛使用的热强性最好的铸造铝合金。室温力学性能低,铸造工艺性能良好,可用于砂型、
金属
型铸造,生产形状复杂的高温下长期工作的零件,如发动机附机壳体、阀门等。 在铝合金中加入微量稀土元素,可以显著改善铝合金的金相组织,细化晶粒,去除铝合金中气体和有害杂质,减少铝合金的裂纹源,从而提高铝合金的强度,改善加工性能,还能改善铝合金的耐热性、可塑性及可锻性,提高硬度、增加强度和韧性。稀土元素的加入使得稀土铝合金成为一种性能优良、用途广泛的新型材料,目前稀土铝合金的
产量
已近全国铝
产量
的1/4。稀土元素非常活泼,极易与气体(如氢)、非
金属(如硫)及
金属
作用,生成相应的稳定化合物。稀土元素的原子半径大于常见的
金属
如铅、镁等,在这些
金属
中的固溶度极低,几乎不能形成固溶体。一般认为,稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非
金属
有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在长大的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。以下就这3方面的作用详细介绍。1.精炼、净化作用稀土元素的脱氧能力比强脱氧剂Al、Mg、Ti等强,微量稀土就能使〔O〕脱到<lppm(即<10-4%)。稀土的脱硫能力也相当强,可以生成RES或RE2S3,生成物主要取决于稀土与硫的活度或溶解度。稀土元素在金属
液中还可以与氧和硫同时发生反应生成RE2O2S型硫化物。稀土元素还能与P、Sn、As等低熔点
金属
元素化合,生成REP、RESn、REAs等化合物。这些稀土化合物都具有熔点高、比重轻,当它们的熔点高于金属冶炼温度时,能上浮一部分成渣,它们微小的质点则成为铝结晶过程的异质晶核,而留在固态
金属
内的部分则能降低其危害性。稀土对氢的的吸附力特别大,能大量吸附和溶解氢,稀土与氢的化合物熔点较高,并且弥散分布于铝液中,以化合物形成的氢不会聚集形成气泡,大大降低铝的含氢量和针孔率。2.变质作用变质处理是指在
金属
及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。变质剂又称晶粒细化剂或孕育剂。稀土元素的原子半径为0.174 ~0.204mm,大于铝原子半径(0.143mm)。稀土元素比较活泼,它熔于铝液中,极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长的速度增大,同时还在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。此外,铝与稀土形成的化合物在
金属
液结晶时作为外来的结晶晶核,因晶核数的大量增加而使合金的组织细化。研究表明:稀土对铝合金具有良好的变质效果。例如,合金化的7005铝合金铸锭本身就呈十分细小的组织。同时值得一提的是,稀土的变质作用具有长效及重熔稳定性的特点,比用钠(Na)、锶(Sr)等变质剂具有明显优点。稀土的变质作用只受共晶硅变化的影响。3.合金化作用 稀土在铝合金中的强化作用主要有细晶强化、有限固溶强化和稀土化合物的第二相强化等。当稀土加入量不同时,稀土在铝合金中主要以三种形式存在:固熔在基体α(Al)中;偏聚在相界、晶界和枝晶界;固熔在化合物中或以化合物形式存在。当稀土含量较低时(低于0.1%),稀土主要以前两种形式分布。第一种形式起到了有限固溶强化的作用,第二种形式增加了变形阻力,促进位错增殖,使强度提高。加入稀土后合金的铸态组织中合金晶粒明显减少,二次枝晶间距有可能细化,稀土与Al、Mg、Si等元素形成的金属间化合物呈球状和短棒状分布在晶界或界内,组织中有大量位错分布。当稀土含量大于0.3%,后一种存在形式开始占主导地位。这时,稀土与合金中的其他元素开始形成许多含稀土元素的新相,同时使第二相的形状、尺寸发生变化,可能使得第二相从长条状等形状转变成短棒状粒子出现,粒子的尺寸也变得比较细小,且呈弥散分布。大部分含稀土元素的第二相都出现了粒子化、球化和细化的特征,这种变化在一定程度上都强化了铝合金。铝合金加入稀土元素后性能的变化随着稀土元素加入量的增加,铝合金的强度、塑性均有所提高。这主要得益于稀土元素对合金组织的改善以及弥散的稀土化合物强烈的沉淀强化效应等。添加稀土元素可以导致合金断裂过程中裂纹萌生位置与扩展途径发生改变,有利于合金的韧化。同时铝合金中随稀土含量的增加,抗拉强度、硬度提高,而延伸率略有下降。由此可见,伴随稀
6060铝合金与6063铝合金区别
2019-01-11 09:43:31
6060与6063铝合金的化学成分、加工性能相近,但不完全一样,二者的区别在于强度,6060是国家标准门窗用铝合金,而6063是国家许可使用的航空铝合金。 6060铝材材料成分 Si:0.3-0.6Fe:0.1-0.3Cu:0.1Mn:0.1Mg:0.35-0.6Cr:--Zn:0.1其他:--Ti:0.15其它合计:0.15Al:余量 性能: 抗拉强度σb(MPa):≥470 条件屈服强度σ0.2(MPa):≥420 伸长率δ5(%):≥6 产品特点:1.高强度可热处理合金。2.良好机械性能。3.可使用性好。4.易于加工,耐磨性好。5.抗腐蚀性能、抗氧化好 主要用途:航空固定装置,卡车,塔式建筑,船,管道及其他需要有强度、可焊性和抗腐蚀性能的建筑上的应用的领域。如:飞机零件、照相机镜头、耦合器、船舶配件和五金、电子配件和接头、装饰用或各种五金、铰链头、磁头、刹车活塞、水利活塞、电器配件、阀门和阀门零件。 6063铝合金化学成份 铝Al:余量硅Si:0.20~0.6铜Cu:≤0.10镁Mg:0.45~0.9锌Zn:≤0.10锰Mn:≤0.10钛Ti:≤0.10铬Cr:≤0.10铁Fe:0.000~0.350注:单个:≤0.05;合计:≤0.15 6063的密度为2.69g/cm3 物理特性及机械性能: 抗拉强度σb(MPa):≥205条件屈服强度σ0.2(MPa):≥170伸长率δ5(%):≥96063铝板产品特点用途介绍: 6063铝合金属于Al-Mg-Si系合金,使用范围广泛,特别是建筑业离不开此合金,是较有前途的合金。耐蚀性好,焊接性优良,冷加工性较好,并具有中等强度。 主要合金元素为镁与硅,具有加工性能极佳、优良的可焊接性、挤出性及电镀性、良好的抗腐蚀性、韧性,易于抛光、上色膜,阳极氧化效果优良,是典型的挤压合金。6063铝合金型材以其良好的塑性、适中的热处理强度、良好的焊接性能以及阳极氧化处理后表面华丽的色泽等诸多优点而被广泛应用于建筑型材、灌溉管材、供车辆、台架、家具、升降机、栅栏等用的管、棒、型材。 属低合金化的Al-Mg-Si系高塑性合金。具有诸多可贵特点:1.热处理强化,冲击韧性高,对缺可不敏感。2.有极好的热塑性,可以高速挤压成结构复杂.薄壁.中空的各种型材或锻造成结构复杂的锻件,淬火温度范围宽,淬火敏感性低,挤压和锻造脱模后,只要温度高于淬火温度。即可用喷水或穿水的方法淬火。薄壁件(6<3mm)还可以实行风淬。3.焊接性能和耐蚀性优良,无应力腐蚀开裂倾向,在热处理可强化型铝合金中,Al-Mg-Si系合金是没有发现应力腐蚀开裂现象的合金。4.加工后表面十分光洁,且容易阳极氧化和着色。其缺点是淬火后若在室温停放一段时间在时效,会对强度带来不利影响(停放效应)。
钎焊铝合金
2018-12-28 09:57:29
钎焊铝合金(brazeweldingaluminiumalloy)
硬钎焊的铝基钎料和铝合金钎焊板。在钎焊时,被钎焊材料不熔化,钎料熔化填充接头,将工件连接起来。可以将铝基钎料包覆在铝合金芯材上制成铝合金钎焊板,广泛用于制造热交换器。
铝基钎料铝硅系合金的熔点低,流动性好,适合作钎料。典型的铝基钎料是4343、4045(美国牌号)和4004合金。其主要化学成分和特性列于表1。工业纯铝、铝锰系合金和铝-镁-硅系合金中的6951(美国牌号)合金有很好的钎焊性能,它们可用上述铝基钎料钎焊。铝镁硅系中的6061、6053(美国牌号)和6063合金也有较好的钎焊性能,但是因为它们的开始熔化温度比工业纯铝和铝锰系合金的低,因此要严格控制钎焊温度,以防止过烧。4004钎料含有镁,适合在真空钎焊法中使用,在钎焊过程中,镁的蒸气与炉内残留的氧和水反应,起净化作用,镁蒸气还抑制被钎焊铝合金的再氧化。 铝合金钎焊板 通常是由铝锰系合金(中国牌号3A21、3003)芯材和铝基钎料包覆层所构成的复合板,中国铝合金钎焊板的牌号和化学成分列于表2。其制造过程是,将铝基钎料板放在芯材锭坯的一面或两面上,预热到热轧温度(500℃左右),热轧,再冷轧成薄板,包覆层完全压合到芯材上。包覆层的厚度为芯材厚度的5%~15%。 铝合金钎焊板通常是作为钎焊组件的一个部件,另一个部件是无包覆层的可钎焊铝合金材料。钎焊时,将整个组件放在炉内或盐浴内均匀加热到高温,钎焊板上的钎料熔化,受毛细管作用和重力作用而流动,填满要连接部位的接头,可对数百或更多个接点同时进行焊接。它们广泛用于制造各种热交换器。
高性能铝合金———铝钪合金
2018-12-27 16:26:15
铝合金是国民经济建设和国家安全重要的工程材料。但是迄今为止,我国一些高性能铝合金制备的关键技术还没有突破,很多重点型号所需的高性能铝合金材料仍然依赖于进口,高性能铝合金研制与开发还有许多工作等待国人去做。 铝合金的高性能化有几种途径,其中微合金化强韧化是近20年来高性能铝合金研究的前沿领域。所谓微合金化强韧化通常是指将质量百分数小于0.5%的微量元素添加或者复合添加到铝合金中借以大幅度提高合金强度和韧性的一种技术。其中,钪的添加特别引人注目。 钪作为一种过渡族元素以及稀土元素加到铝及铝合金中,不仅能够显著细化铸态合金晶粒、提高再结晶温度从而提高铝合金的强度和韧性,而且能显著改善铝合金的可焊性、耐热性、抗蚀性、热稳定性和抗中子辐照损伤的作用。因此,铝钪合金被认为是新一代航天航空、舰船、兵器用高性能铝合金结构材料。近20年来,国际材料界尤其是前苏联,由于军工战略方面的需要,对铝钪合金进行了大量的研究与开发。国内铝钪合金起步较晚,90年代中期还只有少数几篇评述性的文章。然而,这种新合金在航天航空方面的优异性能引起了国防工业部门的浓厚兴趣,有关应用部门希望国内立即开展这方面的研究。 “国家需要就是我们的研究目标!”学科带头人尹志民教授敏锐地感觉到这一信息的重大价值。这位1987年从加拿大多伦多大学留学回国并长期从事高性能铝合金研究的学者,立即带领科研室一批青年学子在这一领域开始了艰苦的探索与实践。 研究工作从哪里入手?科研组的同志一致认为“研究工作应当首先从基础做起,基础牢才能做大事。”微量钪添加到铝合金中能大幅度提高合金的性能,这种神奇作用的原因是什么?课题组在国家自然科学基金的支持下,开展了微量钪在铝镁系合金中的存在形式及作用机制研究。他们设计了一系列对比合金,研究了微量钪对目标合金晶粒度、再结晶行为以及对合金强度和韧性的影响。发现了一系列有重大意义的研究结果: 第一,微量钪和锆复合添加效果比单独添加好,钪、锆复合微合金化是Al-Mg系合金强韧化的有效途径; 第二,微量钪和锆主要以Al3(Sc,Zr)I和Al3(Sc,Zr)II两种铝化物形式存在,铝化物的晶体结构为面心立方,点阵常数为0.410nm,前者是α(Al)基体最有效的晶粒细化剂,后者与基体共格,强烈钉扎位错和亚晶界,它能强烈抑制合金热变形过程和冷轧板材退火过程的再结晶;第三,微量钪和锆在铝合金中的强化机制为细晶强化、亚结构强化和铝钪锆化合物粒子引起的析出强化。论文《微量Sc和Zr对Al-Mg合金组织性能的影响》和《微量Sc和Zr对Al-Zn-Mg合金组织性能影响》分别在材料领域英国著名刊物《材料科学与工程》和俄罗斯著名刊物《有色金属》上发表,SCI他引数十次。多名来自韩国、法国、德国、日本等国的研究者来信或通过E-mail索取资料。尹志民教授访俄期间,还多次与铝钪合金研究权威扎哈罗夫教授和费拉多夫教授进行了学术交流。 铝钪合金基础研究有了重大突破以后,紧接着的一个问题就是研制开发铝钪中间合金。因为微量钪只能通过铝钪中间合金的形式加入到铝合金中,否则“巧妇难为无米之炊”。调研发现,我国钪资源丰富。90年代初,我国还是世界市场上氧化钪初级产品的主要供应商,关键问题是如何把氧化钪转化为铝钪中间合金。在"氧化钪热还原制备铝钪中间合金新工艺基础研究"国家自然科学基金支持下,课题组在不同反应物体系热还原热力学计算的基础上,筛选了两条工艺路线进行实验。最终以工业氧化钪为原料,采用氧化钪热还原方法成功地制备出了铝钪中间合金,随后研制的铝钪合金板材制备和性能研究表明:制备的铝钪中间合金完全能够满足工业铝钪合金研制的需要。在此基础上,科研组申报了国家发明专利,2002年发明专利获得授权。 随着我国国力的增强,铝镁钪系合金的研究列入了国家重点研究计划,科研室紧紧抓住了这个机遇。在科技部973项目“提高铝材质量的基础研究”和“十五”攻关项目的支持下,在微量钪、锆在铝镁系及铝锌镁系合金中的微合金化研究成果的指导下,课题组在国内率先研制成功了Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr两个合金原型,与不添加钪和锆的同类合金相比,合金抗拉强度和屈服强度提高了25%,而塑性仍分别保持在13%和10%的高水平。与此同时,钪、锆等复合微合金化强韧化研究成果已延伸到2个863项目和1个“十五”重点项目。 经过8年的艰苦奋斗,依托中南大学材料物理与化学国家重点学科,形成了一支从加拿大、日本、俄罗斯等留学回国的青年学者组成的学术队伍。他们先后承担了多项与铝钪合金有关的国家自然科学基金、973项目、863项目、“十五”攻关和军工配套等国家级重大科研项目,举办了铝钪合金国际研讨会,发表高水平论文近百篇,在国内外产生了积极的影响。 为了适应新形势的发展,尹志民教授为首的创新团队加大了铝钪合金的研究开发力度,一方面,他们利用科研沉淀资金,在校内新材料工程中心投资20余万元建立了一条铝钪中间合金中试生产线,正式为国内用户供应“中工牌”铝钪中间合金;另一方面,与国内铝合金骨干企业合作,共同承担国家科研试制任务,努力把钪、锆复合微合金化强韧化理论应用到工程实际中,争取在未来10年内,和国内铝合金骨干企业一道建立起我国自己的高性能铝钪合金新体系。 目前,中南大学与东北加工轻合金有限责任公司和西南铝业有限公司合作承担的铝钪合金“十五”国家重点项目开始了工业化试验。他们已经攻克了板材及其配用焊丝复合微合金化成分设计及控制技术、钪中间合金制备和添加技术、铝镁钪锆合金板材轧制技术,铝镁钪锆合金型材挤压工艺技术和锻造工艺技术,研制成功了中强高韧可焊Al-Mg-Mn-Sc-Zr合金板材、挤压材、锻件和配用焊丝。 可以预见在不久的将来,具有我国自主知识产权的大规格铝钪合金板材、挤压材、锻件将会在航天、航空、兵器、舰船领域投入应用。课题组成员的辛勤劳动和聪明才智将在国防现代化建设中开出更加艳丽的花朵。
铝合金轮毂
2019-01-02 15:29:20
目前,我们最常见的车轮大多采用整体式轮毂,也有称为轮辋和轮圈,其实这些名称都是原来车轮的一部分组件名称:轮辋是固定安装轮胎的部分,轮辐是支撑轮辋和轮毂的部分,轮毂是连接车轮和车轴的部分,负责轮胎和车轴之间承受负荷的旋转组件。 经过不断地改进,在现代工业技术条件下,轮毂已经成为功能完善的整体式组件。它担负着承载车重、传递动力、轮胎散热等功能,而且作为一个旋转运动部件,轮毂具有一定的刚度前提下,必须符合轻质、耐疲劳、符合动平衡等条件。铝合金轮毂与过去的钢轮毂相比,重量大幅度减轻:同尺寸和同强度下,铝合金轮毂的质量约相当于钢轮毂的一半。轻质的铝合金轮毂可以让车辆动力表现更佳,同时使车辆省油而且散热性好。 轮毂造型可以用来表现个性,国内的汽车轮毂文化已经有一定发展,这里要提醒一点,有不少汽车经销商为了迎合车主的口味,会极力推荐原厂的铝合金轮毂选装件,可以在价格上狠狠宰消费者一笔。其实在买车的时候不要太在意轮毂的材质,即使是钢质轮毂,也可以在适当的时候,按照自己的风格换成铝合金轮毂,肯定比选装原厂配件划算。
铝合金性能
2018-12-27 14:45:24
铝是一种轻金属,密度小(2.79/Cm3), 具有良好的强度和塑性,铝合金具有较好的强度,超硬铝合金的强度可达600Mpa,普通硬铝合金的抗拉强度也达200-450Mpa,它的比钢度远高于钢,因此在机械制造中得到广泛的运用。铝的导电性仅次于银和铜,居第三位,用于制造各种导线。铝具有良好的导热性,可用作各种散热材料。铝还具有良好的抗腐蚀性能和较好的塑性,适合于各种压力加工。
稀土铝合金
2017-06-06 17:50:12
稀土铝合金在合金材料技术领域。提出的整体弥散铜制备用稀土铜铝合金材料主要包含有Cu、Al和稀土添加剂RE;其中各成分的含量是:Al,0.10wt%~1.00wt%;RE,0.05wt%~0.50wt%,余量为Cu;所述稀土添加剂RE是指Y或Ce或混合稀土元素(Ce+Y);所述混合稀土元素(Ce+Y)采用纯稀土称重进行混合,其配比为:wt%Ce∶wt%Y=1∶1;稀土铜合金材料的制备工艺包括合金的熔炼、合金的热加工、合金的固溶、固溶后冷加工变形;其中,合金的固溶处理温度为900~950℃,保温2~4h后水淬;(850~950)℃×4h~8h进行热挤压或热轧加工。本发明制备的弥散铜具有高强度、高导电性、高抗软化温度的特点,其制备方法具有内氧化时间短、成本低、效率高的优点。稀土铜合金材料是采用多种优质原材料经一系列复杂而严格的生产工艺加工而成,其各项性能指标完全符合甚至超过了ISO-5182标准,更大大优于日本的NBC铜合金材料,在同
行业
中处于领先地位。这种高性能稀土铜合金材料不仅具有高硬度、高强度、高耐磨性,还具有极佳的导电、导热性能及抗高温软化性能,同时还具有冲击时不产火花等一系列优点。广泛应用于:焊接、塑胶、机电、压铸、等
行业
。更多有关稀土铝合金的内容请查阅上海
有色
网
5052铝合金
2017-06-06 17:50:09
5052铝合金材料名称: 铝及铝合金挤压棒材(≤150mm,O态) 牌号:5052 标准:GB/T 3191-1998 ●化学成份: 铝 Al :余量 硅 Si :≤0.25 铜 Cu :≤0.10 镁 Mg:2.2~2.8 锌 Zn:≤0.10 锰 Mn:≤0.10 铬 Cr:0.15~0.35 铁 Fe: 0.000~ 0.400 注:单个:≤0.05;合计:≤0.15 ●力学性能: 抗拉强度 σb (MPa):175~245 条件屈服强度 σ0.2 (MPa):≥70 伸长率 δ5 (%):≥20 注 :棒材室温纵向力学性能5052铝合金与其他品种的铝合金的区别硬度:5052铝合金的抗拉强度达到了210-230之间延伸率:5052的延伸率达到了12-20%之间化学性能:5052铝合金的耐腐蚀性更好点5052铝合金有良好的抗蚀性 足够的强度 优良的工艺性能和焊接性能 是较多厂家较为喜欢 并且运用度较高的一种材料
铜铝合金
2017-06-06 17:50:02
AL-CU 该类合金中CU主要合金化元素,通常杂质元素为FE和SI,CU的提高合金室温强度和高温强度,同时也改善合金的机加工性能,但是铸造性能较差,特别是当CU的质量分数为4%-5%时合金的热裂倾向性最大,超过这个含量时热裂倾向降低。AL-CU合金耐腐性能较差,有晶间腐蚀倾向,但过时效状态可以提高腐蚀性能。简单的AL-CU 合金有ZL202HE 203合金。复杂的AL-CU合金主要可以分为两大类:高强度铸造铝合金和耐热铸造铝合金
军工铝合金6151
2019-03-04 11:11:26
6151合金是于上世纪30年代中诞生于美国,其原型合金6051年于1963年12月12日被美国铝业协会公司列为非常用合金,现在常用的该型合金还有5个:6151、6351、6351A、6451、6951合金。除6351A为法国合金外,其他的皆为美国合金。这类合金在军工武器方面有着广泛应用,用于制作曲柄箱锻件与轧制环、与机器锻件。但凡需求杰出的铸造功能、适当高的强度与好的抗蚀性的零部件皆可用此合金加工。在1954年曾经,在美国被称为51S,1954年被命为6151合金。
化学成分
6151型合金的化学成分见表1,在成分方面,6951合金的Si含量较低,仅适当于其他合金的35%左右,因而它的强度功能理应较低,但它含有0.15%Cu——0.40%Cu,而其他合金均不含Cu,故它们的力学功能简直无大不同。
力学功能
6151合金的较低力学功能见表2,试样标距50mm或4d(d为试样直径)。6151型合金无低温脆性,可用于加工在极低温度下作业的零部件,25℃时抗拉强度Rm=330N/mm2、屈从强度Rp0.2=298N/mm2,伸长率A=17%,温度降到200℃时,各项功能全面上升,别离到达395N/mm2、345N/mm2、20%。6151型合金的作业温度不宜超越120℃。
物理功能
20℃时6151型合金的密度2700kg/m3;液相线温度649℃,固相线温度588℃,-50℃——20℃的均匀线胀系数21.8μm/(m·k),20℃——100℃的均匀线胀系数23.0μm/(m·k),20℃——200℃的均匀线胀系数24.1μm/(m·k),20℃——300℃的均匀线胀系数25.0μm/(m·k)。
20℃时6151型合金的等体积电导率:O状况材料的54%IACS,T4状况的42%IACS,T6状况的45%IACS;20℃时的电阻率:O状况材料的32nΩ·m,T4状况的41nΩ·m,T6状况的38nΩ·m;20℃时的比热容895J/(kg·K);20℃的热导率:O状况材料的205W/(m·k),T4状况的163W/(m·k);T6状况的175W/(m·k)。
6154型合金在25℃含53gNaCl/L+3gH2O2/L溶液中,对0.1N甘电极的电位为-0.83V。
工艺特性
6151型合金的退火规范413℃/(2h——3h),以不大于27℃/h的降温速度随炉冷却至260℃,然后出炉空冷。固溶处理温度(510℃——525℃)/4min,室温水中淬火,大型锻件于65℃——100℃水中淬火。人工时效规范(165℃——175℃)/(8h——12h)。热加工温度260℃——480℃。
舰船铝合金特性
2019-02-28 11:46:07
在舰船与海洋设备中简直运用了一切的铝及铝合金材料,但用得最多的是:5052、5154、5454、5083、5086、5056、6063、6061、6N01、6082、6025A、1050、1200、3003、3203等变形铝合金和AC4A、AC4C、AC4CH、AC7A、AC8A等铸造铝合金。首要的铝材种类有:厚板、薄板、带材、箔材、管材、棒材、型材、全体揉捏、壁板、铸件、压铸件、模锻件等。材料的首要姿势有:O、H14、H112、H34、H32、H116、H117、H111、T1、T5、T6、T61、F等。跟着船体的大型化和铝材揉捏技能的前进,大型材的运用越来越广泛。 船体结构的型式可分为三种:横骨架式、纵骨架式和混合骨架式。铝合金小型渔船、内河船和大型船的首尾端结构常为横骨架式结构;油船和军舰常选用纵骨架式结构。船壳上运用的铝材多为板材、型材和宽幅全体揉捏壁板。我国在制作一艘长60.8m、1160t石油运输船时,船壳运用的铝材状况如下:纵向密封舱壁选用厚9mm的波纹板,横向舱壁用7mm厚的板,构成5个独立货舱;船舷用9mm的铝合金制作,甲板厚12mm,盖板厚15mm。船体构架由揉捏型材构成,尾柱是用Al-12%Si合金铸造的。铝材总用量92t。 近期,日本又新研制出铝合金船壳半铸造船,其船头、船尾和船身用约5.4mm的板材制作的,再以这三段焊成船壳。船宽2.4m,深0.58m,船壳质量约2t,总质量3.8t,与同型的FRP(玻璃钢,Fiberglass reinforced plastic)船比较,船壳质量减轻25%~30%。 现在,各种类型舰船的上层建筑和上部设备(桅杆、烟囱、舰桥、炮座、起吊设备等)都越来越倾向于运用铝合金材料,而上层结构中运用最多和最理想的铝材是大型宽幅揉捏壁板。不过,在1984年英国-阿根廷马岛战役中,英国的谢菲德马驱逐舰被对方的飞鱼击中,燃起通天大火,铝合金舰桥等被火烧软,随即垮塌,然后引起人们对用铝合金制作战舰上层建筑的考虑。 苏联在造长101.5m、排水量2960t、载员326人和速度30km/h的吉尔吉尔斯坦号远洋客轮时,用铝合金缔造上层结构,如驾驶舱、桅杆、烟囱、支索、天遮设备和水密门等。运用的铝材有5.6mm和8mm厚的5A05合金板,10mm和14mm厚的5A06合金板,5A06合金圆头扁材,以及一些铝合金铸件。上层结构由5A05合金铆钉铆于甲板上,并采取了防备触摸腐蚀办法。上层结构用了100t铝材,比钢制的轻50%,用了175t铝材,船的总质量减轻12%,定倾重心进步15cm,明显地改进了船的稳定性。 浙江巨科铝业有限公司公司的轧机为1850mm系的,因而板材的最大宽度为1700mm,所出产的板材别离于2012年6月及9月经过挪威船级社(DNV)和我国船级社(CCS)认证。
铸造铝合金
2019-01-02 09:52:54
可用金属铸造成形工艺直接获得零件的铝合金。 该类合金的合金元素含量一般多于相应的变形铝合金的含量。
据主要合金元素差异有四类铸造铝合金。
(1)铝硅系合金,也叫“硅铝明”或“矽铝明”。有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在10%-25%。有时添加0.2%-0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。有时添加适量的铜和镁,能提高合金的力学性能和耐热性。此类合金广泛用于制造活塞等部件。
(2)铝铜合金,含铜4.5%-5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。
(3)铝镁合金,密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。
(4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。在铸造条件下,该合金有淬火作用,即“自行淬火”。不经热处理就可使用,以变质热处理后,铸件有较高的强度。经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。
铝合金导线种类
2018-12-29 13:37:12
常用的铝合金导线品种有如下几种:
1、高强度铝合金导线
高强度铝合金导线是在铝中添加元素镁和硅,经过加工变形和热处理以后获得足够的强度、塑性和电气性能的铝合金产品,它是铝合金输电线中用量最大、使用得最广的铝合金品种。高强度铝合金导线的导电率为53%IACS,强度较普通铝导线提高近一倍,铝合金单线强度达300Mpa 以上。而普通铝单线的强度在150~170Mpa,铝合金导线在强度方面有较大的优势。
2、 耐热铝合金导线
耐热铝合金分为导电率分别为58%IACS 的耐热铝合金和还在铝中添加钇的高导电耐热铝合金。由于导线在150℃比在90℃下使用时,载流量可以提高61~69%,因而可用耐热铝合金作增容导线。高强度耐热铝合金线的高强度性能,可以提高在短路或过载情况下的动态稳定性;其耐热性能可以提高热稳定性。将要发展的超耐热铝合金和特高耐热铝合金,可进一步提高导线的载流能力、耐热性能,使其长期使用温度又进一步提高到180℃、210℃和230℃。
6061铝合金密度
2017-06-06 17:50:10
6061铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。 高强度铝合金指其抗拉强度大于480兆帕的铝合金,主要是压力加工铝合金中防锈铝合金类、硬铝合金类、超硬铝合金类、锻铝合金类、铝锂合金类。 铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、建筑用门窗等。 铝合金按加工方法可以分为形变铝合金和铸造铝合金。形变铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。 铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金,铝锌合金和铝稀士合金,其中铝硅合金又有简单铝硅合金(不能热处理强化,力学性能较低,铸造性能好),特殊铝硅合金(可热处理强化,力学性能较高,铸造性能良好)。 硅对硬质合金有腐蚀作用。虽然一般将超过12%Si的铝合金称为高硅铝合金,推荐使用金刚石刀具,但这不是绝对的,硅含量逐渐增多对刀具的破坏力也逐渐加大。因此有些厂商在硅含量超过8%时就推荐使用金刚石刀具。 硅含量在8%-12%之间的铝合金是一个过渡区间,既可以使用普通硬质合金,也可以使用金刚石刀具。但使用硬质合金应使用经PVD(物理镀层)方法、不含铝元素的、膜层厚度较小的刀具。因为PVD方法和小的膜层厚度使刀具保持较锋利的切削刃成为可能(否则为避免膜层在刃口处异常长大需要对刃口进行足够的钝化,切铝合金就会不够锋利),而膜层材料含铝可能使刀片膜层与工件材料发生亲合作用而破坏膜层与刀具基体的结合。因为目前的超硬镀层多为铝、氮、钛三者的化合物,可能会因硬质合金基体随膜层剥落时少量剥落造成崩刃。了解更多有关6061铝合金密度的信息,请关注上海
有色
网。