铝合金热处理技术
2018-12-28 15:58:44
1、铝合金热处理原理
铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
2、铝合金热处理特点
众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
3、铝合金时效强化原理
铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。
航空铝合金热处理技术
2019-01-09 09:34:01
随着交通技术的发展,铝合金以质量轻、强度高、加工方便等特点,在航空材料上得以广泛应用,铝合金的有效应用减轻了飞机的结构重量,改善飞行性能并增加了经济效益,因此航空铝合金技术也得到更多的关注,本期小编就带大家了解下航空铝合金热处理技术:
铝合金热处理以空气循环电炉代替硝盐炉
传统热处理采用硝盐炉加热,存在环境污染严重、能源消耗和浪费较大的缺点,而空气循环电炉具有启动快、节能效果好的优势,淬火转移时间快并可调,满足不同铝合金零件的要求。空气循环电炉加热后固溶淬火对冷却介质无污染,有利于推广使用有机淬火介质,减少热处理畸变,提高生产效率。
空气循环电炉的关键技术是如何保证炉温均匀性(±3~±5℃),特别是大尺寸的炉子要求,如何满足较低温度(100~150℃)的炉温均匀性要求。第二个关键技术在于如何保证迅速的淬火转移时间,并且可以根据零件不同要求进行调整和控制。
有机淬火介质
铝合金淬火介质常用的是水或热水,但对于热处理变形较大或变形要术较严的情况,热水不能满足要求,必须选用有机淬火介质水溶液。在空气循环电炉上使用有机淬火介质水溶液代替水,减少铝合金热处理变形和钣金件校正工时50%以上。
电导率检测
铝合金材料用于飞机制造以来,一直采用抗拉试验或硬度试验来检测铝合金热处理质量。由于铝合金热处理后,在一个强度(硬度)值下,可能有两个不同状态,反之在一个状态下,可能有两个不同的强度(硬度)值。因此,只用硬度或强度来控制铝合金热处理后的质量是一种落后的检测方法,不能完全确保质量。
电导率检测具有方便快捷,工作效率高,且基本不受被检件形状、重量等条件限制,对零件无损伤的独有优势。自八十年代以来,电导率检测在国内也逐渐被广泛地应用到铝合金材料/零件的热处理状态检验中。在GB/T12966—1991《铝合金电导率涡流测试方法》标准中,给出了测试方法,GJB2894一l997《铝合金电导率和硬度要求》,明确了电导率和硬度值要求。
铝合金热处理的目的
2018-09-30 10:44:05
铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1、消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2、提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3、稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4、消除晶间和成分偏析,使组织均匀化。
铝合金热处理原理和特点
2018-12-29 09:42:49
铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
铝合金热处理原理及特点
2018-12-28 15:58:46
1、铝合金热处理原理
铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
2、铝合金热处理特点
众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
铜合金热处理
2017-06-06 17:50:05
铸造铜合金热处理工艺热处理操作要点:1 加热速度:铜合金虽有良好的导热性,但为了防止铸件表面晶粒粗化和厚截面铸件内部产生过大的热应力,加热和冷却速度都要控制适当,并使之均匀加热和冷却。2 温度控制:某些铜合金的固溶处理温度很接近其固相线温度,容易产生过热和过烧,应当精确的控制热处理温度。谇火转移速度对可热处理强化的铜合金的性能有较大的影响,因此要求固溶处理后迅速谇火。3 防止变形:铍青铜等时效处理时,伴随着产生较大的体积应变,容易产生翘曲和变形,为减少变形,时效处理可分为两阶段进行,即先在200-250摄氏度保温一段时间后再升到规定的时效温度;也可以采取较高的时效温度,也可以采取较高的时效温度,即轻度过时效。4 防止裂纹:沉淀强化铜合金存在热处理开裂倾向,其原因是在严重过时效情况下,部分强化在晶界上析出并长大,产生了相变应力而导致沿晶开裂。主要防止办法是在不影响合金力学性能的条件下,将合金化元素的成分范围向中下线控制,时效处理时严格控制时效温度和时间。
6082铝合金冶炼工艺
2018-12-27 16:25:50
1、熔炼 6082合金特点是含Mn,Mn是难熔金属,熔炼温度应控制在740-760℃。取样前均匀搅拌两次以上,保证金属完全熔化、温度准确、成分均匀。搅拌后在铝液深度的中部、炉膛左右两侧各取一个样进行分析,分折合格后即可转炉。 2、净化与铸造 熔体转入静置炉后,用氮气和精炼剂进行喷粉、喷气精炼,精炼温度735-745℃,时间15分钟,精炼完后静置30分钟。通过此过程除气、除渣、净化熔体。 熔铸时在铸模至炉口间有两道过滤装置,炉口有泡沫陶瓷过滤板(30PPI)过滤,铸造前用14目玻璃纤维丝布过滤,充分滤去熔体中的氧化物、夹渣。 6082合金铝板铸造温度偏高(较6063铝板正常工艺),铸造速度偏低,水流量偏大,上述工艺需严格控制,不能超出范围,否则容易导致铸造失败。
2A12铝合金热处理规范
2018-12-20 11:10:23
1)均匀化退火:加热480~495℃;保温12~14h;炉冷。 2)完全退火:加热390~430℃;保温时间30~120min;炉冷至300℃,空冷。 3)快速退火:加热350~370℃;保温时间为30~120min;空冷。 4)淬火和时效:淬火495~505℃,水冷;人工时效185~195℃,6~12h,空冷;自然时效:室温96h。
铝合金的热处理 ---铝青铜
2019-05-30 20:05:29
铝合金的热处理一、鍊度符号 : 若增加合金元素尚缺乏於彻底符合要求,尚须藉冷制作、淬水、时效 处理及软烧等处理,以获取所需求的强度及功能。这些处理的进程称之为调质,调质的成果就是鍊度。鍊度符号 定 义F 制作状况的鍊度无特定鍊度下制作的制品,如揉捏、热轧、铸造品等。H112 未故意操控制作硬化程度的制作状况制品,但须确保机械性质。O 软烧鍊度彻底再结晶并且最软状况。如系热处理合金,则须从软烧温度缓慢冷却,彻底避免淬水效果。H 制作硬化的鍊度H1n:施以冷制作而制作硬化者H2n:经制作硬化后再施以适度的软烧处理H3n:经制作硬化后再施以安靖化处理n以1~9的数字表明制作硬化的程度n=2 表明1/4硬质n=4 表明1/2硬质n=6 表明3/4硬质n=8 表明硬质n=9 表明超硬质T T1: 高温制作冷却后天然时效。挤型从热制作后急速冷却,再经常温十效硬化处理。亦可施以不影响强度的纠正制作,这种调质合适於热制作后冷却便有淬水效果的合金如:6063。T3: 溶体化处理后经冷制作的意图在进步强度、平整度及尺度精度。T36: T3经6%冷制作者。T361: 冷制作度较T3大者。T4: 溶体化处理后经天然时效处理。T5: 热制作后急冷再施以人工时效处理。人工时效处理的意图在进步材料的机械性质及尺度的安靖性适用於热制作冷却便有淬水效果的合金如:6063。T6: 溶体化处理后施以人工时效处理。此为热处理合金代表性的热处理,无须施以冷制作便能取得优胜的强度。於溶体化处理后为进步尺度精度或纠正而施以冷制作,如不确保更高的强度时,亦可当作是T6鍊度。T61: 溶体化处理后施以温水淬水再经人工时效处理,温水淬水的意图在避免发作变形。T7: 溶体化处理后施以安靖化处理(亦及人工时效处理的温度或时刻较T6处理高或长)。其意图在改进耐硬力腐蚀裂及避免淬水时发作变形。T7352: 溶体化处理后除掉剩余应力再施以过时效处理(亦及人工 时效处理的温度或时刻较T6处理高或长)。意图在改进耐硬力腐蚀裂。於溶体化处理后施以1~5%永久变形的紧缩制作,以消除剩余应力。
铝合金轴套的热处理工艺详解
2019-01-15 09:49:09
轴套的热处理工艺: 轴套是齿轮泵的主要零件之一,装在高速运转的齿轮两端起轴承支撑作用。它必须有足够的强度和良好的耐磨性。为了保证零件的性能要求,我厂采用非标准铝锡合金,Cu的作用是强化基体。Sn可形成较软的低熔点Al-Sn共晶体,增加耐磨性。原热处理工艺为515℃固溶6h水冷,180℃时效8h空冷。这种工艺存在两个问题: (1)Al-Sn共晶体过烧加入锡形成含锡为99.5%的Al-Sn共晶体,其熔点为229℃。当工件加热到515℃时,Al-Sn共晶体过烧,淬火冷却时形成复熔球团。在形成复熔球团过程中,一方面晶界氧化,使晶粒强度下降,另一方面又产生了许多显微空隙,使晶粒界面能增加,金属的强度降低,在使用过程中易过早失效。 (2)工艺生产时间长,达16h之多,生产效率低,能耗大。 由金相观察和力学性能试验数据可以看出,250℃×7h处理工艺比较理想。Al-Sn共晶体呈断网状沿晶界分布,一方面Al-Sn共晶体分布比较均匀,保证有良好的耐磨性,另一方面Al-Sn共晶体没有分割基体,使合金有较好的塑性和韧性。采用250℃×7h处理工艺可以得到较高硬度,是因为该合金含Cu量较少,金属模冷却速度快,在铸造冷却过程中,已保证Cu熔入固溶体,起到了淬火作用。通过自然时效提高了硬度,也证明了这一点。250℃×7h空冷工艺比515℃×6h水冷+180℃×8h空冷工艺的抗拉强度提高47%。250℃×7h空冷工艺温度稍高于Al-Sn共晶体的熔点,是为了在不使共晶体过烧的前提下,通过较短的保温时间得到Al-Sn共晶体的断网状分布。在工艺试验的基础上进行了小批量(400件)试生产,经硬度、金相检查和试验台做产品出厂试验,均全部合格。该工艺于1996年正式投产至今,已生产轴套几十万只,全部合格。工效提高1.3倍,一年可节约资金约7万元,节电超过8万kW.h。