您所在的位置: 上海有色 > 有色金属产品库 > 汽车轻量化铝合金 > 汽车轻量化铝合金百科

汽车轻量化铝合金百科

汽车轻量化-锻造铝合金

2019-01-14 14:52:52

摘要:能耗和节能减排成为社会发展的一个重要课题,汽车工业将怎样发展?锻造铝合金在汽车轻量化技术上能得到怎样的应用?  关键词:汽车轻量化;铝合金锻造;无锡海特铝业有限公司  ABSTRACT:  KEYWORDS:Lightweight of automobile,Aluminium forge,Wuxi Hatal aluminiumco.,ltd.  1引言  汽车的轻量化,就是在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整体质量,从而提高汽车的动力性,减少燃料消耗,降低排放。目前在汽车轻量化技术中,铝合金,镁合金等轻金属材料,塑料,铝基复合材料,钛合金等都有应用。在金属材料中,铝合金由于材料的经济性,易加工成型等特点,已经在汽车轮毂,发动机,支架,壳体等零件中广泛应用;而铝合金锻造更是进一步提高有强度高,在同等条件下,可以减轻重量;轮圈,悬臂,转向,制动系统已经有锻造铝合金零件的应用。  2常用的锻造铝合得奖号和力学性能  表1:常用铝合得奖号和力学性能    *为了获取特殊的性能参数,可以适当增加合金配比比例。  *抗疲劳性能,蠕变性能等特殊性能要求,需要提供T651,T62,T351,T42,T451等状态。  3铝合金锻造的优越性  1) 重量轻;  2) 强度好;  3) 加工性能优良;  4) 外观漂亮;  5) 可循环利用,对环境危害小;  6) 良好的导热,导电性能;  7) 耐腐蚀性好。  4铝合金锻造在汽车零部件的典型应用  1) 锻造铝合金轮毂:用锻造工艺生产的轮毂,机械强度高,重量轻,散热好,对燃油消耗和轮胎损害都有很大帮助。  2) 悬挂系统控制臂:宝马、奔驰等高级轿车的悬挂系统中已经大量采用铝合金锻造件,包括控制臂拉杆,横梁,转向节,卡爪等。由于铝合金的优良性能和轻量化,中级轿车上已经部分采用,并有进一步发展的趋势,譬如帕萨特轿车,在前桥上就有6件拉杆件在应用。  3) 发动机活塞:美国Wiseco推出的锻造活塞在提高发动机动力方面广受赞誉,轻量化的锻造材料应用在汽车竞赛,摩托车竞赛上表现优异。  4) 其它应用方向:齿轮箱,变速箱,轴承座等。  5锻造铝合金内在质量要求  1) 锻造铝合金零件大多数都是安全件,又是大批量生产制造,对铝合金材料的内在质量要求非常高。锻造铝合金零件一般经过如下主要制造流程:  合金熔炼---铸造---挤压---锻造---热处理---机械加工   合金熔炼成分配比,除气,过滤,铸造逆偏析,挤压过程质量,锻造金属流线,热处理温度,时间,晶粒度控制,尺寸精度等等,需要非常系统的过程控制才能达到稳定,可靠的汽车安全零件。  2) 专业汽车锻造铝合金材料企业介绍:无锡海特铝业有限公司  无锡海特铝业是中国汽车用铝技术领导者,特别是在精密铝管技术上一直引导行业的发展。目前是大众,通用,奔驰,福特,雪铁龙,标致,丰田,本田等世界汽车制造巨头铝合金材料合格供应商。  海特铝业开发的铝镁硅锻造铝合金已经成功应用在汽车悬挂系统零件,该产品成功解决了从铝合金熔炼到挤压过程中的质量难题,并为锻造厂家找到材料经过锻造后性能降低和不稳定的原因。  公司拥有世界一流的浇铸技术和国内创先的铝挤压技术,全新的检测设备、严格的工艺规定、完善的培训系统和质量保证系统确保产品质量完全达到国内外客户的要求,并把国内汽车用铝管、棒、型材的质量提升到世界一流产品的水平。  公司通过了ISO/TS16949:2002质量体系认证,认证公司为德国DQS,产品面向的市场区域为国内市场及亚太地区。

汽车轻量化铝合金研究进展

2019-01-08 17:02:10

本文章刊于Lw2016论坛文集——作者:聂德键,黄和銮,罗铭强,陈文泗,李 辉,陈树钦,张小青(广东兴发铝业有限公司) 摘要:本文对汽车轻量化铝合金材料的研究进展进行了综述,重点介绍了铝合金轮毂、铝合金防撞梁、铝合金车身的研究及应用情况。 从高速、舒适、美观、耐用、轻量化、节能、保护环境、降低综合成本等综合性能方面来看,铝合金无疑是汽车工业现代化和轻量化的优选材料,世界许多国家都在致力于汽车用铝合金的研究。汽车自重每降低100kg,油耗就可以减少0.7L/km。因此,以铝合金代替钢铁材料,较大限度地减轻汽车的自重也就成为当前的研究热点[1]汽车用铝合金主要分为铸造铝合金和变形铝合金,铸造铝合金主要应用于发动机气缸体、气缸盖、轮毂、制动器零件等。形变铝合金在汽车上主要用于车身面板、车身骨架、发动机散热器零件等[2]从靠前辆全铝车身奥迪A8问世,到捷豹的JaguarXJ,再到2012款新路虎极光揽胜发售,全铝车身加工工艺及技术正在不断走向成熟。不过,运用铝合金也面临不少问题,比如,铝合金加工难度比钢材高,成型性还需继续改善;由于铝导热性好,导致铝合金的焊接性能差;另外,成本控制对铝合金的运用非常重要,因此,全铝车身仅限于高端车型中[3]。随着能源和环境危机的不断加剧,各国节能减排法规不断提高规范要求,铝合金作为汽车轻量化新材料将应用在更多的车型上,在工业化生产与设计中,钢铝混合车身的应用将成为主流[4,5]. 1汽车轮毂用铝合金 车轮是车辆承载重要部件,它除了受正压力外,还承受因车辆启动、制动时扭矩的交互作用,以及行驶过程中转弯、冲击等来自各个方向的不规则受力,车轮在高速旋转中,还影响车辆的平稳性、操作性等性能[6]。车轮的质量与汽车的多种性能密切相关,整车的安全性和可靠性很大程度取决于所装车轮的性能和使用寿命。铝合金汽车轮毂与钢制汽车轮毂相比,能够更好地满足良好的耐磨耐老化和良好的气密性,良好的均匀性和质量平衡,较小的滚动阻力和行驶噪声,精美的外观和装饰性,尺寸精度高,质量轻且不平衡度小,耐疲劳性好,折装方便,互换性好等要求。目前轿车轮毂普遍采用铝合金材料,但是,卡车、大巴等重载汽车由于重载汽车载重大、对车轮的综合性能要求高,大部分仍采用钢制车轮。 铝合金车轮的制造工艺主要有:铸造法、锻造法、冲压法、旋压法、半固态模锻法等,其中较为常用的成型方法主要是铸造法和锻造法。低压铸造主要采用Al-Si-Mg系合金,其主要合金元素如表1所示。普通铸造铝合金轮毂能够满足轿车用轮毂的性能要求,但不能满卡车、大巴等重载汽车对轮毂的要求。马春江[7]等将普通铸造铝合金轮毂和挤压铸造铝合金的组织和力学性能进行对比,结果显示挤压铝合金轮毂的力学性能高于铸造铝合金轮毂,且挤压铸造铝合金轮毂的弯曲疲劳性能、径向疲劳性能、耐冲击性能都能满足重载汽车使用要求。锻造法是应用较早的铝合金轮毂成形工艺之一。锻造铝合金轮毂的强度、韧性以及疲劳强度均显著优于铸造铝合金轮毂,并且还具有抗腐蚀性好、尺寸准确、加工量小、性能再现性强等优点[8]。其主要采用Al-Mg合金和Al-Si-Mg合金,5xxx铝合金是车轮锻造中较常用的变形铝合金,主要包括:5052-O、5154-O、5454-O、5083-O、5086-O,5xxx锻造铝合金车轮抗腐蚀性能高,适宜制造在极端环境下工作的车轮。车轮制造中另外一种常用的铝合金是6061-T6,其Mg元素和Si元素形成的Mg2Si强化相可显著提高其力学性能,6061合金铸锭经565℃/4h——6h均匀化处理可使其绝大部分Mg与Si固溶于铝中,这样不仅可降低锻造温度,同时可改善锻造性能。龙伟[9]等采用三维有限元软件Deform-3D模拟6061铝合金轮毂的锻压过程,分析对比轮毂不同位置的应力应变状态以及与力学性能之间的关系,结果显示轮毂中累积应力应变越大的位置,其力学性能相对应力应变小的位置更佳。锻造铝合金具有比铸造铝合金更好的综合性能,但由于其成形工艺复杂、良品率低、制造成本高等原因,当前铝合金车轮制造仍以铸造为主。2汽车防撞梁用铝合金 汽车防撞梁是撞击时吸收和缓和外界冲击力、保护车身及乘员安全功能的安全的重要装置,在保证汽车碰撞安全性及舒适性的前提下,既能有效减轻汽车自重,又能控制成本成为热门课题。通过合金成分优化,热处理工艺以及结构优化可减轻车身质量的同时满足其安全性能的要求,并且铝合金防撞梁有比钢材料防撞梁更加优异的吸能性能[10]。挤压是制造防撞梁的典型方法,也可以用板材通过弯曲折叠等加工而成,型材多用6063、7021、7029、9129等合金挤压。万银辉[11]等采用有限元分析软件LS-DYNA分析6061铝合金防撞梁的碰撞性能,结果显示在相同的碰撞试验条件下铝合金横梁相比钢制防撞梁有更好的吸能性,且能够在较大的速度范围内保持较高的吸能性能。杨鄂川[12]等采用有限元方法分析了汽车防撞梁冲压工艺对性能的影响,并优化其冲压工艺参数,工艺优化后板料成形的回弹及较小厚度均得到有效控制:防撞梁两端严重回弹区域明显减小,板料成形质量得到改善,尤其是侧壁和底面部分的拉延都更加充分,成型质量显著提升。 目前国内铝合金保险杠刚刚起步,般横梁为铝合金吸能盒、底板等零部件多为钢。要提高保险杠横梁的防护能力则须提高其吸收能量的能力,材料吸能量的能力与材料的强度和厚度都呈正比。但在车身结构设计中,不可能通过无限增加钢材厚度达到提高材料吸能量的目的[13],因此,需要通过合理选材,优化结构设计等方法达到质量轻,便于拆装更换,维修简便;制造工艺要简单,成本低等要求。研究表明经过合理设计的铝合金保险杠横梁不仅比钢制保险杠横梁更轻,而且可以吸收更多的能量。徐中明[14]徐等通过Hyperstudy和LS-DYNA优化防撞梁设计,设计梁吸能效果达到钢制防撞1.9倍铝合金防撞梁,且其减重效果达38.4%。冯源[15]等研究的保险杠由横梁和吸能支架两部分组成,针对低速碰撞下保险杠横梁纵向抗弯性能不足的缺陷,通过优化其截面形状予以解决。汽车保险杠是汽车中重要的安全防护构件,制造商对保险杠的各项机械性能的要求往往比较高,汽车上的铝制保险杠防护构件的机械性能可通过热处理技术将其改善提高。近年来随着铝合金技术的开发,由于,具有很高的吸收冲击能的能力,密度小耐高温,防火性能强,易加工,可进行表面涂装处理等特点的泡沫铝合金作为一种新型的铝合金材料而被用于制造汽车保险杠。固体泡沫铝合金在汽车制造中的应用多为三明治式的三夹板。用这种材料制造的汽车保险杠,能够将两车相撞时产生的大部分碰撞能吸收掉,从而保护了汽车的安全[16]。 3车身用铝合金 在车体结构上,大多数采用无骨架式结构和空间框架式结构。这种结构零部件数量少,不需大型冲压设备,适用于多品种小批量生产,可缩短生产周期降低制造成本。汽车车身由框架、刚性材料、接头和罩壳板组成,用铝合金挤压型材和连接真空压铸接头自动焊接形成,比传统的钢体车身轻40%,机械强度提高40%[17]。铝合金在白车身及覆盖件上的应用能够有效减轻整车重量,从而达到节能减排,优化整车性能的目标。全铝车的车身主要由挤压型材和铝板壳体组成,轿车主要是板材,公共汽车主要用型材。对于车身板铝材除了要满足其性能和耐腐蚀性能要求之外还需具备良好地成型性能、表面平整性强、良好地焊接性能、优良的烘烤强化性。轿车车身板铝合金可用2xxx、5xxx、6xxx及7xxx合金轧制,除5xxx铝合金外其他三种铝合金的强度都在涂装烘烤时进一步提高。汪军[18]等采用不同的工艺对汽车用铝合金进行热处理,并进行了力学性能和耐腐蚀性能的测试与分析。结果表明,分级均匀化处理和自然时效后强化烘烤,可以明显提高汽 车用铝合金的力学性能和耐腐蚀性能。与常规均匀化处理相比,分级均匀化处理可使其室温抗拉强度增加14Mpa,自然时效后强化烘烤能提高其力学性能和耐腐蚀性能。代陈绪[19]通过对6系铝合金预时效处理工艺的研究,开发出能同时显著改善6xxx系铝合金车身板冲压成形性和烤漆硬化性的热处理工艺技术。结果显示:在固溶工艺550℃×10min处理后水淬,室温停放10min的铝板,较佳的预时效制度为140℃×12min,铝板经上述工艺制度预时效处理后的σ0.2≤142MPa,再经170℃×30min烤漆后其σ0.2≥225MPa。 4结束语 (1)汽车用材料的更新换代对提升汽车安全性能,节能减排降耗有着重要的意义,在交通工具回归自然的大趋势下,开高性能、轻质、节能、环保的铝合金材料将会得到更多的实际应用。 (2)我国汽车工业的持续高速发展,研制高性能汽车用铝合金对提高汽车工业的国际竞争力具有举足轻重的作用。 (3)铝合金材料是汽车工业现代化的优选材料,相关技术的研究开发也将得到越来越多的重视。 参考文献 [1]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展[J].金属热处理,2006,09:34-38. [2]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工(热加工),2009,11:11-16. [3]鲁春艳.汽车轻量化技术的发展现状及其实施途径[J].上海汽车,2007,06:28-31. [4]佟琳.汽车轻量化——汽车铝板在白车身和覆盖件减重中的应用[J].世界有色金属,2014,02:54-56. [5]MILLERWS,ZHUANGL.Recentdevelopmentinaluminiumalloysfortheautomotiveindustry[J].MaterialsScienceandEngineeringA,2000,280:37-49. [6]宋春强.铝合金汽车轮毂的市场需求与发展趋势[J].铝加工,2006,05:5-8. [7]马春江,陈玖新,葛素静,等.挤压铸造重载汽车用铝合金车轮的组织及性能[J].特种铸造及有色合金,2014,10:1063-1065. [8]高军,赵国群,整体式锻造铝合金车轮及其发展[J].汽车工艺与材料,2001(5):14-16. [9]龙伟,周迪生,张恒华,邵光杰,等.6061铝合金轮毂的力学性能与锻造工艺的计算机模拟[J].上海金属,2012,03:29-32. [10]万鑫铭,徐小飞,徐中明,等.汽车用铝合金吸能盒结构优化设计[J].汽车工程学报,2013,01:15-21. [11]万银辉,王冠,刘志文,等.6061铝合金汽车保险杠横梁的碰撞性能[J].机械工程材料,2012,07:67-71. [12]杨鄂川,邓国红,欧健,刘雁冰.基于综合平衡法的汽车防撞梁冲压工艺研究[J].热加工工艺,2014,11:114-117. [13]王智文,孙希庆,项生田,芦连,李军.铝合金前保险杠横梁的应用研究[J].汽车工程,2015,03:366-369. [14]徐中明,徐小飞,万鑫铭,等.铝合金保险杠防撞梁结构优化设计[J].机械工程学报,2013,08:136-142. [15]葛如海,王群山.缓冲吸能式保险杠的低速碰撞试验和仿真[J].农业机械学报,2006,37(2):29-32. [16]张屹林,闫汝辉,朱利民.汽车工业中的铝合金[J].山东内燃机,2004,03:26-31. [17]鲁春艳.汽车轻量化技术的发展现状及其实施途径[J].上海汽车,2007,06:28-31. [18]汪军,马军.热处理对汽车用改性铝合金性能的影响分析[J].热加工工艺,2014,20:143-145+148. [19]代陈绪.汽车覆盖件用6xxx系铝合金板材预时效工艺研究[J].铝加工,2014,04:32-37. 来源:Lw2016论坛文集

铝合金自成铆接技术助汽车轻量化

2018-12-28 14:46:50

随着能源危机加剧,汽车的节能减排技术成为我们目前国内外非常热的话题。轻量化应该是节能减排的有效手段,不管是传统汽车还是新能源汽车,它的重量、减重都是我们面临的话题。随着轿车每减轻10%燃油消耗就减少6%到8%,这个问题已经得到国内外各个汽车企业的高度重视。     目前随着轻量化材料的应用,焊接和连接工艺的发展趋势来看主要是传统的机械连接等,这些将会越来越少。对铝合金的摩擦搅拌点焊来看以后会逐渐增加。特别是有可能是一些负荷的连接技术可能会成为以后无论是学术界,还是工业界研究的热点。比如说交界点焊,包括铆接和电阻焊怎么结合,这是一个发展趋势。     在铝合金自成铆接技术方面,SPR铆接有很多优势,特别是适合于铝合金方面的连接。它的强度比单个点焊提高30%,连接变形也比点焊,或者弧焊连得少。铝和钢的连接可以采用冷技术过渡,这种技术比较大的优势是在焊接过程当中金属在过渡时候电流可以减少到几乎为零,同时焊丝的回抽运动帮助溶滴脱落,热输入可以降低30%。变形小、无飞溅。

用铝合金材料实现汽车轻量化

2019-01-11 15:44:08

节能、环保、安全、舒适、智能和网络是汽车技术发展的趋势,尤其是节能和环保更是关系到人类可持续发展的重大问题。因此,降低燃油消耗、减少向大气排出CO2和有害气体及颗粒已成为汽车界主要的研究课题。减少汽车自身质量(汽车轻量化)是汽车降低燃油消耗及减少排放的较有效措施之一。汽车轻量化的途径有两种:一是优化汽车框架结构;另一个是在车身制造上采用轻质材料。而目前常用的轻质材料为铝合金。   目前,世界交通运输业用铝为铝产量的26%,而我国仅为5.7%。随着我国经济的发展和人民生活水平的提高,对交通工具的需求越来越多,因此,铝合金材料在我国交通运输业上的发展空间还很大。   现代轿车发动机活塞几乎都用铸铝合金,这是因为活塞作为主要的往复运动件要靠减重来减小惯性,减轻曲轴配重,提高效率,并需要材料有良好的导热性,较小的热膨胀系数,以及在350℃左右有较好的力学性能,而铸铝合金能符合这些要求。同时由于活塞、连杆采用了铸铝合金件,减轻了质量,从而减少发动机的振动,降低了噪声,使发动机的油耗下降,这也符合汽车的发展趋势。   汽车车身约占汽车曾质量的贺30%,对汽车本身来说,约70%的油耗是用在车身质量上的,所以汽车车身铝化对提高整车燃料经济性至关重要。奥迪汽车公司较早于1980年在Audi80和Audi100上采用了铝合金车门,然后不断扩大应用。1994年奥迪公司斥资800万欧元建立的铝材中心(1994年~2002年),两年前被更名为“奥迪铝材及轻重化设汁中心”。1994年开发靠前代AudiA8全铝空间框架结构(ASF),ASF车身超过了现代轿车钢板车身的强度和安全水平。但汽车自身质量减轻了大约40%。随后于1999年诞生的AudiA2,成为首批采用该技术的批量生产轿车。2002年,奥迪铝材及轻量化设计中心又实现了第二代AudiA8的诞生。   在此期间,美国铝业公司开发了全新的汽车生产技术。如今,铝制车身制造的自动化操作程度已达80%,赶上了传统钢制车身生产的自动化水平。奥迪公司与美国铝业公司一直保持着良好的合作关系,双方合作的目标是共同开发一款全新的可以批量生产的全铝车身汽车。   美国铝业公司为全球汽车制造商提供品种繁多、性能优异的汽车部件和总成,包括车身覆盖件的铝板、压铸轮毂、配电系统、底盘和悬架部件,以及保险杆、发动机支架、传动轴、车顶系统等总成;包括AudiA8的第二代ASF框架结构、宝马5和7系列的铝制悬架、日产Altima的发动机罩和轮毂、法拉利612-Scaglietti的全铝车体结构,以及捷豹XJ采用的真空压铸技术。美铝公司的产品和解决方案使这些车型向着更轻量化、更技术化的方向发展。   目前,制约铝合金在汽车上大量应用的主要原因之一是其价格比钢材的高,为了促进铝合金在汽车上的大量应用,必须降低材料成本。除开发低成本的铝合金和先进的铝合金成形工艺外,回收再生技术可进一步降低铝合金的生产成本。扩大铝合金应用的另一个研究方向是开发新的各种连接技术,今后发展的多材料结构轿车要求连接两种不同类型的材料(如铸铁一铝、钢一铝、铝一镁等),对这些连接技术以及对材料和零件防腐蚀的表面处理技术,是今后扩大铝合金在汽车上应用的重要课题。

汽车轻量化对铝合金铸件产品要求分析

2018-12-29 16:57:13

降低能耗,减少环境污染以及节约有限资源是当今各国面临的一个十分重要而紧迫的任务。在汽车等产品轻量化的总趋势的推动下,可以预计,今后10年,我国轻金属铸件市场将会有大幅度的发展。目前,各铸件生产大国的铝、镁合金铸件所占比例在13%~19%之间,有些国家(如意大利)更是高达30%~40%,而我国的铝、镁合金铸件所占的比例不到10%。发达国家90%以上的铝铸件用于汽车零件制造业,在我国,铝合金铸件要形成规模化生产并满足汽车轻量化的要求要解决的问题还很多:  一、汽车对铝铸件的要求向薄壁、形状复杂、高强度、高质量的方向发展。为适应这种要求,应进一步优化铸造工艺并进行新合金材料的开发。   二、应从设计和工艺的角度降低生产成本,如使用一模多件技术和自动化技术以提高生产率、延长模具使用寿命,并采用一体化的设计减少零件数量。   三、采用计算机模拟技术,缩短工艺方案的开发周期。   四、加大铝的回收力度。再生铝是铝铸造的主要原料,我国在发展铸造业的同时应重视再生铝资源的利用,开发从复合材料和异种材料组合的废料种有效分离铝的技术,并建立广泛的废料回收体系。

铝合金在汽车前防撞梁轻量化中的应用

2019-01-08 13:40:03

汽车前防撞梁一般隐藏在前保险杠里面以及车门内部,在较大冲击力作用下,弹性材料已经不能缓冲能量,真正起到保护车内乘员的作用,它是车身被动安全系统的一部分,防撞梁其实并不是让车子“防撞”,它的主要作用是传力。简单概括,防撞梁的作用是:低速碰撞能减少维修成本,高速碰撞有助于提高保护性,尤其在复杂真实的环境碰撞中。 一、汽车前防撞梁市场应用情况调查 汽车前防撞梁作为汽车的安全部件,通常采用金属材质,如高强度钢材和铝合金等。它一般由防撞横梁、吸能盒、吸能盒加强件及连接板组成。图1 示出汽车前防撞梁安装位置。图2 示出汽车前防撞梁实物图。 通过市场调查,共统计65 款车型前防撞梁材料应用情况,自主品牌19 款车型,其中2 款车型应用铝合金防撞梁;合资品牌46 款车型,有10 款车型应用铝合金防撞梁。 调查结果显示:合资品牌铝合金防撞梁应用比例高于国内自主品牌2 倍多,行业内铝合金防撞梁应用是发展趋势。铝合金防撞梁平均质量4.5 kg,钢制防撞梁平均质量6.6 kg,差值约32%,可见铝合金防撞梁轻量化优势明显。部分铝合金前防撞梁应用车型,如表2所示。 二、汽车前防撞梁碰撞仿真对比分析 通过HyperMesh 软件建立前防撞梁碰撞模型,模型建好后导入LS- DYNA 软件进行防撞梁性能仿真分析。工况选择防撞梁正面碰撞,防撞梁材料选用6061 系铝合金,碰撞质量设置为1 700 kg,选用速度为36 km/h,计算时间设置为30 ms。 比吸能即系统单位质量的吸能量,比吸能反映了不同材料和结构的吸能能力。在基于轻量化的结构设计中,希望结构件比吸能值越大越好[1]。图5 显示在30 ms 时铝合金防撞梁比吸能为11.3 kJ/kg,钢防撞梁比吸能为5.2 kJ/kg。铝合金防撞梁的比吸能是钢防撞梁比吸能的2 倍多。 3、结论 在汽车产品制造中,逐步加大铝合金材料的应用比例是汽车轻量化的必然趋势,开发铝合金防撞梁是实现汽车轻量化主要途径之一,铝合金防撞梁经过设计验证后必将取代钢制防撞梁。 1)根据仿真分析结果,正面碰撞铝合金防撞梁吸收能量优于钢制防撞梁,满足设计使用要求。 2)铝合金相比钢材料有着密度小的优势,用铝合金结构代替传统钢结构,可使前防撞梁质量减轻30%——50%,轻量化效果显著[2]。 3)通过对比合资车企与自主车企铝合金防撞梁应用情况,可发现采用铝合金防撞梁是汽车轻量化未来趋势。 4)对比防撞梁比吸能分析结果显示,铝合金防撞梁吸能能力明显优于钢防撞梁,有助于提高整车安全性。

汽车铝合金轮毂的轻量化技术前景分析

2019-03-12 09:00:00

我国轿车工业协会专用车分会副理事长王立耀,最近一向忙于专用轿车轻量化技能方面的研讨与推行。鉴于此,他非常重视铸造铝合金轮毂的发展远景。   全球轿车曩昔五年添加1亿辆,轿车现已对动力和环境形成了巨大应战,假如不能处理环境和动力问题,就不会有轿车的未来。这样的观念,现已成为许多国家的一致。忧虑与压力,使节能减排成为全球轿车业头号课题。   对节能减排,许多人重视的是现在热度颇高的新动力轿车。在王立耀看来,不论是新动力轿车仍是传统轿车,轻量化趋势是未来轿车的必定选择。   王立耀介绍:“车辆每减重100kg,CO2的排放量即可削减大约5g/km。不仅如此,据国际铝业协会供给的数据,一般情况下轿车每削减10%的分量,其燃油耗费便可下降6%~8%。因而,跟着运送车辆的不断添加,轻量化规划已成为下降运送车辆排放的火急之需。现在,欧美等均在这方面加大了研讨与推行力度,特别是在美国,有关车辆轻量化选用高强度减重材料的项目能够得到政府相关部分立项。”   在轿车轻量化的研讨与应用上,我国与国际发达国家还有很大距离。王立耀举了个比方:在美国,一般长14米的二轴厢式半挂车,车辆自重在7吨以下。我国常用的13米二轴厢式半挂车,自重均在7吨左右。从处理自重问题上看,咱们还有许多问题需求研讨。   “轿车轻量化实质上就是零部件轻量化。选用铸造铝合金轮毂,能够很大程度减轻车的自重。比方,一辆拖挂40吨的重卡和半挂车运送系统,一共有22个轮毂,加上前后备胎共有24个。以现在咱们经常用的钢质轮毂核算,假如换成铸造铝合金轮毂,分量可减轻近600kg。不仅如此,因为铝合金材料具有散热好和避免轮胎橡胶老化的特色,装上铸造铝合金轮毂的货车、客车、挂车可节约26%的轮胎耗费。由此可见,节能减排的作用多么显着。”王立耀说,“在美国和加拿大,许多商用车都配装了铸造铝合金轮毂。欧洲、南非、澳大利亚许多选用的也是铸造铝合金轮毂。”   王立耀一边说着,一边从电脑中调出许多专用车相片。这是他从国际各国商用车展览会上拍照的。从一张张相片上看,如工艺品般美丽的铸造铝合金轮毂配装在各式各样的专用车辆上。不仅如此,专用车上装部分,能用铝的当地,都选用了铝。王立耀对记者说:“对轿车的轻量化,我的归纳是,能用铝的当地就用铝。”   王立耀解说说:“现在的车辆大多为钢结构原料,很少有人情愿尝试用质量更轻的铝结构原料。相同一辆车,选用铝制材料,因为结构强度问题,其分量至少能够折半,对节能减排的长处是显而易见的。正如一枚的双面,拿铸造铝合金轮毂来说,在具有许多长处的一起,也有丧命的缺点―――报价偏高。与钢轮毂比较,其报价是钢轮毂的3倍。这一对商场影响较为要害的本钱要素,很简单使人望而生畏。”   对此,王立耀算了一笔账:“减重必定多拉,假定公路普通货品整车的运送报价为0.5元/吨公里。假如咱们将一辆40吨重型半挂车的车架(纵梁、横梁)、油箱、轮毂、牵引座、护栏等零部件均换成铝制原料和真空胎。换算下来,总质量可减轻大约3吨多。在此前提下,假定该车每天行进的路程为1000公里,每天将可节约1000多元。若一年以300天核算,减重后的半挂车比未减重的可节约开销数十万元。现在国内已有一些物流公司在这方面尝到了甜头。”   王立耀对铸造铝合金轮毂在商用车范畴的远景非常看好。他说:“节能减排的限制性目标,财务的政策性歪斜,这些都使我国轿车工业的轻量化成为必定。在这种大布景下,铸造铝合金轮毂将成为新式的商场。往后,轻量化车辆的运用本钱优势将越来越显着。删去

铝合金材料是促进汽车轻量化的最佳选择

2018-12-28 11:21:28

铝合金及其加工材由于具有一系列优良特性,诸如密度小、比强度和比刚度高、弹性好、抗冲击性能良好、耐腐蚀、耐磨、高导电、高导热、易表面着色、良好的加工成型性以及高的回收再生性等,因此,在工程领域内,铝一直被认为是“机会金属”或‘希望金属“,铝工业一直被认为“朝阳工业”。   早期,由于铝的价格较昂贵,在汽油既充足又便宜的年代,它被排斥在汽车工业和其它相关制造行业之外。但是,到1973年,由于石油危机的影响,这种观点完全改变了,为了节约能源、减少汽车尾气对空气的污染和保护日益恶化的臭氧层,铝合金材料才得以迅速地进入汽车领域,目前汽车零件的铝合金化程度正在与日俱增。   铝合金材料大量用于汽车工业,无论从汽车制造、汽车运营、废旧汽车回收等方面考虑,它都带来巨大的经济效益,而且随着汽车产量和社会保有量的增加,这种效应将更加明显。汽车用铝合金材料量增加后所带来的效应主要体现在以下几个方面:   (1)明显的减重效益   为了减轻汽车自重,一是改进汽车的结构设计,二是选用轻质材料(如铝合金、镁合金、塑料等)制造。到目前为止,前者已无太大的迥旋余地,因而汽车行业普遍注重于开发利用新的高强度钢材或铝、镁等合金材料。在轻质材料中,由于聚合物类的塑料制品在回收中又存在环境污染问题、镁合金材料的价格和安全性也限制了它的广泛应用。而铝合金材料由于有丰富的资源,随着电力工业的发展和铝冶炼工艺的改进,将使铝的产量迅速增加,成本相应下降,铝合金材料更兼有质轻(钢铁、铝、镁、塑料的密度分别为:7.8、2.7、1.74、1.1-1.2g/cm3)和良好的成型性、可焊性、抗蚀性、表面易着色性,而且铝合金材料的回收率约为80%,有60%的汽车用铝合金材料来自回收的废料,预计到2015年回收率可进一步提高到90%以上。理论上铝制汽车可以比钢制汽车减轻重量达30%?40%,其中铝质发动机可减重30%,铝散热器比铜的轻20%?40%,轿车车身的比钢材制品减重40%以上,汽车铝车轮可减重30%。因此,铝合金材料是汽车轻量化最理想的材料之一,见表1。  (2)可观的节能效果   减少燃油消耗的途径一般为:提高发动机效率(从设计着手),减少行驶阻力,改善传动机构效率及减轻汽车自重等,其中最有效的措施是减轻汽车自重,铝合金材料在汽车上的大量使用,正好满足这一点。   据资料介绍,一般车重每减轻1公斤则1升汽油可使汽车多行驶0.011公里,或者每运行1万公里就可节省汽油0.7公升,如果轿车用铝合金材料量达100公斤,那么每台轿车每年可节约汽油175升。预计到2012年,我国轿车的社会保有量将达10000?12000万辆,届时每年节省汽油1000亿升以上,节能效果十分可观的。   (3)减少大气污染,改善环境质量   汽车减重的同时,也减少了二氧化碳排放量(车重减少50%,CO2排放减少13%)。有人算了一笔帐,如果美国的轿车重量减轻25%,每天将节油75万桶,全年可减少二氧化碳排放量1.01亿吨,同时,氮气物、硫化物等的排放量也会相应减少,因而可大大减少环境污染,提高环境质量。   (4)有助于提高汽车的行驶性能,乘客的舒适性和安全性。   减轻车重可提高汽车的行驶性能,美国铝业协会提出,如果车重减轻25%,就可使汽车加速到60mph的时间从原来的10秒减少到6秒钟;使用铝合金车轮,使震动变小,可以使用更轻的反弹缓冲器;由于使用铝合金材料是在不减少汽车容积的情况下减轻汽车自重,减重效果为125%。 因而使汽车更稳定,乘客空间变大,在受冲击时铝合金结构能吸收分散更多的能量;因而更具舒适性和安全性。

铝材替代成汽车轻量化趋势 未来有望普及

2019-01-10 09:44:18

由于电动车发展、大气污染、材料循环利用等诸多问题,铝材替代正在成为汽车轻量化的解决方案之一。日前,记者走访了多家车企和专家学者,全面了解车用铝材替代的发展方向及趋势。   国内豪车悄然兴起铝材替代   10月21日,奇瑞路虎揽胜极光在常熟下线,这是奇瑞路虎靠前款国产车型。奇瑞路虎焊接车间的一位工程师向现代快报记者表示,国产化揽胜极光主要在引擎盖上用铝材。   前不久,奇瑞路虎高管集体赴常熟当地铝制品上市公司——常铝股份考察,这被外界视为路虎正在寻找铝制品供应商,也开启路虎国产车型将使用全铝车身的想象空间。也有消息称,即将投产的捷豹XE车型有望采用全铝车身。   常铝股份董事会秘书孙连键表示,路虎和常铝在车辆用铝合金材料的业务正在洽谈,公司在这方面有技术储备。常铝股份一直给贝尔和法莱奥供应铝合金材料,他们用铝合金材料制造汽车零部件可以降低车身重量。   不仅是奇瑞路虎,奥迪很早就启动了“高度铝制轿车”项目,开始研发铝制轻型车身架构,并在奥迪A8车身上运用。由于铝材成本较高,所以目前大比例使用铝材的车型还集中在豪华车领域。   实际上,由于电动车发展、大气污染、材料循环利用等多方面的原因,铝材替代已经成为汽车轻量化发展趋势之一,如何使用铝材降低车身重量成为车企追求的方向。以路虎第四代揽胜的全铝车身为例,全铝车身相对同等强度的钢结构车身轻180kg,加上内饰件和动力总成等部件,整车减重较多达到420kg,相当于5名成年人的重量。   常铝股份董事会秘书孙连键分析,汽车轻量化会使铝合金在车辆上的运用更加广泛,车用铝材将是常铝股份未来重要的发展方向,目前车用铝材的业务占比为40%,以后会远远超过这个比重。   业绩也侧面印证了车用铝材行业的景气。常铝股份2014上半年报显示,汽车用铝合金箔(专业术语为铝合金薄板)的营业收入同比增长39.32%,大大高于其他细分行业用铝增长,也高于公司工业用铝整体营收7.62%的增长。   铝制电动车较有希望普及   在北美,铝材替代已经走在全球前列,开始普及到高量产车。如果说特斯拉ModelS使用全铝车身设计还是富人的游戏,在今年初的底特律车展上,福特发布的2015款F-150车型则吹响了全铝材料普及的号角。   F-150是全球首款采用全铝车身的高量产车,采用全铝车身后,整车重量将减轻317kg,燃油经济性有望提高15%~20%。据悉,F-150是福特旗下的经典皮卡,多年高踞美国的十大畅销车榜首。F-150在北美售价3万美元左右,属中端车型。福特F-150采用全铝车身,标志着传统整车厂大规模用铝合金材料的开始,全铝车身开始向中端车普及。   目前较有希望普及的恰恰是电动汽车。在相同续航里程情况下,由于铝制电动车携带的电池重量小于钢制电动车,全铝车身比钢制车身需要的电池容量减少。尽管全铝车身成本较高,但由于节约电池成本,使全铝电动车具有价格优势。   技术难题尚待解决   虽然铝材应用越来越广泛,但很多车企在全铝车身探索过程中还是遇到了一些问题。常熟奇瑞路虎的焊接车间工程师告诉记者,车用合金铝材要求更高的焊接技术,点焊容易使铝变形,多数采用铆焊,这会增加成本。   这位工程师表示,全铝车身一般使用铆接和胶合工艺拼装,铝合金材料本身并不适合传统焊接工业。由于铝合金材料对热较敏感,如果使用传统焊接工艺连接车身部件,会存在材料强度下降的问题,而且由于受热易变形。   10月中旬,记者参观一汽大众长春的第二轿车厂,在测量技术中心看到一辆奥迪A8正在做车身匹配检测,而奥迪A8的车身很早就应用了铝制轻型车身架构。巧合的是,一汽大众现场工程师正好拿这辆车解释匹配检测,“这辆车左前门上沿出现了肉眼不易察觉的凹陷,在做车身匹配检测时才发现,我们猜测可能是铝材塑形较钢材稍差造成的”。   专家观点   铝合金全面替代是系统工程   南京航天航空大学先进材料与成形技术研究所所长、美国福特汽车公司特聘教授陶杰则认为,如果铝合金全面替代,则对车辆零部件结构设计以及车辆整体安全性设计提出了更高的要求;同时,厂商原先的焊接生产线就要全面改造,这些问题都是系统工程问题。铝合金的大量使用,可能更适合于全新生产线的中高端车型。   陶教授认为,铝合金只是汽车轻量化的方式之一。汽车轻量化还可以通过另外两个方式解决,其一是结构优化和轻量化设计;其二是复合材料的应用,比如纤维增强复合材料等。   小百科   疑问一:铝制车能减重多少?   答:一般情况下,交通工具的重量减轻10%,燃料可以节省8%;交通工具每使用1公斤铝,可降低20公斤二氧化碳排放。铝的密度约为钢的1/3,铝代替钢制造汽车,可使整车重量减轻30%~40%,制造发动机可减重30%,铝质散热器比相同的铜制品轻20%~40%,铝车轮可减重30%左右。   疑问二:铝材更轻,会不会不安全啊?   答:全铝车身吸收的撞击力量比钢还要大,因此更能保证车内驾乘人员的安全。因为铝的优良特性,今天铝合金已被广泛使用到汽车各部位,如仪表台及发动机支架、铝合金车轮、悬挂系统零件、保险杠防撞梁、汽缸、车门及热交换器等。   疑问三:铝替代钢,买车成本不就上去了嘛?   答:目前较经济可行的轻量化方案是用铝替代钢,因为节省的燃油成本相比于增加的购车成本,开始具备经济性。   根据方正证券研究所的测算,在汽车中每使用1kg铝材,可减重2.2kg,按普通家用车计算,每年可节约近2升汽油,以目前的油价计算,约1.6年即可收回使用铝替代钢增加的成本。   疑问四:铝材绿色环保吗?   答:铝是较环保的绿色金属,具有良好的加工性能、物理性能、机械性能及抗腐蚀性。因其优异的综合性能,大到重要的航空航天器,小到包装容器、锅碗瓢盆,都离不开铝。

论汽车轻量化对金属加工行业的影响

2019-03-04 11:11:26

轿车职业开展趋势 轿车职业的开展经受着来自各个方面的压力。曩昔十年来,为了减轻车辆分量,车辆运用更薄更巩固的材料,这样轿车就越轻,耗油量也会削减;可是价值就是这些材料,如新式高档合金自身报价会更贵重,并且它们有必要能习惯更高的作业温度才干被出产制作出来;与钢比较,这些金属和合金在高温下更易氧化。一些厂商选用多种战略,将新旧技能,工序和材料结合起来运用。美国好富顿世界公司的轿车职业司理大卫·布戴说:的确是“众口难调”。布戴的首要作业是帮忙出产设备制作商们帮忙出产出正在开发的或估计在2022年或2023年上市的轿车。 布戴说,为了到达美国公司均匀燃油经济性(简称CAFE,以焚烧每加仑汽油能跑的英里数值来衡量)的标准,美国的设备制作商为减轻轿车分量选用了各种不同的战略。一些供应商制作更轻型的发起机,一些则制作更轻的结构件如车身面板,来进步CAFE。 设备制作商们正在寻觅具有延展性和耐磨性好的材料。“咱们注意到在特定的发起机部件中,更多的铝合金含有钛,例如动力总成阀,凸轮轴,销,曲轴以及排气和进气阀等部件,”布戴说。他的搭档赵一星博士是资深科学家兼立异团队负责人,他弥补说,新式铝合金具有高韧性,愈加坚固。赵博士说,其实航空航天业对钛的运用现已非常广泛,而光滑介质供应商们曾经为航空职业开发的产品,越来越多地运用到了其他职业上。 加工介质的开展 跟着材料和合金的改动,加工进程也有必要随之改动。配方设计师们正在寻觅运用寿数长的加工介质来削减停机时刻并进步出产力。他们的客户期望加工速度能够更快,但液槽期望能够更小以便削减用量。人人都想制作出低泡且不腐蚀工件的加工液,又能在硬水中保持安稳,一起其增加剂能有用按捺细菌的繁殖(当然是契合法规答应运用的抗菌剂)。不只如此,金属加工液制作商正在开发能与走漏到加工液中一切杂油兼容的加工介质。 北美和亚洲公司大多运用水基加工介质,可是欧洲公司也开端从运用矿物油转向运用水基加工介质。赵博士说,水基加工介质是比较杂乱的,你有必要平衡其间一切的组分。加工高强度材料时会发作更多的热量,而比起矿物油,水基加工介质是更好的冷却液。新技能的水溶性加工介质具有更好的清净功能(避免污物颗粒集合并粘附在金属表面),涣散和潮湿能力强,这些特色都是加工轻金属所必需的。 高温与高压 合适软金属高速加工的加工液有必要具有杰出的冷却和光滑功能,以避免冲突引起的过热。假如温度过高,软金属会胀大并失掉强度。可是,许多新的高强度合金有必要加热到较高温度才干制作出来。 麦卡尔说,曾经仅用于航空航天工业的铝合金现在现已开端在轿车工业取得运用。6000和7000系列合金一般在260-400℃(500-750°F)的高温条件下构成。这缩小了用于成形的光滑剂品种的规模。麦卡尔说,轿车业有必要在高温高压条件下运用光滑油,一起光滑油需求与黏合剂、清洁剂、底漆和焊接兼容。 铝材的氧化 黑色金属在中性至酸性环境中简单被腐蚀,但不会发作在强碱性环境中,由于它们的表面氧化物层在高pH条件下是安稳的。铝很简单构成一层维护氧化物层,但氧化物在中性点两边的一个适当狭隘的pH区域内是安稳的。一般,金属加工介质的pH值保持在9以上,用来维护贵重的钢制刀具。但在这个高pH值下,铝零件会腐蚀变色,高碱性液体能迅速地溶解维护性氧化铝层,所以金属加工介质需求增加腐蚀按捺剂。 加工或研磨会去除工件表面氧化层,发作金属新表面,在这个进程中需求运用加工介质来维护金属新表面免于与刀具或切屑直触摸摸而发作积屑瘤。 细微的腐蚀会导致铝件有黄色或金色的变色,即使是挑选运用了正确的金属加工介质,但这一般只出现在运用了较长时刻的作业液,其间的腐蚀按捺增加剂差不多已耗费殆尽时发作。假如运用仅合适于黑色金属的加工介质来加工铝件时往往会导致更严峻的腐蚀,并发作灰色或黑色的变色现象。即便是运用正确的金属加工液,假如某些增加剂(例如三嗪菌剂)的池边增加量较多,使加工介质的pH值升得过高,也会在加工时导致铝件腐蚀。 习惯性问题 一些加工介质配方被宣传为具有多种用处,适用于广泛的金属加工范畴。“这是一个寻求平衡的做法,”麦卡尔说。您能够针对一种金属或一种配方进行优化操作,但“用户不肯意在工厂里存储太多不同的加工介质”。因而,这是简化库存和优化功能之间的折衷做法。麦卡尔说:“假如这项加工很要害,那么你只能在特定类型的操作中运用特定的加工介质。” 加工介质不只有必要与工件(其能够进行各种表面处理,包含高强度钢上的镀锌涂层)兼容,并且还与它们触摸的各种刀具材料和模具涂层相兼容。 环境要素 推进轻金属开展的首要要素是车用燃料关于经济性需求的进步,有利于环保。环境要素也会影响加工介质的配方。现在就有“微量光滑”(MQL)的趋势,替代“很多光滑”。这种办法一般需求改动制作设备以及加工介质。 干式加工在许多操作中已被证明是成功的,可是关于需求冷却和光滑的操作仍需求金属加工介质,以削减刀具磨损,并经过削减剩余应力,尺度差错和表面光洁度差异来出产出更高质量的零件。加工介质还答应机器以更快的速度运转而不会发作过多的热量。 环境要素也会影响增加剂的运用。例如,传统的EP增加剂,包含硫、氯和磷增加剂,能够与钢反响,但不必定能与有色金属、镀锌钢和刀具涂层发作反响。设备商工厂现已不再运用含氯的加工液,可是在一些重负荷的加工中,比方一些不锈钢的加工,含氯的加工介质很难被替代。 斯林克曼说,监管要求因区域而异。咱们有必要对咱们的产品线进行全面的检查,以确保产品契合标准。为了跟上监管改变,一起削减从头调整配方的作业量,在开发产品的时分,咱们要找到在多个不同区域都被答应运用的原材料。 卡莫迪指出,好富顿的许多客户都期望在世界各地的大部分或悉数区域运用这些产品,可是有时需求做专门的区域配方来习惯水质等各方面的差异。 展望未来 麦克卢尔说,竞赛和监管一起推进金属加工介质的变革。加工介质配方的改变不只遭到零部件制作商新要求的驱动,也遭到化工公司研制实验室新产品的推进。 估计未来五年全球私家轿车和轻型商用车需求将增加5.5%。中小型燃料电池需求将一起增加,部分原因是新材料,如轻量化的铝和钛合金,正在企图减轻分量和进步燃料功率。技能进步的一起也需求进步金属加工介质的功能,延伸刀具寿数,在确保加工质量的前提下,下降归纳运用本钱。 跟着V8发起机到V6和I4发起机的小型化以及涡轮增压的参加,轿车的减重趋势仍在持续。较小的涡轮增压汽油发起时机发作更多的热量,这进步了发起机罩下的温度。几年前,有供应商用热塑性塑料替代钢制发起机部件,但现在一些常用的热塑性塑料并不能总是经济地处理这些高散热性的小发起机所发作的高热量。因而,铝和镁被认为是性价比更高的替代品。 用各种新材料和新工艺整组成高效牢靠的车辆,这是职业所面对的杂乱应战。不过轿车职业的金属加工介质的研制专家们明显现已为此做好了充沛的预备。

镁合金压铸件在汽车轻量化中能普及吗?

2019-01-08 17:01:35

汽车轻量化和智能化已成为全球汽车产业技术发展新趋势。近年来,随着全球节能减排压力和发展趋势,各国纷纷制定严格的乘用车燃料消耗量标准法规,对乘用车燃料消耗量及对应的CO2排放提出更加严格的要求,汽车的轻量化更是世界汽车的发展趋势。尤其是中国,到2020年汽车燃油消耗降幅明显大于其他国家,燃油排放压力更大,降低汽车整车重量是汽车轻量化较有效途径。 汽车轻量化就是为汽车“瘦身”,在确保稳定提升性能的基础上,节能化设计各零部件,持续优化车型。实验证明,若汽车整车重量降低10%,燃油效率可提高6%——8%;汽车重量降低1%,油耗可降低0.7%;汽车整备重量每减少100千克,百公里油耗可降低0.3——0.6升。 汽车的轻量化趋势 清华大学欧阳明高等教授代表节能与新能源汽车发展战略咨询委员会曾对节能和新能源汽车技术路线图的内容进行了发布,该路线图提出的轻量化技术发展思路,主要分三个阶段实现汽车逐年减重。 靠前阶段为2016年——2020年,实现整车较2015年减重10%。重点发展超高强度钢和先进高强度钢技术,包括材料性能开发、轻量化设计方法、成型技术、焊接工艺和测试评价方法等,实现高强度钢在汽车应用比例达到50%以上,开展铝合金板材冲压制作技术研究并在车身实践,研究不同材料的连接技术。 第二阶段为2021年——2025年,实现整车较2015年减重20%。以第三代汽车钢和铝合金技术为主线,实现钢铝等多种材料混合车身,全铝车身的大范围应用,实现铝合金覆盖件和铝合金零部件的批量生产和产业化应用,同时加大对镁合金和碳纤维复合材料零部件生产制造技术的开发,增加镁合金和碳纤维零部件的应用比例,单车用铝量达到350kg。 第三阶段为2026年——2030年,实现整车较2015年减重35%。重点发展镁合金和碳纤维复合材料技术,解决镁合金及复合材料循环再利用问题,实现碳纤维复合材料混合车身及碳纤维零部件的大范围应用,突破复杂零件成型技术和异种零件连接技术。单车用镁合金达到45kg,碳纤维使用量占车重5%。 据统计,2016年,在中国生产的单车镁合金用量只有7.3kg,与2030年单车镁合金用量目标45kg还有巨大差距,镁合金在未来汽车轻量化应用市场广阔,潜力无限。 镁合金性能及优点 密度低 压铸镁合金的密度仅为铝合金的2/3,钢铁的1/4,比强度和比刚度均优于钢和铝合金,远高于工程塑料,因此压铸镁合金是一种优良的在许多应用领域内可与上述材料竞争的轻质结构材料。 吸振性好 有利于减振和降噪,例如在35MPa的应力水平下,镁合金AZ91D的衰减系数为25%,铝合金A380仅为1%。在100MP应力水平下,镁合金AZ91D、AM60、AS41分别为53%、72%和70%,铝合金A380则仅为4%。 尺寸稳定性高 使镁合金压铸件因环境温度和时间变化所造成的尺寸不稳定减小。 热导率高 镁合金热导率(60——70W/m-1 K-1),仅次于铝合金(约100——70W m-1 K-1),故热扩散性良好。 无磁性,可用于电磁屏蔽。 耐磨性好 镁合金还具有良好的阻尼系数,减振量大于铝合金和铸铁,用于壳体可以降低噪声,用于座椅、轮毂可以减少振动,提高了汽车的安全性和舒适性。镁合金重量轻、吸震性能强、铸造性能好,自动化生产能力和模具寿命高、尺寸稳定,作为较轻的工程材料,镁合金不仅是较适合铸造汽车零部件的材料,也是较有效的汽车轻量化材料。 镁合金汽车压铸件行业现状 汽车轻量化发展,使镁铝等轻合金铸件的需求量逐年增加。自1990年以来,汽车用镁正以年均20%的增长速度迅速发展,镁合金已成为汽车材料技术发展的一个重要领域。压铸镁合金材料以其可循环利用和少无切屑工艺的先进性,特别适合循环经济和节能低碳及清洁生产要求,在汽车向轻量化发展的进程中占主导地位。各大汽车零部件制造商积极把握发展时机,纷纷投入到镁合金汽车压铸件的生产研发中来。据《中国镁合金汽车压铸件行业分析报告》数据显示,2015年,中国镁合金汽车压铸件行业需求量达到14.9万吨,同比增长23.12%。目前,国内外各汽车企业正致力于研究占车重比例大的车身(约30%)、发动机(约18%)、传动系统(约15%)、行走系统(约16%)、车轮(约5%)等钢或铝零部件的镁合金化。 结合我国生产的单车镁合金使用量来看,2017年我国镁合金汽车压铸件行业市场容量将达22.9万吨,到2022年市场容量将达66万吨,年均复合增长率将达到23.5%。 全球汽车单车用镁量较低,汽车用镁合金需求扩张潜力强劲。一直以来,高强度钢、铝合金、工程塑料等轻量化材料广泛应用于汽车及汽车零部件制造的各个方面,而镁合金鉴于种种原因没有得到大力推广和使用,镁合金目前主要应用在仪表盘支架,转向支架,发动机罩盖、方向盘、座椅支架、车内门板、变速器外壳等方面。目前,北美地区每辆汽车使用镁合金3.8kg,日本为9.3kg,欧洲PASSAT和Audi A4上每辆车使用镁合金达到14kg,而国产汽车每辆用量平均仅1.5kg。 镁合金在汽车轻量化中具体应用 汽车内部构造 虽然镁合金耐腐蚀性差,但是对于汽车内部构造来说,防腐不是主要考虑的问题,因此镁合金在汽车内部构造得到了比较广泛的应用,尤其是在仪表盘和转向结构中。据悉,靠前支镁合金仪表盘支柱是由通用公司在1961年压铸生产,比使用锌合金压铸生产的同样部件节省了4kg材料。过去十多年间,采用镁合金压铸的仪表盘支柱取得了极大进展。 镁合金在座椅上应用始于1990年代的德国,主要是奔驰公司在SL Roadster中使用了镁压铸生产的带有三点安全带的座椅结构。与镁合金在仪表盘上的应用情况相似,近几年,采用镁合金设计、制造的座椅也经历了一个明显提高的过程。现在采用镁合金的座椅结构较薄可以达到2mm,大大减轻了重量。虽然其他材料如高强度钢、铝、复合材料等也得到使用,但是专家预测,镁合金未来将会成为汽车座椅部件轻量化和具有成本效益的一个主要材料。 车身 镁合金在车身应用中受限,但是也得到了整车厂的应用。通用汽车在1997年引进C-5 Corvette时,使用了整片镁合金压铸的车顶框架,此外,镁合金也被应用在凯迪拉克XLR敞篷车的可伸缩硬顶敞篷车顶和顶部框架,福特F-150卡车和SUV也使用了有涂层镁铸件作为散热器的支架。在欧洲,大众汽车公司和奔驰已率先实现了薄壁镁合金铸件在车身面板中的应用。 底盘 当前,铸造或锻造镁合金车轮已被用于许多高价位的赛车或高性能跑车。然而,相对较高的成本和镁合金车轮潜在的腐蚀问题阻止其在大批量生产车辆上的应用。 未来,轻量化、低成本的镁合金底盘部件,如轮毂、发动机悬架以及控制臂等零部件的生产将依赖镁合金铸造工艺的大力提高,已经在铝合金轮毂和底盘部件上开发的各种铸造工艺经过改造后可以成功适用于镁合金。此外,低成本、耐腐蚀图层和新的具有抗疲劳和高冲击强度的镁合金开发也都将加速镁合金在底盘上的应用。 动力总成 动力总成的大部分铸造件如发动机缸体、汽缸盖、传动箱、油底壳等是由铝合金制成。目前,北美生产的皮卡和SUV已经镁合金变速器,大众和奥迪的镁合金手动变速器也在欧洲和中国大批量生产。 当前,通过对镁强化的发动机原型进行的测功仪试验已经取得了有效的进展,这就意味着未来在动力系统中会有更多镁合金得到应用。 镁合金在推广应用中主要挑战 耐腐蚀性差、成本和废品率高是镁合金普及“拦路虎”。 镁合金制造汽车零部件确实存在压铸成本高、废品率高、存在安全生产隐患等问题。中国汽车工业协会顾问杜芳慈说,镁是一种很活泼的元素,耐腐蚀性很差,我国在镁合金零部件抗腐蚀性方面的技术能力要差一些。另外镁在加工过程中,容易发生燃烧和爆炸,存在安全生产问题。生产现场需要严格的管理来保证安全生产。 随着城市化进程的加快,能源变得越来越短缺、环境污染越来越严重,节能减排成为关乎国计民生的重要事件。无论是传统汽车,还是新兴的新能源汽车都十分注重车身轻量化设计,以达到节能环保的目的。 汽车用镁合金蓬勃崛起,同时镁合金压铸工艺日渐成熟,应用范围不断扩大,大型镁合金压铸汽车零部件将推动汽车轻量化的进程。

镁合金压铸件在汽车轻量化中能普及吗?

2019-01-08 13:40:18

汽车轻量化和智能化已成为全球汽车产业技术发展新趋势。近年来,随着全球节能减排压力和发展趋势,各国纷纷制定严格的乘用车燃料消耗量标准法规,对乘用车燃料消耗量及对应的CO2排放提出更加严格的要求,汽车的轻量化更是世界汽车的发展趋势。尤其是中国,到2020年汽车燃油消耗降幅明显大于其他国家,燃油排放压力更大,降低汽车整车重量是汽车轻量化有效途径。汽车轻量化就是为汽车“瘦身”,在确保稳定提升性能的基础上,节能化设计各零部件,持续优化车型。实验证明,若汽车整车重量降低10%,燃油效率可提高6%——8%;汽车重量降低1%,油耗可降低0.7%;汽车整备重量每减少100千克,百公里油耗可降低0.3——0.6升。 汽车的轻量化趋势 清华大学欧阳明高等教授代表节能与新能源汽车发展战略咨询委员会曾对节能和新能源汽车技术路线图的内容进行了发布,该路线图提出的轻量化技术发展思路,主要分三个阶段实现汽车逐年减重。 第 一阶段为2016年——2020年,实现整车较2015年减重10%。重点发展超高强度钢和先进高强度钢技术,包括材料性能开发、轻量化设计方法、成型技术、焊接工艺和测试评价方法等,实现高强度钢在汽车应用比例达到50%以上,开展铝合金板材冲压制作技术研究并在车身实践,研究不同材料的连接技术。 第二阶段为2021年——2025年,实现整车较2015年减重20%。以第三代汽车钢和铝合金技术为主线,实现钢铝等多种材料混合车身,全铝车身的大范围应用,实现铝合金覆盖件和铝合金零部件的批量生产和产业化应用,同时加大对镁合金和碳纤维复合材料零部件生产制造技术的开发,增加镁合金和碳纤维零部件的应用比例,单车用铝量达到350kg。 第三阶段为2026年——2030年,实现整车较2015年减重35%。重点发展镁合金和碳纤维复合材料技术,解决镁合金及复合材料循环再利用问题,实现碳纤维复合材料混合车身及碳纤维零部件的大范围应用,突破复杂零件成型技术和异种零件连接技术。单车用镁合金达到45kg,碳纤维使用量占车重5%。 据统计,2016年,在中国生产的单车镁合金用量只有7.3kg,与2030年单车镁合金用量目标45kg还有巨大差距,镁合金在未来汽车轻量化应用市场广阔,潜力无限。 镁合金性能及优点 密度低 压铸镁合金的密度仅为铝合金的2/3,钢铁的1/4,比强度和比刚度均优于钢和铝合金,远高于工程塑料,因此压铸镁合金是一种优良的在许多应用领域内可与上述材料竞争的轻质结构材料。 吸振性好 有利于减振和降噪,例如在35MPa的应力水平下,镁合金AZ91D的衰减系数为25%,铝合金A380仅为1%。在100MP应力水平下,镁合金AZ91D、AM60、AS41分别为53%、72%和70%,铝合金A380则仅为4%。 尺寸稳定性高 使镁合金压铸件因环境温度和时间变化所造成的尺寸不稳定减小。 热导率高 镁合金热导率(60——70W/m-1 K-1),仅次于铝合金(约100——70W m-1 K-1),故热扩散性良好。 无磁性,可用于电磁屏蔽。 耐磨性好 镁合金还具有良好的阻尼系数,减振量大于铝合金和铸铁,用于壳体可以降低噪声,用于座椅、轮毂可以减少振动,提高了汽车的安全性和舒适性。镁合金重量轻、吸震性能强、铸造性能好,自动化生产能力和模具寿命高、尺寸稳定,作为zui轻的工程材料,镁合金不仅是zui适合铸造汽车零部件的材料,也是zui有效的汽车轻量化材料。 镁合金汽车压铸件行业现状 汽车轻量化发展,使镁铝等轻合金铸件的需求量逐年增加。自1990年以来,汽车用镁正以年均20%的增长速度迅速发展,镁合金已成为汽车材料技术发展的一个重要领域。压铸镁合金材料以其可循环利用和少无切屑工艺的先进性,特别适合循环经济和节能低碳及清洁生产要求,在汽车向轻量化发展的进程中占主导地位。各大汽车零部件制造商积极把握发展时机,纷纷投入到镁合金汽车压铸件的生产研发中来。据《中国镁合金汽车压铸件行业分析报告》数据显示,2015年,中国镁合金汽车压铸件行业需求量达到14.9万吨,同比增长23.12%。目前,国内外各汽车企业正致力于研究占车重比例大的车身(约30%)、发动机(约18%)、传动系统(约15%)、行走系统(约16%)、车轮(约5%)等钢或铝零部件的镁合金化。 结合我国生产的单车镁合金使用量来看,2017年我国镁合金汽车压铸件行业市场容量将达22.9万吨,到2022年市场容量将达66万吨,年均复合增长率将达到23.5%。 全球汽车单车用镁量较低,汽车用镁合金需求扩张潜力强劲。一直以来,高强度钢、铝合金、工程塑料等轻量化材料广泛应用于汽车及汽车零部件制造的各个方面,而镁合金鉴于种种原因没有得到大力推广和使用,镁合金目前主要应用在仪表盘支架,转向支架,发动机罩盖、方向盘、座椅支架、车内门板、变速器外壳等方面。目前,北美地区每辆汽车使用镁合金3.8kg,日本为9.3kg,欧洲PASSAT和Audi A4上每辆车使用镁合金达到14kg,而国产汽车每辆用量平均仅1.5kg。 镁合金在汽车轻量化中具体应用 汽车内部构造 虽然镁合金耐腐蚀性差,但是对于汽车内部构造来说,防腐不是主要考虑的问题,因此镁合金在汽车内部构造得到了比较广泛的应用,尤其是在仪表盘和转向结构中。据悉,第 一支镁合金仪表盘支柱是由通用公司在1961年压铸生产,比使用锌合金压铸生产的同样部件节省了4kg材料。过去十多年间,采用镁合金压铸的仪表盘支柱取得了极大进展。 镁合金在座椅上应用始于1990年代的德国,主要是奔驰公司在SL Roadster中使用了镁压铸生产的带有三点安全带的座椅结构。与镁合金在仪表盘上的应用情况相似,近几年,采用镁合金设计、制造的座椅也经历了一个明显提高的过程。现在采用镁合金的座椅结构zui薄可以达到2mm,大大减轻了重量。虽然其他材料如高强度钢、铝、复合材料等也得到使用,但是专家预测,镁合金未来将会成为汽车座椅部件轻量化和具有成本效益的一个主要材料。 车身 镁合金在车身应用中受限,但是也得到了整车厂的应用。通用汽车在1997年引进C-5 Corvette时,使用了整片镁合金压铸的车顶框架,此外,镁合金也被应用在凯迪拉克XLR敞篷车的可伸缩硬顶敞篷车顶和顶部框架,福特F-150卡车和SUV也使用了有涂层镁铸件作为散热器的支架。在欧洲,大众汽车公司和奔驰已率先实现了薄壁镁合金铸件在车身面板中的应用。 底盘 当前,铸造或锻造镁合金车轮已被用于许多高价位的赛车或高性能跑车。然而,相对较高的成本和镁合金车轮潜在的腐蚀问题阻止其在大批量生产车辆上的应用。 未来,轻量化、低成本的镁合金底盘部件,如轮毂、发动机悬架以及控制臂等零部件的生产将依赖镁合金铸造工艺的大力提高,已经在铝合金轮毂和底盘部件上开发的各种铸造工艺经过改造后可以成功适用于镁合金。此外,低成本、耐腐蚀图层和新的具有抗疲劳和高冲击强度的镁合金开发也都将加速镁合金在底盘上的应用。 动力总成 动力总成的大部分铸造件如发动机缸体、汽缸盖、传动箱、油底壳等是由铝合金制成。目前,北美生产的皮卡和SUV已经镁合金变速器,大众和奥迪的镁合金手动变速器也在欧洲和中国大批量生产。 当前,通过对镁强化的发动机原型进行的测功仪试验已经取得了有效的进展,这就意味着未来在动力系统中会有更多镁合金得到应用。 镁合金在推广应用中主要挑战 耐腐蚀性差、成本和废品率高是镁合金普及“拦路虎”。 镁合金制造汽车零部件确实存在压铸成本高、废品率高、存在安全生产隐患等问题。中国汽车工业协会顾问杜芳慈说,镁是一种很活泼的元素,耐腐蚀性很差,我国在镁合金零部件抗腐蚀性方面的技术能力要差一些。另外镁在加工过程中,容易发生燃烧和爆炸,存在安全生产问题。生产现场需要严格的管理来保证安全生产。 随着城市化进程的加快,能源变得越来越短缺、环境污染越来越严重,节能减排成为关乎国计民生的重要事件。无论是传统汽车,还是新兴的新能源汽车都十分注重车身轻量化设计,以达到节能环保的目的。 汽车用镁合金蓬勃崛起,同时镁合金压铸工艺日渐成熟,应用范围不断扩大,大型镁合金压铸汽车零部件将推动汽车轻量化的进程。

从全铝车身到碳纤维 揭秘汽车轻量化材料应用

2019-01-09 09:34:03

减少汽车自身质量是降低油耗较有效的措施之一。数据显示,汽车自重每减少10%,NEDC工况下能耗可降低6%~8%,排放降低5%~6%。而燃油消耗每减少1L,CO2的排放量减少2.45kg。轻量化的实现主要有三种手段:轻量化结构设计及优化、先进轻量化材料应用、先进轻量化制造技术应用。采用新型材料是汽车轻量化较直接有效的方法。   汽车的轻量化,就是在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。   实验证明,若汽车整车重量降低10%,燃油效率可提高6%-8%;汽车重量降低1%,油耗可降低0.7%;汽车整备质量每减少100千克,百公里油耗可降低0.3—0.6升。  常见的轻量化材料分为金属和非金属两大阵营。金属材料主要包括高强钢、铝合金、镁合金等;非金属材料包括工程塑料和复合材料等。提高汽车轻量化程度是各大厂家一直以来的目标,所以也就有了铝制和碳纤维的材料更多的运用到整体车身中。   1.铝合金   铝合金是目前汽车材料中应用较多的轻质材料,各项相关技术也比较成熟。铝具有良好的机械性能,其密度约为钢铁的1/3,易加工,导热性、耐腐蚀性好,铝合金强度高,同时具有良好的吸能性。据美国铝学会的报告,汽车上每使用0.45kg铝就可减轻车重1kg,理论上铝制汽车可以比钢制汽车减重40%左右。目前很多车型如奥迪A8、捷豹XFL、特斯拉等均已采用全铝车身。  近年来,铝合金用于车身材料的加工方式的成本有所降低。以前都要将厚的铝合金板冲压成薄板再进行加工,目前通用引入了和钢板冲压类似的热冲压成形技术。   这对工艺的要求是十分严格的,由于摩擦力的作用,截面各处材料流动不均,容易在应力集中地方产生急剧减薄而发生破裂。协调好压边力与冲压力的关系,加上良好的润滑,是实现铝合金热冲压再次降低材料成本的关键。  当然铝合金作为大范围量产的轻量化材料固然理想,也有自身的缺点,比如工艺复杂且后续维修费用高。   总的来说,铝合金材料可能会首先取代传统的钢材成为汽车轻量化的主要材料,但是由于焊接等一系列技术难题需要攻克,普通车企还不能把此类材料成熟的应用到汽车生产中。   2.镁合金   镁的密度约为铝的2/3,在实际应用的金属中是较轻的。镁的密度约为铝的2/3,在实际应用的金属中是较轻的。镁合金的吸振能力强、切削性能好、金属模铸造性能好,很适合制造汽车零件。  镁铸件在汽车上使用较早的实例是车轮轮辋。在汽车上应用镁合金的实例还有离合器壳体、离合器踏板、制动踏板固定支架、仪表板骨架、座椅、转向柱部件、转向盘轮芯、变速箱壳体、发动机悬置、气缸盖和气缸盖罩盖等。  由于镁制车身板件的应用,可以得到更好的车身操控,更佳的性能表现以及更经济的燃油成本,更轻的车身将在整体层面上提升车辆的性能。  镁合金在汽车上的应用虽然很早就开始展开,但是目前镁合金并没有广泛的推广开来,在制造加工方面,相比于铝制板材件,镁合金车身板件的成本要高出3至4倍。另外,由于镁合金板材的特殊性,在修复工艺方面或许与传统的钢铁板件存在一定差异。   3.高强度钢   高强度钢的应用成为了汽车轻量化技术重要发展方向。但受高强钢板材强度的提高,传统的冷冲压工艺在成型过程中容易产生破裂现象,无法满足高强度钢板的加工工艺要求。在无法满足成型条件的情况下,目前国际上逐渐研究超高强度钢板的热冲压成形技术。该技术是综合了成形、传热以及组织相变的一种新工艺,主要是利用高温奥氏体状态下,板料的塑性增加,屈服强度降低的特点,通过模具进行成形的工艺。但是热成型需要对工艺条件、金属相变、CAE分析技术进行深入研究,目前该技术被国外厂商垄断,国内发展缓慢。      当材料被冲压成形时,会变硬,不同的钢材,变硬的程度不同。一般高强度低合金钢只略有20MPa增加,不到10%。注意:双相钢的屈服强度有140MPa增加,增加了40%多!金属在成形过程中,会变得完全不同,完全不像冲压加工开始之前。这些钢材在受力后,屈服强度增加很多。材料较高的屈服应力加上加工硬化,等于流动应力的大大增加。因此,开裂、回弹、起皱、工件尺寸、模具磨损、微焊接磨损等成为了高强钢成型过程中的问题焦点。  基于高强钢的特点和特性,如果不能改变金属流动和减少摩擦,那么高强度钢(HSS)的开裂和质地不均性都可能引起部件报废率的上升。这种材料所具有的高千磅力每平方英寸(KSI)(测量屈变力的单位)、增强的回弹、加工硬化的倾向以及在升高的成型温度下运行对于模具来说都是一个挑战。  但在汽车轻量化材料中,高强度钢板价格低,具有优越的经济性。采用高强度钢板在等强度设计条件下可以减少板厚,但是车身零件选定钢板厚度大都以元件刚度为基准,因此实际板厚减少率不一定能达到钢板强度的增加率,不可能大幅度地减轻车重。高强度钢板在汽车上应用的目的主要有:增加构件的变形抗力,提高能量吸收能力和扩大弹性应变区。   由于运用高强度钢板的经济性和相对容易性,各国都在加速高强度钢和超高强度钢在汽车车身、底盘、悬架、转向等零部件上的运用。世界钢铁协会汽车分会提出了新一代钢铁汽车的想法:更多使用高强度钢板,车身的质量将比以前减轻35%。   4.塑料及非金属复合材料   塑料的应用同时满足降低整车重量和成本两方面的需求,因此是汽车使用的较多的非金属材料,相关技术也比较成熟。塑料具有比重小、耐腐蚀、隔音隔热、比强度高、吸收冲击能量、成本低、易加工、装饰效果好等诸多优点,不仅能减重降成本,而且对整车的安全性、舒适性和外观都有利。   世界汽车平均塑料用量早在2001年已达115kg,约占汽车总重量的8%~12%,并且这一比重不断提升。塑料广泛地应用于汽车的内外饰上,如仪表盘、侧围内侧板、扰流板、挡泥板、散热器格栅、翼子板等。今后重点开发方向是结构件、功能件、外装件的高性能塑料。     非金属复合材料主要是指碳纤维增强树脂基复合材料和有机纤维复合材料等。其密度小、耐腐蚀、耐疲劳、比强度和比刚度高、易成型、节能抗震等优点,目前主要应用于车身、车灯罩、保险杠等。   碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa也高于钢。但碳纤维材料也只是沿纤维轴方向表现出很高的强度,其耐冲击性却较差,容易损伤,所以在制造成为结构组件时往往利用其耐拉质轻的优势而避免去做承受侧面冲击的部分。目前,民用车中使用碳纤维材料结构并不多,多是集中在一些跑车上。但这终归只是富人的玩具,具有碳纤维单体壳结构的汽车往往价格十分昂贵。  碳纤维材料本身并不昂贵,然而要把碳纤维加工成适合车辆行驶、碰撞的成品才真正是其价值所在。  虽然碳纤维增强合成材料良好的形状既没有达到用化学制剂进行预处理的完美的菱形,也没有达到完美的坚固性,但是这种方法得到的材料强度仍然可以和钢媲美,关键在于重量只是钢材的二分之一。   碳纤维单体壳作为一种质量轻、强度大、安全性高的车身结构,被广泛应用于性能车中。虽然现在还无法在民用车中普及,但在解决了原材料问题之后,相信距离其技术下放的时刻已经不远了。   以上我们列举了一些材料在轻量化中的应用,对于采用轻质材料的零部件,还可以进行布局进一步分析和运动干涉分析等,使轻量化材料能够满足车身设计的各项要求。相信不断进步的科技和制造工艺会让轻量化有更多的延展空间。

碳纤维复合材料推动纯电动汽车轻量化

2019-01-03 10:44:25

碳纤维是由有机纤维经过一系列热处理转化而成,含碳量高于90%的无机高性能纤维,是一种力学性能优异的新材料,具有碳材料的固有本性特征,又兼备纺织纤维的柔软可加工型,是新一代增强纤维。近几年碳纤维复合材料在汽车领域中也大展拳脚,应用十分广泛。 碳纤维复合材料特性 汽车车身的轻量化主要从车身结构设计和材料的选择与替代两个方面着手。在材料轻量化方面,目前仍以高强度钢、镁、铝和塑料作为主要汽车材料组合,其中尤其以碳纤维最为出色,其优越性几乎可以完全替代钢材料。其中以树脂和金属为基体的复合材料在车身上的应用较为成熟,具有应用于车身制造的诸多优势。 (1) 具有较高的强度。碳纤维复合材料具有目前常用材料中最高的比模量和比强度,用其制成与高强度钢具有同等强度和刚度的构件时,重量可减轻70%左右。 (2)具有良好的抗疲劳性。碳纤维复合材料的抗疲劳性能极佳。由于在疲劳载荷作用下的断裂是材料内部裂纹扩展的结果,碳纤维复合材料中碳纤维与基体间的界面能有效阻止疲劳裂纹扩展,而外加载荷由增强纤维承担,因而疲劳强度极限比金属材料和其他非金属材料高很多。 (3)碰撞吸能性好。碳纤维复合材料是汽车金属材料最理想的替代材料,在碰撞中对能量的吸收率是铝和钢的4~5倍,减轻车身质量的同时还能保证不损失强度或刚度,保持防撞性能,极大地降低了轻量化带来的汽车安全系数降低的风险。 (4)制造工艺性好。碳纤维复合材料的工艺性和可设计性好,通过调整CFRP材料的形状、排布、含量,可满足构件的强度、刚度等性能要求,能用模具制造的构件可一次成型,减少紧固件和接头数目,可以大大提高材料利用率。 车身轻量化对续驶里程的影响 目前汽车车身重量的3/4是钢材,轻量化空间很大。研究表明,碳纤维增强复合材料车身质量仅172kg,而钢制车身为367.9kg,碳纤维增强复合材料轻量化效果达53%以上。 由于纯电动汽车受安装的动力电池的容量限制,其一次充电后的续驶里程过短,成为影响纯电动汽车推广使用的一个重要因素。如果用碳纤维复合材料来制造车身,将车身减轻的质量用于增加电池数量,在保持整车质量不变的情况下,可以大大提高续驶里程。 应用碳纤维复合材料可以极大地实现电动汽车轻量化来平衡电池组的重量,增加纯电动汽车的续驶里程。当然,蓄电池组的安装需要合适的空间,在不减小乘用空间的基础上,合理控制碳纤维复合材料轻量化程度,可增加蓄电池组容量,既保证一定的续驶里程,同时也避免过分CFRP化带来的的高成本问题。 碳纤维复合材料车身大规模应用前景 制约碳纤维复合材料大范围应用的主要因素包括性价比、供应商的结构和能力、汽车发展和产品环境等影响。同时它的生产和加工技术还不够成熟,应用和研发成本较高,相关部门缺乏一定的长远发展规划等。 电动汽车,尤其是纯电动汽车,对整车轻量化的迫切性比传统内燃机汽车更强烈。整车轻量化可以车身轻量化为突破口。迄今为止的研究表明,碳纤维复合材料是最理想的车身轻量化材料。将碳纤维车身用在纯电动汽车上,可以在一定程度上抵消目前动力蓄电池比能量不够的问题。

“绿色+轻量化”浪潮下的“镁”

2019-01-03 09:56:30

导读在刚刚结束的“2016中国工业产品生态(绿色)设计与绿色制造年会”上,中国工程院院士丁文江提出“镁合金是当前世界发展、应用最快的轻合金,镁材料对绿色产品开发和设计至关重要。”“绿色+轻量化”似乎在向人类展现不一样的“镁”。 在刚刚结束的“2016中国工业产品生态(绿色)设计与绿色制造年会”上,中国工程院院士丁文江提出“镁合金是当前世界发展、应用最快的轻合金,镁材料对绿色产品开发和设计至关重要。” 同时,我国工业制造领域正在加速由黑变绿。工信部节能与综合利用司司长高云虎说,到2020年,绿色发展理念要成为工业全领域全过程的普遍要求。 21世纪对材料提出了新要求:轻质、高强度、绿色。绿色发展是国际潮流所向、大势所趋。我国亦是多措并举构筑绿色制造体系。与此同时,轻量化趋势已经无法阻挡。以新能源汽车产业为例,为了解决新能源汽车续航里程短的问题,在能源效率短期很难实现较大突破的现实下,汽车轻量化逐渐引起产业关注。“绿色+轻量化”似乎在向人类展现不一样的“镁”。 1、据悉,世界铁、铝资源趋于贫化,使用年限不超过300年。镁含量高、分布广,包括菱镁矿、水氯镁石等约200种矿物,总储量约数百亿吨,海水中镁含量也极其丰富,废镁再生回收能耗比废铝低20%以上。我国是镁资源大国,具有储量、产量、出口量及成本最低四个世界第一。中国镁资源矿石类型全、分布广,且大中型矿床多,储量高度集中。根据全国矿产资源评价成果分析,中国的菱镁矿主要分布在12个省(自治区),分别是辽宁、山东、新疆、河北、西藏、四川、甘肃、安徽、青海、黑龙江、内蒙和安徽。 2、丁文江说,开发和使用镁合金,既可节能,又能降低资源消耗。镁是继铁、铝之后的第三大金属工程材料,被誉为21世纪最具开发和应用潜力的绿色金属。 镁比重轻,仅是铝的2/3,铁的1/4;强度高,是碳钢2倍;减震性好,阻尼性优于铸铁;抗冲击,切削力性能好,为铝和软钢的1/2;电磁屏蔽优良。 镁在航空航天、汽车、轨道交通、腐蚀防护等诸多领域都有极为广阔的前景,同时,在环保、节能减排领域也有着极其重要且长远的发展前景和意义。 3、丁文江还强调,镁可带来其他金属材料所无法比拟的轻量化、节能减排效益。镁铸造性能好、强度和重量比高、轻量化潜能大(与钢相比,可以减轻约55%,与铝相比,可以减轻25%-40%),回收利用率高达100%,可用性几乎不受限制。轻量化是航空航天最迫切的需求。目前,美欧启动了超轻型汽车项目,镁部件占到汽车重量的8%,到2018年汽车质量需减少20%。但从轻量化角度而言,我国镁材料还没有得到充分开发。 4、“在镁合金中加入稀土元素,可显著改善镁合金的力学、抗疲劳、导热、耐摩擦磨损及耐腐蚀性能,提高镁基生物医用材料生物相容性等。”丁文江说,我国稀土资源丰富,镁与稀土结合,有望形成“中国王牌”。 “绿色+轻量化”带来的不仅仅是材料的革新,更是产业链的重整和制造装备的需求激活。 近年来,镁产业在业内人的不断努力下,除冶炼工艺不断完善之外,加工技术也有了很多突破性的进展。但是,冶炼仍一直延续传统的“皮江法”,没有新的突破,而加工技术,由于晶体结构难于变形,所以一直以铸造为主。因此,绿色+轻量化下更要在镁应用基础研究方面加大投入,进一步挖掘镁材料的性能潜力,研究新技术、新工艺,研制开发镁制品成型所需的关键装备。 小结 “绿色+轻量化”浪潮下,镁迎来了其发展的重要机遇。一方面,作为21世纪最具开发和应用潜力的绿色金属,镁蕴藏着巨大的轻量化潜能;而另一方面,我国镁产业仍是小而散的发展格局,对于镁材料的精细加工和高效利用也存在一定差距。因此,如何利用我国的镁资源优势,将镁的资源优势转变为技术、经济优势,促进国民经济发展、增强我国镁衍业的国际竞争力,是摆在我们面前的迫切任务。

铝:轻量化的解决之道

2018-12-29 11:29:12

从汽车发明之初,铝就曾经介入过汽车的制造,尤其是在上世纪2、30年代以后,赛车运动的发展使得轻质的铝材越来越频繁地出现在车身之上。不过,铝虽然轻质而且易成型,但非常容易燃烧,损坏后难以恢复原形,所以一直没有在实际的大批量生产中得到推广。到了90年代中期,以奥迪为代表的欧洲汽车公司开始使用经过高科技处理过的铝材料制造车身,其结果是以A8这样庞大的车身,能够如中级车般的迅捷,但铝材料的固有缺点依然存在,其昂贵的成本更使之局限于豪华车领域。   与普通的铝材料不同,用来制造汽车的铝材是一种高科技的新材料,硬度比普通铝板高1.5倍,同时也具有良好的冲压加工性。这种材料在冲压加工时较软便于拉伸与裁剪,然后通过涂装即热处理,硬度会提高近1倍。虽然这类板材成本是钢板的2倍,但质量可减轻50%,并且点焊工作量也减少30%以上,同时还具有阻燃的作用,是一种十分理想的造车材料。在具体的车辆制造当中,以奥迪A8为例,使用所谓的全铝车身框架结构(ASF)——由铝挤压成型的多种盒形断面的梁构成车身框架,再覆盖上冲压加工制造成型的铝合金板,使车身质量减轻40%,刚度则提高60%,焊点减少40%,性能有了明显的提升。   采用铝材料的一大好处是安全性得到显著的提高。由于铝材的吸能性好,在碰撞中的安全性有明显的优势,汽车前部的变形区在碰撞时会产生皱折,能吸收大量的冲击力,从而保护了后面的乘坐区。除了板材的吸能作用之外,又由于整车自身质量的减轻,在碰撞时产生的动能也会减小,也能相应降低冲击力。其次,当然在于其明显减轻的自重,这样在相同的技术条件下,动力有了百分之三四十的增加,而且其灵活与精准的操控也是让行家特别赞誉的地方。此外,从节能环保与废弃材料的再利用方面铝车身也有十分明显的优势。   不过,铝材料本身依然会与少部分的钢混合起来使用,一些固有的缺陷也十分明显:首先是工艺复杂,需要良好的组织,甚至连生产装配线都与众不同——不能够利用传统的磁性吸力来运输转移大件的零配件。其次,其材质的延伸率依然比钢差,所以一旦发生受损、尤其是碰撞之类的事故,车外壳往往不能恢复原形,只能彻底更换新部件。然而,对于平时日常遭遇到的小擦碰而言,如此的维修方式代价可能过于昂贵了。最后,当然是整体成本比较高,让技术仅仅局限于A8、捷豹XJ以及路虎揽胜等高端车系。   现代汽车的轻量化技术发展迅速,近年来碳纤维以及各种新开发的高分子材料也越来越多地被引进到汽车之上,因此铝材也有进一步改进的需要——从现有的技术条件看,更硬更轻的新型高科技铝确实可能有着不错的实际应用前景,但其成本过高一直是困扰着铝替代钢材的最大问题。

我国汽车核心零部件轻量化技术路线图

2019-01-08 17:01:35

汽车是复杂的机械系统,通过对核心零部件进行轻量化结构优化设计和高强度钢、铝/镁合金、碳纤维复合材料等轻量化材料以及先进的制造成形工艺的应用,预计到2030年,以碳纤维混合车身为代表的轻量化零部件将占市场的40%。 发动机及传动系统核心零部件技术路线 发动机及传动系统核心零部件技术路线如图1所示。1.乘用车发动机缸盖及排气歧管模块化设计 发动机模块化设计是实现发动机轻量化的重要手段。在增压汽油发动机中,对发动机气缸盖与排气歧管进行模块化设计,一方面可以对排气歧管进行冷却,提高经济性,解决排气温度过高的可靠性问题;另一方面可以减小排气管法兰、螺栓等联接零件的尺寸,可大幅度降低整机质量。对于2L左右的汽油增压发动机可减小质量2——3kg,是降重的重要途径之一。 2.乘用车发动机气缸体 对铸铁气缸体采取保证铸造壁厚、减小壁厚公差、优化局部结构的方法,结合铸造工艺的改进进行轻量化。优化主轴承壁、缸体裙部、上下法兰面结构,可降重2%——3%; 通过拓扑分析优化主轴承盖结构,降重1%——3%;铸铝气缸体优先考虑采用压铸铝缸体的技术方案。在保证结构强度的情况下,做到结构较轻量化。主要的工作内容是解决铸铝缸体结构设计、压铸工艺等设计工艺难题,然后扩展应用。 3.曲轴 发动机曲轴主要采用主轴颈与连杆轴颈空心结构的铸造曲轴达到轻量化的目的,在结构上可以采用优化平衡块数量及外形尺寸、曲柄形状等措施进行轻量化优化设计。在材料上采用高强度球墨铸铁滚压曲轴,替代现有的锻钢曲轴。 4.凸轮轴 装配式空心凸轮轴是目前非常成熟的凸轮轴轻量化技术,可实现降重30%以上,已在国外发动机中广泛应用。 5.传动轴 传动轴长度较长时,传统钢制轴管因模态较低、无法满足NVH要求而只能做成两段。碳纤维轴管模态较高,只需做成一段即可,这样可以省掉一个万向节、轴承和中间支承,结构大大简化,重量也显著降低。碳纤维传动轴整体能够比传统钢制传动轴降重50%左右。 车身核心零部件轻量化技术路线图 对于承载式车身本体,轻量化技术路线方向之一是全铝车身,方向之二是钢铝混合车身,方向之三是以碳纤维为主的多材料混合车身。需要解决的问题是铝合金材料的制造、铝材/复合材料的性能测试与评价、铝材/碳纤维车身的性能(强度和安全等) 模拟、模具的制造技术和不同材料的连接技术。 对于非承载式车身本体,轻量化技术路线方向之一为碳纤维车身与塑料车身外覆盖件,方向之二为采用铝制车架。车身本体及车身核心零部件的轻量化技术路线如图2所示。在轻量化材料的应用上主要采用高强度钢、铝/镁合金和碳纤维复合材料。高强度钢主要用于车身内外板以及车身结构件,变形铝合金在车身零件及结构件的应用方面发展较快,如应用日益广泛的铝合金行李箱盖、发动机罩、后背门、保险杠横梁等。镁合金目前在车身上的使用主要集中在转向盘骨架、仪表板骨架、座椅骨架等,从成本和性能的综合考虑,可用于车身结构件的复合材料以树脂基碳纤维增强复合材料为优选。碳纤维复合材料在汽车上主要可应用于发动机罩、翼子板、车顶、行李箱、门板、底盘等结构件中。 在先进工艺上主要采用热成形技术、激光拼焊板技术、不等厚度轧制板/差厚板技术、辊压成形技术。热成形技术具有成形精度高、成形性能好等优点,已被广泛用于生产高强度的汽车保险杠、车门防撞杆、A柱、B柱、C柱以及车顶框架、中通道等安全件和结构件等。激光拼焊板技术可应用于车身侧框架、车门内板、风窗玻璃框架/前风窗框、轮罩板、地板、中间支柱(B柱)等,差厚板可以替代激光拼焊板,更适合制造梁类零部件,如通道加强板、前地板纵梁、后保险杠梁、后地板横梁等。辊压成形技术可合理设计型材的几何断面,提高承载能力,减轻零件重量。 底盘系统核心零部件技术路线图 汽车底盘分为四大部分:悬架系统、行驶系统、转向系统和制动系统。其核心零部件技术路线如图3所示。1.悬架系统 悬架系统控制臂主要采用铸铝、锻铝或碳纤维复合材料控制臂实现轻量化; 横向稳定杆主要采用空心或碳纤维复合材料横向稳定杆达到轻量化目标; 螺旋弹簧主要采用高强度钢空心螺旋弹簧或碳纤维复合材料螺旋弹簧实现轻量化。 2.行驶系统 行驶系统车轮主要采用铝合金铸旋、铝合金锻造、镁合金锻造或碳纤维复合材料车轮实现轻量化。 3.转向系统 转向系统主要采用电动助力转向系统及线控转向系统实现轻量化。对于采用铸铁材料的转向节可通过结构设计拓扑优化实现轻量化,或采用铸铝、锻铝及碳纤维复合材料转向节实现轻量化。 4.制动系统 制动系统集成化是未来制动系统轻量化的方向。可采用传统真空助力器、ESP、真空泵(真空度不足的条件下)组合的制动系统形式或传统真空助力器、ESP、真空泵组合的形式,少数车型采用无真空泵的液压助力器系统,或进一步采用ESP与液压助力器集成的制动系统。制动盘主要采用组合式制动盘实现轻量化,如钢盘帽或铝盘帽+陶瓷摩擦环制动盘。制动钳主要采用铝制制动钳实现轻量化。

汽车用铝合金材料

2018-12-29 11:29:07

汽车车身用铝合金材料主要包括2000系、5000系、6000系合金板材、型材、管材及高性能铸铝,不同受力部位采用不同型号的铝合金材料。     骨架部分:车身受力最大的部分,采用2000系或7000系材料,可热处理强化。     蒙皮部分:车身次要的受力部位,采用5000系或6000系材料。     车门部分:采用5000系或6000系材料。     底板部分:采用5000系或6000系材料。     内饰部分:采用1000系或5000系材料,无热处理强化。     座椅部分:采用2000系或6000系材料,可热处理强化。     铸件:采用高性能铸铝合金,可热处理强化。     铝合金板材主要有2000系、5000系和6000系合金。     2000系合金是一种热处理可强化的铝合金,具有优良的锻造性、较高的强度和良好的焊接性能,很好的烘烤强化效应,但其抗腐蚀性则比其他系列的铝合金差。目前,2036和2022合金已部分用于汽车车身板材。     5000系合金是一种热处理不可强化的铝合金,具有良好的抗腐蚀性和焊接性能,但退火状态下在加工变形时可能产生吕德斯线和延迟屈服,因此主要用于车身内板等形状复杂的部位。     6000系合金属于热处理可强化铝合金,具有较高的强度、较好的塑性和优良的耐腐蚀性。与钢板相比,6000系2T4态板材的屈服强度和抗拉强度相近,硬化系数甚至超过钢板。目前,6009、6010和6016铝合金由于其塑性好,并在成形后的喷漆烘烤过程中可实现人工时效而获得较高强度等特征,被用于汽车车身外板和内板。奥迪A8的车身板采用了本系铝合金。另外,为增强汽车的缓冲能力和增强抗疲劳强度,德国VAW、日本KOK、中国西南铝业均以此系合金为基础,研制和开发了高性能的汽车用铝板和铝型材。目前,6000系合金为车身板主力。

半挂车"伴铝"应和谐发展,轻量化"减肥" 更应注重健康!

2019-03-04 11:11:26

在当下运送场景中,“轻量化”俨然已成为职业开展的一种趋势,这种趋势的演化历经数十年,直到9.21五部委联合治超举动施行的迸发,使得这一趋势开展到一个新的高度。 不管货运从业者仍是主、挂车供应商好像达到一致性一致,那就是将轻量化进行究竟,那么,在带来下降运营本钱,进步功率的一起,“减肥”后的车辆还健康吗? 跟着新GB1589的正式施行,依托超载来获取赢利的运营方法逐步无法习惯商场,而经过轻量化车身来完成“多拉快跑”的年代正在一步步降临。因为能够合规合法地扩展运营赢利,确保厂商良性开展,货车“减肥”成为了新国标年代的关键词。 面临商场中五花八门的车辆,怎么选择轻量化半挂车的问题摆在每一位货车人眼前。咱们不由要问,货车终究靠什么方法来完成轻量化?轻量化的货车究竟靠不靠谱? 轻量化=偷工减料? 关于轻量化的半挂车,许多司机师傅仍是心存不少疑虑;车身变轻了,安全有确保吗?轻量化会不会是经过偷工减料完成的? ..... 的确,不扫除极个别的出产厂商,在寻求轻量化的路上采纳走捷径,为了商场竞争而节省本钱,一味的寻求自重轻,盲目的减轻车辆的自重。比方运用普通的钢材代替高强度钢,下降自重和本钱,带来的结果就是断大梁,货箱开裂等等。 这其实也就是“移花接木”或“偷工减料”,尽管本身分量轻了一些,但产品的“骨架”却松散了许多,太“软”不皮实,安全系数大大下降,在遇到冲击的时分不能确保行车的安全,轻则车辆作废,重则形成生命危险。 虽然“减掉的自重都是添加的货品分量,都是钱。”对出产供应商和运送厂商来说,在新国标规则的尺度下增量减重,增的是单车货运量,减的是自重。车辆轻了,不仅是在“轻”的方面进行考虑,更是货运功率以及办理模式的改变,这是物流厂商完成高效运营办理值得揣摩的一项课题。 需求警觉的是,“轻量化” 虽然是一种趋势,尤其在选购挂车时,用户仍是要审慎考虑,并不能一谓的寻求轻而轻量化,要知道轻量化也能够理解为是一种“减肥”车型,它的呈现仅仅投合一些特殊运送范畴,比方说快递范畴,精尖仪器范畴等等。而普通用户在运送商场中,对轻量化的需求,并不能过于依靠。所以说,轻量化仅仅代表一种需求,并不是有必要。

一种用于轻量化生产的锻造工艺

2019-01-08 17:01:35

研究人员试图在成型过程中直接将钢板和铝块连接起来,而不需要额外的连接步骤。 混合式复合锻造是靠前种将两种轻量化结构进行结合的工艺,即在钢板和块状金属之间形成一个材料结。而且根据所选金属的不同可以获得不同的材料性能,例如将轻质铝与高强钢进行连接。汉诺威综合生产研究所(IPH)与德国克劳斯塔尔工业大学(TU Clausthal)的焊接与加工研究所(ISAF)展开合作,正在开发一种新型的锻造工艺,以用于轻型汽车的制造。图为铝螺柱连接钢板。这是IPH研究人员成功设计地一种壳式连接。现在他们想要实现两部分之间的材料连接 研究人员的想法是在一个工艺步骤中实现钢板与高强铝螺柱的连接。在过去的生产过程中,首先需要将每个部件单独制备好,然后再将两个部件进行连接,譬如通过焊接固定螺柱。混合式复合锻造的初衷就是省去后续的连接步骤,同时使轻质部件的生产更加高效。在设计这种新型轻量化生产工艺时,汉诺威综合生产研究所和焊接与加工研究所面临着两个巨大的挑战:由于铝的熔点比钢低得多,所以接头成形工艺更为复杂。 此外,钢和铝的混合会导致脆性相的析出,从而使获得的连接材料强度降低,因此不适用于汽车制造工业。考虑到这个原因,研究人员尝试使用镀锌钢板与铝螺柱进行连接,发现锌能够牢固地将铝及钢连接在一起而不会产生脆性相 在“混合式复合锻造”的研究项目中,研究人员的任务是找出较合适的工艺条件——即确定出较佳温度、压力及速度,以保证两个部件能实现良好的成型及连接。他们还尝试确定该新型工艺是否同样适用于不同厚度的板材和不同类型的额螺柱。另一项任务就是确定连接区的承载能力以及连接成型后混合部分的可加工性。 未来,混合式复合锻造工艺可以应用于汽车和航空航天工业,以生产诸如纵梁、尾灯支架或货物捆扎环等零部件。轻质结构在汽车和航空航天领域具有举足轻重的地位:因为轻量化意味着更低的燃料消耗。

细数铝合金在汽车上的应用

2019-03-11 13:46:31

跟着环境污染和能源危机的日益加剧,减轻车重、下降油耗成了轿车行业绿色开展的重要方向。依据相关计算,乘用车的分量减轻10%,油耗将下降6%~8%。可见,轿车轻量化不光能够在必定程度上缓解能源危机,还能对环境污染的操控做出奉献,因而,轿车轻量化这一主题具有了十分严重的现实意义。        国际上最早把铝材运用的轿车上的是印度人。依据相关资料记载,1896年印度人率先用铝制作了轿车曲轴箱。20世纪前期,铝在奢华轿车和赛车上有了运用,如福特的Model T轿车就是铝制车身。车身的分量约为轿车总分量的30%,故车身的轻量化占有无足轻重的位置。        在轿车表里板上用铝合金板替代钢板可使车身减重约40%-50%;如选用铝合金掩盖件整车减重10%-15%,可见选用铝合金车身板的减重效果十分明显。        德国奥迪A8L型高级轿车的整个车身均选用铝材制作,如图1所示,结构选用立体结构式结构,掩盖件为铝板冲压而成。这种铝车身与钢车身比较,质量减轻30-50%,油耗减低5-8%。        图2为铝合金的分类状况。铝合金的分类和牌号相对比较复杂,轿车上运用的铝合金能够分为铸造铝合金和变形铝合金两大类。其间,铸造铝合金的运用量大约占了80%。                铸造铝合金具有优秀的铸造功能,能够依据运用意图、零件形状、尺度精度、数量、质量标准、机械功能等方面要求和经济效益挑选适宜的合金和适宜的铸造办法,首要用于制作发动机汽缸体、离合器壳体、转向器壳体、变速器、车轮、发动机结构、制动钳、油缸及制动盘等非发动机构件。        变形铝合金包含板材、箔材、揉捏材、锻件等,一般在轿车上首要用于制作车门、行李箱等车身面板、保险杠、发动机罩、车轮的轮辐、轮毂罩、制动器总成维护罩、车身构架、座位、车厢底板等结构件以及仪表板等装修件。        下面,就铝合金在轿车上的几个首要运用部位进行介绍:        一、铝汽缸体、汽缸盖        发动机的汽缸体、汽缸盖要求材料导热性好,耐蚀性高,铝合金正好能满意这些功能要求,故许多轿车公司发动机的汽缸体、汽缸盖多选用全铝型。如美国通用轿车公司选用全铝钢套,法国轿车的铝汽缸套已达100%,铝汽缸体达45%。在发动机中选用铝铸件的还有发动机活塞、活塞环、连杆等。因为活塞、连杆选用了铸铝件,减轻了分量,然后减轻发动机的振荡,下降了噪音,使发动机的燃油耗率下降,很契合轿车的开展趋势。        2012年,比亚迪317QA上市,该车选用全铝发动机,在确保发动机功能的一起,更能削减油耗。                二、引擎盖        引擎盖是影响行人头部损伤的要害部件,为了确保突发事件中行人的安全,对引擎盖的制作材料的功能有着较高的要求。要求其吸能才能高、强度弱等特性。        铝板吸能是钢板的两倍,这样有利于减轻磕碰过程中轿车对行人头部的损伤,对行人起到了较强的维护效果。现在,许多高端车上都选用了铝合金,并且全铝的SUV也现已呈现,运用铝合金制作引擎盖相对也比较广泛。        铝合金引擎盖逐步现已成为轿车行业的开展趋势,在被高端车选用后,也进一步在中低端车上得到了表现。马自达RX-8跑车上选用了维护行人头部的圆锥形防冲击铝合金引擎盖,该引擎盖的运用不光能够将行人头部碰击损害大大下降,还减轻了车重,更重要的是这种规划理念也是营销的一个严重的亮点。                三、铝车身        轿车工业的精华是轿车车身的制作,车身制作简直占用轿车制作公司投资总额的60%。据计算,轿车车身质量约占轿车总质量的30%左右,下降车身的分量对整车轻量化十分要害。        2006年全球整个轿车工业用于车身制作的铝合金总需求量达到了205万吨,用于车身的铝合金首要有2000系、5000系、6000系和7000系。现在简直一切的国际各大轿车公司都争相开发铝合金车身零部件或全铝车身,并且近期取得了明显成效。        2003年,捷豹第六代XJ初次选用全铝车身,正式敞开了全球车坛轻量化、高效能的新。2009年,捷豹第七代XJ诞生,其根据第二代航空技能-额定轻量化架构(Premium Lightweight Architecture,PLA)打造,经过铝镁合金的运用不断提高车身刚度及轻量化程度,然后成为其时同级竞争对手中“轻功”最了得的高手。               路虎新揽胜也选用全铝车身的结构,如图5所示,运用铝合金材料将车身上得方才悉数替换,该车车身的铆接选用了航天飞机工程标准,与之前的白车身比较,全铝白车身减重约为180kg,减重率高达39%,整车很多选用轻量化技能,减重达420kg。

未来的汽车将是铝合金的天下

2019-01-09 09:34:20

目前,汽车行业仍属于快速发展的时期,但却面临着环保和节能两种约束,所以,在这个以石化燃料为主的时代里,汽车的轻量化已是世界汽车发展的主要目标。对于汽车的轻量化,目前来看,可以分为三大主线,分别是车身轻量化、发动机轻量化、底盘轻量化,这三大主线的主要目的就是,保证性能的前提下通过使用更轻材料降低车重,从而实现节能环保之功能。   其实,较早出现的汽车是没有车身的,比如卡尔•奔驰和戈特利伯•戴姆勒发明的三轮和四轮汽车机车都是用马车改装的,并且多为木质结构。  直到20世纪,福特生产的T型厢式车出现之后,汽车才有了基本车身的造型,后来随着材料、冶炼、焊接、成型等技术的发展,汽车的设计和生产工艺也愈加成熟,但是人们发现,汽车的重量也越来越重,因为整个车身大部分材料都是由高强度钢拼接而成。   到了80年代,汽车车身的各分支技术朝着更系统深入的方向发展,在超高强度钢出现的同时,全铝车身等也开始出现。当然,这与20世纪70年代全球性的能源危机有着很大关系。彼时,汽车生产厂通过减少汽车整体质量、提升发动机效率、降低行驶阻力等方式改善燃油经济性。   铝合金的密度只有钢铁的1/3,这就有效的降低了汽车的整体质量。若汽车整车净质量降低10%,燃油效率可提高6%~8%;汽车整车质量每减少100kg,百公里油耗可降0.3L~0.6L。   由于铝材具有密度低、比强度高、抗蚀性强、易塑性加工与成形、表面,处理性能好、资源丰富、价格适中、回收再生效益高等优点,在世界汽车向着轻量化、高速、节能、安全、低污染、多功能、低成本、坚固耐用与乘坐舒适的发展进程中,备受工业界的青睐,其用量越来越多。   但是,全铝车身对铝合金薄板的性能要求是非常严格苛刻的,这也正是不能够大批量生产的原因。铝合金汽车车身薄板除有满足标准与规范的力学性能与抗腐蚀性能外,还应具备如下的性能:   1、良好的成形性:   车身及覆盖钣金件的成形加工是通过冲压成形的。因此,铝合金薄板应该有良好的成形性,即具有低的屈强比和高的成形极限(FLC,Forminglimitcurve)。   2、表面平整性强:   铝合金板必须有良好的翻边延性和成形以后表面色彩一致的性能,即成形的钣金件表面不出现罗平线(RopingLine),即滑移线。罗平线是由于晶粒不均或者是夹杂物分布不均而造成的板材表面变形不均,使表面会在喷漆后光彩不一致。   3、良好的可焊性:   良好的可焊性能可以满足汽车构件在成形后连接在一起进行焊接加工的要求。板材应具有抗时效稳定性,以确保从板材出厂到冲压生产之前不发生时效,防止冲压加工时材料的屈服点升高,诱发吕德斯带(Lude'szone)而产生的表面变形不均匀和起皱,影响汽车外板的表面品质。   4、优良的烘烤硬化性:   汽车轻量化还要求板材具有高的烘烤硬化性,即在冲压变形和喷漆烘烤之后板材的屈服强度有明显的升高,从而保证冲压喷漆后的钣金件有高的抗凹性,并要求铝合金板材的喷漆烘烤工艺和目前钢板冲压件的相容。   5、良好的锆/钛盐化学转化处理性能:   ABS在涂覆润滑剂之前都要经过表面处理,形成一层锆/钛盐处理体系转化膜,为吸附润滑剂创造良好的基底。这种处理液是环保型的,不含铬,主要由含钛、锆的金属盐、氟化物、硝酸盐和有机添加剂组成,通过浸渍、喷淋方式在ABS上形成转化膜。膜层主要由锆/钛盐、铝的氧化物、铝的氟化物及锆钛的络合物等组成。该种表面处理工艺操作简单,所获得的膜层与有机聚合物有很强的结合力。   然而,就现阶段而言,全铝车身结构的普及还需要一段时间,因为铝合金造车成本会很高。一是因为铝本身就比较贵,一些铝合金的价格甚至超过黄金,二是其生产工艺比较复杂,有很多的技术难点。也因此,亚洲车企们在车身轻量化方面另辟蹊径,深挖钢材潜力,它们正联手钢铁制造商开发质量更轻、强度更高的钢材,同时也采取了其它提升燃油经济性的措施,包括在不用对工厂进行大幅改动的前提下对传统的发动机及零部件进行升级。   日本车企采用铝材料的车型则基本限制在混动及豪华细分市场,例如雷克萨斯IS。本田为美国版雅阁及讴歌RLX开发了能够结合铝材和钢材生产部分零部件的技术,但铝材料的应用比例仍十分有限。   日产汽车去年宣布,计划拓展高强度钢材的应用,这种材料同传统钢材相比质量更轻,但强度更高,该公司的目标是从2017年开始,将新的量产车型中采用高强度钢材的零部件占比提高至20%。

汽车用铝合金材料具备的效应

2018-12-20 09:35:33

铝合金及其加工材由于具有一系列优良特性,诸如密度小、比强度和比刚度高、弹性好、抗冲击性能良好、耐腐蚀、耐磨、高导电、高导热、易表面着色、良好的加工成型性以及高的回收再生性等,因此,在工程领域内,铝一直被认为是“机会金属”或‘希望金属“,铝工业一直被认为“朝阳工业”。  早期,由于铝的价格较昂贵,在汽油既充足又便宜的年代,它被排斥在汽车工业和其它相关制造行业之外。但是,到1973年,由于石油危机的影响,这种观点被完全改变,为了节约能源、减少汽车尾气对空气的污染和保护日益恶化的臭氧层,铝合金材料才得以迅速地进入汽车领域,目前汽车零件的铝合金化程度正在与日俱增。  铝合金材料大量用于汽车工业,无论从汽车制造、汽车运营、废旧汽车回收等方面考虑,它都带来巨大的经济效益,而且随着汽车产量和社会保有量的增加,这种效应将更加明显。汽车用铝合金材料量增加后所带来的效应主要体现在以下几个方面:  (1)明显的减重效益  为了减轻汽车自重,一是改进汽车的结构设计,二是选用轻质材料(如铝合金、镁合金、塑料等)制造。到目前为止,前者已无太大的迥旋余地,因而汽车行业普遍注重于开发利用新的高强度钢材或铝、镁等合金材料。在轻质材料中,由于聚合物类的塑料制品在回收中又存在环境污染问题、镁合金材料的价格和安全性也限制了它的广泛应用。而铝合金材料由于有丰富的资源,随着电力工业的发展和铝冶炼工艺的改进,将使铝的产量迅速增加,成本相应下降,铝合金材料更兼有质轻(钢铁、铝、镁、塑料的密度分别为:7.8、2.7、1.74、1.1-1.2g/cm3)和良好的成型性、可焊性、抗蚀性、表面易着色性,而且铝合金材料的回收率约为80%,有60%的汽车用铝合金材料来自回收的废料,预计到2015年回收率可进一步提高到90%以上。理论上铝制汽车可以比钢制汽车减轻重量达30%-40%,其中铝质发动机可减重30%,铝散热器比铜的轻20%-40%,轿车车身的比钢材制品减重40%以上,汽车铝车轮可减重30%。因此,铝合金材料是汽车轻量化最理想的材料之一,见表1。  (2)可观的节能效果  减少燃油消耗的途径一般为:提高发动机效率(从设计着手),减少行驶阻力,改善传动机构效率及减轻汽车自重等,其中最有效的措施是减轻汽车自重,铝合金材料在汽车上的大量使用,正好满足这一点。  据资料介绍,一般车重每减轻1公斤则1升汽油可使汽车多行驶0.011公里,或者每运行1万公里就可节省汽油0.7公升,如果轿车用铝合金材料量达100公斤,那么每台轿车每年可节约汽油175升。预计到2012年,我国轿车的社会保有量将达10000?12000万辆,届时每年节省汽油1000亿升以上,节能效果十分可观的。  (3)减少大气污染,改善环境质量  汽车减重的同时,也减少了二氧化碳排放量(车重减少50%,CO2排放减少13%)。有人算了一笔帐,如果美国的轿车重量减轻25%,每天将节油75万桶,全年可减少二氧化碳排放量1.01亿吨,同时,氮气物、硫化物等的排放量也会相应减少,因而可大大减少环境污染,提高环境质量。  (4)有助于提高汽车的行驶性能,乘客的舒适性和安全性。  减轻车重可提高汽车的行驶性能,美国铝业协会提出,如果车重减轻25%,就可使汽车加速到60mph的时间从原来的10秒减少到6秒钟;使用铝合金车轮,使震动变小,可以使用更轻的反弹缓冲器;由于使用铝合金材料是在不减少汽车容积的情况下减轻汽车自重,减重效果为125%。因而使汽车更稳定,乘客空间变大,在受冲击时铝合金结构能吸收分散更多的能量;因而更具舒适性和安全性。

铝合金汽车板材和管材液压成形工艺

2018-12-29 11:29:07

普通冲压工艺加工铝合金表面质量差,成品率低(只有70%左右),不能满足车身零件高精度、高可靠性、高效率和低缺陷制造的要求。汽车车身零件的液压成形技术在欧美、日韩等发达国家的汽车产业中获得了大量应用,设备最高压力达到了400 MPa,加工出铝合金汽车发动机罩内外板、车门内外板及翼子板等覆盖件已装车应用。大型铝铸件、液压成形部件是奥迪A8的两项核心技术。铝合金汽车板材和管材液压成形工艺如图4。    与冲压工艺相比,液压成形工艺的优势如下     (1)减小毛坯尺寸,节约材料。     (2)提高成形极限,减少成形道次。     (3)零件的表面质量和尺寸精度大幅提高。     (4)降低配套模具数量和成本。     (5)减少后续机械加工和组装焊接量。     (6)可以成形形状复杂、变形程度大、整体性要求高的零件。     这项技术在国外已成为汽车轻量化的主流技术,并朝着集成化、快速化、大型化、精确化等方面发展。虽然国内在大吨位样机研制方面已经取得成功,如1 600 t和1 050 t板材液压成形设备,但是在国内推广应用铝板液压成形技术还存在着以下主要难点。     (1)基于铝板液压成形设计知识的欠缺。提供给设计人员的液压成形知识不系统、不全面,造成我国设计人员无法或根本不能够考虑到液压成形技术在轻量化结构件上的应用。     (2)面向液压成形技术的铝板材料成形性和零件质量控制体系的研究不足。多数面向普通冲压成形的铝板材料成形性和零件质量控制研究的结果并不适用于液压成形技术。     (3)诸多的工装模具及超高压液压源系统面向产业化的关键技术有待突破。     (4)以铝板液压成形为核心的全系统联动的装备研究不完善。由于上述原因,面向产业化的并联动作系统并未得到实际的应用,工装和模具开发成型难度大、调试周期长,因而成本较高,在国内车型仍鲜见应用。

高强铝合金在汽车工业中的应用

2018-12-27 14:45:30

世界汽车保有量与日俱增,正以巨大的影响力改变着人们的工作与生活,但随之而来的能源短缺、环境污染等一系列问题也日益突出。轻型、节能、环保、安全、舒适、低成本成为各汽车制造厂家追求的目标,尤其是节能和环保更是关系人类可持续发展的重大问题,节能减排已成为汽车工业界亟待解决的问题。  汽车轻量化的内涵是在保证汽车性能不受影响的前提下,既要有目标的减轻汽车自重,又要保证汽车行驶的安全性和舒适性等,同时使汽车本身的造价不被提高。  从汽车产品的整个生命周期看,油耗费用是汽车生命周期总费用的主体,占汽车生命周期费用的71%,汽车客户迫切希望降低油耗费用以节约后期的运行成本。由于汽车质量的大小影响到滚动阻力、爬坡阻力与加速阻力,因此汽车质量与其燃油消耗有着极为密切的关系。  据分析,降低油耗的主要方法有:减轻重量(轻量化)占50%,提高发动机效率占20%,降低行驶阻力占30%,其中最有效的方法是汽车轻量化。世界铝业协会提出的报告指出,汽车质量每减小10%,可降低6%~8%的油耗。  因此,在汽车设计中,轻量化是一个必须考虑的问题。汽车的轻量化不仅可以减小各种行驶阻力,降低燃油消耗,而且也有利于改善汽车的转向、加速、制动和排放等多方面的性能。我国发改委要求是2010年与2003年相比,乘用车新车的平均油耗要减少15%,要完成这个指标,没有轻量化是实现不了的。  应当指出,不仅乘用车要求轻量化,同样也适用于商用车。轻量化可改善燃油经济性,提高载货质量,商用车与乘用车同样具有明显的效果。同时,随着计重收费范围的扩大和油价不断上涨,载货车用户既要多承载,又要油耗少的呼声越来越高,各大卡车企业也正集中力量进行卡车轻量化研发。  汽车轻量化有很多的途径可以选择,但最直接、有效的方法莫过于应用新型轻质材料,使用密度小、强度高的轻质材料,如铝、镁合金、塑料聚合物材料、陶瓷材料等;使用同密度、同弹性模量而且工艺性能好的截面厚度较薄的高强度钢;使用基于新材料加工技术的轻量化结构用材,如连续挤压变截面型材、金属基复合材料板、激光焊接板材等。  其中,高强度铝合金的系列化商品化程度较高。如,奥迪公司生产的全铝A8轿车,采用铝合金挤压车架,质量降低了35%,抗扭强度增加了50%。  铝合金车轮、悬挂系统零件、车身、热交换器等。铝代替传统的钢铁制造汽车零部件,可使整车重量减轻30%-50%。在PNGV的进度计划中,用于车身的铝结构设计有几种方案,可减小质量达55%,并可以投入批量生产。  通用汽车公司在凯迪拉克的悬挂系统使用了铝合金部件,还加大了悬挂系统转向节的制造中以铝替代铸铁的规模。  福特公司使用了铝合金的制动盘,该制动盘质量仅为2.27kg,为原铸铁盘的1/3。  克莱斯勒公司的NeodLite车底盘由于使用了大量的铝合金部件,质量减轻了许多,如转向机万向节质量降低3kg,下控制臂降低2.6kg,转向机壳降低1.36kg,转向轴降低1.9kg等。  可见,铝合金在汽车工业中具有广阔的应用前景,尤其是超高强度铝合金更是凭借其优异的比强度在汽车工业的发展中占有举足轻重的作用。

汽车铝合金轮毂成型的五大工艺

2018-12-27 15:30:42

一、简介    轮毂又称轮圈,是轮胎内廓支撑轮胎的圆桶形的、中心装在轴上的金属部件。参数如下图所示:    图:轮毂部件参数示意图    二、按材质分类    轮毂按照材料主要分为钢轮毂和轻合金轮毂,而轻合金轮毂又以铝合金与镁合金产品为主。在今天的汽车市场中,钢质轮毂已不多见,大多数车型使用的都是铝合金轮毂,即轻合金轮毂。    图:AEZ轮毂(铝合金)    制造铝制轮毂所使用的铝合金材料包括A356、6061等。其中,A356被铸造铝制轮毂大量选用。A356铝合金具有比重小,耐侵蚀性好等特点,主要由铝、硅、镁、铁、锰、锌、铜、钛等金属元素组成,铝占92%左右,是一种技术成熟的铝合金材料。    图:制造铝合金轮毂的原材料A356铝锭    三、铝合金轮毂生产工艺    铝合金轮毂比钢轮毂更适合乘用车,目前其制造工艺基本可分为三种,第一种是铸造,目前大多数汽车厂商都选择使用铸造工艺。第二种是锻造,多用于高端跑车、高性能车以及高端改装市场。第三种较为特别,是最先由日本Enkei公司投入使用的MAT旋压技术,目前此技术在国内的应用不如前两种多。    1.重力铸造法    重力铸造简单的说,主要是靠铝水自身的重力来冲填铸模,是一种较为早期的铸造方法。    图:轮毂重力铸造示意图    该法成本低、工序简单且生产效率高,然而,浇注过程中夹杂物易卷入铸件,有时还会卷入气体,形成气孔缺陷。重力铸造生产的轮毂易产生缩孔缩松且内部质量较差,此外,铝液流动性的限制也有可能导致造型复杂的轮毂良品率低。因此,汽车轮毂制造业已经很少使用该工艺了。    2.低压铸造法    低压铸造是铝液在压力作用下充入模具,在有压力的情况下进行凝固结晶的工艺。同样的情况下,与重力铸造相比,低压铸造轮毂内部组织更为密实,强度更高。此外,低压铸造利用压力充型和补充,极大简化浇冒系统结构,使金属液收得率可达90%。目前低压铸造已成为铝轮毂生产的首选工艺,国内多数铝合金轮毂制造企业都采用此工艺生产。但低压铸造法也有其缺点:铸造时间较长,加料、换模具耗时长,设备投资多等。    轮毂低压铸造示意图    3.锻造法    热锻(Hot forging)→RM锻造(RM forging)→冷旋压(Cold spinning)→热处理(Heat treatment)→机加工(Machine work)→喷丸处理(Shot blast)→表面处理(Surface finishing)    锻造是固体到固体的变化,通过拍、压、锻等手段来形成轮毂样式,这个过程不会发生液相变化,都是固体变化。所以它的力学性能比铸造要高,具有强度高、抗蚀性好、尺寸精确等优点。晶粒流向与受力的方向一致,因此强度、韧性与疲劳强度均显着优于铸造铝轮毂。同时,锻造铝轮毂的典型伸长率为12%~17%,因而能很好的吸收道路的震动和应力。另外,锻造铝轮毂表面无气孔,因而具有很好的表面处理能力。    但是,锻造铝轮毂的最大缺点是生产工序多,生产成本比铸造的高得多。虽然锻造轮毂的性能更好,但汽车厂商在大部分车辆上还是主要使用铸造轮毂,只有少部分豪华车配备锻造轮毂。不过国内轮毂制造龙头企业中信戴卡已成功进入乘用车锻造轮毂生产线并将锻造轮毂的成本压缩到了千元,并已经开始作为原配轮毂供应国内合资厂。    4.挤压铸造法    挤压铸造也称为液态模锻,是集铸造和锻造特点于一体的工艺方法——将一定量的金属液体直接浇入敞开的金属型内,通过冲头以一定的压力作用于液体金属上,使之充填、成形和结晶凝固,并在结晶过程中产生一定量的塑性变形。优点:充型平稳,金属直接在压力下结晶凝固,所以铸件不会产生气孔、缩孔和缩松等铸造缺陷,且组织致密,机械性能比低压铸造件高且投资大大低于低压铸造法。缺点:与传统锻造产品一样,需要铣削加工来完成轮辐的造型。日本已有相当部分的汽车铝轮毂采用挤压铸造工艺生产,从浇注金属液到取出铸件整个过程都由计算机来控制,自动化程度非常高。目前世界各国都把挤压铸造作为汽车铝轮毂生产的方向之一。    图:轮毂挤压铸造工艺过程示意图    5.特种成型:MAT旋压技术    MAT旋压技术最先由日本Enkei公司投入使用,严格而言还应算是铸造中的一种,指的是在轮圈整体铸造出型后再利用专用设备对受力处进行旋转加压处理,使得被处理位置金属内部分子排列发生改变,具体的分割面相比起一般铸造产品呈现密度更高的纤维状,从而改变整体金属力学的工艺方法。MAT旋压技术制造的轮毂的质量、强度、延伸性等特性都已接近于锻造轮毂,且现对于锻造轮毂来说,更易生产。总的来说,MAT旋压技术既可相对保证轮毂制造成本,同时还可使铸造轮毂打造出与锻造轮毂相近的重量和强度。只是国内技术不成熟,成本较高,故应用不多。图:采用MAT旋压技术的Enkei Racing Revolution系列RS05RR轮毂

汽车铝合金下缸体压铸技术要点分析及缺陷应对

2019-01-09 09:33:47

近年来,节能减排已经成为了时代风潮,汽车轻量化也是大势所趋,在这两大背景之下,铝合金材料在汽车中的运用越发广泛,借助压铸成型的汽车零部件越来越多。作为轿车的核心部件,发动机缸体大多采用铝合金和铸铁为材料,其中压铸铝合金缸体得到了越来越多的认可,日韩和欧美的汽车公司大多都运用压铸铝合金缸体。   在缸体生产领域,普通砂型铸铁缸体具有工艺简单、成本低、刚性和耐热性好的优点,但也有一个缺点,那就是重量过大。如将缸体下方的曲轴和上方的缸套一分为二,下面使用铝合金而上面使用铸铁,就可一举两得,既减轻了缸体质量,又可保持铸铁缸体的优点。   下缸体,就是指经过这样一分为二之后发动机下部的曲轴部分。由于下缸体是厚壁零件,且壁厚差别大,因此压铸成型的难度非常大。我们借鉴国内外相关经验,针对一型1.5T发动机设计开发了一套下缸体压铸技术,试验非常成功。   1铝合金下缸体压铸难点   该铝合金下缸体铸件质量为8.4kg,轮廓尺寸为382mm×258mm×67mm,压铸质量为11.1kg,材质为A380,平均壁厚为7.2mm。由于下缸体与曲轴相连接,因此在底部还需要放置铸铁嵌件。   下缸体铸件压铸工艺复杂,其难点主要有如下几点:   靠前,铸件需要置入5件铸铁镶嵌件,铸铁镶嵌件要完美地镶嵌在铝合金铸件之上,不能发生分离的现象。   第二,下缸体铸件壁厚较薄处薄至2mm,较厚处厚达24mm,分布严重不均。   第三,由于镶嵌件两侧壁厚差别大,给铝合金液的流动充型带来了非常大的难度,同时也考验着其补缩能力。   第四,铝合金铸件容易发生气孔、缩孔、裂纹、缩松等缺陷,质量控制较难。   2铝合金下缸体压铸技术要点根据试验分析,我们认为下缸体的压铸生产技术要点主要有如下几点:   靠前,科学设计缸体压铸件的浇注系统,下缸体中间放置镶件位置为薄壁,上下部分为厚大部位,因此我们选择单侧浇注,这样一来,铝液可由底侧进料,流经中部镶件后抵达顶部。   第二,我们运用了齿形激冷排气块真空压铸,齿形激冷排气块与真空机合用可改善因两侧壁薄引发的流动性不足问题,确保了铸件品质良好。   第三,为提高铝合金液体与铸铁镶嵌件的润湿程度,我们进行了镶嵌件预热,这样不但保证了成型后铸铁件与铝合金不分离,还提高了铝液的流动性。   经过试验,我们获得的下缸体内部组织致密,且外观成型良好。在下缸体压铸过程之中,科学合理的工艺参数是获得高品质下缸体的保障。我们认为以下工艺参数是铸件成型的关键影响因素:   靠前,压铸温度。在压铸过程中,铝液温度应控制良好,因为温度过高或过低都不能取得良好的铸造效果,过高易导致缩孔及缩松,过低则容易引发充型不良。通常来说,铝液合理温度应在650——665℃之间,而模具喷涂后的温度应在150——200℃之间。   第二,镶嵌件温度。当镶嵌件达120——140℃时,铝液溢流槽侧的一边,这样可以改善内部品质。   第三,压铸快、慢压射速度和压力。应将快压射和慢压射速度分别控制在4m/s左右和0.22m/s左右,压力控制在70MPa左右。   第四,铝液品质。作为铸件的基础材料,铝液的品质决定了铸件的品质,因此要确保铝合金液品质,每包铝液都必须进行精炼除气处理,避免污染。   3铝合金下缸体压铸缺陷及应对   在铸件成型之后,我们对铸件进行X射线检测,发现铸件存在一些内部缺陷,诸如缩孔、气孔、缩松等。为了改善缺陷,提高品质,我们提出了相应对策,其主要方向如下:   靠前,改进溢流槽结构。溢流槽具有排除型腔中的气体、储存混有气体、转移缩孔/缩松部位等作用。经过反复试验研究,我们发现可以采用延长和增设溢流槽等手段改善缩孔、气孔等缺陷。由于铸件中部缩松现象较多,溢流口如设置于大平面上,填充压力将受到影响,所以通常选择竖形溢流口。   第二,优化模具冷却系统。铸件缩孔一般会在局部温度过高或壁厚过大的位置上出现。通过研究我们发现,两侧壁厚较大的地方温度偏高,易引发缩孔。由于较初选用的较小点冷管直径为12mm,无法有效冷却上述位置,因此,我们对冷却水管结构进行了改进,运用了高压冷却设备和内径4mm的不锈钢点冷管。我们将铸件两侧中部的模具型芯冷却至180℃左右,大幅减少了缩孔现象,大大提高了铸件的品质。   第三,改善镶嵌件分离现象。针对镶嵌件与铝合金铸件间存在的分离现象,我们采取了以下手段:首先,使用稀释剂对镶嵌件进行清洗,提高润湿性;其次,对镶嵌件实行定位孔检查和外观检查,用钢丝对部分锈斑镶嵌件除斑;其三,对镶嵌件进行预热试验,研究发现,当温度达到120℃以上时,可有效解决镶嵌件分离问题。

汽车铝合金压铸件运用异种材料接合技术

2018-12-28 09:57:14

异种材料接合技术用于汽车铝合金压铸件不用粘合剂也不用连接件就能将异种材料牢固接合在一起的异种材料接合技术,其适用材料的种类正在不断扩大。   开发出了直接接合树脂与金属的“AMALPHA”技术的日本MEC公司,将该技术适用的树脂材料由原来的5种增加到了17种。金属方面,除了铝合金锻造材料之外,还可接合铝合金压铸材料。增加了铝合金压铸材料之后,该技术有望快速推广到使用压铸件较多的汽车领域。   目标是“可用于任何部位”   而金属方面以前只有铝合金、不锈钢(SUS)和铜(Cu)3种材料,现在还可接合铝合金压铸材料。   表中的记号表示接合条件和接合强度。◎表示可通过射出成型进行接合,在拉伸试验中,接合面未脱落而树脂被破坏(母材破坏)。○表示热压焊接,在拉伸试验中母材破坏。△表示通过射出成型或热压进行接合,但接合强度低,在1MPa左右的强度下,接合面就有可能脱落。“─”表示尚未测试。也就是说,标记为◎或○的树脂与金属可直接牢固接合。   在金属表面形成凹部   树脂与金属的接合利用的是可形成物理性接合的“锚固效应”。其原理是,在金属表面开一些微细的小孔,向其中浇注熔融树脂,等树脂冷却凝固,树脂就像锚一样钩在孔上,拔不下来了。   接合工艺如下。首先,将金属浸入脱脂液,去掉金属表面附着的加工油和锈等。第二步是将金属浸入蚀刻液(表面粗化剂),使金属表面粗化,形成一些微细的小孔。然后将金属浸入酸性溶液中,冲掉金属表面析出的副产物(污物),再水洗、干燥。最后,通过射出成型、树脂传递成型、热压成型等方法将熔融树脂注入表面开孔的金属。树脂凝固后,就制成了树脂与金属的接合品。

铝合金在汽车零部件中的应用

2019-01-15 09:49:29

目前,汽车工业已成为中国的支柱产业,尤其在2000年以后,中国汽车工业已进入快车道,并已成世界汽车生产大国和世界上较有潜力的消费市场。2007年,我国汽车总产量达到888万辆,同比增长22%。在基数越来越高的基础上实现长达连续9年的两位数增长;中国汽车内需达到842万辆,增长20.2%。与产量一样,在基数越来越高的基础上实现连续9年两位数增长。   汽车工业的发展,汽车保有量的增大,在促进我国制造业发展和给人们生活带来方便的同时,也产生了油耗、排放和安全三大问题;轻量化是汽车工业节能减排的重要手段而轻量化必然导致铝合金在汽车上的大量应用。典型的铝质零件一次减重效果可达30-40%,二次减重则可进一步提高到50%。2006年欧美日的小汽车平均用铝量已经达到127 kg/辆。欧洲铝协(EAA)预测,在2015年前,欧洲小汽车用铝量将增至300kg/辆,如果轿车的零部件,凡是可用铝合金制造的都用其代替,那么每辆车的平均用铝量将达到454kg,轻量化的效果将大大提高。汽车重量每减轻10%,较多可实现节油8%。每使用1kg铝,可使轿车寿命期减少20kg尾气排放。   同时,铝是绿色环保材料,易回收,可循环回收。采用铝所节省的能量是生产该零件所用原铝耗能的6-12倍。   国内B级车,C级车以及跑轿车的相继研发和上市,这为铝合金在汽车轻量化的应用提供了一很好的市场和应用基础,同时汽车铝合金的应用也为国内B级车,C级车以及整个行业提供了一个技术升级的前提。目前应用于汽车的铝合金包括:车身覆盖件的铝合金板材;铸铝件;挤压型材;锻造铝合金;铝线材/铝合金复合材料等其他应用。

汽车铝合金轮毂制造新工艺液态模锻的应用

2019-01-02 15:29:20

一、引言     铝合金轮毂是钢质轮毂的换代产品,它具有质量轻、导热快、美观华贵、节能安全等优点,目前国内外已广泛应用于轿车及其它轻型客车上。随着我国汽车工业的快速发展以及国外配件需求量的增加,市场容量十分可观。目前国内外制造铝合金轮毂的方法主要分为两大类:一类是锻造法,其中国外最先进的工艺是由连铸工序和三个锻造工序组成,该法虽然质量好,但成品率只有50%左右,价格昂贵。另一类是铸造法,分重力铸造和低压铸造。重力铸造法产品中缩孔、疏松、气孔等缺陷严重,机械强度低,成品率低,国外已经淘汰。目前国内外大多采用低压铸造法,该法产品质量和成品率都有一定提高,但工艺复杂,设备投资太大,从国外引进年产30万件的设备需投资亿元以上。采用液态模锻法,使铝合金在高压下结晶,并在结晶过程中产生一定量的变形,消除了缩孔、疏松、气孔等缺陷,产品既具有接近锻件的优良机械性能,又有精铸件一次精密成型的高效率、高精度,且投资大大低于低压铸造法。     二、轮毂的工艺特点及工艺关键     轮毂是一个类似一个较浅的杯形件,壁较薄,壁厚基本均匀,轮缘直径较大,高度适中,基本适合液态模锻工艺。制造的主要困难在于采用直接液态模锻法时,轮缘与原浇注液面之间容易形成较深的冷隔,必须采取措施避免。     影响工件内部结晶质量及力学性能的关键是温度场与应力场的控制,而影响温度场的因素又较多,因此必须通过试验和计算找到比较理想的温度——时间曲线。而应力场直接关系到工件中缩孔、疏松、气孔等缺陷的消除,必须确定合适的应力场分布,为获得高质量的工件打下基础。     三、模具设计及成形条件的确定     1.模具设计     考虑到工件表面可能出现夹杂等缺陷,厚度尺寸必须留有一定的机加工余量,所以在零件图厚度尺寸上单边加放0.5mm,并取拔模斜度1.5°,绘出锻件图。以该图为依据设计模具。根据工件的结构特点,必须采取直接液态模锻法,凹模采取垂直分型面,以便工件出模。采用垂直分模就必须有水平方向锁紧装置,考虑到设备条件限制,因此采用锥形护环锁紧装置,见图2中件3。工作时,在件4、6、8组成的凹模中浇注金属后,上模下行,件3首先压紧件4、8形成锁模,随后凸模6加压成形,保压后,凸模6随上模上行,件3在弹簧作用下仍压紧4、8,以便凸模脱模,弹簧压紧力应大于凸模脱模力,最后件2带动件3上行,件4、8分开取出工件。由于是试验模具,导向主要靠设备导向。合模行程由加压力控制,这样可能会给轮辐部分厚度尺寸带来误差,但并不影响试验效果却大大简化了定量浇注装置。     2.成形工艺条件的确定     (1)铝合金的熔炼及模具准备     轮毂工作时承受较大的冲击载荷,常用铝—硅合金制造。选用ZL107合金,电炉熔炼,以便比较准确地控制熔炼温度,并最好进行精炼除气处理。由于金属充填距离较长,为了增加充填性,浇注温度提高到730℃,模具工作前应预热到310℃,采用电阻丝加热,预热同时涂润滑剂,以便顺利脱模。采用石墨机油为润滑剂,为了保证均匀,最好采用喷涂。浇注温度与模具温度太高,会使工件表面粗糙甚至粘焊,温度过低,金属冷却太快,给充填成形造成困难。    (2)浇注与加压     液态模锻时没有浇口和冒口,所以要比较精确地定量浇注。采用漏斗浇注,漏斗需加热至与金属液相近的温度,进行“底注”,以避免金属液喷溅到模具上造成缺陷。      由于工件平面尺寸较大,散热较快,要在尽可能短的时间内浇注完毕,大型液压机速度较慢,快速下行转入工作加压需要一定时间,所以浇注后让凸模尽快下行,使开始加压时间控制在5~8s,加压速度在0.1m/s左右。速度太快会使金属液向外喷溅,造成浇不足。加压压力要大于100MPa,这是由于轮缘有一定高度,压力太低,会在轮缘与轮辐的连接部分压力不足,机械性能较差。保压时间约10s,冷却时间在15~20s,保压冷却时间太长,工件温度过低,会使脱模力大幅度增加,脱模困难甚至造成工件收缩破裂。     3.环形冷隔的处理     直接液态模锻时部分金属液上移充型,它与原金属液面之间形成一圈冷隔,这种冷隔有时是难以避免的,提高浇注温度与模具预热温度,缩短开始加压时间后,冷隔有所减轻,但无法完全避免,仍有1~1.5mm深冷隔,如图3所示。为此,在模具上冷隔形成的高度开一个R2的半圆弧,使冷隔形成在突起的圆弧上,在机加工工序切除,这样就完全消除了冷隔的影响。     四、轮毂机械性能的检测     为了检测轮毂的机械性能,首先对其进行热处理,热处理条件为515±5℃保温6h淬火,175±5℃保温6h回火,并加工成试件。     五、结论     (1)汽车铝合金轮毂的液态模锻工艺可行,产品性能优于目前的制造方法。      (2)该工艺设备简单、投资小,材料利用率高,产品成本低。      (3)工艺过程容易实现自动化,适于汽车配件的批量生产。     参考文献     [1]上海交通大学.液态模锻.北京:国防工业出版社,1981.      [2]齐胚骧.挤压铸造.北京:国防工业出版社,1984.      [3]周大隽等.液态模锻技术的应用及新发展.锻压技术,1993,18(5).      [4]大泽佳郎.汽车铝合金锻件现状.锻压技术.1993,18(6).