您所在的位置: 上海有色 > 有色金属产品库 > 耐热铝合金导线

耐热铝合金导线

抱歉!您想要的信息未找到。

耐热铝合金导线百科

更多

郑缆集团研制出耐热铝合金导线

2019-02-27 16:03:57

郑缆集团研制出耐热铝合金导线 郑缆集团技能中心研制出耐热铝合金导线。 产品经国电公司电力建造研究所的全面测验,功能悉数合格,到达和部分超过了日本TAL同类产品的质量功能水平。现在,已成功向宁夏电力公司供货,并已挂网通电运转,用户反映杰出。 该技能中心4月份曾成功开宣布我国首条750kv超高压输电线路用导线。来历:中息网

铝合金导线种类

2018-12-29 13:37:12

常用的铝合金导线品种有如下几种:     1、高强度铝合金导线     高强度铝合金导线是在铝中添加元素镁和硅,经过加工变形和热处理以后获得足够的强度、塑性和电气性能的铝合金产品,它是铝合金输电线中用量最大、使用得最广的铝合金品种。高强度铝合金导线的导电率为53%IACS,强度较普通铝导线提高近一倍,铝合金单线强度达300Mpa 以上。而普通铝单线的强度在150~170Mpa,铝合金导线在强度方面有较大的优势。     2、 耐热铝合金导线     耐热铝合金分为导电率分别为58%IACS 的耐热铝合金和还在铝中添加钇的高导电耐热铝合金。由于导线在150℃比在90℃下使用时,载流量可以提高61~69%,因而可用耐热铝合金作增容导线。高强度耐热铝合金线的高强度性能,可以提高在短路或过载情况下的动态稳定性;其耐热性能可以提高热稳定性。将要发展的超耐热铝合金和特高耐热铝合金,可进一步提高导线的载流能力、耐热性能,使其长期使用温度又进一步提高到180℃、210℃和230℃。

铝合金导线产品的优势

2019-01-11 15:43:41

高强度铝合金导线和耐热低电阻铝合金导线与传统的钢芯铝绞线相比存在以下优点:    (1)在相同的单位重量下,铝合金导体的直流电阻小,载流量大、拉力大,拉力单重比大等优点;    (2)在具有相同载流量条件下比较,铝合金导线的重要轻,拉力大,拉力单重比更大等优点。铝合金导线为单一材料的导线,易安装施工;    (3)铝合金导线承重低抗风险能等级;    (4)普通钢芯铝绞线使用寿命约50年,铝合金导线使用寿命达100~120年以上。

耐热铝合金的生产

2019-01-02 15:29:17

铝合金导线、尤其是耐热铝合金导线的生产,先进的生产工艺技术保证了产品的试制和批量生产。然而,先进、合理的生产设备也至关重要。铝合金线产品的生产,我国一般都采用以下的工艺路线:   以往,我国铝及铝合金的熔化、保温及合金化均采用竖炉熔化和二个矩形保温炉保温、合金化的模式。这种模式对普铝的生产毋须质疑,熔化速率高,二个八吨的矩形保温炉即可保证生产的连续性。由于普铝生产中基本上不需添加其它金属元素,也就不存在铝液是否均匀、偏析的问题。而对于铝合金的生产,尤其是作为导体材料铝合金的生产,由于各项技术指标要求都很高,这就不得不考虑矩形保温炉的适合性。众所周知,矩形保温炉由于形状所在,就难免存在着搅拌死角。铝液合金化的 过程中,怎么搅拌都不能使铝液达到均匀的状态。于是,就产生了铝合金液乃至最终产品的偏析现象。而过多、过猛或者操作不当的搅拌还会带来更严重的后果,那就是合金液严重吸气、造渣。另外,矩形保温炉还存在炉内较明显的温差现象,温差也是造成偏析的因素之一。于是,这种生产模式给我国铝合金导线产品质量一直处于不太稳定的现象带来了较大的影响。  耐热铝合金、尤其是60%耐热铝合金的生产中。由于锆元素的容许添加量范围较窄,锆元素添加超量了会降低导电率。反之,却达不到耐热性能要求。由于锆元素的添加量很少,熔炼和合金化设备的缺陷及炉前操作工艺的不当,造成成分偏析,产品的质量和稳定性就可想而知了。  实践表明,作为导体材料铝合金(包括耐热铝合金等)的生产中。要确保产品的质量和合格率,应有先进、合理的生产设备,加以先进的生产工艺技术和管理,才能保证了产品稳定地批量生产。才能在稳定生产中寻求降低生产成本的途径,才能以合理的价格面向用户,在我国巨大的输电用导线市场中占有一席之地。

耐热铝合金系列型号对照

2019-01-02 15:29:17

耐热铝合金系列型号对照表      Φ2.30~4.50mm线 种原型号IEC/TC 型号最小导电率 (20℃、%IACS)抗拉强度 (Mpa)长期容许使用温度 (℃)58%耐热铝合金58TAl   58159~16915060%耐热铝合金60TAlAT160159~169150高强度耐热铝合金KTAlAT255225~248150超耐热铝合金UTAl   58159~169200高导电超耐热铝合金ZTAlAT360159~176210特耐热铝合金XTAlAT458159~169230

新型铝合金更耐热 还可让铈变废为宝

2018-12-27 15:30:42

美国能源部橡树岭国家实验室的研究人员与合作伙伴劳伦斯利弗莫尔国家实验室、威斯康星州的Eck工业公司合作开发了一种新型铝合金,比现有产品实用性好且更耐高温。更为重要的是,这种含有铈的铝合金有可能极大提高美国稀土的产量。        铈是一种稀土元素,可与铝形成金属间化合物,其熔点超过1000摄氏度。铝-铈系合金非常适合用于内燃机发动机,测试表明该系列合金可以在300摄氏度环境下稳定工作。铝-铈合金的可铸性与铝-硅系合金相当,非常易于加工,金属间化合物的稳定性消除了许多热处理环节。研究人员还指出,由于铝合金的广泛应用,铝-铈合金的发现将启动并快速推进铈稀土元素产业的发展,据初步估算,即使按1%的添加量,每年对铈的市场需求亦可达到3000吨。橡树岭国家实验室的科学家ZachSims、Michael Mc Guire和Orlando Rios与来自Eck工业公司、劳伦斯利弗莫尔国家实验室、爱荷华州的埃姆斯实验室的同事们在一篇文章中探讨了铝铈合金的技术和经济可行性,该论文发表在矿物、金属和材料协会的出版物JOM上。        稀土是一组对电子器件、可替代能源和其他现代技术非常重要的元素。例如,现代的风力发电和混合动力汽车对由稀土元素钕和镝制造的强大的永磁铁非常依赖。然而,在现在的北美并没有进行稀土的生产。其中一个问题是,包括美国的稀土矿在内,铈含量高达稀土含量一半以上,但是稀土生产商很难找到铈矿市场。事实上,在美国最常见的稀土矿,铈的含量是钕含量的3倍以上、镝含量的500倍以上。        铝铈合金有望通过增加需求来促进国内稀土矿开采,并最终提高铈的价值。Rios解释道,我们有足够的稀土来满足能源技术的需要,但当你提炼稀土时,得到的大部分元素是铈和镧,限制了稀土的大规模使用。例如,如果在内燃机上用到铝铈合金,这样可以迅速将铈从一个糟糕的副产品转换为一个有价值的产品。        Rios解释说:“铝产业是巨大的,汽车产业中使用了大量的铝,所以对于铝铈合金即使是一个非常小的突破,将导致市场使用大量的铈元素。事实上,市场上1%的铝合金中加入铈,市场将产生3000t的铈需求量。        Rios表示,与传统的铝合金相比,铝铈合金具有成本低,可铸造性高,热处理需求低和高温稳定性好。Eck工业公司工程研究和开发的副总裁David Weiss表示:”大多数具有卓越性能的合金很难浇铸,但铝铈合金具备优异的性能,且其铸造特性与铝硅合金相差无几。“        合金的高温性能的关键是形成一种特殊的铝-铈化合物,即金属间化合物,当合金熔化和铸造的时候,该化合物才在合金内部形成。这种金属间化合物只有在华氏2000度以上才融化。Rios指出,铝铈合金的耐热性应用在内燃机上是非常有吸引力的。试验表明,新型合金在300摄氏度(572华氏度)时会保持稳定状态,而传统合金在这一温度开始崩解。此外,金属间化合物的稳定性有时可以免除铝合金通常需要的热处理工序。铝铈合金通过提高运行温度来直接提高发动机燃油效率,也可以通过用轻型铝基组件或用铝合金来替代铸铁部件从而减轻发动机的重量来间接提高燃油效率,如气缸体、变速箱和气缸盖。        这个团队在传统的砂模中铸造了原型飞机的汽缸盖;也在3D打印的砂模中为一个化石燃料驱动的发电机铸造了全功能汽缸盖。橡树岭国家实验室美国交通运输研究中心这一史无前例的示范引导一个发动机试验获得了成功,即证明了这种发动机能进行温度超过600摄氏度的排气。        橡树岭国家实验室的物理学家Zachary Sims介绍说:“3D打印的模型通常很难被填充满,但有着卓越铸造特性的铝铈合金是个例外。”

耐热钢牌号

2019-03-18 10:05:23

不锈钢和耐热钢牌号 不锈钢和耐热钢牌号采用表) 6 ) 6 " 规定的合金元素符号和阿拉伯数字表示,易切削不锈钢和耐热钢在牌号头部加“7”。一般用一位阿拉伯数字表示平均含碳量(以千分之几计)。当平均含碳量不小于"#%%&时,采用二位阿拉伯数字表示。当含碳量上限小于%#"&时,以“%”表示含碳量,当含碳量上限不大于%#%*&,大于%#%"&时(超低碳),以“%*”表示含碳量。当含碳量上限不大于%#%"&时(极低碳),以“%"”表示含碳量。含碳量没有规定下限时,采用阿拉伯数字表示含碳量的上限数字。合金元素含量表示方法同合金结构钢。例如:平均含碳量为%#)%&,含铬量为"*&的不锈钢,其牌号表示为“)’("*”。含碳量上限为%#%5&,平均含铬量为"5&,含镍量为4&的铬镍,其牌号表示为“%’("5/04”。含碳量上限为%#")&、平均含铬量为".&的加硫易切削铬不锈钢,其牌号表示为“7"’(".”。平均含碳量为"#"%&,含铬量为".&的高碳铬不锈钢,其牌号表示为“""’(".”。含碳量上限为%#%*&,平均含铬量为"4&,含镍量为"%&的超低碳不锈钢,其牌号表示为“%*’("4/0"%”。含碳量上限为%#%"&,平均含铬量为"4&,含镍量为""&的极低碳不锈钢,其牌号表示为“%"’("4/0""”。(十)焊接用钢焊接用钢包括焊接用碳素钢、焊接用合金钢和焊接用不锈钢等,其牌号耐热钢牌号中国 美国 德国 日本 法国 英国 国际GB1220-92 AISI、ASTM DIN17440 JIS NF A35-572 BS 970 ISO683/13DIN17224 NF A35-576~582 BS 1449 ISO683/16  NFA35-584    1Cr17MN6Ni5N 201,S2010   SUS201     A-21Cr18Mn8Ni5N 202,S20200   SUS202   284S16 A-31Cr18Mn10Ni5Mo3N            1Cr17Ni7 301,S30100   SUS301 Z12CN17.07 301S21 141Cr18Ni9 302,S30200 X12CrNi188 SUS302 Z10CN18.09 302S25 12Y1Cr18Ni9 303,S30300 X12CrNiS188 SUS303 Z10CNF18.09 303S21 17Y1Cr18Ni9Se 303Se,S30323   SUS303Se   303S41 170Cr18Ni9 304,S30400 X5CrNi189 SUS304 Z6CN18.09 304S15 1100Cr19Ni10 304L,S30403 X2CrNi189 SUS304L Z2CN18.09 304S12 100Cr19Ni9N     SUS304N1   304N,S30451  0Cr19Ni10NbN XM21,S30452   SUS304N2      00Cr18Ni10N   X2CrNiN1810 SUS304LN Z2CN18.10N    1Cr18Ni12 305,A30500 X5CrNi1911 SUS305 Z8CN18.12 305S19 130Cr23Ni13 309S,S30908   SUS309S      0Cr25Ni20 310S,S31008   SUS310S      0Cr17Ni12Mo2 316,S31600 X5CrNiMo1810 SUS316 Z6CND17.12 316S16 20,20a1Cr18Ni12Mo2   X10CrNiMoTi1810   Z8CNDT17.12 320S17  0Cr18Ni12Mo2Ti   X10CrNiMoTi1810   Z6CNDT17.12 320S17  00Cr17Ni14Mo2 316L,S31603 X2CrNiMo1810 SUS316L Z2CND17.12 316S12 19,19a0Cr17Ni12Mo2N 316N,S31651   SUS316N      00Cr17Ni13Mo2N   X2CrNiMoN1812 SUS316LN Z2CND17.12N    0Cr18Ni12Mo2Cu2     SUS316J1      00Cr18Ni14Mo2Cu2     SUS316JIL      0Cr19Ni13Mo3 317,S31700   SUS317   317S16 2500Cr19Ni13Mo3 317L,S31703 X2CrNiMo1816 SUS317L Z2CND19.15 317S12 241Cr18Ni12Mo3Ti            0Cr18Ni12Mo3Ti            0Cr18Ni16Mo5     SUS317J1      1Cr18Ni9Ti   X10CrNiTi189        0Cr18Ni10Ti 321,S32100 X10CrNiTi189 SUS321 Z6CNT18.10 321S12,321S20 150Cr18Ni11Nb 347,S34700 X10CrNiNb189 SUS347 Z6CNNb18.10 347S17 160Cr18Ni9Cu3 XM7   SUSXM7 Z6CNU18.10   D32①0Cr18Ni13Si4 XM15,S38100   SUSXM15JI      0Cr26Ni5Mo2     SUS329JI      1Cr18Ni11Si4A1Ti            00Cr18Ni5Mo3Si2            0Cr13A1 405,S40500 X7CrA113 SUS405 Z6CA13 405S17 200Cr12     SUS410L      1Cr17 430,S43000 X8Cr17 SUS430 Z8C17 430S15 8Y1Cr17 430F,S43020 X12CrMoS17 SUS430F Z10CF17   8a1Cr17Mo 434,S43400 X6CrMo17 SUS434 Z8CD17.01 434S19 9c00Cr30Mo2     SUS44JI      00Cr27Mo XM27,S44625   SUSXM27 Z01CD26.1    1Cr12 403,S40300   SUS403   403S17  1Cr13 410,S41000 X10Cr13 SUS410 Z12C13 410S21 30Cr13 410S X7Cr13 SUS410S Z6C13 403S17 1Y1Cr13            1Cr13Mo     SUS410JI      2Cr13 420,S42000 X20Cr13 SUS420JI Z20C13 420S37 43Cr13 420,S45   SUS420J2     5Y3Cr13 420F,S42020   US42F Z30CF13    3Cr13Mo            4Cr13   X4DCr13 US420J2 Z40C13   51Cr17Ni2 431,S43100 X22CrNi17 SUS431 Z15CN16-02 431S29 97Cr17 440A,A44002   US440A      8Cr17 440B,S44003   USU440B      9Cr18 440C X105CrMo17 SUS440C Z100CD17    11Cr17 440C,S44004   SUS440C Z100CD17   A-1bY11Cr17 440F,S44020   SUS440F      9Cr18Mo 440C,S44004   SUS440C     A-1b9Cr18MoV 440B X90CrMoV18 SUS440B Z6CNND17.12    0Cr17Ni4Cu4Nb 630,S17400   SUS630 Z6CNU17.04   1②OCr17Ni7A1 631,S17700 X7CrNiAl177 SUS631 Z8CNA17.7   2②OCr15Ni7Mo2A1 632,S15700     Z8CND15.7   3②3Cr13中国 美国 德国 日本 法国 英国 国际GB1220-92 AISI、ASTM DIN17440 JIS NF A35-572 BS 970 ISO683/13DIN17224 NF A35-576~582 BS 1449 ISO683/16  NFA35-584    1Cr17MN6Ni5N 201,S2010   SUS201     A-21Cr18Mn8Ni5N 202,S20200   SUS202   284S16 A-31Cr18Mn10Ni5Mo3N            1Cr17Ni7 301,S30100   SUS301 Z12CN17.07 301S21 141Cr18Ni9 302,S30200 X12CrNi188 SUS302 Z10CN18.09 302S25 12Y1Cr18Ni9 303,S30300 X12CrNiS188 SUS303 Z10CNF18.09 303S21 17Y1Cr18Ni9Se 303Se,S30323   SUS303Se   303S41 170Cr18Ni9 304,S30400 X5CrNi189 SUS304 Z6CN18.09 304S15 1100Cr19Ni10 304L,S30403 X2CrNi189 SUS304L Z2CN18.09 304S12 100Cr19Ni9N     SUS304N1   304N,S30451  0Cr19Ni10NbN XM21,S30452   SUS304N2      00Cr18Ni10N   X2CrNiN1810 SUS304LN Z2CN18.10N    1Cr18Ni12 305,A30500 X5CrNi1911 SUS305 Z8CN18.12 305S19 130Cr23Ni13 309S,S30908   SUS309S      0Cr25Ni20 310S,S31008   SUS310S      0Cr17Ni12Mo2 316,S31600 X5CrNiMo1810 SUS316 Z6CND17.12 316S16 20,20a1Cr18Ni12Mo2   X10CrNiMoTi1810   Z8CNDT17.12 320S17  0Cr18Ni12Mo2Ti   X10CrNiMoTi1810   Z6CNDT17.12 320S17  00Cr17Ni14Mo2 316L,S31603 X2CrNiMo1810 SUS316L Z2CND17.12 316S12 19,19a0Cr17Ni12Mo2N 316N,S31651   SUS316N      00Cr17Ni13Mo2N   X2CrNiMoN1812 SUS316LN Z2CND17.12N    0Cr18Ni12Mo2Cu2     SUS316J1      00Cr18Ni14Mo2Cu2     SUS316JIL      0Cr19Ni13Mo3 317,S31700   SUS317   317S16 2500Cr19Ni13Mo3 317L,S31703 X2CrNiMo1816 SUS317L Z2CND19.15 317S12 241Cr18Ni12Mo3Ti            0Cr18Ni12Mo3Ti            0Cr18Ni16Mo5     SUS317J1      1Cr18Ni9Ti   X10CrNiTi189        0Cr18Ni10Ti 321,S32100 X10CrNiTi189 SUS321 Z6CNT18.10 321S12,321S20 150Cr18Ni11Nb 347,S34700 X10CrNiNb189 SUS347 Z6CNNb18.10 347S17 160Cr18Ni9Cu3 XM7   SUSXM7 Z6CNU18.10   D32①0Cr18Ni13Si4 XM15,S38100   SUSXM15JI      0Cr26Ni5Mo2     SUS329JI      1Cr18Ni11Si4A1Ti            00Cr18Ni5Mo3Si2            0Cr13A1 405,S40500 X7CrA113 SUS405 Z6CA13 405S17 200Cr12     SUS410L      1Cr17 430,S43000 X8Cr17 SUS430 Z8C17 430S15 8Y1Cr17 430F,S43020 X12CrMoS17 SUS430F Z10CF17   8a1Cr17Mo 434,S43400 X6CrMo17 SUS434 Z8CD17.01 434S19 9c00Cr30Mo2     SUS44JI      00Cr27Mo XM27,S44625   SUSXM27 Z01CD26.1    1Cr12 403,S40300   SUS403   403S17  1Cr13 410,S41000 X10Cr13 SUS410 Z12C13 410S21 30Cr13 410S X7Cr13 SUS410S Z6C13 403S17 1Y1Cr13            1Cr13Mo     SUS410JI      2Cr13 420,S42000 X20Cr13 SUS420JI Z20C13 420S37 4420,S45   SUS420J2     5Y3Cr13 420F,S42020   US42F Z30CF13    3Cr13Mo            4Cr13   X4DCr13 US420J2 Z40C13   51Cr17Ni2 431,S43100 X22CrNi17 SUS431 Z15CN16-02 431S29 97Cr17 440A,A44002   US440A      8Cr17 440B,S44003   USU440B      9Cr18 440C X105CrMo17 SUS440C Z100CD17    11Cr17 440C,S44004   SUS440C Z100CD17   A-1bY11Cr17 440F,S44020   SUS440F      9Cr18Mo 440C,S44004   SUS440C     A-1b9Cr18MoV 440B X90CrMoV18 SUS440B Z6CNND17.12    0Cr17Ni4Cu4Nb 630,S17400   SUS630 Z6CNU17.04   1②OCr17Ni7A1 631,S17700 X7CrNiAl177 SUS631 Z8CNA17.7   2②OCr15Ni7Mo2A1 632,S15700     Z8CND15.7   3②

铝导线的优势

2018-12-29 09:42:51

铝导线相对于铜导线还有其特有的优势,其中最为明显的就是成本较低。铜的密度为8.9g/cm3,铝的密度为2.7g/cm3,在导体规格相同的情况下,铜导体的重量是铝导体的3.3倍。然而,铝的导电率只相当于铜的60%左右,在传输相同电流的情况下,铝导体的横截面积相对较大。综合上述因素,要是两种导线具有同样的载流量,铜导线的质量约为铝导线的两倍,加之铜铝价格的差别,最终等效铜导线成本是铝导线的7倍左右。值得注意的是,由于同等条件下铝导线横截面积相对较大,因此铝芯电缆的绝缘、保护等材料需求增加,相应削减了铝导线的价格优势。目前市场上普遍采用的铝合金电缆的价格只有铜芯电缆的75%左右。另外,从安装成本角度考虑,由于铝导线相对较轻,其在安装过程中,不需要桥架及穿管,可以节约大量的安装材料,相比铜导线节省20%-50%的安装成本。   在铝导线成本优势明显、我国铜资源相对匮乏等因素的影响下,行业内企业亦加大相关技术的研发力度。近几年我国铝合金电缆行业在低压电缆技术转型升级和产品更新换代方面取得很大的成就。伴随着技术的不断成熟及市场认可度的日益提高,我国“铝代铜”规模有望大幅提高。

造一款既耐高温又低耗能的铝合金导线

2019-01-09 09:34:17

自从200年前富兰克林发现电,这种能源便伴随着人类社会的进步和工业社会的发展,对于现代人来说,电能已然成为一种与生俱来的资源。   但是,能源的消耗终究有个上限,从火力发电到水力发电再到核能发电,在满足人们不断增长的电能需求时,如何减能降耗也是当下人类应该积极思考的问题。   节能技术有什么办法吗?   势在必行的技术革新   未来,我国将全面建成以特高压电网为骨干网架、各级电网协调发展的坚强智能电网。在普通人的生活环境中,目力所及会看到高耸的塔杆支起穿越大半个中国的电路导线,实现“西电东送、南北互供”的全国联网,并逐步建设全球能源互联的智能运行控制和互动服务体系。这时,电能就在电网上飞驰、奔流、消耗。而且,为了满足人们日益增长的电力需求,除了新建大容量输电线路外,老线路的增容改造更需要能够支撑长久的电网材料来保证旧城电力安全、可靠的供应。   从整个电力行业看来,在现有线路走廊及设施条件下,以高导电率耐热铝合金导线更换目前应用的架空钢芯铝绞线,是增加线路传输容量和降低线损的有效途径。   可是,铝合金的导电率与耐热性及力学性能相互制约,在保证力学性能和耐热性能的前提下提升铝合金导线的导电率的难度极大,日本花了10年时间才把耐热铝合金导线的导电率由58%IACS提升到60%IACS,要研发一种具有导电率高、耐热性能好的铝合金导线并非易事。   不断实现的技术突破   2012年,全球能源互联网研究院、中南大学等科研机构组成团队,针对提升输电线路容量、提高输送效率的技术需求,开展系统的合金设计和制备技术及工艺研究。   项目立项之初,国内外无导电率为61%IACS的耐热铝合金导线的量产及工程应用实例,仅有关于日本利用99.85%以上高纯工业铝锭、采用复杂苛刻工艺制备的导电率为61%IACS的耐热铝合金单丝的报道,而且制备成本很高,难以实现工业化生产。   在项目的研究中,整个项目组揭示了多种微合金化元素及加入量和加入方式对铝合金导体材料综合性能的影响规律,得到了满足目标要求的导体材料的成分体系及优化的制备工艺。2016年1月,项目成果通过了中国电力企业联合会组织的科技成果鉴定,以中国工程院院士谢建新为主任的鉴定委员会认为:“该研究成果的导电率指标(≥61%IACS)达到国际先进水平。”2016年12月,项目荣获2016年度中国有色金属工业科学技术奖一等奖。   项目在理论创新方面,首先基于合金热力学计算和实验验证,揭示了Al与微量Zr、Re的相互作用机制及对性能的扬抑效应,发展了第二相组态对电工铝合金材料宏观性能的调控机理;同时,基于微合金化理论和创新成果,进行了铝合金性能与成分及制备工艺的匹配性设计,获得了综合性能优良的铝合金导体成分配方案和关键制备工艺参数,实现了61%IACS高导电率的耐热铝合金单丝(长期耐热温度150℃)及导线(长期耐热温度120℃)的成功制备;还有采用99.7wt.%的工业纯铝,通过Al、B、Zr、RE元素的合理配比和适量加入,使B及RE产生净化、变质及协同Zr的复合微合金化作用,实现了高导耐热铝合金导线的工业化生产,完成了61%IACS耐热铝合金导线的工程应用。   据了解,这个项目共获得授权国家发明专利5项,发表论文十余篇,其中SCI/EI论文9篇。   广阔而具体的应用前景   在整个项目中,除了获得基础理论、试验方法之外,还掌握了高导耐热铝合金导体材料及导线制备的核心技术,实现了铝合金导线产品的工程应用。 当前,项目研制的导电率为61%IACS的耐热铝合金导线已在辽宁、河南、云南等地增容改造线路工程中获得应用,利用现有线路及杆塔设施更换导线产品即可实现线路输送容量的提升,大大减少停电作业时间,降低工程造价和停电产生的间接经济损失,线路运行至今状态良好,有效保证了供电的安全可靠性。   据统计,我国每年大约有3000亿的导线用量,耐热铝合金导线的份额在数十亿元左右。以我国全网每年耐热铝合金导线的用量5万公里粗略估算,应用61%IACS耐热铝合金导线代替现役耐热铝合金导线,每年可减少输电线路损耗约1.07×109kWh,可减少二氧化碳排放约100万t,按0.5元/kWh电价计算,可节省电费将近5亿多元,经济环境效益显著,应用前景广阔。

稀土耐热铸钢的研制

2019-01-30 10:26:27

锅炉、汽轮机、航空、石油化工等工业部门使用的机械设备中的零部件大多在高温条件下工作,除要求较高的氧化腐蚀性、足够的韧性以及一定的组织稳定性外,还要求有较高的高温强度。稀土加入钢中不仅可起到脱氧、脱硫、改变夹杂物形态等净化和变质作用,在某些钢中还能有微合金化的作用。大量的研究结果表明,稀土元素可明显改善耐热钢和电热合金的钢的抗氧化能力,高温强度和塑性、疲劳寿命、耐腐蚀性及抗裂性等。为提高铸钢材料的耐热性,扩大稀土的应用范围和数量,对耐热铸钢加人稀土元素Ce或La热强性能的影响进行了试验研究,并利用试验结果,对Fe-Cr-Ni-AI耐热合金钢进行了研制,结果表明,通过化学元素调配,利用铸造方法优化筛选出一种成分合金,将合金的耐热温度提高到1250~1300℃,在室温下获取了优良的铸造性、可焊性,于高温下获得良好的力学性能和高温抗氧化性能。     一、试验材料及方法     试验材料采用Cr24Ni7N钢及Cr25Ni20铸造钢材,在铸造钢材中加人0.01%~0.10%金属元素La或Ce后,在中频炉中进行冶炼。每一种钢采用同一炉钢水,一半不加稀土,另一半加稀土。持久与蠕变试验分别是在BⅡ-2及RD-23试验机上进行的。铸造试样在试验温度下进行24h时效处理后,加工成M12mm×66mm的试样。用ELC-3133A型离子探针进行断口表面(即晶界面)稀土的深度分析。Fe-Cr-Ni-AI耐热合金钢的研制,用普通铸造方法,所用炉料为工业纯铁、微碳铬铁、镍铁、铝线、工业纯硅,1号稀土硅铁合金。用中频感应电炉熔炼合金;造渣材料用石灰和萤石;钢水出炉温度1550~1570℃;毛坯试棒采用对开石墨型烘干后浇铸。     二、试验结果分析     (一)稀土对耐热铸钢性能的影响(表1) 表1  稀土对耐热铸钢性能的影响钢号断裂时间/h试验应力39.2MPa试验应力29.4MPaCr24Ni7N430Cr24Ni7Nce2162Cr24Ni7NLa1763     在不同应变率条件下,添加稀土元素La、Ce的合金的抗拉强度比未加稀土元素的合金的抗拉强度都有较大幅度提高。钢的持久强度主要取决于钢的组织特点及纯净度,但抗氧化较好的钢由于表面烧蚀少也有好的作用。为了排除氧化影响的因素,我们对Cr24Ni7N(RE)钢铸造材做了1000℃的真空持久试验,结果表明铸钢中加入稀土后使同一应力下的断裂时间延长2倍以上。     (二)稀土对蠕变性能的影响     图1为 Cr24Ni7N(RE)钢铸态试样870℃高温蠕变的试验结果。钢中加入金属La后,使其蠕变速度由1.14×10-3%/h降到3.6×10-4%/h,并延长了断裂时间。这是因为稀土元素La和Ce的原子半径远比Fe大,他们溶解在铁中将会产生较大的点阵畸变能。根据溶质原子平衡偏聚理论,将会使它们偏聚在晶界上,这从我们的试验结果中得到了证实。国内外的研究也发现稀土元素偏聚在钢的晶界上,晶界上偏聚的稀土,趋于占据晶界中的空位和畸变区,这样有可能降低基体原子的晶界扩散速率,使由扩散控制的晶界滑动受到阻碍,使晶界裂纹不易形成,晶界得到强化。稀土净化了晶界,减少了晶界的杂质元素,改善了钢的热塑性,使晶界裂纹尖端的应力集中容易因形变而松弛,裂纹难于扩展,从而延长了断裂寿命。图1  Cr24Ni7N钢加入RE后对蠕变性能的影响     三、稀土改善热强性能的因素分析     高温断裂、特别是高温持久断裂,一般是沿晶断裂(在铸态下亦可是沿枝晶断裂),所以对耐热钢而言,影响热强性的关键是晶界强度。我们对Cr24Ni7NLa钢1000℃的真空持久断口用ELC-3133A型离子探针方法进行了断口表面(即晶界面)稀土的深度分析,结果如图2所示。随着溅射时间的增长,远离断口表面(晶界面)稀土含量明显降低,说明稀土富集于晶界。图2   Cr24Ni7NLa钢1000℃真空持久断口La的深度分布结果     四、Fe-Cr-Ni-Al耐热合金钢的研制     用普通铸造方法,通过各元素合金配比来制取Fe-Cr-Ni-Al耐热合金钢。试验合金成分(%):c0.06、Cr 24、Ni 10、Al 3、Si 1.5、Re≤0.5、S≤0.03、P≤0.03。通过电镜对合金进行金相分析,可以看到合金铸态基体组织由两相(铁素体十奥氏体)组成,在图3中可以观察到白色的铁素体与黑色的奥氏体,两相相间分布,并可以观察到两相比例及显微组织特征,这些因素决定了合金的高温力学性能和高温抗氧化性能。图3  合金铸态显微组织图4  合金高温力学性能随温度的变化     试验合金短时抗拉强度值与断面收缩率对应温度曲线如图4所示,图中每点值为三个试样的平均值。从图4可以看出,该合金在1050~1300℃高温区间,短时抗拉强度值随温度的升高而呈线性下降趋势。在1250℃时,合金短时抗拉强度值仍达到40 MPa。合金断面收缩率由图可知,在1150℃时出现峰值,在1250℃仍达到30%左右。根据钢的热塑性曲线,合金在1100~1200℃为奥氏体化区域,此时合金具有最佳的塑性和韧性;当温度超过1250℃时,晶粒急剧长大,基体组织恶化,晶界强度降低,大部分合金在1300℃时呈现脆性断裂趋势;在低于1100℃时,合金处于低塑性区。     按GB/T13303-91对合金进行了1250℃高温抗氧化试验,结果见图5。试验合金在高温下氧化增重速率曲线在开始200h斜率较大,在后300h随时间的增加斜率逐渐降低,曲线变得平滑,说明合金氧化膜在高温下具有较高的稳定性,对合金内部基体组织起到良好的保护作用。由图中试验数据可计算出,试验合金1250℃氧化增重速率稳定在0.2g/ (m2·h)左右,具有优良的高温抗氧化性。图5  合金氧化动力学曲线     五、结论     在钢中加入适量的金属Ce或La,能明显地改善耐热铸钢的持久强度,降低其蠕变速率。采用普通铸造石墨型造型方法生产的Fe-Cr-Ni-AI耐热合金1250℃时,合金短时抗拉强度达到40MPa以上,断面收缩率在30%左右,氧化增重速率稳定在0.2g/(m2·h>左右。