您所在的位置: 上海有色 > 有色金属产品库 > 2al2铝合金厂家 > 2al2铝合金厂家百科

2al2铝合金厂家百科

2A02铝合金

2018-12-29 16:56:48

材料名称:2A02   旧称:LY2  标准:YS/T 439-2001   特性及适用范围:   这是硬铝中强度较高的一种合金,其特点是:常温时有高的强度,同时也有较高的热强性,属于耐热硬铝。合金在热变形时塑性高,在挤压半成品中,有形成粗晶环的倾向,可热处理强化,在淬火及人工时效状态下使用。与2A70、2A80耐热锻铝相比,腐蚀稳定性较好,但有应力腐蚀破裂倾向;焊接性比2A70略好,可切削性良好。   化学成份:   硅 Si :0.30   铁 Fe: 0.30   铜 Cu :2.6-3.2   镁 Mg:2.0-2.4   锌 Zn:0.10   锰 Mn:0.45-0.7   2A02铝合金   钛 Ti :0.15   铝 Al :余量   注:单个:0.05;合计:0.10

2a16铝合金性能

2018-12-29 11:29:07

材料名称:2a16铝合金   标准:GB/T3190-1996主要特征及应用范围:这是一种耐热硬铝,其特点是:在常温下强度并不太高,而在高温下却有较高的蠕变强度,合金在热态下有强度的塑性,无挤压效应,可处理强化,点焊,滚焊焊接性能良好,形成裂纹的倾向不太显著,焊缝气密性尚好,焊缝腐蚀稳定性较低,包铝板材的腐蚀稳定性尚好,挤压半成品的抗腐蚀性不高,为防止腐蚀,应采用阳极氧化处理或涂漆保护:可切削性能尚好。用途主要用于在250-350℃下工作的零件,如轴承向压缩机的叶片,圆盘,板材用作常温和高温下工作的焊接件,如容器,气密仓等   力学性能:   抗拉强度 σb (MPa) ) ≥355   条件屈服强度 σ0.2 (MPa) )≥235   试样尺寸:所有壁厚   注:管材室温纵向力学性能   ●热处理规范:   1)均匀化退火:加热515~530℃;保温12~16h;炉冷。   2)完全退火:加热380~450℃;保温时间30~120min;空冷。   3)快速退火:加热350~370℃;保温时间为30~120min;空冷。   4)淬火和时效:淬火530~540℃,水冷;人工时效(锻件、薄板)160~170℃,10~16h,空冷;自然时效室温时间不限。

铝合金2A04性能

2018-12-29 13:37:15

特性及适用范围:   铆钉用合金。具有较高的剪切强度和耐热性能,压力加工性能和可切削性能以及耐蚀性均与2A12相同,在150~250℃内形成晶间腐蚀倾向较2A12小;可热处理强化,在退火和刚淬火状态下进行铆接(2~6h内,按铆钉直径大小而定)。   力学性能:  抗剪强度 τ (MPa):≥275   注 :线材固溶热处理后自然时效至基本稳定状态抗剪性能  试样尺寸:线材直径≤6.0  热处理规范:  1)快速退火:加热350~370℃;随材料有效厚度的不同,保温时间为30~120min;空气或水冷。   2)淬火和时效:淬火500~510℃,空冷;自然时效室温120h。  状态:铆钉用铝及铝合金线材(≤6.0mm,T4态)

2A13铝合金性能

2018-12-29 11:29:09

●力学性能  抗拉强度 σb (MPA):≥315   伸长率 δ5 (%):≥4   注 :棒材室温纵向力学性能   试样尺寸:棒材直径(方棒、六角棒内切圆直径)≤22   ●热处理规范  1)均匀化退火:加热480~495℃;保温12~14h;炉冷。   2)完全退火:加热390~430℃;保温时间30~120min;炉冷至300℃,空冷。   3)快速退火:加热350~370℃;保温时间为30~120min;空冷。4)淬火和时效:淬火495~505℃,水冷;人工时效185~195℃,6~12h,空冷;自然时效:室温96h。

2A17铝合金性能

2018-12-29 11:29:07

特性   2A17为铝-铜-镁系中的典型硬 铝合金,其成份比较合理,综合性能较好。很多国家都生产这个合金,是硬铝中用量最大的。该合金的特点是:强度高,有一定的耐热性,可用作150°C以下的工作零件。温度高于125°C,2A20   力学性能   抗拉强度 σb (MPa):215~355   伸长率 δ10 (%):12~17   固溶处理温度:500℃~510℃.   冷加工材料退火范围:340℃~350℃.   热处理后材料退火温度:415℃。

铝合金2A10性能

2018-12-29 09:43:11

●特性及适用范围:  铝板2A10为铆钉用合金。剪切强度较高,在退火、刚淬火、时效和热态下均具有足够的铆接铆钉所需的可塑性;用淬火和时效后的铆钉铆接,铆接过程不受热处理后的时间限制。铝板2A10可焊性与2A11相同,铆钉的腐蚀稳定性与2A01、2A11相同。加热超过100℃时,产生晶间腐蚀倾向。  ●力学性能:  抗剪强度 τ (MPa):≥245  注 :线材固溶热处理后自然时效至基本稳定状态抗剪性能   试样尺寸:线材直径≥8.0  ●热处理规范:  1) 完全退火:加热390~430℃;随材料有效厚度不同,保温时间30~120min;以30~50℃/h速度随炉冷至300℃下,再空冷。   2)快速退火: 加热350~370℃;随材料有效厚度不同,保温时间30~120min;空冷。   3)淬火和时效:淬火510~520℃,水冷;人工时效 70~80℃,24h,空冷;自然时效室温240h。  状态:铆钉用铝及铝合金线材(≥8.0mm,T4态)

2a06铝合金性能

2018-12-29 13:37:12

2A06铝合金为高强度硬铝,压力加工性能和可切削性能与2A12相同,在退火和刚淬火状态下塑性尚好。2A06铝合金可进行淬火与时效处理,一般腐蚀稳定性与2A12相同,加热至150~250℃时,形成晶间腐蚀的倾向较2A12为小,点焊焊接性与2A12、2A16相同,氩弧焊接较2A12为好,但比2A16差。   2a06为铝-铜-镁系中的典型硬铝合金,其成份比较合理,综合性能较好。很多国家都生产这个合金,是硬铝中用量最大的。该合金的特点是:强度高,有一定的耐热性,可用作150°C以下的工作零件。温度高于125°C,2a06合金的强度比7075合金的还高。热状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。广泛用于飞机结构、铆钉、卡车轮毂、螺旋桨元件及其他种种结构件。   ●力学性能:   抗拉强度 σb (MPa):≥430   条件屈服强度 σ0.2 (MPa):≥285   伸长率 δ5 (%):≥10   注 :棒材室温纵向力学性能   试样尺寸:棒材直径(方棒、六角棒内切圆直径)≤22   ●热处理规范:   1)完全退火:加热390~430℃;随材料有效厚度不同,保温时间30~120min;以30~50℃/h速度随炉冷至300℃下,再空冷。   2)快速退火:加热350~370℃;随材料有效厚度不同,保温时间30~120min;空或水冷。   3)淬火和时效:淬火500~510℃,空冷;人工时效 95~105℃,3h,空冷;自然时效室温120h   状态:铝及铝合金挤压棒材(≤22mm,H112、T6态)

2A11铝合金性能

2018-12-29 11:29:09

2A11铝合金特性及适用范围:   2A11铝合金|为应用最早的一种硬铝,一般称为标准硬铝,具有中等强度,在退火、刚淬火和热状态下可塑性尚好,可热处理强化,在淬火和自然时效状态下使用,点焊焊接性良好,进行气焊及氩弧焊时有裂纹倾向;可切削在淬火时效状态下尚好,在退火状态时不良。   2A11铝合金力学性能:   抗拉强度 σb (MPA):≥370   条件屈服强度 σ0.2 (MPA):≥215   伸长率 δ5 (%):≥12   注 :棒材室温纵向力学性能   试样尺寸:棒材直径(方棒、六角棒内切圆直径)≤150   2A11铝合金热处理规范:   1) 均匀化退火:加热480~495℃;保温12~14h;炉冷。   2)完全退火:加热390~430℃;保温时间30~120min;空冷。   3)快速退火:加热350~370℃;保温时间为30~120min;空冷。   4)淬火和时效:淬火495~510℃,水冷;人工时效155~165℃,6~10h,空冷;自然时效:室温96h。   2A11铝合金状态:铝及铝合金挤压棒材(≤150mm,H112、T4态)

2A02铝合金性能

2018-12-29 16:56:48

力学性能:   抗拉强度 σb (MPa):≥430   条件屈服强度 σ0.2 (MPa):≥275   伸长率 δ5 (%):≥10   注 :棒材室温纵向力学性能   试样尺寸:棒材直径(方棒、六角棒内切圆直径)≤150   热处理规范:   1)快速退火:加热350~370℃;随材料有效厚度的不同,保温时间为30~120min;空气或水冷。   2)淬火和时效:淬火495~505℃,水冷;人工时效165~175℃,10~16h,空冷。   状态:铝及铝合金挤压棒材(≤150mm,H112.F.T6态)

铝合金2B12性能

2018-12-29 11:29:12

主要特征及应用范围:   铆钉用合金。剪切强度和2A02相当,其他性能和2B11相似,但铆钉必须在淬火后20min内铆接,故工艺困难,因而应用范围受到限制.   力学性能:  抗剪强度 τ (MPa):≥265  注 :线材固溶热处理后自然时效至基本稳定状态抗剪性能  试样尺寸:所有线材直径  热处理规范:   1)完全退火:加热390~430℃;随材料有效厚度不同,保温时间30~120min;以30~50℃/h速度随炉冷至300℃下,再空冷。   2)快速退火:加热350~370℃;随材料有效厚度不同,保温时间30~120min;空冷。   3)淬火和时效:淬火490~500℃,水冷;自然时效室温96h。  合金状态:铆钉用铝及铝合金线材。

2B11铝合金特性

2018-12-29 11:29:12

2B11铝合金特性及适用范围   2B11铝合金为铆钉用合金。2B11铝合金具有中等剪切强度,可热处理强化,在退火、刚淬火和热态下塑性尚好,铆钉必须在淬火后2h内铆接。   2B11力学性能   抗剪强度 τ (MPa):≥235   注 :线材固溶热处理后自然时效至基本稳定状态抗剪性能   试样尺寸:所有线材直径   热处理规范   1)完全退火:加热390~430℃;随材料有效厚度不同,保温时间30~120min;以30~50℃/h速度随炉冷至300℃下,再空冷。   2)快速退火:加热350~370℃;随材料有效厚度不同,保温时间30~120min;空冷。   3)淬火和时效:淬火495~505℃,水冷;自然时效室温,96h。   2B11铝合金状态:铆钉用铝及铝合金线材 (T4态)

2a06铝合金化学成份

2018-12-29 13:37:12

化学成份:   铝 Al :余量   硅 Si :≤0.50   铜 Cu :3.8~4.5   镁 Mg:1.7~2.3   锌 Zn:≤0.10   锰 Mn:0.50~1.0   钛 Ti :0.03~0.15   铍 Be :0.001~0.005   铁 Fe: 0.000~0.500   注:单个:≤0.05;合计:≤0.10

2A01铝合金成分及用途

2018-12-29 16:56:48

标准:GB/T 3196-1982   ●特性及适用范围:  铝合金2A01为低强度硬铝,为铆接铝合金结构用主要铆钉材料。在淬火和自然时效后的强度较低,但具有很高的塑性和良好的工艺性能(热态下塑性高,冷态下塑性尚好),焊接性与2A11相同;可切削性尚可,耐蚀性不高;铆钉在淬火和时效后进行铆接,在铆接过程中不受热处理后的时间限制。   ●化学成份:  铝 Al :余量  硅 Si :≤0.50  铜 Cu :2.2~3.0  镁 Mg:0.20~0.50  锌 Zn:≤0.10  锰 Mn:≤0.20  钛 Ti :≤0.15  铁 Fe: 0.000~0.500  注:单个:≤0.05;合计:≤0.10   ●力学性能:  抗剪强度 τ (MPa):≥186  注 :线材固溶热处理后自然时效至基本稳定状态抗剪性能  试样尺寸:所有线材直径   ●热处理规范:  1) 完全退火:加热370~450℃;随材料有效厚度的不同,保温时间为30~120min;以30~50℃/h的速度,随炉冷至300℃以下,再空冷。   2) 快速退火:加热350~370℃;随材料有效厚度的不同,保温时间为30~120min;空或水冷。   3)淬火和时效:淬火495~505℃,水冷;自然时效室温,96h。   状态:铆钉用铝及铝合金线材 (T4态)

2A12铝合金力学性能

2018-12-29 09:43:11

抗拉强度 σb (MPa):≥390   条件屈服强度 σ0.2 (MPa):≥255   伸长率 δ5 (%):≥12   注 :棒材室温纵向力学性能   试样尺寸:棒材直径(方棒、六角棒内切圆直径)≤22

2a06铝合金的应用

2018-12-29 13:37:12

2a06铝合金的应用   2a06铝合金由于有高强度和好疲劳强度,被广泛应用在航空器结构上,尤其是机翼与机身结构下的受到张力的地方。   2a06铝合金,密度为2.73 g/cm³(0.098 lb/in&sup3)。

2A12铝合金热处理规范

2018-12-20 11:10:23

1)均匀化退火:加热480~495℃;保温12~14h;炉冷。  2)完全退火:加热390~430℃;保温时间30~120min;炉冷至300℃,空冷。  3)快速退火:加热350~370℃;保温时间为30~120min;空冷。  4)淬火和时效:淬火495~505℃,水冷;人工时效185~195℃,6~12h,空冷;自然时效:室温96h。

2A14铝合金化学成份

2018-12-29 09:42:59

化学成份:  铝 Al :余量  硅 Si :0.6~1.2  铜 Cu :3.9~4.8  镁 Mg:0.40~0.8  锌 Zn:≤0.30  锰 Mn:0.40~1.0  钛 Ti :≤0.15  镍 Ni:≤0.10  铁 Fe: 0.000~ 0.700  注:单个:≤0.05;合计:≤0.10

铝合金2A04成分

2018-12-29 13:37:15

材料名称:2A04  旧称:LY4   标准:GB/T 3196-2001  化学成份:   硅 Si :0.30   铁 Fe: 0.30   铜 Cu :3.2-3.7   镁 Mg:2.1-2.6   锌 Zn:0.10   锰 Mn:0.50-0.8   钛 Ti :0.05-0.40   铍Be:0.001-0.01   铝 Al :余量   注:单个:0.05;合计:0.10

al5052铝合金

2017-06-06 17:50:09

AL5052铝合金概述特性  Al5052铝合金系列合金铝的主要合金元素是镁,铝.镁系合金防锈效果好,其中5083是铝镁系防锈铝中的典型合金.其性能是:优良的焊接和良好的抗蚀,加工性能优良和低温合理地相结合.其加工特点:不可热处理强化,其抗拉伸强度在铝镁系合金中仅次于5056,其焊接接头强度可与退火状态的强度相等,且耐蚀可靠,随着温度的降低,基本 金属 和焊接头的抗拉强度,伸长率随之升高.低温韧性也十分良好,化学成份  铝 Al :余量   硅 Si :0.40~0.8   铜 Cu :0.15~0.40   镁 Mg:0.8~1.2   锌 Zn:≤0.25   锰 Mn:≤0.03   钛 Ti :≤0.15   铬 Cr:0.04~0.35   铁 Fe: 0.000~ 0.700    al5052铝合金表面1、表面不允许有裂纹、腐蚀斑点和硝盐痕迹。   2、表面上允许有深度不超过缺陷所在部位壁厚公称尺寸8%的起皮、气泡、表面粗超和局部机械损伤,但缺陷最大深度不能超过0.5mm,缺陷总面积不超过板材总面积的5%。 3、允许供货方沿型材纵向打光至表面光滑。因为al5052铝合金的高效抗蚀性和良好的可焊性和中等强度的用途,所以被用于汽车 飞机板焊接 制冷装置等

SiC增韧Al2O3陶瓷的研究现状

2019-01-03 09:36:42

一、引言 随着科技的迅速发展,机械、电子、航空航天、能源等工业部门对材料的性能提出了更高的要求,现有的金属材料或高分子材料往往难以胜任,因此具有高硬度、耐磨损、耐腐蚀、热化学稳定性等优异性能的陶瓷材料日益受到关注[1]。陶瓷材料虽然具有耐高温、耐磨损、耐腐蚀、质量轻等一系列优异的特性,但由于其具有脆性这一致命的弱点,限制了其优良性能的发挥,从而影响了它的实际应用。为此,陶瓷韧化便成了近年来陶瓷材料研究的核心课题[2]。特别是在高强度、高韧性陶瓷领域各国学者都进行了大量的研究,主要包括两个方面,即提高其断裂韧性和塑性滑移系统。到目前为止已经探索出若干种韧化陶瓷的途径,其中效果比较好的是利用碳化硅来对陶瓷材料进行增韧,包括使用颗粒(SiCp)、晶须(SiCw)和晶片(SiCpl),与此同时,对各自的韧化机理也进行了较深入的研究[3]。 二、断裂、增韧机理 (一)断裂机理 陶瓷晶体之所以脆,是因为陶瓷晶体中缺少五个独立的滑移系,在受力作用下难于发生滑移引起的塑性变形以松弛应力,在显微方面其胎陛根源在于存在微裂纹,且易于导致高度应力集中,这源于陶瓷晶体的价键结构。 1、陶瓷显微结构 陶瓷的显微结构也和金属一样,是由许多小晶粒组成的,晶粒与晶粒之间有晶界,在晶粒内部或晶界上存在有一些缺陷和微裂纹,晶界上还或多或少存在有气孔,还会有第二相颗粒或晶粒,其最常见是非晶玻璃相。陶瓷材料的微观结构是由晶体(主相)、晶界、非晶体(玻璃相)和显微缺陷(气孔、微裂纹和杂质)组成的。 2、微裂纹理论 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。因此断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 Griffith认为实际材料中总是存在许多细小的裂纹或是缺陷,在外力作用下,这些裂纹和缺陷附近产生应力集中现象。当应力达到一定程度时,裂纹开始扩展而导致断裂。所以断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果[4]。 (二)增韧机理 根据陶瓷材料的裂纹扩展行为及其断裂机理认为,借助于对裂纹扩展条件的控制,可在一定程度上达到提高陶瓷韧性的目的。 从断裂力学的观点来看,克服陶瓷的脆性和提高其强度的关键是:①提高陶瓷材料抵抗裂纹扩展的能力;②减弱裂纹尖端的应力集中效应。前者是提高材料的断裂能,后者的关键在于减小材料内部所含裂纹缺陷的尺度[5,6]。 三、增韧方式 陶瓷中的非均相体,在单相材料中尺寸、形状各异的晶粒和掺入第二相后,形成复杂破坏,改善陶瓷的破坏韧性。从陶瓷复合体的高韧化结构中可以看出,由于裂纹前端和非均相体或者第二相的相互作用,发生了“裂纹前端的停止”、“裂纹前端的弯曲”及“裂纹前端的偏转”。陶瓷增韧可分为两类:一是自增韧;二是在试样制备时用机械混合的方法加入起增韧作用的第二相。 (一)自增韧 如果在陶瓷基体中引入第二相材料,该相不是事先单独制备的,而是在原料中加入可以生成第二相的原料,控制生成条件和反应过程,直接通过高温化学反应或者相变过程,在主晶相基体中生长出均匀分布的晶须、高长径比的晶粒或者晶片的增强体,形成陶瓷复合材料,则称为自增韧。这样可以进一步避免两相不相容、分布不均匀,强度和韧性都比外来第二相增韧的同种材料高,利用这一点,可以进一步提高材料的力学性能[7]。 目前,自增韧在陶瓷复合材料中的应用很广泛,包括Si3N4、Sialon、A1-Zr-C、Ti-B-C、SiC、A12O3、ZrB2/ZrC0.6/Zr材料和玻璃陶瓷等。目前研究最多的是Si3N4和Sialon(Si—A1一O—N)。 (二)第二相增韧 在试样制备时用机械混合的方法加入起增韧作用的第二相。主要包括颗粒增韧、纤维增韧和晶片增韧。 1、颗粒增韧 SiCp增韧陶瓷复合基材料属于一种弥散颗粒增强复合材料,这种复合材料各向同性,制备加工方法简单。SiCp增韧机制有残余应力场增韧、微裂纹增韧、裂纹偏转、裂纹分岔、裂纹桥连和裂纹钉扎等[8]。 SiCp的增韧机理主要是在复合材料内部形成了内晶型结构。内晶型结构纳米复合陶瓷晶粒细化同时产生了次晶界,致使晶界数量大幅度增加,材料的强度和韧性也大幅提高,某些陶瓷甚至还表现出了超韧性[9]。内晶型结构纳米复合陶瓷材料主要通过以下几个效应使陶瓷材料得以增强:①弥散相引入有效地抑制了基质晶粒生长和减轻了晶粒的异常长大;②弥散相或弥散相周围存在局部应力,这种应力是由基体与弥散相之间热膨胀失配而产生,并在冷却阶段产生了位错,纳米粒子钉扎或进入位错区使基本晶粒内产生潜晶界,使晶粒细化而减弱主晶界的作用;③纳米粒子周围的局部拉伸应力诱发穿晶断裂,并由于硬粒子对裂纹尖端的反射作用而产生韧化;④纳米粒子高温牵制位错运动,使高温力学性能如硬度、强度及抗蠕变性得到改善[10]。 2、晶须增韧 SiC晶须(SiCw)是一种直径为纳米级至微米级的具有高度取向性的单晶纤维,晶体结构与金刚石相类似,晶体内化学杂质少,无晶粒边界,晶体结构缺陷少,结晶相成分均一,具有高熔点(>2 700℃)、低密度(3.21g/cm3)、高强度(抗拉强度为16GPa)、高弹性模量(弹性模量为440GPa)、低热膨胀率以及耐磨、耐腐蚀、抗高温氧化能力强等特性。作为一种优良的补强增韧剂,碳化硅晶须已经被用于增强多种陶瓷基复合材料。SiCw有α型(六方和菱方结构)和β型(面心立方结构)两种晶型,β型各方面性能优于α型,见下表[11] 。目前只有β一SiCw实现了工业化规模生产,因此研究和使用的主要是β一SiCw。晶须增韧陶瓷复合材料主要有两种方法:①加晶须法:即通过晶须分散、晶须与基体混合、成型、再经锻烧制得增韧陶瓷。如:加入到氧化物、碳化物、氮化物等基体中得到增韧陶瓷复合材料,此法目前较为普遍;②原位生长晶须法:将陶瓷基体粉末和晶须生长助剂等直接混合成型,在一定的条件下原位合成晶须,同时制备出含有该晶须的陶瓷复合材料,该种方法尚未成熟,有待进一步探索。目前大部分晶须/陶瓷基复合材料尚处于研究探索中,成为高技术陶瓷材料研究开发的前沿课题。 晶须增韧陶瓷复合材料的机理一般包括:裂纹偏转效应、微裂纹效应、晶须拔出效应、裂纹桥联效应和晶须的加入引起基体相变增韧。 (1)裂纹偏转效应:裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹偏转的角度越大,能量释放率就越低,增韧效果就越好,断裂韧性就提高。 (2)微裂纹效应:微裂纹增韧是较早提出的在多种材料中都存在的一种增韧机理:即在裂纹尖端的应力场和残余应力作用下,晶须成为微裂纹源,而在裂纹前方形成散布的(不连通的)微裂纹区。 (3)晶须拔出效应(如图1):拔出效应是指当裂纹扩展遇到高强度晶须时,在裂纹尖端附近晶须与基体界面上存在较大的剪切应力,该应力极易造成晶须与界面的分离开裂,晶须可以从基体中拔出,因界面摩擦而消耗外界载荷的能量而达到增韧的目的。同时晶须从基体中拔出会产生微裂纹来吸收更多的能量。(4)裂纹桥联效应(如图2):裂纹桥联是一种裂纹尖端尾部效应。即裂纹扩展过程中遇上晶须时,裂纹有可能发生穿晶破坏,也有可能出现互锁现象(Interlocking)即裂纹绕过晶须并形成摩擦桥。研究表明:晶须增强陶瓷材料、微晶A12O3陶瓷中均发现了裂纹桥的存在。 (5)晶须的加入引起基体相变增韧:增韧技术从单一的晶须增韧又发展到多重增韧,宋桂明等[12]在研究SiCW-ZrO2(2%Y2O摩尔分数)—A12O3断裂韧性时发现,相变增韧和晶须桥联增韧、裂纹偏转增韧存在相干性,能够产生多重韧化效果,进一步提高陶瓷材料的断裂韧性,比Si3N4和莫来石陶瓷材料的断裂韧性分别提高了4.7和7.0倍。 3、晶片增韧 SiCpl具有增韧效果好、制备工艺简单等优点,目前得到了众多研究者的关注[13]。顾建成等[14]采用热压烧结法制备了SiCpl/BAS(BaO—A12O3—SiO2)玻璃陶瓷复合材料,并对其组织结构和力学性能进行了研究。研究结果表明:当SiCpl体积分数达到30%时,SiCpl—BAS复合材料的抗弯强度和断裂韧性分别从纯基体的100.3MPa和1.49MPa·m1/2。提高到181.0MPa和3.20MPa·m1/2。Kaya等[15,16]对SiCpl/A12O3/Y—TZP陶瓷复合材料进行了研究,并探讨了SiCpl的增韧机理,研究表明:SiCpl的增韧机理为裂纹的桥连,偏转和晶片的拔出,材料的断裂韧性为11.2MPa·m1/2。Rezaie等[17]对SiCpl/莫来石复合材料进行了研究,研究表明其断裂韧性可达3.9MPa·m1/2。Sarrafi—Nou等[18]研究了SiCpl/A12O3材料的R—曲线,结果表明:裂纹桥连是SiCpl的主要增韧机理。Wei Tao等[19]对SiCpl/Si3N4复合材料的微观结构和机械性能进行了研究,结果表明:SiCpl的加入使得材料的维氏硬度、弹性系数、断裂韧性和高温强度  都有很大的提高。 四、纳米材料的强韧化 (一)纳米材料的性质 近年来,纳米技术的研究已引起材料界密切关注。其中纳米技术与信息、环境、能源、生物、空间等高技术相结合形成以纳米技术为主旋律的纳米产业及产业链,成为21世纪新的经济增长点。 纳米材料的特殊性能基于其四个效应,即小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。这四个基本效应赋予了纳米材料许多超常的特性,它的出现将有助于解决陶瓷的强化和增韧问题。具体地说纳米粉体材料具有以下优秀性能:①粒径小、比表面积大和高的化学性能,可显著降低材料的烧结致密化温度,节约能源;②使材料的组成结构  致密化、均匀化,改善陶瓷材料的性能,提高使用的可靠性;③可以从纳米数量级上控制材料的成分和结构,有利于充分发挥陶瓷材料的潜在性能,使纳米材料的组织结构和性能的定向设计成为可能。 (二)纳米添加陶瓷改性 晶粒的超细化导致结构内有序区域范围缩小,界面原子增多,界面积/体积比增大,缺陷密度增大,引起材料性能的变化。研究表明,将纳米A12O3加入粗晶粉体中可提高氧化物陶瓷的致密度和耐热疲劳性;英国把纳米A12O3与ZrO2进行混合,在实验室已获得高韧性陶瓷材料,烧结温度可降低100℃;日本正在试验用纳米A12O3与亚微米的SiO2合成莫来石,提高致密度、韧性和热导性,是一种非常好的电子封装材料;法国将纳米SiC(小于20%)掺入粗晶α-SiC粉体中,断裂韧性提高了25%;日本用纳米SiC复合A12O3,材料的强度可达到1GPa以上[20]。 另外改性后的陶瓷具备有自润滑的性能,自润滑产生的原因不同于石墨、氮化硼、滑石等存在于材料组织的鳞片层状结构。它是在压力作用下,摩擦表面微量分解形成薄薄的气膜,从而使摩擦面之间的阻力减小,摩擦面的光洁度增加,这样越摩擦阻力越小,磨损量也特别小。 五、结语 随着纳米材料制备技术的日趋成熟,陶瓷复合材料的研究正从微米复合向纳米复合发展。复合增韧陶瓷由于具有多种优异的性能,该种复合材料将成为材料领域的一个重要研究方向。 参考文献: [1] 柴枫,等.陶瓷基复合材料的研究进展[J].口腔材料器械杂志,2003,(1):21—23. [2] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995:263—312. [3] 李绍纯,戴长江.碳化硅颗粒、晶须、晶片增韧陶瓷复合材料的研究现状[J].硅酸盐通报,2004,6:63. [4] 关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:41—42. [5] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,2004:230一231. [6] 刘玲,等.晶须增韧复合材料机理的研究[J].材料科学与工程,2000,(6):116—119. [7] 罗学涛,张立同.氮化硅陶瓷自增韧技术进展[J].复合材料学报,1997,14(3):1. [8] Wang C A.Huang Y Zhai H X_The effect of whisker orientation in SiC whisker.reinforced Si3N4 ceramic matrix composites[J].Journal of the European Ceramic Society,1999,19(10):1903.1909。 [9] 崔学民,孙康宁.内晶型结构纳米复合陶瓷研究进展[J].材料导报,2000,(z10):325—327. [10] 徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅲ) [J].硅酸盐通报,1997,1 7(2):56 59. [11] 徐桦.碳化硅晶须以及有关复合材料的应用研究[D].北京:中国矿业大学,1993:1 8 30. [12] 宋桂明,等.晶须和相变复合增韧陶瓷的复合增韧模型[J].无机材料学报,1998,4(1 3):8 10. [13] Zhang Y J,Yin Y S.An initial study on SiCw-reinforced A12TiO3 composites[J] .Material Letters,2000,46(2—3):147-148. [14] 顾建成,周玉.SiC—BAS复合材料的显微组织与力学性能[J].上海交通大学学报,2002,36(1):9 12. [15] Kaya C,Kaya E Trusty P A,et al On the toughening mechanisms of SiC platelet-reinforced A12O3/Y-TZP nano-ceramic matrix composites[J].Ceramic International,1999,25(4):359-266. [16] Kaya C,Kaya F,mansoglu M Processing,toughness improvement and microstruetural analysis of SiC platelet·reinforced A12O3/Y-TXZP nano—ceramic matrix eomposites[J].Materials Science&Engineering,1998,247(1-2):75-80. [17] Rezaie H R,Rainforth W M.Fabrication and mechanical proper-ties of SiC platelet reinforced mullite matrix composites[J] .Journal of the European Ceramic Society,1999,l 9(9):I777-l 787. [18] Sarrafi-Nour G R,Coyle T W.Application of the weight function method to study the R-curve behavior of ceramic using chevron.notched specimens[J] .Journal of the American Ceramie Society,2001,82(9):2474-2480. [19] Wei T Zhou Y ,Lei T Q,et al .Microstructure and mechanical properties of Si3N4 composites containing SiC platelet[J].Journal of Materials Science and Technology,1998,14(2):151-155. [20] 周竹发.纳米材料与陶瓷.江苏陶瓷,2002,35(3):3.

铝合金2A10化学成分

2018-12-29 09:43:11

铝板2A10   标准:GB/T 3196-1982     ●化学成份:  铝 Al :余量  硅 Si :≤0.25  铜 Cu :3.9~4.5  镁 Mg:0.15~0.30  锌 Zn:≤0.10  锰 Mn:0.30~0.50  钛 Ti :≤0.15  铁 Fe: 0.000~0.200  注:单个:≤0.05;合计:≤0.10

2A11铝合金化学成分

2018-12-29 11:29:09

2A11铝合金化学成份:   铝 Al :余量   硅 Si :≤0.7   铜 Cu :3.8~4.8   镁 Mg:0.40~0.8   锌 Zn:≤0.30   锰 Mn:0.40~0.8   钛 Ti :≤0.15   镍 Ni:≤0.10   铁 Fe: 0.000~0.700   铁+镍 Fe+Ni: 0.000~0.700   注:单个:≤0.05;合计:≤0.10

2A12铝合金化学成分

2018-12-29 09:43:11

铝 Al :余量  硅 Si :≤0.50   铜 Cu :3.8~4.9   镁 Mg:1.2~1.8   锌 Zn:≤0.30   锰 Mn:0.30~0.9   钛 Ti :≤0.15   镍 Ni:≤0.10   铁 Fe: 0.000~ 0.500   铁+镍 Fe+Ni: 0.000~ 0.500   注:单个:≤0.05;合计:≤0.10

变形铝合金的状态代号(2)

2019-01-02 09:41:33

3.2T的细分状态 在字母T后面添加一位或多位阿拉伯数字表示T的细分状态。 3.2.1 TX状态 在T后面添加0~10的阿拉伯数字,表示细分状态(称作TX状态)如表5所示。T后面的数字表示对产品的茶杯处理程序。 表5TX细分状态代号说明与应用状态代号说明与应用TO固溶热处理后,经自然时效再通过冷加工的状态。 适用于经冷加工提高强度的产品T1由高温成型过程冷却,然后自然时效至基本稳定的状态。 适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。T2由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态。适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品T3固溶热处理后进行冷加工,再,经自然时效至基本稳定的状态。适用于在固溶热处理后,进行冷加工、或矫直、矫平以提高强度的产品T4固溶热处理后自然时效至基本稳定的状态。适用于固溶热处理后,不在进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品T5由高温成型过程冷却,然后进行人工时效的状态。适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。T6由固溶热处理后进行人工时效的状态。适用于由固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。T7由固溶热处理后进行人工时效的状态。适用于由固溶热处理后,为获取某些重要特性,在人工时效时,强度在时效曲线上越过了最高峰点的产品,T8固溶热处理后经冷加工,然后进行人工时效的状态。适用于经冷加工、或矫直、矫平以提高产品强度的产。T9固溶热处理后人工时效,然后进行冷加工的状态。适用于经冷加工提高产品强度的产品。T1O由高温成型过程冷却后,进行冷加工,然后进行人工时效的状态。适用于经冷加工、或矫直、矫平以提高产品强度的产品。注:某些6XXX的合金,无论是炉内固溶热处理,还是从高温成型过程急冷以保留可溶性组分在固溶体中,均能达到相同的固溶热处理效果,这些合金的T3、T4、T6、T7、T8和T9状态可采用上述两种处理方法的任一种。 3.2.2 T状态及TXXX状态(消除应力状态外)在TX状态代号后面再添加一位阿拉伯数字(称作TXX状态),或添加两位阿拉伯数字(称作TXXX状态),表示经过了明显改变产品特性(如力学性能、抗腐蚀性能等)的特定工艺处理的状态,如表6所示。 表 6TXX及TXXX细分状态代号说明与应用状态代号说明与应用T42适用于自O或F状态固溶热处理后,自然时效达到充分稳定状态的产品,也适用于需方对任何状态的加工产品热处理后,力学性能达到了T42状态的产品T62适用于自O或F状态固溶热处理后,进入人工时效的产品,也适用于需方对任何状态的加工产品热处理后,力学性能达到了T62状态的产品T73适用于固溶热处理后,经过时效以达到规定的力学性能和抗应力腐蚀性能指标的产品T74与T73状态定义相同。该状态的抗拉强度大于T73状态,但小于T76状态T76与T73状态定义相同。该状态的抗拉强度分别高于T73、T74状态,抗应力腐蚀断裂性能分别低于T73、T74状态,但其抗剥落腐蚀性能仍较好T7X2适用于自O或F状态固溶热处理后,进行人工时效处理,力学性能及抗腐蚀性能达到了T7X状态的产品T81适用于固溶热处理后,经1%左右的冷加工变形提高强度,然后进行人工时效的产品T87适用于固溶热处理后,经7%左右的冷加工变形提高强度,然后进行人工时效的产品 3.2.3消除应力状态在上述TX或TXX或TXXX状态代号后面添加“51”、或“510”、或“511”或“52”或“54”表示经历了消除应力处理的产品状态代号,如表7所示。 表7消除应力状态代号说明与应用状态代号说明与应用TX51TXX51TXXX51适用于固溶热处理或自高温成型过程冷却后,按规定量进行拉伸的厚板、轧制或冷精整的棒材以及模锻件、锻环或轧制环,这些产品拉伸后不再进行矫直。厚板的永久变形量为1.5%~3%;轧制或冷精整棒材的永久变形量为1%~3%;模锻件锻环或轧制环的永久变形量为1%~5%TX510TXX510TXXX510适用于固溶热处理或自高温成型过程冷却后,按规定量进行拉伸的挤制棒、型和管材,以及拉制管材,这些产品拉伸后不再进行矫直。挤制棒、型和管材的永久变形量为1%~3%;拉制管材的永久变形量为1.5%~3%TX511TXX511TXXX511适用于固溶热处理或自高温成型过程冷却后,按规定量进行拉伸的挤制棒、型和管材,以及拉制管材,这些产品拉伸后可微略行矫直以符合标准公差。挤制棒、型和管材的永久变形量为1%~3%;拉制管材的永久变形量为1.5%~3%TX52TXX52TXXX52适用于固溶热处理或自高温成型过程冷却后,通过压缩来消除应力,以产生1%~5%,永久变形量的产品TX54TXX54TXXX54适用于在终锻模内通过冷整形来消除应力的模锻件 4.3W的消除应力状态 正如T的消除应力状态代号表示方法,可在W状态代号后面添加相同的数字(51、52、54),以表示不稳定的固溶热处理及消除应力状态。 附录A (提示的附录)原状态代号相应的新代号旧代号新代号旧代号新代号M R Y Y1 Y2 Y4 T CZ CSO H112或F HX8 HX6 HX4 HX2 HX9 T4 T6CYS CZY CSY MCS MCZ CGS1 CGS2 CGS3 RCSTX51、TX52等 T0 T9 T62 T42T73T76 T74 T5注:原以R状态交货的、提供CZ、CS试样性能的产品,其状态可分别对应新代号T62、T42。 function ImgZoom(Id)//重新设置图片大小 防止撑破表格 { var w = $(Id).width; var m = 550; if(w{ return; } else { var h = $(Id).height; $(Id).height = parseInt(h*m/w); $(Id).width = m; } } window.onload = function() { var Imgs = $("content").getElementsByTagName("img"); var i=0; for(;i { ImgZoom(Imgs ); } }

2a16铝合金化学成分

2018-12-29 11:29:09

化学成分:   硅Si:0.30   铁Fe: 0.30   铜Cu:6.0-7.0   锰Mn:0.40-0.8   镁Mg:0.05   锌Zn:0..10   钛Ti:0.10-0.20   铝Al:余量

2A13铝合金化学成分

2018-12-29 11:29:09

材料名称:铝及铝合金挤压棒材(≤22mm,H112、T4态)   牌号:2A13   标准:GB/T 3191-1998   特性及应用:   2A13铝合金为属于硬铝合金系列。     ●化学成份:   铝 Al :余量   硅 Si :≤0.7   铜 Cu :4.0~5.0   镁 Mg:0.30~0.50   锌 Zn:≤0.6   钛 Ti :≤0.15   铁 Fe: 0.000~ 0.600   注:单个:≤0.05;合计:≤0.10

2月2日矽钢片

2018-12-18 09:41:06

电工用硅钢薄板俗称矽钢片或硅钢片。顾名思义,它是含硅高达0.8%-4.8%的电工硅钢,经热、冷轧制成。一般厚度在1mm以下,故称薄板。硅钢片广义讲属板材类,由于它的特殊用途而独立一分支。  电工用硅钢薄板具有优良的电磁性能,是电力、电讯和仪表工业中不可缺少的重要磁性材料。 (1)硅钢片的分类   A、硅钢片按其含 硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。        B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。 (2)硅钢片性能指标   A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。   B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。  C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。   D、冲片性好。对制造小型、微型电机铁芯,这点更重要。   E、表面对绝缘膜的附着性和焊接性良好。   F、磁时效   G、硅钢片须经退火和酸洗后交货。 (一)电工用热轧硅钢薄板(GB5212-85)   电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。   热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。 (二)电工用冷轧硅钢薄板(GB2521-88)   用含硅0.8%-4.8%的电工硅钢为材质,经冷轧而成。   冷轧硅钢片分晶粒无取向和晶粒取向两种钢带。冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点,且比热轧电工钢带磁感高、铁损低。用冷带代替热轧带制造电机或变压器,其重量和体积可减少0%-25%。若用冷轧取向带,性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%,且变压器工作性能更可靠。   用于制造电机和变压器。通常,晶粒无取向冷轧带用作电机或焊接变压器等的状态;晶粒取向冷轧带用作电源变压器、脉冲变压器和磁放大器等的铁芯。   钢板规格尺寸:厚度为0.35、0.50、0.65mm,宽度为800-1000mm,长度为≤2.0m。 (三)家电用热轧硅钢薄板(GBH46002-90)   家电用热轧硅钢薄板的牌号以J(家)D(电)R(热轧)表示,即JDR。JDR后数字为铁损值*100,横线后数字为钢板厚度(mm)*100。家电用热轧硅钢片对电磁性能要求可稍低一点,铁损值(P15/50)最低值为5.40W/kg。一般不经配洗交货。   用于各种电风扇、洗衣机、吸尘器、抽油烟机等家用电器的微分电机等。.

铝合金2B11化学成份

2018-12-29 11:29:12

2B11化学成份:   铝 Al :余量   硅 Si :≤0.50    2B11硬铝   铜 Cu :3.8~4.5   镁 Mg:0.40~0.8   锌 Zn:≤0.10   锰 Mn:0.40~0.8   钛 Ti :≤0.15   铁 Fe: 0.000~0.500   注:单个:≤0.05;合计:≤0.10

铝合金L2的性能与用途

2018-12-29 16:57:09

L2为纯铝中添加少量铜元素形成,具有极佳的成形加工特性、高耐腐蚀性、良好的焊接性和导电性。广泛应用于对强度要求不高的产品,如化工仪器、薄板加工件、深拉或旋压凹形器皿、焊接零件、热交换器、钟表面及盘面、铭牌、厨具、装饰品、反光器具等。

2A17铝合金化学成分

2018-12-29 11:29:07

2A17铝合金化学成分   铁(Fe):0.30,   镁(Mg):0.25~0.45   Mn:0.40~0.80   硅(Si):0.30   锌(Zn):0.10   钛(Ti):0.07~0.16   铬(Cr):0.10,   铜(Cu):6.0~7.0   Zr:0.10~0.25   V:0.05~0.15   B:0.001~0.01   铝(Al)余量   单个:0.05~0.15