您所在的位置: 上海有色 > 有色金属产品库 > 铝合金增材制造

铝合金增材制造

抱歉!您想要的信息未找到。

铝合金增材制造百科

更多

铝及铝合金拉制棒材(二)

2019-01-15 09:49:29

2.2 组批  棒材应成批提交验收,每批应由同一合得奖号、状态和规格组成。  2.3 检验项目  每批产品出厂前应进行化学成分、外形尺寸及偏差、力学性能和外观质量的检验。直径大于或等于20mm的棒材应进行低倍组织,淬火制品应进行显微组织检验。  2.4 取样  棒材的取样位置和数量应符合表8的规定。  表8 棒材的取样位置及数量  检验项目 取样部位 每批取样数量 要求的章条号 试验方法的章条号  化学成分 铸造时(或棒材上) 每熔次1个 3.2 4.1  力学性能 挤压前端切取 每批2%,不少于2根 3.4 4.3  显微组织 热处理炉高温区 每炉(批)2根 3.6 4.5  低倍组织 挤压尾端切取 每批2%,不少于2根 3.5 4.4  外形尺寸 — 逐根 3.3 4.2  表面质量 — 逐根 3.7 4.6  注: 化学成分分析时,供方在铸造稳定时取样,复验或仲裁时可在棒材任意部位切取。  2.5 检验结果的判定  2.5.1 化学成分不合格时,判该批不合格。  2.5.2 外形尺寸或表面质量不合格时,判该根不合格。  2.5.3 室温拉伸力学性能不合格时,应从该批中(含原检验不合格者)另取双倍数量的试样进行复验,复验合格时判该批合格。若复验结果仍有不合格者,判该批不合格,但允许供方逐根检验或重新进行热处理,取样检验,合格者交货。  2.5.4 显微组织不合格时,判该批不合格。  2.5.5 在低倍组织中缩尾、成层、粗晶环不合格的棒材,允许承制方切取一段复验,直至合格为止,则该批中的其他棒材应按上述三种缺陷分布的较大长度切尾或逐根检验,合格者交货。当出现其他缺陷时,该批产品由供需双方协商处理。  3 标志、包装、运输、贮存  3.1 标志  3.1.1 在验收合格的棒材挤压前端应打上如下标志(或挂上如下标志的标牌):  供方技术监督部门的检印;  合得奖号;  供应状态;  产品批号。  产品的包装箱标志应符合GB/T3199的规定。  3.2 包装、运输、贮存  棒材不涂油,不垫纸包装。需方要求涂油或垫纸时,应在合同中注明。其他包装、运输、贮存的要求按GB/T3199规定。  3.3 质量证明书  每批棒材应附有产品质量证明书,其上注明:  供方名称;  产品名称;  合得奖号、供应状态及规格;  批号;  净重和件数;  各项分析项目的检验结果和技术监督部门的印记;  本标准编号;  包装日期(或出厂日期)。  4 合同内容  订购本标准所列产品的合同(或订货单)内应包括下列内容:  产品名称;  合得奖号;  供应状态;  规格;  外形尺寸及允许偏差(若未注明则按普通级供货);  重量(或根数);  本标准编号;  选择项目(如粗晶环的要求,成层的要求。若不注明时,按本标准执行。)

铝及铝合金拉制棒材(一)

2019-01-15 09:49:29

1 范围 本标准规定了一般工业用铝及铝合金拉制棒材的要求、试验方法、检验规则、标志、包装、运输、贮存及合同内容等。   本标准适用于铝及铝合金拉制圆棒、正方形棒(方棒)及矩形棒(扁棒)。   2 引用文件   下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的较新版本。凡是不注日期的引用文件,其较新版本适用于本标准。   GB/T 228 金属材料 室温拉伸试验方法   GB/T 3190 变形铝及铝合金化学成分   GB/T 3199 铝及铝合金加工产品包装、标志、运输、贮存   GB/T 3246(所有部分) 变形铝及铝合金制品组织检验方法   GB/T 6395 金属高温拉伸持久试验分析方法   GB/T 6987(所有部分) 铝及铝合金化学分析方法   GB/T 16865 变形铝、镁及其合金加工制品拉伸试验用试样   GB/T 17432 变形铝及铝合金化学成分分析取样方法   3 要求   3.1 产品分类   3.1.1 牌号、状态及规格   棒材的合得奖号、供应状态及规格应符合表1的规定。   表1 合得奖号、状态、规格   合 金 牌 号 供 应 状 态 规 格/mm   圆 棒 直 径 方 棒 边 长 扁 棒   厚度 宽度   1060、1100、3A21、5A02 0、F、H18 5~100 5~50 5~40 5~60   2A11、2A12、2024 0、F、T4、T351   2014 0、F、T4、T6、T351、T651   3003、5052 0、F、H14、H18   7A04、7A09、7075 0、F、T6、T651   6061、6A02 F、T6   注:若需要其他合金或状态的棒材,可由供需双方协商   3.1.2 标记示例   3.1.2.1 用2024合金制造的、供应状态为T351、直径为30mm,定尺长度为3000mm的高精级棒材,标记为:   棒 2024 T351高精级 φ30×   3.1.2.2 用3A21合金制造的、供应状态为0、厚度为20 mm,宽度为40mm的普通级矩形棒材,标记为:   扁棒 3A21-O 20×   3.2 化学成分   棒材的化学成分应符合GB/T3190的规定。   3.3 外形尺寸及允许偏差   3.3.1 截面尺寸及允许偏差   3.3.1.1 圆棒直径及其允许偏差应符合表2的规定。   表2 圆棒直径及其允许偏差 单位为毫米   直 径 允许偏差(±)   普通级 高精级   5~12.5 0.06 0.04   >12.5~25.0 0.08 0.05   >25.0~38.0 0.10 0.06   >38.0~50.0 0.15 0.10   >50.0~75.0 0.23 0.15   >75.0~85.0 0.30 0.20   >85.0~100 0.45 0.30   注:当尺寸允许偏差只规定( )或(-)时,其值为上述数值的2倍。   3.3.1.2 扁棒、方棒规定宽度、厚度或边长及其允许偏差应符合表3的要求。   表3 扁棒、方棒的宽度、厚度或边长及其允许偏差 单位为毫米   定的宽度、厚度或边长 允许偏差(±)   普通级 高精级   5~12.5 0.08 0.05   >12.5~25.0 0.10 0.06   >25.0~38.0 0.12 0.08   >38.0~50.0 0.20 0.13   >50.0~60 0.30 0.20   注:当尺寸允许偏差只规定( )或(-)时,其值为上述数值的2倍。   3.3.1.3 方棒或扁棒的圆角半径   方棒或扁棒的圆角半径应符合表4的规定。   表4 方棒、扁棒的圆角半径 单位为毫米   边长或宽度 圆角半径, 不大于   ≤30 2   >30~60 5   3.3.2 弯曲度   3.3.2.1 棒材的弯曲度是将棒材放在平台上,在自重作用下仍存在的弯曲。   3.3.2.2 圆棒纵向弯曲,对于直径不大于10mm的棒材,允许有用手轻压即可消除的弯曲;其他规格圆棒:每米长度上不大于3mm,全长累计。根据需方要求,高精级弯曲度不大于2mm/m,全长累计,但必须在合同中注明。   3.3.2.3 方棒或扁棒的纵向弯曲应符合表5的规定。需要高精级时应在合同中注明,未注明时按普通级执行.   表5 方棒、扁棒的纵向弯曲度 单位为毫米   棒或扁棒的厚度 弯曲度要求 不大于   普通级 高精级   每300㎜上 全长L米上 每300㎜上 全长L米上   5~10 用手轻压,弯曲消除。   >10~50 1 2×L 0.3 1×L   3.3.2.4 方棒或扁棒允许有个别的轻微波浪存在,波浪度的幅度不超过1mm。   3.3.3 切斜度   棒材端面应切平整,切斜度不大于3°。   3.3.4 扭拧度   方棒或扁棒的任何部分绕纵轴的扭拧度,普通级每米长度上不允许超过8°,全长累计;高精级每米长度上不允许超过2°,全长不允许超过7°。   3.3.5 方棒或扁棒的平面间隙   3.3.5.1 方棒或扁棒的平面间隙是指沿方棒的边长或扁棒的宽度方向测得的棒材底面与平台或直尺之间的间隙值。   3.3.5.2 方棒或扁棒的平面间隙应符合表6的规定。需要高精级时应在合同中注明。   表6 方棒、扁棒的平面间隙 单位为毫米   棒或扁棒的宽度 B 平 面 间 隙   普 通 级 高 精 级   ≤25 ≤0.20 ≤0.20   >25~60 ≤0.8%×B ≤0.4%×B   3.3.6 棒材的长度及允许偏差   棒材的长度可按不定尺、定尺或倍尺供应,其长度范围为1~6m。对倍尺供应的棒材应加入锯切余量,每个锯口按5mm计算。其纵向长度允许偏差不应超过15㎜。   3.4 力学性能   一般工业用铝及铝合金棒材的室温纵向力学性能应符合表7的规定。   表7 室温纵向力学性能   得奖号 状态 直径或厚度 (mm) 抗拉强度 Rm (N/mm2) 规定非比例延伸强度 Rp0.2 (N/mm2) 断后伸长率 A %   不 小 于   1060 O ≤100 55 15 22   H18 ≤10 110 90 -   1100 O ≤100 75~105 20 22   H18 ≤10 150 - -   2A11 O ≤100 ≤245 - 10   T4、T351 ≤100 370 215 12   2A12 O ≤100 ≤245 - 10   T4、T351 ≤22 390 255 12   >22~100 420 275 10   2014 O ≤100 ≤245 - 12   T4、T351 ≤100 380 220 12   T6、T651 ≤100 445 375 8   2024 O ≤100 ≤245 - 12   T4、T351 ≤12.5 425 310 10   >12.5~100 425 290 9   3A21 O ≤100 ≤165 - 20   H18 ≤10 180 - -   3003 O ≤100 95~135 35 25   H14 ≤10 135 - -   H18 ≤10 180 - -   5A02 O ≤100 ≤225 - 10   H18 ≤10 265 - -   5052 O ≤100 175~245 70 20   H14 ≤30 235 180 5   H18 ≤10 265 220 2   6A02 T6 ≤100 295 - 12   6061 T6 ≤100 290 240 9   7A04 7A09 O 所有 ≤280 - 10   T6、T651 ≤22 490 370 7   >22~100 530 400 6   7075 O ≤100 ≤280 - 10   T6、T651 ≤100 530 455 6   所有 F ≤100 -   注:表中未列的合金或规格的力学性能附结果,也可由供需双方协商   3.5 低倍组织   3.5.1 棒材的低倍试片上,不允许有偏析聚集、非金属夹渣、裂纹及缩尾。   3.5.2 成层深度不允许超过棒材负偏差之半。经供需双方协商,可供应无成层的棒材。   3.5.3 直径小于20mm的棒材不检查低倍组织。   3.5.4 低倍试片上粗晶环深度:合同中未注明时,粗晶环不检验。合同中注明粗晶环检验时,2A12、2A11、6A02、7A04、7A09、7075的粗晶环深度不大于8mm。对粗晶环有更严要求时,双方可协商解决。   如果粗晶环深度超出规定时,可在粗晶区取样作力学性能,如力学性能符合表5的规定时,则该粗晶区允许存在。   3.6 显微组织   棒材的显微组织不允许有过烧。   3.7 表面质量   3.7.1 棒材表面不允许有腐蚀、裂纹、起皮、气泡及粗擦伤。   3.7.2 棒材表面允许有深度不超过直径负偏差的压坑、擦伤、氧化色、不粗糙的黑白斑及由于矫直产生的螺旋亮条等其他缺陷。   3.7.3 棒材表面缺陷允许进行检验性打磨,但应保证棒材较小直径或厚度。   4 试验方法   4.1 化学成分分析方法   棒材的化学成分分析取样按GB/T17432规定,化学成分仲裁分析方法采用GB/T6987的规定。   4.2 外形尺寸测量方法   棒材直径或宽度、厚度用精度不低于0.01mm的量具测量,长度用米尺测量。   4.3 力学性能试验方法   棒材的室温拉伸力学性能试样应符合GB/T16865的规定。其试验方法应符合GB/T228的规定。   1.1 低倍组织检验方法   棒材的低倍组织检验方法应符合GB/T3246.2规定。   1.2 显微组织检验方法   棒材的显微组织检验方法应符合GB/T3246.1规定。   1.3 表面质量的检验   棒材的表面质量用目视检验。当深度难以确定时,可采用打磨法进行检查。   2 检验规则   2.1 检验和验收   2.1.1 棒材应由供方技术监督部门进行检验,保证产品质量符合本标准的规定,并填写质量证明书。   2.1.2 需 方应对收到的产品按本标准的规定进行复验。复验结果与本标准及订货合同的规定不符时,应以书面形式向供方提出,由供需双方协商解决。属于外观质量及尺寸偏 差的异议,应在收到产品之日起一个月内提出,属于其他性能的异议,应在收到产品之日起三个月内提出。如需仲裁,仲裁取样应由供需双方共同进行。

铜合金材

2017-06-06 17:50:05

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; NBC铜合金材料属析出性硬化特种合金,通过严格铸造工艺和(Cr,zr,Ti,Be,Ni)成份控制、热处理工艺以及锻压变形量。其主要性能指标为:硬度(HRB)&ge;100,导电率(MS/M)&ge;30,软化温度(℃)&ge;650。该厂生产的NBC铜合金材料属国家级新产品,被认定为一九九九年度国家级新产品,具有良好的导电性、导热性、高强度、高硬度、抗熔性、高温热稳定性、无磁性以及撞击时不产生火花等特点。将其制成电极,工作端不易变形,修整次数少,使用寿命高,节约用电,将其制成气焊和气割的烧嘴,高温热稳定性良好,工作稳定,寿命长;将其制成冶金工业中连铸生产线上的结晶器。性能可靠,使用寿命长;将其制成塑胶和玻璃成型模具,可提高生产效率,同时使制成品表面光洁美观;将其制成防火、防爆等安全阀门和安全工具,确保安全。NBC铜合金材料广泛应用于航空航天、汽车、摩托车、自行车、造船、冶金、石油、化工、不锈钢型材、铝型材、制罐、电风扇、空调机、电冰箱、热水器、电子柜和餐具等 行业 。它是最新一代电阴焊电极材料和铜合金材料,可取代昂贵的进口产品,年节约外汇百万美元,社会效益和经济效益非常显著。投资者要求:熟悉铜合金领域,并投资100万之内用于扩大生产规模。&nbsp;&nbsp;&nbsp;&nbsp; 铜合金线材的品种、主要用途和发展趋势。铜合金线材按照合金牌号分为黄铜线、青铜线和白铜线。&nbsp;&nbsp;&nbsp; &nbsp;近年来,铜合金线的合金品种增加很快,青铜、白铜和特殊合金线的利用空间远高于普通的黄铜线,已成为线材发展的热点。铜合金线的主要品种有条帽铅黄铜线、接插件用青铜线、圆珠笔芯线、镜架线、保护气体焊丝、铜磷焊丝和铜银焊丝等,广泛应用于IT 产业 、汽车、机械、电气、服装、装饰、五金、航空和航天等诸多领域。目前世界上铜合金线材 市场 需求的增长速度,高于板带、管棒等铜材品种。铜合金线材占铜线材的比例为5% ~6% ,占铜加工材的比例为2% ~3%。根据有关统计资料, 目前世界上铜合金线材的总体规模大约为50万吨左右,主要生产国及出口国为美国、日本和德国&uml; 。2000年,美国、日本和德国合金线材的生 产量 分别为12.85万吨、4.7万吨和3.96万吨; 出口量分别为4.46万吨、1.65万吨和1.41万吨。&nbsp; 我国铜合金线的生产企业遍布全国,各企业技术装备水平参差不齐。主要生产企业有广州金一佰有限公司、上海棒线总厂、上海斯米克公司、宁波 有色 合金有限公司,宁波金田有限公司、南京合金线材厂等厂家。2001年,上述企业的铜合金线 产量 约达5万吨。1997年~2001年的五年间,我国铜合金线材的 产量 分别为3.40万吨、4.56万吨、5.9万吨、7,2万吨和8.15万吨,年平均增幅达20%以上 。&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 铜合金线材的应用铜合金线材的主要应用领域为拉链制造业、气门芯、条帽线制造业、焊料制造业、眼镜框制造业、接插件制造业、饰件、按纽、钟表制造业及汽车制造业等。这几个 行业 对铜合金线的需求量为7.1万吨,占铜合金线需求量的81% ,其中需求量最大的为拉链制造业,年需求铜合金线约2万吨以上,其次为气门芯、条帽线制造业,年需求量约为1.5万吨 。黄铜线材具有高强、耐蚀、易切削和低成本等特点,主要应用于制造各种建筑配件、制锁、接插件、端子、镜架、拉链、条帽和弹簧等领域,其发展方向是充分利用合金的各种边角余料,在黄铜线中加入铬元素,生产低成本、易切削、高性能的黄铜线和型线。&nbsp; 青铜线材主要应用于制造弹性元件、高耐磨的接插件和端子、仪表游丝、张丝、养护焊接耐磨和耐蚀件、 金属 制网等领域。近年来,由于信息 产业 的迅猛发展,锡青铜线的需求量迅速增加,其发展方向是提高线材强度,如将锡的含量提高到9% ,即可替代铍青铜、白青铜。青铜线材的另一大发展方向是作为高强度工件的氩弧焊接用焊丝, 其中QAL7、QAL9.2、QAL9.4、QAL10.4.4、QAL10.等合金焊丝的 市场 需求量近年来骤增。&nbsp;&nbsp;&nbsp;&nbsp; 锌白铜具有耐蚀性能好、表面光洁、美观、强度中等以上、弹性好、易焊等优点,可作为结构体、紧固件、弹性元件、接插件等,广泛应用于眼镜配件、服装辅材、精密仪器、仪表、医疗器械和通讯等 行业 。随着我国经济的发展,其用量正在逐年增加。根据铜合金线应用领域的发展趋势分析,可以看出,铜合金线在汽车制造业、接插件制造业、电极丝制造业、高能电池制造业、仪器仪表制造业等 行业 中,具有广阔的发展前景。其合金线需求量的增长速度均超过10%,高于合金线需求量的平均增长速度。首先,电子通讯和IT 产业 在未来几年内仍将呈高速发展态势。专家预计,计算机及其网络将会呈现几何级数增长,因此,接插件用合金线材需求量将会大幅增加,目前的年需求量大约在5000吨左右,未来将以l8%的增速增长;其次,随着汽车工业的发展,汽车工业用铜合金的需求量也将具有较高的增长速度,目前年需求量为3000吨左右,未来将以20% 左右的增速增长;第三,铜银合金以其高导电率、耐磨性、耐高温和耐腐蚀等性能,在制作绕线端子和焊丝方面大有用武之地,焊丝焊料用合金线年需求量约为1万吨以上,未来将以8%的增速增长;第四,自行车条帽、气门芯、笔芯、电池、拉链等日常生活低值易耗品,虽然保持在4% ~6% 的增幅,但需求量大, 市场 相对稳定;第五,高能电池制造业、电极丝制造业的合金线需求量, 目前不是太大,但有较高的发展空间,对合金线需求量的增速均在l0% 以上;第六,制锁业、弹簧、垫圈制造业作为合金线材应用的传统 行业 之一,需求将稳中有升。铜合金线材的主要生产工艺黄铜线材的生产工艺在生产上应用的黄铜线主要有扁线和圆线,中小企业主要生产方法有:水平连铸.多模拉伸法。主要生产工艺如下:水平连铸一连拉连刨一低氧退火一稀酸洗一多模拉伸一I I光亮退火一检验、包装、入库加工性能简单黄铜塑性好,可冷热压力加工,其室温伸长率随着zn含量的增加而增加,至30% 一32%zn时,达到极大值。所有黄铜在200℃ 一700℃之间的某一温度范围内,均出现脆性区。黄铜存在脆性区,其原因很多,其中之一,是受微量杂质的影响。一般黄铜的冷态加工性能和黄铜的成分、组织有关。a黄铜(尤其是Cu:67% ~68%)具有很高的室温塑性,两次退火之间的加工率可达~70%或~90% (线材)。二相黄铜易于加工硬化,且随着二相的增加,塑性剧烈下降。冷加工时要严格控制加工率,防止材料表面开裂。在工业生产中a黄铜两次退火之间的加工率一般控制在~65% ;二相黄铜一般控制在~55% ;为进一步善产品质量,一般采取多道次低加工率法(多模拉伸法)生产,道次延伸率控制在~1.15。生产中杂质的影响几种杂质对黄铜生产中的影响如下 :铁:作为杂质存在,对力学性能没有显著影响。铁在黄铜中的溶解度极小,它常以富铁相杂质点分布在基体中,具有细化晶粒的作用。做抗磁用黄铜零件时,Fe&lt;0.03%。铅、铋:铅在简单黄铜中是有害杂质,它以颗粒状分布在晶界或易熔共晶上,当a黄铜的含铅量&gt;0.03% 时,使黄铜在热加工时出现热脆性,但对冷加工性能无明显影响,铋亦一样。锑:随着温度的降低,锑在a黄铜中的溶解度急剧减少,析出脆性化合物cu sb,呈网状,严重损害黄铜的冷加工性能。磷:很少固溶于cu.zn合金,在a黄铜中磷若超过0.05% ~0.06% ,就会出现脆性相Cu P,降低黄铜塑性。砷:室温时砷在黄铜中的溶解度&lt;0.1% ,过量则产生脆性化合物cu As,分布在晶界上,降低黄铜塑性。含0.02% ~0.05%As,可防止黄铜脱锌,提高耐蚀性。青铜线材的工艺中小企业生产青铜线材的主要方法为:水平连铸/上引一冷轧 多模拉伸法:水平连铸/上引一冷轧、压扁一多模拉伸法等。生产工艺如下:水平连铸/上引一冷轧一低氧退火一拉刨一低氧退火一稀酸洗一多模拉仲一检验、包装、入库。&nbsp; 加工性能<br /

铅合金材

2017-06-06 17:50:00

铅合金材lead alloys ,是以铅为基加入其他元素组成的合金。按照性能和用途,铅合金材可分为耐蚀合金、电池合金、焊料合金、印刷合金、轴承合金和模具合金等。铅合金材主要用于化工防蚀、射线防护,制作电池板和电缆套。&nbsp;&nbsp;&nbsp; 铅合金材的变形抗力小,铸锭不需加热即可用轧制、挤压等工艺制成板材、带材、管材、棒材和线材,且不需中间退火处理。铅合金材的抗拉强度为3~7 kgf/mm2,比大多数其他金属合金低得多。锑是用于强化基体的重要元素之一,仅部分固溶于铅,既可用于固溶强化,又能用于时效强化;但如果含量过高,会使铅合金材的韧性和耐蚀性变坏。从综合性能考虑,铅合金材用于制作化工设备、管道等耐蚀构件时,以含6%左右为宜;用于制作连接构件时,以含锑8%~10%为好。铅锑合金加入少量的铜、砷、银、钙、碲等,可增加强度,称为硬铅。由于铅合金的剪切、蠕变强度低,在一定的载荷和滚动切变作用下,铅合金材易于变形并减薄成为箔状;且铅合金的自润性、磨合性和减震性好,噪声小,因而是良好的轴承合金。铅基轴承合金和锡基轴承合金统称为巴氏合金,可制作高载荷的机车轴承。含砷高达2.5%~3%的铅合金,适于制作高载荷、高转速、抗温升的重型机器轴承。&nbsp;&nbsp;&nbsp; 铅合金材具有不易被X和&gamma;射线穿透的特性,可作放射性工作的防护材料。&nbsp;&nbsp;&nbsp; 铅合金材的烟尘有毒,熔铸时要有良好的防护措施。&nbsp;&nbsp;&nbsp; 铅广泛应用于各种工业,大量用来制造蓄电池;在制酸工业和冶金工业上用铅板、铅管作衬里保护设备;电气工业中作电缆包皮和熔断保险丝。含锡、锑的铅合金用作印刷活字,铅锡合金用于制造易熔铅焊条,铅板和镀铅锡薄钢板用于建筑工业。铅对X射线和&gamma;射线有良好的吸收性,广泛用作X光机和原子能装置的保护材料。汽油内加入四乙基铅可提高其辛烷值。用作颜料的铅化合物有铅白、铅丹、铅黄、密陀僧等。盐基性硫酸铅、磷酸铅和硬脂酸铅用作聚氯乙烯的稳定剂。还用在橡胶、玻璃、陶瓷工业,醋酸铅用于医药部门。&nbsp;&nbsp;&nbsp;&nbsp; 更多关于铅合金材的资讯,请登录上海有色网查询。&nbsp;&nbsp;&nbsp;

铜合金带材

2017-06-06 17:50:05

铜合金带材&nbsp;&nbsp;&nbsp; 集成电路(IC)是现代电子信息技术的核心,是现代科学技术发展的重要标志之一。集成电路的基础材料包括芯片、引线框架和封装材料,其中引线框架起到支撑芯片、连接外部电路和散热的作用。随着集成电路向大规模、超大规模以及线路高集成化、高密度化方向的迅速发展,引线框架也向短、小、轻、薄方向发展,这就要求引线框架材料具有高强度、高导电导热性以及良好的焊接性、耐蚀性、加工成型性、塑封性能、光刻性、抗氧化性等一系列综合性能。铜合金以其优异的综合性能而成为重要的引线框架材料,目前,铜合金引线框架材料已经占到总量的80%左右。铜合金引线框架材料主要是采用复杂合金化原则,通过向铜中加入少量、多元的合金元素,在小幅度降低导电率的前提下,提高合金的强度和综合性能。添加元素在铜中的固溶度随着温度降低有很大变化,利用固溶强化和沉淀强化达到高强度高导电的目的。目前,国内外开发的引线框架用铜合金已有百余种,按材料的性能基本可分为高导电型、中导电中强度型、低导电中强度型和高强度型;按合金的成分分类,主要有铜-铁-磷系、铜-铬-锆系、铜-镍-硅系和铜-银系等。虽然铜合金引线框架材料种类繁多,但是目前大量使用的只有KFC、C1220和Cl94三种。其中Cu-Fe-P系的KFC(Cu-0.1Fe-0.03P)是最具代表性的高导电材料之一,其导电率&ge;85%IACS,强度约400MPa,硬度HV120左右[1,2]。&nbsp;&nbsp;&nbsp;&nbsp; 铜合金引线框架材料的生产水平代表着一个铜加工企业技术水平的高低。目前,国内主要有四家企业生产引线框架用铜合金带材,但普遍存在生产规模小、品种规格少、质量精度差等问题,与国外同类产品相比,还存有较大差距。国产框架材料大都用于低端产品,而用于高端产品的引线框架材料几乎完全依靠进口。不仅使国家每年花费大量外汇,而且也制约了我国电子信息 产业 ,尤其是集成电路制造业的生产和发展。需要从各个工序着手解决问题,本文仅从熔铸工艺、轧制及热处理工艺等方面,对广泛使用的高电导材料KFC的组织、性能进行了研究,并将两家国内公司生产的KFC样品与进口样品进行了对比分析,为进一步提高我国引线框架铜带生产的技术水平,缩小与国际先进水平的差距,促进引线框架材料的国产化提供参考。&nbsp;&nbsp;&nbsp; 一种铜及铜合金带材的制造方法,其特征在于:第一步,采用连续挤压的方法将铜及铜合金材料连续挤压成铜及铜合金坯;第二步,采用轧制的方法将所述的铜及铜合金坯轧制成所需要规格的铜及铜合金带材。进一步,经连续挤压的坯料截面可以是矩形坯或者不封闭的曲线型坯。采用该方法可以制造出超长的铜及铜合金带材;且带材的品质高、质量好;设备投资少;工序短、效率高;产品成材率高。&nbsp;

丛林集团铝合金船舶制造的未来

2018-12-27 14:45:30

虽然当前还不能完全取代钢船与玻璃钢船,但铝合金船舶具有十分强劲的发展潜力,无论是在材料寿命,还是节能环保方面,都具有很强优势。  长期以来,铝合金船舶市场不温不火。国家海洋经济战略的实施、节能减排的需要以及涉海活动的增加正在改变这种情况,这也给低迷的船舶制造行业带来了巨大的前景。  船舶的节能之路  目前,材质和工艺更为环保的铝合金船舶已然成为制造的趋势。铝合金船舶是继钢质船舶与玻璃钢船舶后第三种材质的船舶,已在市场上得到广泛运用且可以被大力发展。虽然当前还不能完全取代钢船与玻璃钢船,但铝合金船舶无论是在材料寿命,还是节能环保方面都具有十分强劲的发展潜力。  随着国内外造船业突飞猛进的发展,船舶的环保性与轻量化越来越被重视。这一趋势使得造船商将目光转向铝合金船舶。与低碳钢相比,铝合金可以使船结构减轻50%。船身重量减轻,航行速度提高,油耗降低,那么船舶排放的二氧化碳量就相应减少,污染也随之减少。而玻璃钢船舶在制造及拆解过程中会产生大量有害物质,并且传统玻璃钢材料可修复性差,不易被降解,对环境污染很大。  事实上,早在1891年瑞士就首次建造铝汽艇,但由于当时铝合金品种少,抗腐蚀性能也不尽如人意,从而限制了在造船方面的应用。直到上世纪20年代末,铝合金在造船上的应用又重新发展起来。  而我国铝合金船艇制造业发展速度比较缓慢,直到技术突破之后,才在铝合金船艇方面有了飞跃发展。长期以来,高污染、高耗能是铝这个传统产业留给人们的固有印象,但丛林用行动证明:铝是可以变成绿色的。丛林集团抓住国家宣传的“绿色铝”,扩大铝应用、发展铝精深加工的政策机遇,积极转方式调结构,趟出了一条破解铝产能过剩的“丛林路径”。  促进船舶工业转型升级  近年来,丛林依托强大的铝合金型材研发、生产及深加工优势,不断加快技术创新,延长产业链,调整产品结构,逐渐走出一条促进产业转型升级、加快转变经济发展方式之路。  丛林凯瓦引进芬兰技术合作研发的铝合金特种船舶,促进了我国船舶工业的结构调整和转型升级。  由于铝的低密度、高强度、高刚性和耐腐性,使用铝建造的船舶与使用钢材或其它合成材料建造的船舶相比重量减轻15%至20%。铝合金的高韧性、抗腐蚀性以及可焊性为建造对重量要求严格的船型提供了很好的选择,再加上铝的加工成本较低及铝合金突出的物理特性,使得用铝合金制造船舶十分经济。从船舶设计者角度来看,使用铝合金制造的船舶可以达到更高的速度以及更长的使用寿命。铝合金的这些优点使其在船舶的应用上发展得很快。  铝合金船舶建造是丛林集团延伸集团公司铝产业链、形成高端铝合金产品的重要项目之一。通过全套引进芬兰知名船企的产品及生产技术,丛林集团拥有国际一流的生产加工设备,加之集团雄厚的铝合金型材挤压和深加工实力,已研发制造出安全、高效、环保、节能的铝合金特种船舶,实现了产品的国际化、市场化、高端化。  目前,丛林凯瓦正向打造国内领先的铝合金船舶研发、制造强企不断迈进,主要生产各种规格的引航船、工作船、公务船、巡逻船、钓鱼船等铝合金船艇。船艇型号齐全、功能多样、高速便捷、安全舒适、外形美观,抗冲击、耐腐蚀、自重轻,是传统的木制、钢制、玻璃钢船艇的更新换代产品。  做同行业的领军者  在铝合金船舶家族的众多成员中,公务艇被认为具有广阔的发展前景。中国水域资源非常丰富,拥有1.8万多公里大陆海岸线,500平方米以上的岛屿有6500多个,岛屿海岸线长1.4万多公里。近年来,周边国家加紧对海洋资源和海洋权益的争夺,给我国海洋管理和执法带来巨大挑战。  据悉,目前国内缺乏船长20至80米浅吃水、航速高的大型铝合金高速执法公务船艇,而这种公务船艇占所有海上执法公务船艇的25%至30%。据此测算,未来铝合金高速执法船市场在200亿元左右。  在制造公务艇方面,丛林凯瓦走在了行业前列。11月4日,丛林凯瓦与上海国际港务(集团)股份有限公司在上海举行签约仪式,双方正式签订铝合金交通艇设计建造合同。“丛林凯瓦凭借最先进的技术、最好的服务成功中标,我认为未来的结果值得大家期待,更会让我们满意。”上港集团副总裁方怀瑾表示,希望通过双方的努力,如期诞生国内首艘喷泵式铝合金引航艇,在公务艇领域争立新标杆。

应用浸渍技术制造铝合金复合材料

2019-03-01 14:09:46

在轿车行业中运用铸造铝合金的零部件许多,比如发动机缸体、活塞、汽缸盖,冷却体系中的水泵、接头,焚烧体系中的汽油泵、喷嘴、变速体系中的变速箱等等。对此类铝合金铸件来说,假如发生油水走漏,会严重影响整车的功能。为此选用浸渍技能对其进行处理是较有用的,且能节约资源、节约能源,一起也有利于环境保护。    众所周知,金属材料零部件在铸造过程中,会因其凝结缩短而发生缩短孔,这就不可防止地由、氮气等气体引起气孔缺点。别的,不必铸造法而用粉末冶金法制作的金属烧结体和陶瓷烧结体,自身就是多孔体。为了进步它们的机械功能,就必须消除和削减其内部的孔隙缺点。因此,研讨开发浸渍技能的意图就在于此。    现在,据有关资料记载,浸渍技能主要有以下三种办法∶    内部加压浸渍法;    浸渍前抽真空一加压法;    浸渍后抽真空一加压法。    被浸渍的物体内部若有孔隙,就必须用浸渍液将其间的空气置换出来。而处于真空或减压状态下,浸渍液很简单置换其间的空气。另一方面,即便在浸渍液与被浸渍物之间的湿润性差、浸渍速度变快的情况下,能够经过升压泵有用地发生高液压,进而在真空加压下,经过加热被浸渍物,添加浸渍液流动性,这样就能够在温度散布均匀的情况下进行优质的浸渍处理。    加压浸渍法有许多长处,但进行加压一真空一高温处理时,技能上也有必定的难度,一起关于压力容器的运用在法律上也有许多约束。图1所示的高温真空加压浸渍设备克服了上述问题。如前工序1(加热+加压处理)中,在加热的一起进行加压,槽内的气体分子数会添加,使对流传导功率进步,从而使浸渍液与被浸渍物的温度散布均匀。在前工序2(真空处理)中,能够扫除被浸渍物中的空气、水分、有机气体等不纯物质。经过真空处理后,进步了浸渍液的浸透性。    在浸渍工序1(浸渍处理)中,例如用升降机械将被浸渍物放到浸渍液中,使浸渍液浸透到被浸渍物内部。而浸渍工序2(加压浸渍处理)能够使浸渍液浸透到被浸渍物内部,若运用高黏性的浸渍液,就连真空处理不充沛也能发生充沛的浸透作用。一起,因为加压也可抑制浸渍时发生气泡。经过加工工序(冷却+排气处理)将被浸渍物提起进行冷却,使浸渍液硬化。随后,减压使被浸渍物回到大气中,而此刻,被硬化的浸渍液中气泡也会胀大。    为了使浸渍技能运用于轿车发动机活塞的制作中,在浸渍过程中尽量把压力控制在必定范围内,以防止运用高压容器,而且对重力铸造设备进行改善。一起,还开发了0.8兆帕以下的低压浸渍法。    2 低温浸渍法制作铝合金复合材料    作为轿车发动机活塞等零部件用铝合金复合材料,分量必需要轻,且要耐高温。本来此类零部件是用高压铸造法和粉末冶金法出产的。可是,这两种办法难以出产大型且形状杂乱的零部件。为了防止这些缺点,咱们选用了金属纤维作强化材料的金属复合材料,并用低压浸渍法来出产大型且形状杂乱的金属复合材料零部件。经过实验验证了低压浸渍法适用于制作铝合金复合材料,且可在有凝结缩短缺点和流动性差的情况下取得无孔隙的复合材料。    选用ASTM标准中的A3360(Al,13%Si,1.5%Ni,1.3%Cu,1.3%Mg)作为基体合金。选定日本绷簧株式会社出产的铁铬硅(Fe,20%Cr,5%Si)纤维作为强化材料,这种金属纤维与铝合金液的湿润性好,一起它是由熔液萃取法出产的微细晶粒,因此具有较高的强度特性。具体来说,它在室温及673K下,其抗拉强度别离到达950兆帕和650兆帕,其延伸率别离为15%和30%。

铝及铝合金装饰板及其制造方法

2019-03-11 09:56:47

为处理不锈钢镜面板本钱高、成型上色难、出产功率低一级问题,本文介绍一种以铝及铝合金为原料的新式金属材料装饰板及其制作办法。$铝及铝合金装饰板是选用铝或铝合金板材,通过抛光、氧化、上色等工艺制成的。适用于室内、外装饰、灯饰、广告、标牌、工艺美术、用具壳体等多用处的金属装饰板。$铝及铝合金装饰板,表面光泽质丽、重量轻、防水、防火性好、本钱低、用处广、经济效益与社会效益明显。     铝及铝合金装饰板及其制作办法,其特征是:   (1)把表面处理洁净的抱负规格的铝及铝合金板,在特制的作业台上抛制出抱负光洁度或斑纹、图画;   (2)将抛光、洗净、天然晒干的板材放于以次4%、铬干3-5%、1%的水熔液中氧化2-3分钟。假如需求五颜六色板面则在氧化溶液中加上铝红、或铝绿、铝金黄、铝紫、铝黑等颜色,就会取得赤色、或绿色、金黄色、紫色、黑色等,各种抱负颜色的亮光的装饰板。   (3)把氧化上色的板材放在80℃以上的热水中进行定色、晒干;   (4)板面铺上保护膜。

铝合金用于紧固件制造的优势

2019-01-14 14:52:44

铝制紧固件的重量是其同类钢制紧固件重量的1/3。这种经常被使用的合金的强度特性出奇的好。实际上,在强-质比上,铝制紧固件比其它任何一种工贸易用材料制成的紧固件都要高。铝是不可磁化的。铝的热电传导性很好,约为同体积下铜传导性能的2/3。铝有很好的加工特性,易于冷成型和热锻。  在正常环境下,铝有足够的抗腐蚀能力。而且当预计的暴露环境很恶劣时,它的抗腐蚀能力可以通过阳极处理得到极大的改善。阳极处理是一种在金属表面形成氧化膜的电加工工艺。阳极处理不仅增强了抗腐蚀的能力,同时还增强了对磨损和划伤的保护能力。阳极镀层出于装饰和辨认的目的有着很多种颜色。在大气腐蚀中,铝在表面形成一层淡灰色的氧化膜。这些腐蚀产物不会污染铝的表面,或者蔓延到毗邻的表面上,它和其他很多金属在腐蚀作用下的表现在这一点上不一样。  纯铝的抗拉强度约为13,000psi,增加少量合金元素而极大进步强度是可能的。2XXX、6XXX、7XXX的铝合金对热处理的效果很好。因此,实际上所有用于载荷传递的螺纹紧固件都由这三大类铝合金制成。有四种铝合金几乎是专用的。  2024-T4型铝合金(含4.5%的铜,1.6%的锰,1.5%的镁,其余为铝)是重负荷合金。它在强度、抗腐蚀性、制造性、经济性的结合上达到了完美的平衡,广泛地应用于螺纹紧固件的制造。  用7075-T73型铝合金(含1.6%的铜,2.5%的锰,0.3%的铬,其余为铝)制成的螺栓、螺钉和双头螺栓在强度上有了微小的进步,而且由于“T73”特殊的热处理工艺,使它能在很大程度上阻止应力腐蚀的发生。但昂贵的造价使它的普及受到限制。  6061-T6型铝合金(含0.6%的硅,0.25%的铜,1%的镁,0.2%的铬,其余为铝)可用于设计对抗腐蚀能力有更高要求的内、外螺纹紧固件。  6062-T9型铝合金(含0.6%的硅,0.25%的铜,1%的镁,0.09%的铬,0.5%的铅,其余为铝)几乎为设计螺母专用。这种合金比6061-T6型铝合金强度更高并有相对较好的抗腐蚀性。  6062-T9型铝合金制成的全厚度螺母有足够的强度用来配合2024-T4或7075-T73型铝合金制成的螺栓。机用螺钉、螺母和其它1/4英寸及更小尺寸的螺母用2024-T4型铝合金制成。  已经提到的四种铝合金在螺纹承载紧固件的制造中应用较为广泛,而其它的铝合金则用于其它类型紧固件的制造业。小固体、半管和盲铆钉分别由1100-F、5052-F、5056-F型铝合金制得。可热处理的2017-T4、2117-T4、2024-T4、6061-T6型铝合金和相对新研制出的7075-T73型铝合金有着优越的抗剪强度,并且不需要进行“预传动处理”就可以传动。  平垫圈通常由镀铝的2024-T4合金制得;螺旋弹簧垫圈通常用7075-T6合金制得;攻牙螺钉可利用7075-T6合金制得;自攻螺钉由同材料合金通过阳极处理得到。2011-T3型铝合金(含5.5%的铜,0.5%的铅,0.5%的铋,其余为铝)可用于制造螺纹切削机的零件。  铝合金紧固件与金属紧固件强度特性比较:  外螺纹紧固件铝合金材料2024-T4、6061-T6和7075-T73的强度特性在B-158页的ASTMF468有具体论述;螺母铝合金材料2024-T4、6061-T6和6062-T9的强度特性在B-184页的ASTMF467中有具体论述。  在这里有必要说明一下铝合金制螺纹紧固件和其它金属材料制紧固件在机械性能上的两点差别。  靠前点就是:计算零件的负载能力时,要测定横截面牙底部分的区域而不是面积更大的拉应力区域。只有在ASTMF468的表格2中给定的机械测试样本的抗拉、屈服强度值才是真正的强度值。在对整个尺寸的紧固件做强度计算时,可以做适当的调整。这样在将应力值与螺纹受力区域面积相乘以计算以磅为单位的负载能力时,计算结果大约即是表中“真值”与更小的牙底区域面积的乘积。  第二点是铝合金的硬度区别很小,而且象检查准则一样没什么意义。作为硬度测试的替换,通常引进抗剪强度测试。

铝合金挤压材涂层生产工艺-电泳涂漆

2019-01-02 15:29:20

铝合金挤压涂层生产有电泳涂漆、浸渍 涂漆、静电喷涂等方法,主要为电泳涂漆和静电粉末喷涂。    电泳涂漆也可以视为个一种有机聚合特封孔,它是将阳极氧化的铝材放在水溶性丙为烯酸漆的电沪槽中,铝材作为阳极,在直流电压90~150V下电泳,使得氧化膜表面沉积一层不溶性漆膜,再在170~200℃高温下烘烤固化。电泳涂漆生产工艺操作要点如下:    (1)电源波动因数必须不大于6%,电压波动使得漆膜产生针孔、桔皮或失光。    (2)阳极氧化温度过低,在固化时漆膜容易发生裂纹。         (3)导电梁在电泳之前必须冲洗干净,而且避免滴水污染电泳槽。    (4)电泳后的两个水洗槽以及热水槽应配置循环过滤系统。    (5)电泳后两个水洗槽的固体分数分别控制在小于1.5%和小于0.5%,以免出现花斑、流挂、失光等缺陷。    (6)漆回收应采用阳极电泳专用RO膜(反渗透膜)。    (7)固化炉温度控制在±5℃之内,温差大会产生色差。    (8)电解着色铝材电泳层固化时如果退色,可考虑适当降低固化工。    (9)固化炉定期清理,车间注意防尘。