您所在的位置: 上海有色 > 有色金属产品库 > 铝合金t4热处理 > 铝合金t4热处理百科

铝合金t4热处理百科

铝T6与T4的区别

2018-12-29 09:42:59

T6是淬火以后人工时效,基本上6061是在200多度保持4个小时以上,T4是淬火以后自然时效,放在空气中间一段时间。由于时效目的是使强度变大,所以一般T6价格还有强度会比T4的高!

铝合金热处理技术

2018-12-28 15:58:44

1、铝合金热处理原理   铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。   2、铝合金热处理特点   众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。   3、铝合金时效强化原理   铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。   铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。   硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。   沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。

航空铝合金热处理技术

2019-01-09 09:34:01

随着交通技术的发展,铝合金以质量轻、强度高、加工方便等特点,在航空材料上得以广泛应用,铝合金的有效应用减轻了飞机的结构重量,改善飞行性能并增加了经济效益,因此航空铝合金技术也得到更多的关注,本期小编就带大家了解下航空铝合金热处理技术: 铝合金热处理以空气循环电炉代替硝盐炉 传统热处理采用硝盐炉加热,存在环境污染严重、能源消耗和浪费较大的缺点,而空气循环电炉具有启动快、节能效果好的优势,淬火转移时间快并可调,满足不同铝合金零件的要求。空气循环电炉加热后固溶淬火对冷却介质无污染,有利于推广使用有机淬火介质,减少热处理畸变,提高生产效率。 空气循环电炉的关键技术是如何保证炉温均匀性(±3~±5℃),特别是大尺寸的炉子要求,如何满足较低温度(100~150℃)的炉温均匀性要求。第二个关键技术在于如何保证迅速的淬火转移时间,并且可以根据零件不同要求进行调整和控制。 有机淬火介质 铝合金淬火介质常用的是水或热水,但对于热处理变形较大或变形要术较严的情况,热水不能满足要求,必须选用有机淬火介质水溶液。在空气循环电炉上使用有机淬火介质水溶液代替水,减少铝合金热处理变形和钣金件校正工时50%以上。 电导率检测 铝合金材料用于飞机制造以来,一直采用抗拉试验或硬度试验来检测铝合金热处理质量。由于铝合金热处理后,在一个强度(硬度)值下,可能有两个不同状态,反之在一个状态下,可能有两个不同的强度(硬度)值。因此,只用硬度或强度来控制铝合金热处理后的质量是一种落后的检测方法,不能完全确保质量。 电导率检测具有方便快捷,工作效率高,且基本不受被检件形状、重量等条件限制,对零件无损伤的独有优势。自八十年代以来,电导率检测在国内也逐渐被广泛地应用到铝合金材料/零件的热处理状态检验中。在GB/T12966—1991《铝合金电导率涡流测试方法》标准中,给出了测试方法,GJB2894一l997《铝合金电导率和硬度要求》,明确了电导率和硬度值要求。

铝合金铸件T6热处理工艺程序

2019-01-10 11:46:21

铝合金T6处理是固溶处理加人工时效处理,不同成分的铝合金只要热处理是固溶处理加人工时效处理就可以称为T6处理,表明其热处理状态。    铝合金铸件T6热处理工艺程序:加热-保温-淬火-时效。    热处理前的准备(设备:铝合金固溶(淬火)炉):    1、热处理前应检查热处理设备、控制系统及仪表等是否正常。    2、铸件在装炉前应干燥无油污,赃物、易爆,等处理的铸件应按合得奖号、外廓尺寸、铸件壁厚及热处理规范进行分类,不同牌号不应相混装炉。    3、形状易产生翘曲的铸件应放在专用的底盘或支架上,不允许有悬空的悬臂部分,大型铸件应单个放在专用架上装炉。    4、检查铸件性能的单铸或辅铸试棒应随零件一起同炉热处理,以决定反映铸件的性能。    加热及保温:    1、加热到设定温度后在保温期间应随时检查、校正炉膛各处温度(?℃),防止局部高温或烧化。    2、在断电后短时间不能恢复时,应将在保温中的铸件迅速出炉淬火,等恢复正常后,再装炉、保温和进行热处理,其总的保温时间应稍许延长。    出炉冷却:    1、保温结束后,打开炉门放下料筐将铸件迅速降落到水池中,淬入规定冷却介质中冷却。    2、淬火转移时间是指从铸件出炉到铸件全部淬入介质中,总的时间较好不超过15s。    铸件变形的校正:    1铸件变形应在淬火后立即校正,矫正模具和工具应在淬火前事先准备。    2根据铸件特点和变形情况选择相应的矫正方法,矫正时用力不宜过猛,要缓慢均匀。    时效操作:(设备:铝合金时效炉):    1、需进行人工时效的铸件,应在淬火后尽快进行0.5h内进行时效处理。可将淬火后的料筐直接推到时效炉内,但产品的温度不得超过时效温度。    2、将自动控温仪表定温,然后送电加热,开动风扇。    3、保温时间到后,断开电源。

铝合金热处理的目的

2018-09-30 10:44:05

铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1、消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2、提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3、稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4、消除晶间和成分偏析,使组织均匀化。

铝合金热处理原理和特点

2018-12-29 09:42:49

铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。   众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。

铝合金热处理原理及特点

2018-12-28 15:58:46

1、铝合金热处理原理   铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。   2、铝合金热处理特点   众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。

铜合金热处理

2017-06-06 17:50:05

铸造铜合金热处理工艺热处理操作要点:1 加热速度:铜合金虽有良好的导热性,但为了防止铸件表面晶粒粗化和厚截面铸件内部产生过大的热应力,加热和冷却速度都要控制适当,并使之均匀加热和冷却。2 温度控制:某些铜合金的固溶处理温度很接近其固相线温度,容易产生过热和过烧,应当精确的控制热处理温度。谇火转移速度对可热处理强化的铜合金的性能有较大的影响,因此要求固溶处理后迅速谇火。3 防止变形:铍青铜等时效处理时,伴随着产生较大的体积应变,容易产生翘曲和变形,为减少变形,时效处理可分为两阶段进行,即先在200-250摄氏度保温一段时间后再升到规定的时效温度;也可以采取较高的时效温度,也可以采取较高的时效温度,即轻度过时效。4 防止裂纹:沉淀强化铜合金存在热处理开裂倾向,其原因是在严重过时效情况下,部分强化在晶界上析出并长大,产生了相变应力而导致沿晶开裂。主要防止办法是在不影响合金力学性能的条件下,将合金化元素的成分范围向中下线控制,时效处理时严格控制时效温度和时间。

2A12铝合金热处理规范

2018-12-20 11:10:23

1)均匀化退火:加热480~495℃;保温12~14h;炉冷。  2)完全退火:加热390~430℃;保温时间30~120min;炉冷至300℃,空冷。  3)快速退火:加热350~370℃;保温时间为30~120min;空冷。  4)淬火和时效:淬火495~505℃,水冷;人工时效185~195℃,6~12h,空冷;自然时效:室温96h。

铝合金的热处理 ---铝青铜

2019-05-30 20:05:29

 铝合金的热处理一、鍊度符号 : 若增加合金元素尚缺乏於彻底符合要求,尚须藉冷制作、淬水、时效  处理及软烧等处理,以获取所需求的强度及功能。这些处理的进程称之为调质,调质的成果就是鍊度。鍊度符号 定 义F 制作状况的鍊度无特定鍊度下制作的制品,如揉捏、热轧、铸造品等。H112 未故意操控制作硬化程度的制作状况制品,但须确保机械性质。O 软烧鍊度彻底再结晶并且最软状况。如系热处理合金,则须从软烧温度缓慢冷却,彻底避免淬水效果。H 制作硬化的鍊度H1n:施以冷制作而制作硬化者H2n:经制作硬化后再施以适度的软烧处理H3n:经制作硬化后再施以安靖化处理n以1~9的数字表明制作硬化的程度n=2 表明1/4硬质n=4 表明1/2硬质n=6 表明3/4硬质n=8 表明硬质n=9 表明超硬质T T1: 高温制作冷却后天然时效。挤型从热制作后急速冷却,再经常温十效硬化处理。亦可施以不影响强度的纠正制作,这种调质合适於热制作后冷却便有淬水效果的合金如:6063。T3: 溶体化处理后经冷制作的意图在进步强度、平整度及尺度精度。T36: T3经6%冷制作者。T361: 冷制作度较T3大者。T4: 溶体化处理后经天然时效处理。T5: 热制作后急冷再施以人工时效处理。人工时效处理的意图在进步材料的机械性质及尺度的安靖性适用於热制作冷却便有淬水效果的合金如:6063。T6: 溶体化处理后施以人工时效处理。此为热处理合金代表性的热处理,无须施以冷制作便能取得优胜的强度。於溶体化处理后为进步尺度精度或纠正而施以冷制作,如不确保更高的强度时,亦可当作是T6鍊度。T61: 溶体化处理后施以温水淬水再经人工时效处理,温水淬水的意图在避免发作变形。T7: 溶体化处理后施以安靖化处理(亦及人工时效处理的温度或时刻较T6处理高或长)。其意图在改进耐硬力腐蚀裂及避免淬水时发作变形。T7352: 溶体化处理后除掉剩余应力再施以过时效处理(亦及人工 时效处理的温度或时刻较T6处理高或长)。意图在改进耐硬力腐蚀裂。於溶体化处理后施以1~5%永久变形的紧缩制作,以消除剩余应力。

6063铝合金物理性能(6063-T4)

2019-01-02 09:41:28

拉长系数 标准拉长系数 psi 25000MPa, N/mm2 172最大拉长系数 psiMPa, N/mm2最小拉长系数 psi 19000MPa, N/mm2 131屈张度 标准屈张度 psi 13000MPa, N/mm2 90最大屈张度 psiMPa, N/mm2最小屈张度 psi 10000MPa, N/mm2 69Elongation 标准延长率 % in 2 inches specimen 22最小延长率 % in 2 inches specimen 14硬度 勃氏硬度 500 kg load 10mm ball最高切断强度 ksiMPa, N/mm2耐疲劳度 ksiMPa, N/mm2弹性系数 ksi x 103 10GPa, N/mm2 69

铝合金轴套的热处理工艺详解

2019-01-15 09:49:09

轴套的热处理工艺:    轴套是齿轮泵的主要零件之一,装在高速运转的齿轮两端起轴承支撑作用。它必须有足够的强度和良好的耐磨性。为了保证零件的性能要求,我厂采用非标准铝锡合金,Cu的作用是强化基体。Sn可形成较软的低熔点Al-Sn共晶体,增加耐磨性。原热处理工艺为515℃固溶6h水冷,180℃时效8h空冷。这种工艺存在两个问题:    (1)Al-Sn共晶体过烧加入锡形成含锡为99.5%的Al-Sn共晶体,其熔点为229℃。当工件加热到515℃时,Al-Sn共晶体过烧,淬火冷却时形成复熔球团。在形成复熔球团过程中,一方面晶界氧化,使晶粒强度下降,另一方面又产生了许多显微空隙,使晶粒界面能增加,金属的强度降低,在使用过程中易过早失效。    (2)工艺生产时间长,达16h之多,生产效率低,能耗大。    由金相观察和力学性能试验数据可以看出,250℃×7h处理工艺比较理想。Al-Sn共晶体呈断网状沿晶界分布,一方面Al-Sn共晶体分布比较均匀,保证有良好的耐磨性,另一方面Al-Sn共晶体没有分割基体,使合金有较好的塑性和韧性。采用250℃×7h处理工艺可以得到较高硬度,是因为该合金含Cu量较少,金属模冷却速度快,在铸造冷却过程中,已保证Cu熔入固溶体,起到了淬火作用。通过自然时效提高了硬度,也证明了这一点。250℃×7h空冷工艺比515℃×6h水冷+180℃×8h空冷工艺的抗拉强度提高47%。250℃×7h空冷工艺温度稍高于Al-Sn共晶体的熔点,是为了在不使共晶体过烧的前提下,通过较短的保温时间得到Al-Sn共晶体的断网状分布。在工艺试验的基础上进行了小批量(400件)试生产,经硬度、金相检查和试验台做产品出厂试验,均全部合格。该工艺于1996年正式投产至今,已生产轴套几十万只,全部合格。工效提高1.3倍,一年可节约资金约7万元,节电超过8万kW.h。

2024t4铝棒

2017-06-06 17:50:11

2024t4铝棒被广泛应用在航空器结构上,尤其是机翼与机身结构下的受到张力的地方。    T 热处理状态(不同于F、O、H状态) 适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。T代号后面必须跟有一位或多位阿拉伯数字。在T字后面的第一位数字表示热处理基本类型(从1~10),其后各位数字表示在热处理细节方面有所变化。如 6061—T 62 ;5083—H 343等。 T4—固溶处理后自然时效。    2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件。    各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金 价格 便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 2.5的F-15高性能战斗机仅使用35.5%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。     航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合金。     了解更多有关2024t4铝棒的信息,请关注上海 有色 网。 

2024-t4铝棒

2017-06-06 17:50:11

2024-t4铝棒有高强度和好疲劳强度。    各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金 价格 便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 2.5的F-15高性能战斗机仅使用35.5%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。     航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合金。    T 热处理状态(不同于F、O、H状态) 适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。T代号后面必须跟有一位或多位阿拉伯数字。在T字后面的第一位数字表示热处理基本类型(从1~10),其后各位数字表示在热处理细节方面有所变化。如 6061—T 62 ;5083—H 343等。 T4—固溶处理后自然时效。    2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件。    了解更多有关2024-t4铝棒的信息,请关注上海 有色 网。 

紫铜 热处理

2017-06-06 17:50:12

紫铜本身弹性太差,紫铜热处理的作用就是使紫铜有良好的弹性。紫铜热处理最常见的缺陷就是粘带和氢脆,退火温度一般为500度到600度之间,时间要因退件的性能厚度确定,加热3.5小时,保温4-6小时,冷却8-10小时。紫铜 因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的 产量 超过了其他各类铜合金的总 产量 。紫铜的用途比纯铁广泛得多,每年有50%的铜被电解提纯为纯铜,用于电气工业。这里所说的紫铜,确实要非常纯,含铜达99.95%以上才行。极少量的杂质,特别是磷、砷、铝等,会大大降低铜的导电率。铜中含氧(炼铜时容易混入少量氧)对导电率影响很大,用于电气工业的铜一般都必须是无氧铜。另外,铅、锑、铋等杂质会使铜的结晶不能结合在一起,造成热脆,也会影响纯铜的加工。这种纯度很高的纯铜,一般用电解法精制:把不纯铜(即粗铜)作阳极,纯铜作阴极,以硫酸铜溶液为电解液。当电流通过后,阳极上不纯的铜逐渐熔解,纯铜便逐渐沉淀在阴极上。这样精制而得的铜;纯度可达99.99%。想要了解更多关于紫铜热处理问题的信息,请继续浏览上海 有色 网。

铝合金型材在线热处理技术参数

2019-01-11 16:23:26

铝型材离开挤压模具要经历三个阶段,即临近淬火、淬火及淬火后冷却到环境温度,为了防止产生不希望有的第二相析出,型材即将进入冷却装置(淬火区)时其温度必须在固溶线温度以上。冷却装置的冷却速度及冷却接触时间应足以获得所需要的过饱和固溶体分量,使产品较终性能符合使用要求。要求挤压模具至淬火区距离应尽量小些,即淬火转移时间要尽量短一些。   可以实现挤压在线淬火合金应具有以下特性:   (1)具有符合结构应用的拉伸强度性能;   (2)淬火敏感性低,可对各种不同断面制品采用强制风冷而不需采用水淬;   (3)合金固溶度线和固相线之间的温度范围宽,易于控制制品出口温度所希望的固溶温度范围;   (4)采用风冷时材料具有足够的韧性;   (5)在固溶温度下挤压变形抗力低,尽可能减少变形能量和综合温升,获得较高的允许挤压速度;

铸造铝合金热处理工艺知识介绍

2018-06-20 14:27:14

铸造铝合金热处理是指选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间,再以一定得速度冷却,改变其合金的组织结构。热处理过后的铝合金可以提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。那铸造铸造铝合金是怎样进行热处理的?主要的热处理方法有哪些?常用的铸造铝合金热处理方法有以下几种,主要是加热的温度、保温时间和冷却时间的不同:①某些湿砂型和金属型铸造的工件,由于结晶速度比较快,固溶体呈一定过饱和状态,可直接加热到150~200℃人工时效,保温3~24h。该热处理方式可以改善工件的切削加工性能,降低工件加工后的表面粗糙度(代号T1)。②铸造或切削加工铝合金后,将其加热到290℃,保温2~4h,该热处理方式可以消除铸造内应力或切削加工产生的内应力和切削加工产生的表面加工硬化,提高工件的尺寸稳定性及材料的塑性(代号T2)。③铸造铝合金加热到500~535℃,保温2~15h,并在20~100℃水或油中淬冷,然后进行自然时效。该热处理方式可以提高合金的强度、塑性及耐腐蚀性能。可用于在腐蚀作用的环境中工作的零件(代号T4)。④固溶热处理+低温或短时(3~5h)人工时效,以便使材料具有较高的强度和塑性(代号T5)。⑤固溶热处理后在150~180℃保温5~18h,然后进行人工时效,使材料强度进一步提高,但塑性有所降低(代号T6)。⑥固溶热处理后加热至230~250℃保温2~10h,目的是在材料强度能达到一定水平的前提下,使合金具有稳定的组织,使工件有较高的尺寸稳定性。多用于在较高温度下工作的零件(代号T7)。⑦固溶热处理后,加热至290~330℃保温3~5h,使工件获得更高的尺寸稳定性,并使合金具有较高的塑性(代号T8)。以上几位常见的几种热处理的方式,但不同的 铝合金 的热处理方法也不一样,现代铸造铝合金按主要加入的元素分的铝硅系、铝铜系、铝镁系及铝锌系这4个系列的热处理都不太一样。根据加入的合金的含量高低,热处理方式也不相同。下面再以不同合金的形式来解释其合金的热处理。1.在以硅为主加合金元素的铸造铝合金合金ZL102,采用固溶热处理+时效处理强化的效果很小,一般不进行热处理,或只进行T2处理。添加Mg、Cu、Mn等合金元素的Al-Si合金可时效强化,常进行T5、T6处理。其中Al-Si-Mg-Mn (ZL104)中的共晶体熔点很低,固溶热处理加热温度须控制在530℃以下。淬火冷却后应立即进行人工时效。2.在以铜为主加元素的二元铸造铝合金铜含量较低(4%~5%Cu)的合金ZL203可进行T4和T6处理;铜含量较高的ZL202合金(9%~11%Cu)塑性较差,一般只进行T2处理;Al-Cu-Mn三元合金ZL201可进行T4、T5及T7处理。固溶热处理应采用分段加热,先加热至比正常固溶热处理稍低的温度保温,使低熔点共晶体中的化合物溶解,然后再加热至正常固溶热处理温度,使过剩相进一步充分溶解。3.以镁为主加元素的 铸造铝合金ZL301(镁含量约10 %Mg),可采用T4处理。固溶热处理的加热温度为(400±5)℃,保温10~20h,淬火后自然时效。Al-Mg合金铸件应避免在硝盐浴中加热,以免发生爆炸。Al-Zn铸造合金铸件铸造时已产生时效强化效应,可直接进行T8处理,以充分消除铸造内应力,稳定工件尺寸。

热处理对2024铝合金组织与性能的影响

2019-01-10 09:44:04

铝及铝合金是有色金属中用量较大、产量较高的材料,是国民经济的支柱产业,广泛用于航空、交通运输、建材、机械、包装等行业,同时也是重要的国防材料。2024合金属Al-Cu-Mg系高强硬铝合金,由于其具有强度高、耐热性好、成形性优良及耐损伤等特点,早已成为航空航天工业的主要结构材料。因此探索新的热处理工艺制度,提高2024合金的综合性能具有重大的现实意义。    固溶处理保温时间均为50min,固溶温度分别为460、480、500和520℃,采用到温装炉,固溶完成后,快速取出水冷。研究固溶时间对性能影响是讲样品放入500℃的热处理炉中分别保温30、50、70和90min,固溶完成后,快速取出水冷。研究时效处理对性能的影响时,先将试样进行500℃×50min的固溶处理,随即将试样进行长时间不同温度的时效热处理,并且每隔一段时间进行一次试样的力学性能测试。时效温度分别为130、170、180、190和210℃。采用到温装炉,冷却方式为快速水冷。每隔1h后快速取出,快速水冷进行硬度测试,之后快速放回热处理炉中继续进行时效热处理,总共时效时间为15h。    热处理工艺对2024合金的组织与性能有显著的影响,固溶温度越高,固溶的合金元素浓度也就越大,提高了固溶程度,淬火后的过饱和固溶体的浓度也就越高,时效后将具有更高的强度;随保温时间的延长,合金的硬度值先升高而后变得较为平缓,且有所降低。在500℃固溶保温50min时,硬度值出现峰值;随时效温度的升高,时效到达峰值所需的时间越短,时效越快,180℃时效达到的峰值为较高值,且时效到达的硬度较高。

2024-t4铝

2017-06-06 17:50:11

2024-t4铝的热处理状态是固溶处理后自然时效。    2024,国内通常叫做2A12,相当于LY12,通用的板材标准为AMS-QQ-A-250/4(非包铝);AMS-QQ-A-  2024铝合金250/5(包铝),2024的合金元素为铜,被称为硬铝,具有很高的强度和良好的切削加工性能,但耐腐蚀性较差。广泛应用于飞机结构(蒙皮、骨架、肋梁、隔框等)、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他各种结构件,为Al-Cu-Mg系。    化学成分:硅 0.5%、铁 0.5%、铜 3.8-4.9、锰 0.0-0.9 、镁 1.2-1.8、铬 0.10、锌 0.25、钛 0.15、其它0.15。(1)组合之元素性质以最高百分率表示,除非列出的是一个范围或是最低值。(2) 为了定出合适的数值限制,分析得来的观察或计算数值都是依据标准规则(ANSI Z25.1)以表示明确的范围。(3) 除了非合金外,合金内的元素所规定的份量通常在分析报告中指示出来。但如果在分析过程中怀疑有其它元素存在或有部份元素被怀疑有过量的情形,更应进一步的分析直至有证实为止。(4) 不是经由精炼过程的非合金铝中的铝质的含量就是其它的 金属 的总量和百分百纯铝之差-其差别在于百 份0.01或稍多一点。(百份比的小数点后第二位)(5) 最多可含有0.20%锆和钛。    铝合金在生产过程中,容易出现缩孔、砂眼、气孔和夹渣等铸造缺陷。如何修复铝合金铸件气孔等缺陷呢?如果用电焊、氩焊等设备来修补,由于放热量大,容易产生热变形等副作用,无法满足补焊要求。冷焊修复机是利用高频电火花瞬间放电、无热堆焊原理来修复铸件缺陷。由于冷焊热影响区域小,不会造成基材退火变形,不产生裂纹、没有硬点、硬化现象。而且熔接强度高,补材与基体同时熔化后的再凝固,结合牢固,可进行磨、铣、锉等加工,致密不脱落。冷焊修复机是修补铝合金气孔、砂眼等细小缺陷的理想方法。     了解更多有关2024-t4铝的信息,请关注上海 有色 网。 

黄铜热处理

2017-06-06 17:50:00

黄铜热处理是指一种防止黄铜应力腐蚀开裂和成品退火的一种加工工艺。     黄铜热处理一般有两种:1. 防"季裂"退火: 260~300度保温后空冷.2. 再结晶退火: 540~600度保温后水冷.    季裂是指经过冷变形加工的黄铜(含Zn>20%)制品,由于残余应力的存在,在潮湿的大气或海水中,尤其是在含氨气的环境中,放置一段时间,容易产生应力腐蚀,使黄铜开裂,这种自发破裂的现象称应力腐蚀开裂或季裂。防止黄铜的季裂,可以进行喷丸处理,在表面施加压应力;低温退火(250~300℃加热保温1~3 h)去除残存拉应力;或加适量Al、Sn、Mn 、Si 、Ni 等元素来显著降低对应力腐蚀的敏感性。    黄铜热处理低温退火---主要目的是消除内应力,防止黄铜的应力腐蚀开裂和工件在切削加工过程中发生变化,    黄铜热处理再结晶退火---包括各道冷加工工序之间的中间退火以及成品的最终退火, 温度示产品的厚度而变化,在550--700度之间。    普通黄铜是铜-锌合金,按其组织可分简单黄铜(也称а黄铜),ω(Cu)为100%-62.4%,和两相黄铜(а+β黄铜),ω(Cu)为56.5%-62.4%。Zn在Cu中的固溶度随湿度降低而增大,故无热处理强化效果。经常采用退火处理来改判黄铜的冷加工性能。黄铜热处理有关成品退火后的力学性能及冷变形性能主要取决于晶粒尺寸大小。黄铜黄铜热处理冷加工中间退火温度如下表:更多关于黄铜热处理的资讯,请登录上海有色网查询。 

铝及铝合金按合金成分与热处理方式分类表

2019-01-02 16:38:58

类别 合金名称 合金主要成分(合金系) 热处理和性能特点 举例铸造铝合金材料 简单铝硅合金 Al-Si 不能热处理强化,力学性能较低,铸造性能好 ZL102特殊铝硅合金 Al-Si-Mg 可热处理强化,力学性能较高,铸造性能良好 ZL101Al-Si-Cu ZL107Al-Si-Mg-Cu ZL105 ZL110Al-Si-Mg-Cu-Ni ZL109铝铜铸造合金 Al-Cu 可热处理强化,耐热性好,铸造性和耐蚀性差 ZL201铝镁铸造合金 Al-Mg 力学性能高,抗蚀性好 ZL301铝锌铸造合金 Al-Zn 能自动淬火,宜于压铸 ZL401铝稀土铸造合金 Al-Re 耐热性好,耐蚀性高 ZL109RE变形铝合金材料 不能热处理强化铝合金 工业纯铝 ≥99.90% Al 塑性好,耐蚀,力学性能低 1A99 1050 1200防锈铝 Al-Mn 力学性能较低,抗蚀性好,可焊,压力加工性能好 3A21Al-Mg 5A05可热处理强化铝合金 硬铝 Al-Cu-Mg 力学性能高 2A11 2A12超硬铝 Al-Cu-Mg-Zn 室温强度最高 7A04  7A09锻铝 Al-Mg-Si-Cu 锻造性能好,耐热性能好 6A02  2A70 2A80

固溶深冷处理——铸造铝合金较佳热处理强化手段

2019-01-11 09:43:28

铸造铝合金热处理强化通常采用固溶处理及时效处理。固溶处理时加热到一定温度保温,然后速冷(水冷),以获得具有一定过饱和度的固溶体,再通过时效强化提高合金力学性能。近几年铝合金深冷处理也得到较多研究,并已证明可提高合金力学性能。铝合金深冷处理工艺比较单一,一般是固溶加热水冷到室温后再进行深冷处理,及随后时效处理。本文将铸造铝合金固溶加热保温后直接在液氮中冷却并保温一定时间,即将水冷工序与深冷处理工序合并为一个工序,称其为“固溶深冷处理”。通过测试合金力学性能变化,以探求铸造铝合金较佳热处理强化手段。    实验材料为自制ZL合金、ZL101和ZL109三种铸造铝合金。自制ZL合金试样在实验室熔炼浇铸,成分(质量分数,%)为:7.0Si,1.0Mg,92Al。深冷处理介质为制氧车间提供的工业液氮(-196℃)。三种铸造铝合金分别采用下列三种工艺处理:    ①固溶处理(水冷)+时效;    ②②固溶处理(水冷)+液氮深冷48h+时效;    ③③固溶加热保温后直接液氮深冷48h+时效。为了解深冷处理对时效性能影响,除上述人工时效外,部分试样还进行了75天自然时效,测试其硬度变化。    Al-Si系合金经深冷处理后硬度、强度升高,具有明显强化作用,某些深冷处理工艺也可保持塑性改善,具有强韧化作用。固溶深冷处理对Al-Si系合金力学性能影响优于常规深冷处理。深冷处理对Al-Si系合金有预时效作用,促进第二相弥散均匀析出,有利于力学性能改善。

搅拌摩擦焊成功焊接6013-T4铝合金材料

2019-01-15 09:49:23

空客公司作为靠前个采用搅拌摩擦焊技术制造大型民用飞机制造的飞机制造商,已将该技术引入A340的制造,并大规模应用于A350的制造。空客公司把搅拌摩擦焊技术用于A340-500s及A340-600s的机身纵缝连接以取代传统的铆接。      这项技术使A350的设计组把纵缝连接机身面板从8块减少到4块,这样做可使重量减轻,并提高飞机的使用寿命及部件的可维护性。   6013-T4 铝合金是美国铝业公司研究开发的一种新型铝合金,其较初的应用目标是汽车工业,通过降低零部件重量从而提高燃油效率。该合金的耐蚀性比高强7XXX系合金好,而强度比普通6XXX系合金高且保持了优良的耐蚀性和成形性,因而该合金在航空、航天、舰船、交通和建筑等部门有着广泛的用途。美国的洛克希德航空设备公司已选定6013板作为飞机铝合金的主要蒙皮材料和部分结构用材料,以替代传统的2024合金板材,空客公司现采用6013铝合金作为A380机身下壁板的材料,用传统的焊接方法易产生气孔等缺陷,国外现用激光焊接6013铝合金,但存在焊接接头的强度不高(通常在母材的70%-80%之间)、设备和工作成本高、材料对激光的反射造成激光吸收率低、产生气孔、裂纹和咬边等缺陷。   搅拌摩擦焊是一种新型的固相连接技术,不会出现熔化焊接中常见的裂纹、气孔等缺陷;其在焊接过程中无需焊丝和保护气体;焊后工件变形小,残余应力小;焊接成本低,效率高,易于实现自动化。值得关注的是,采用搅拌摩擦焊焊接机身下壁板不仅可以有效地避免熔焊常见的缺陷,在提高工作效率,降低生产成本方面也具有独特优势。6013铝合金作为一种航空铝合金,其搅拌摩擦焊接工艺的成功开发,对扩展搅拌摩擦焊在航空领域的应用具有重要意义。

铍铜热处理

2017-06-06 17:50:06

铍铜热处理,是一种对铍铜进行处理的制作工艺。铍铜是一种以铍为主加元素的铜基体合金材料。其适用范围在需求高导热,高硬度,高耐磨的要求下才使用铍铜材料的。铍铜以物料形式可以分为带、板、棒,线、以及管等,如果以铍铜物理功能使用来区分,一般来讲有3种。 1:高弹性的2:高导热,高硬度的 3:电极上使用的高硬度,高耐磨的。铍铜是一种用途极广的沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500公斤)。其热处理特点是:固溶处理后具有良好的塑性,可进行冷加工变形。但再进行时效处理后,却具有极好的弹性极限,同时硬度、强度也得到提高。 (1) 铍铜热处理的固溶处理 一般固溶处理的加热温度在780-820℃之间,对用作弹性元件的材料,采用760-780℃,主要是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在±5℃。保温时间一般可按1小时/25mm计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后的力学性能影响不大,但会影响其冷加工时工模具的使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮的热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后的机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热的要求),当然形状复杂的零件为了避免变形也可采用油。 (2) 铍铜热处理的时效处理 铍青铜的时效温度与Be的含量有关,含Be小于2.1%的合金均宜进行时效处理。对于Be大于1.7%的合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0.5%的高导电性电极合金,由于溶点升高,最佳时效温度为450-480℃,保温时间1-3小时。近年来还发展出了双级和多级时效,即先在高温短时时效,而后在低温下长时间保温时效,这样做的优点是性能提高但变形量减小。为了提高铍青铜时效后的尺寸精度,可采用夹具夹持进行时效,有时还可采用两段分开时效处理。(3) 铍铜热处理的去应力处理 铍青铜去应力退火温度为150-200℃,保温时间1-1.5小时,可用于消除因 金属 切削加工、校直处理、冷成形等产生的残余应力,稳定零件在长期使用时的形状及尺寸精度。想要了解更多铍铜热处理的相关资讯,请浏览上海 有色 网( www.smm.cn )铜频道。

铍青铜热处理

2017-06-06 17:50:02

铍青铜热处理铍青铜是一种用途极广的沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500公斤)。其热处理特点是:固溶处理后具有良好的塑性,可进行冷加工变形。但再进行时效处理后,却具有极好的弹性极限,同时硬度、强度也得到提高。(1) 铍青铜的固溶处理一般固溶处理的加热温度在780-820℃之间,对用作弹性组件的材料,采用760-780℃,主要是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在±5℃。保温时间一般可按1小时/25mm计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后的力学性能影响不大,但会影响其冷加工时工模具的使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮的热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后的机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热的要求),当然形状复杂的零件为了避免变形也可采用油。(2) 铍青铜的时效处理铍青铜的时效温度与Be的含量有关,含Be小于2.1%的合金均宜进行时效处理。对于Be大于1.7%的合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0.5%的高导电性电极合金,由于溶点升高,最佳时效温度为450-480℃,保温时间1-3小时。近年来还发展出了双级和多级时效,即先在高温短时时效,而后在低温下长时间保温时效,这样做的优点是性能提高但变形量减小。为了提高铍青铜时效后的尺寸精度,可采用夹具夹持进行时效,有时还可采用两段分开时效处理。(3) 铍青铜的去应力处理铍青铜热处理力退火温度为150-200℃,保温时间1-1.5小时,可用于消除因 金属 切削加工、校直处理、冷成形等产生的残余应力,稳定零件在长期使用时的形状及尺寸精度。 

2017铝合金相关技术标准与热处理工艺

2018-12-20 09:35:41

相关技术标准  铝板带国家标准(GB/T 3880-2006),适用于铝合金板带材料的统一标准。  热处理工艺  状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。

弹簧钢热处理

2019-03-18 10:05:23

弹簧钢的特点—弹簧主要在动载荷下工作,即在冲击、振动的条件下,或在交变应力作用下工作,利用弹性变形来吸收冲击能量,起缓冲作用。由于弹簧经常承受振动和长期在享变应力作用下工作,主要是疲劳破坏,故弹簧钢必须具有高的弹性极限和高疲劳极限。此外,还应有足够的韧性和塑性,以防止在冲击力作用下突然脆断。在工艺性论方面,弹簧钢应具有较好的淬透性和低的过热、脱碳敏感性。降低弹簧表面粗糙度能提高疲劳寿命。为了获得所需的性能,必须具有较高的含碳量。弹簧钢碳素弹簧钢的含碳量在0.6-0.9%之间,由于碳素弹簧钢的淬透性差,故只用于制造截面尺寸不超过10-15mm的弹簧。对于截面尺寸较大的弹簧,必须采用合金弹簧钢。合金弹簧钢碳含量在0.45-0.75%之间,加入的合金元素有Mn ,Si ,W ,V ,Mo等。它们的主要作用是提高淬透性和回火稳定性,强化铁素体和细化晶粒,有效地改善弹簧钢的力学性能,其中Cr ,W ,Mo还能提高钢的高温强度。   在热状态下成型的弹簧(直径或厚度一般在10mm以上)            在冷状态下成型的弹簧(直径或厚度一般在10mm以下)           热成型弹簧的热处理工艺--用这种方法成型弹簧多数是将热成型和热处理结合在一起进行的,而螺旋弹簧则大多数是在热成型后再进行热处理。这种弹簧钢的热处理方式是淬火+中温回火,热处理后组织为回火托氏体。这种组织的弹性极限和屈服极限高,并有一定的韧性。     弹簧钢热处理     冷成型弹簧的热处理工艺--对于用冷轧钢板、钢带或冷拉钢丝制成的弹簧,由于冷塑性变形使材料强化,己达到弹簧所要求的性能。故弹簧成型后只需在250C左右范围内,保温30min左右的去应力处理,以消除冷成型弹簧的门应力,并使弹簧定型即可。  耐热弹簧钢的热处理--内燃机的气阀弹簧是在较高温度下工作,有的还存在腐蚀性气氛,因此必须选用特殊的弹簧钢和合适的热处理规范。       弹簧淬火时常见的缺陷及防止措施     (1)脱碳(降低使用寿命)--1、采用盐浴炉或拄制气氛加热炉加热。2、采用快速加热工艺。     (2)淬火后硬度不足,非马氏体数量较多,心部出现铁素体(产全残余变形,降低使用寿命)--1、选用淬透性较好的材料。2、改善淬火冷却剂的冷却能力。3、弹簧进入冷却剂的温度应控制在Ar3以上。4、适当提高淬火加热温度。

黄铜热处理方式

2019-05-29 19:23:03

黄铜热处理办法  二十世纪以来,金属物理的开展和其他新技能的移植运用,使金属热处理技术得到更大开展。一个明显的开展是1901~1925年,在工业加工中运用转筒炉进行气体渗碳;30年代呈现露点电位差计,使炉内气氛的碳势到达可控,以后又研究出用二氧化碳红外仪、氧探头号进一步操控炉内气氛碳势的办法;60年代,热处理技能运用了等离子场的效果,开展了离子渗氮、渗碳技术;激光、电子束技能的运用,又使金属获得了新的表面热处理和化学热处理办法。接下来,让我们一同来看一下黄铜热处理的介绍吧。  黄铜热处理:黄铜热处理是指一种避免黄铜应力腐蚀开裂和制品退火的一种制作技术。  黄铜热处理一般有两种:  1.防"季裂"退火:260~300度保温后空冷。  2.再结晶退火:540~600度保温后水冷。  季裂是指经过冷变形制作的黄铜(含Zn>20%)制品,因为剩余应力的存在,在湿润的大气或海水中,尤其是在含气的环境中,放置一段时间,简单发生应力腐蚀,使黄铜开裂,这种自发决裂的现象称应力腐蚀开裂或季裂。避免黄铜的季裂,能够进行喷丸处理,在表面施加压应力;低温退火(250~300℃加热保温1~3h)去除残存拉应力;或加适量Al、Sn、Mn、Si、Ni等元从来明显下降对应力腐蚀的敏感性。热处理设备  黄铜热处理低温退火---首要意图是消除内应力,避免黄铜的应力腐蚀开裂和工件在切削制作过程中发生改变,  黄铜热处理再结晶退火---包含各道冷制作工序之间的中间退火以及制品的终究退火,温度示产品的厚度而改变,在550--700度之间。  黄铜热处理办法(操作规程)  1、清理好操作场所,查看电源、丈量外表和各种开关是否正常,水源是否晓畅。  2、操作人员应穿戴好劳保防护用品。  3、敞开操控电源全能转换开关,依据设备技能要求分级段升、降温,延伸设备寿数和设备无缺。  4、要注意热处理炉的炉温文网带调速,能把握对不同材料所需的温度标准,保证工件硬度及表面平直度和氧化层,并仔细做好安全作业。  5、要注意回火炉的炉温文网带调速,敞开排风,使工件经回火后到达质量要求。  6、在作业中应坚守岗位。  7、要装备必要的消防用具,并熟识运用及保养办法。  8、停机时,要查看各操控开关均处于封闭状况后,封闭全能转换开关。  黄铜热处理规范:  热制作温度750~830℃;退火温度520~650℃;消除内应力的低温退火温度260~270℃。  环保黄铜C26000C2600塑性优秀,强度较高,切削制作性好,焊接,耐蚀性好,热交换器,造纸用管,机械,电子零件。  规格(mm):规格:厚度:0.01-2.0mm,宽度:2-600mm;  硬度:O、1/2H、3/4H、H、EH、SH等;  适用标准:GB、JISH、DIN、ASTM、EN;  专长:优秀切削性能适用于主动车床数控车床制作的高精度零部件。高频热处理  黄铜黄铜热处理冷制作中间退火温度如下表:材料牌号厚度(δ)>5mm厚度(δ)=1-5mm厚度(δ)=0.5-1mm厚度(δ)<0.5mmH96560-600540-580500-540450-550H90、HS700-1650-720620-780560-620450-560H80650-700580-650540-600500-560H68580-650540-600500-560440-500H62、H59650-700600-600520-600460-530HFe59-1-1600-650520-620450-550420-480HMn58-2600-660580-640550-600500-550HSn70-1600-650560-620470-560450-500HSn62-1600-650550-630520-580500-550HPb63-3600-650540-620520-600480-540HPb59-1600-650580-630550-600480-550  以上为黄铜热处理办法的全部内容,期望对您能有所协助

7075铝合金等温热处理半固态组织的演变

2018-12-28 11:21:17

半固态成型工艺具有不同于传统成型工艺的许多优点,具有广阔的应用前景。这项技术的关键是如何获得半固态组织,这也是最近的研究热点。获得半固态组织有多种方法,其中等温热处理方法出现的时间较晚,但却非常实用。这种方法与其他方法相比,具有成本低,工艺简单,易于推广等优点。另外,关于铸造铝合金及其他的有色金属的半固态组织的获得已有多种方法,而关于高强度铝合金的相关研究相对较少。本文研究了高强度7075铝合金等温热处理后的半固态组织,确定了等温热处理的工艺参数,为今后半固态成型技术的应用提供了参考。   本实验所用的材料为高强度7075铝合金。实验温度范围在固液两相区,固、液相的温度分别为477和635℃。从原金属棒材上取4mm×4mm×8mm的试样15个,然后在580、600和615℃分别进行保温,在各个温度的保温时间为5、15、30、45和60min。待炉温升到预定温度时将相应组的试样放入箱式电阻炉中,温度误差控制在±1℃。待试样完成预定的热处理工艺后迅速取出水淬,将试样镶嵌磨抛后在光学显微镜下观察相应组织。   在高固相率温度区间,当保温时间相同时,随保温温度升高,晶粒的尺寸和球化程度均增加。当加热温度相同时,晶粒尺寸随保温时间的延长逐渐增加,圆度先减小然后增大。从晶粒大小和圆整度综合考虑最合理的工艺参数为:加热温度615℃、保温时间15min。

模具热处理及表面处理方法

2018-12-29 11:29:07

模具热处理是保证模具性能的重要工艺过程。对模具的如下性能有着直接的影响。    模具的制造精度:组织转变不均匀、不彻底及热处理形成的残余应力过大造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。     模具的强度:热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。模具的工作寿命:热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。     模具的制造成本作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。     正是热处理技术与模具质量有十分密切的关联性,使得这二种技术在现代化的进程中,相互促进,共同提高。20世纪80年代以来,国际模具热处理技术发展较快的领域是真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。     模具的真空热处理技术     真空热处理技术是近些年发展起来的一种新型的热处理技术,它所具备的特点,正是模具制造中所迫切需要的,比如防止加热氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度。真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。     按采用的冷却介质不同,真空淬火可分为真空油冷淬火、真空气冷淬火、真空水冷淬火和真空硝盐等温淬火。模具真空热处理中主要应用的是真空油冷淬火、真空气冷淬火和真空回火。为保持工件(如模具)真空加热的优良特性,冷却剂和冷却工艺的选择及制定非常重要,模具淬火过程主要采用油冷和气冷。     对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),它可以提高与表面质量相关的机械性能,如疲劳性能、表面光亮度、而腐蚀性等。     热处理过程的计算机模拟技术(包括组织模拟和性能预测技术)的成功开发和应用,使得模具的智能化热处理成为可能。由于模具生产的小批量(甚至是单件)、多品种的特性,以及对热处理性能要求高和不允许出现废品的特点,又使得模具的智能化热处理成为必须。模具的智能化热处理包括:明确模具的结构、用材、热处理性能要求;模具加热过程温度场、应力场分布的计算机模拟;模具冷却过程温度场、相变过程和应力场分布的计算机模拟;加热和冷却工艺过程的仿真;淬火工艺的制定;热处理设备的自动化控制技术。国外工业发达国家,如美国、日本等,在真空高压气淬方面,已经开展了这方面的技术研发,主要针对目标也是模具。     模具的表面处理技术     模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。     模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此模具的表面强化是采用渗氮技术较早,也是应用最广泛的。     模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。硬化膜沉积技术目前较成熟的是CVD、PVD。为了增加膜层工件表面的结合强度,现在发展了多种增强型CVD、PVD技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪80年代开始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平。     模具材料的预硬化技术     模具在制造过程中进行热处理是绝大多数模具长时间沿用的一种工艺,自上个世纪70年代开始,国际上就提出预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以预硬化技术的研发投入不大。随着加工机床和切削刀具性能的提高,模具材料的预硬化技术开发速度加快,到上个世纪80年代,国际上工业发达国家在在塑料模用材上使用预硬化模块的比例已达到3O%(目前在60%以上)。我国在上世纪90年代中后期开始采用预硬化模块(主要用国外进口产品)。     模具材料的预硬化技术主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。     采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期,提高。