铝硅合金的用途
2018-12-27 16:26:15
铝硅合金是一种以铝、硅为主成分的锻造和铸造合金。 一般含硅11%。同时加入少量铜、铁、镍以提高强度。密度2.6~2.7g/cm3。导热系数101~126W/(m·℃)。杨氏模量71.0GPa。冲击值7~8.5J。疲劳极限±45MPa。
铝硅合金有以下用途:
1、在含硅量超过Al-Si共晶点(硅11.7%)的铝硅合金中,硅的颗粒可明显提高合金的耐磨性,组成一类用途很广的耐磨合金。
2、用于制造低中强度的形状复杂的铸件,如盖板、电机壳、托架等,也用作钎焊焊料。
3、铝硅合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。用铝脱氧的钢锭,一般称为,镇定钢,由于铝脱氧后会被氧化成氧化铝,氧化铝可以细化奥氏体晶粒,所以铝脱氧的钢具有较好的综合力学性能。
4、硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。
铝硅玻璃
2018-12-20 09:35:36
铝硅玻璃中的Al2O3和SiO2含量很高,具有较好的化学稳定性、电绝缘性、机械强度以及较低的热膨胀系数,可用于加工制造卤灯玻壳、无碱基片、无碱玻纤维及化工管道等,是一种用量较大的特种工业玻璃。 铝硅玻璃组成选用Li20-A1203-Si02系统,采用压延法生产,厚度为6-20㎜,具有透明度高,适宜化学钢化等特点的玻璃。 主要性能指标 透过率:91.8%(8㎜) 折射率:1.5325(黄光) 软化温度:600℃ 抗弯强度:450-500Mpa 膨胀系数:50X10-7/℃(20~100℃) 抗热冲击温度:250~300℃ 作用 广泛应用于:钢铁、冶金、石油化工、电厂、半导体、新型光源、精密光学仪器、航空、军工、仪表、印染、锅炉厂等高压机械设备。 玻璃颜色 无碱铝硅酸盐玻璃一般是无色透明的,有时也有略点浅黄色。 规格尺寸 耐高压铝硅玻璃产品是一种比较特殊的产品,一般可以加工成圆形视镜、方向视镜和长条型玻璃板等 圆形视镜:Φ25mm~Φ200mm 方形视镜:20mm×20mm-150mm×250mm 长条形玻璃板:一般常用尺寸是250×34×17mm、280×34×17mm、320×34×17mm这一系列尺寸,最长可达400mm 发展趋势 由于成分中不含助熔的碱金属氧化物,并且A2O3和SiO2含量较高,无碱铝硅玻璃的熔制十分困难,玻璃中的气泡和条纹不易排除。目前国内该种玻璃的熔化均采用铂坩埚进行连熔或单埚生产。这种生产方式大大增加了无碱铝硅玻璃的成本,并给异形(管材、薄片等)产品的成形带来了较大困难,致使无碱铝硅玻璃的运用收到了较大的限制。 为了解决上述问题,满足国民经济发展对铝硅玻璃品种和产量的需求,建立规模经济——提供产量,降低成本,成为该玻璃应用开发的发展趋势。 要形成规模经济,首先应解决规模生产的熔窑问题。波歇炉是八十年代法国Bussy发明的一种可连续、也可间歇生产的新型高温电熔窑,。该熔窑为一金属罐体结构,用未完全熔化的配合料保持较低的炉顶温度,以冷淋态玻璃为池壁内衬,免除了耐火材料与玻璃液的直接接触,解决了高温状态下耐火材料的侵蚀及玻璃液的污染问题。波歇炉采用电极加热,炉内形成电阻发热区,玻璃液从中心高温区向外侧回流,中央温度可达2000℃,完全满足难熔玻璃对熔制温度的要求。国外许多厂家已采用该熔窑熔制无碱铝硅玻璃。 除需解决熔制手段外,要形成规模生产还需加强对类玻璃工艺性能的研究,在成分钟不引人碱金属氧化物的情况下,通过碱土金属盒稀土金属氧化物降低玻璃的熔化温度,调整玻璃的料性,以此降低玻璃熔制和成形时,对熔窑、耐火材料和成形工艺的技术要求,从而提高规模生产的玻璃质量创造条件。
用电热法生产铝硅合金
2019-01-14 14:53:00
国家靠前批重点高新技术火炬计划项目———电热法生产铝硅合金技术,近日由河南省登封电厂集团自主研发成功。该集团铝合金有限公司成功用低品位铝土矿冶炼出铝含量55%的初始铝硅合金。 电热法生产铝硅合金技术是国际公认的优于电解铝的铝冶炼新技术,曾被列入国家六五、七五攻关计划,但未获成功。登封电厂集团铝合金有限公司利用公司16.5MVA大型矿热炉,从冶炼硅铁成功转产铝硅合金。 据了解,电热法生产的铝硅合金产品成本比传统方法低20%左右,特别是能有效解决我国铝矿资源铝比率相对较低的问题,大大提高了铝硅合金产品的市场竞争能力,为中国铝工业可持续发展开辟了新的道路。
铝硅比简介
2018-05-10 18:43:11
铝硅比:是指铝土矿矿石中Al2O3与SiO2的百分含量之比,它是衡量铝土矿品质的最主要标准之一,铝硅比愈高的矿石品质愈好。铝硅比的大小对氧化铝生产制备方法的选择提供依据氧化铝的制备方法大致有:拜耳法(A/S>8-10)适合低硅比的三水铝石型、联合法(A/S=5-7)、烧结法(A/S=3.5-5)(A/S=铝硅比)铝土矿主要资源分布:山西、河南、贵州、广西,储量世界第八我国铝土矿主要矿石类型:主要为高硫、高硅低铝硅比一水硬铝石型。
铜镍硅合金
2017-06-06 17:50:09
铜镍硅合金 (copper-nickel-silicon alloy)以铜镍合金为基础加入硅的白铜。铜镍硅合金含5%~30%Ni、0.1%~3%Si,余量为铜和其他元素和杂质。镍和硅形成Ni2 Si化合物,其中镍与硅的质量比为4。Ni2 Si能固溶于铜中.在共晶温度(1025C)时的最大溶解度为9%,温度降低时,溶解度减小,在室温时几乎等于零。合金在热处理过程中,由于Ni2 Si相的沉淀而强化,既具有铜镍合金的耐蚀性,又克服铜镍合金疲劳强度低的缺点。合金在混合盐水介质中的耐蚀性显著高于一般白铜和锌白铜,因而受到人们的重视。 含10%~20%Ni、1.5%~3%Si,余量为铜的合金,经热处理后抗拉强度达780~980MPa,弹性极限达580~780MPa,弹性模量达120000~150000MPa,伸长率为1%~4%。 铜镍硅合金主要用于制作电气仪表、电子工业用的精密弹簧片,以及耐蚀的仪器仪表零件。
稀土硅合金
2017-06-06 17:50:03
稀土硅合金稀土
金属
(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。稀土
金属
是从18世纪末叶开始陆续发现。稀土
金属
的光泽介于银和铁之间。稀土
金属
的化学活性很强。铝硅合金 aluminium silicon alloy 一种以铝、硅为主成分的锻造和铸造合金。一般含硅11%。同时加入少量铜、铁、镍以提高强度。密度2.6~2.7g/cm3。导热系数101~126W/(m·℃)。杨氏模量71.0GPa。冲击值7~8.5J。疲劳极限±45MPa。用于制造低中强度的形状复杂的铸件,如盖板、电机壳、托架等,也用作钎焊焊料。在含硅量超过Al-Si共晶点(硅11.7%)的铝硅合金中,硅的颗粒可明显提高合金的耐磨性,组成一类用途很广的耐磨合金。当含硅量高达14.5%~25%时,再加入一定量的Ni,CU,Mg等元素能改善其综合力学性能。它们可用于汽车发动机中代替铸铁汽缸而明显减轻重量。用作汽缸的铝硅合金,可经过电化学处理以浸蚀表层铝而在缸内壁保留镶嵌于基体的初生硅质点,其抗擦伤能力和抗磨损性以明显改善。含硅量11%~13%的合金以其质轻、低膨胀系数和高耐蚀性能等特点而成为最佳的活塞材料之一。 稀土硅合金的用途将来今后更加的广阔。 以上是稀土硅合金的介绍,更多信息请详见上海
有色金属
网。
铝镁硅合金门闪亮登堂入室
2019-01-16 11:51:40
铝镁硅合金技术在纯铝中添加了镁元素和硅元素,既保证了铝合金的柔韧性,又大大提高了铝合金的强度。
铝镁硅合金做成成品门后,必须要经过抗风压性能、水密性能、气密性能、保温性能、隔音性能、撞击能力、开关顺滑度等方面的测试与检验,门与门洞之间的误差值不超过±2mm,在表面处理方面有静电喷涂、氧化着色、电涌喷涂等先进工艺,使铝镁硅合金成品门在外观看起来美观大方,手感光滑,不易变色,不易划伤。铝镁硅合金成品门的使用寿命可以达到15-20年。
铝镁硅合金门先后推出豪华推拉折叠门、韩日风情折叠门、卫浴平开门、吊趟门、意大利进口仿木纹室内门、壁柜门、隔断门等满足了消费者多样化的需求,风格各异的门同处一室也迎合了用户的审美情趣。
以上资料由抚州澳威门业提供
我国再生铝硅合金冶金质量现状分析
2019-02-21 13:56:29
[摘 要]本文介绍了我国再生铝出产工艺流程,全面分析了我国铝再生的冶金质量现状和不足之处,指出了净化蜕变是约束我国再生铝出产开展的首要妨碍,以为要使我国再生铝出产上新台阶,就有必要加大技改力度,加大新工艺新设备的投入。 关键词:铝合金 再生运用 冶金质量 一、前语 铝合金以其优异的功能被广泛运用于国民经济的各个职业,现在铝硅合金的出产首要有两种办法:(一)原生铝熔炼制作合金;(二)废旧铝合金收回再运用。废铝再生运用能耗低,能耗只要原生铝出产的5%[1],收回实得率高,能够屡次收回运用。并且再生铝出产出资小,收益期短,比原生铝制作出产铝硅合金具有很大的本钱和能效优势。近十几年来,我国铝再生职业开展迅猛,其间仅旧易拉罐收回运用率达60%以上,2001年我国废旧铝合金净进口量到达360.019万吨[2]。但从整体来看,我国铝收回技能落后,分选、配料和熔炼工艺简略,许多厂商成分检测和质量操控手法尚不完善,有的厂商仅以铝锭表面质量与断口描摹来判别产品是否合格,出产冶金质量不安稳,适当部分厂商只能出产几种低附加值的铸造铝合金,如副牌ZL102等。本文从我国废铝收回再出产现状动身,对我国铝再生进程中的冶金质量问题和现状作了系统分析,对质量情况改进途径进行了评论,提出了建议。 二、铝再生与环保 跟着人们环保知道的加强,学术界和产业界提出了绿色化出产呼吁[3],要求材料在提炼、加工、制作、运用、收回再生进程中排放的气体、液体、固体废弃物对人类及环境无害,或到达容许的排放标准。废铝再生比原铝出产,不只大大下降能耗,并且消除和削减了电解出产铝进程中的有害气体和废渣的排放。因而,废铝再生进步了社会经济与环境效益,值得推行。 铝合金的再生有利于保护环境,添加铝资源的运用率。铝再生时,为了削减再生进程中的污染,完成再生出产的绿色化出产准则,上海大学在出产中选用稀土复合精变剂处理技能[4]很多削减了烟气中的有毒物质,烟气经过二级喷淋式吸附塔串接除尘,无需作进一步的处理即可到达烟气排放标准。一起,因为稀土对再生铝的蜕变与净化作用,大大进步了再生铝的冶金质量及其安稳性,下降了废品率。 三、我国再生铝出产工艺流程 再生铝出产工艺流程中有三个中心环节:预处理工序、配料熔化工序、净化蜕变工序,这三个工序紧紧地与取得再生铝的冶金质量联络在一起。要取得优质再生铝就有必要围绕着这三个中心环节,把握住影响冶金质量的基本要素。现在来看,我国的出产厂商首要是中小型厂商,跟着人们质量知道的增强,这三个环节也越来越多地得到人们的重视,当然还应看到还有适当部分厂商对此知道尚肤浅,为此,咱们将首要从这三个中心环节着手逐一分析我国再生铝的冶金质量。 四、我国再生铝硅冶金质量现状分析 1.预处理 预处理的意图是使废铝按合金成分分类、去水、去油污油漆、去其他金属杂质。一般的工艺进程是:(一)大件和切片,按成分分类→去除其它金属及嵌件→烘烧去油污油漆;(二)粉状物与废碎料,分类→枯燥去水→磁选、风选、抛物分选[5]→焙烧;(三)易拉罐,切碎(→焙烧除漆) →压块。发达国家在分选废料时运用专用设备,如选用重力分选和磁选等。我国绝大多数厂商基本上选用人工分选,先把易分选已知成分的大件和切片独自堆积,然后再将碎废铝进行人工分选。能够看到,有些小型厂商在分选时,并没有考虑到收回废铝的合金成分组成,这样实践上就没有把好冶金质量的榜首关,不只会下降再生铝的档次,并且也浪费了资源。细小粉块状的废铝,因为不能很好的进行分选,成分组成杂乱,不加处理就会在必定程度上影响了制品的化学成分,乃至导致整炉作废,因而在一般的情况下慎重运用,最好是在并块并化验成分后运用。 废铝原材料的表面处理尤其是对含有油污和油漆的废铝(如易拉罐)的除污,是改进再生铝冶金质量的有用办法之一。我国大型厂商在处理油污与油漆经常选用预热烘炉中完成除漆、除油及除水,而大多数再生小厂商因为遭到本身条件的约束,并没有除掉废件表面的油污油漆的处理工序,大都是直接投炉,这既严峻污染环境,又简单带氢和杂质进入熔池影响铝锭冶金质量。 预处理工序是再生铝出产流程的榜首环节,把住这个入门榜首关的质量对再生铝的档次及冶金质量至关重要。预处理时严控水分,防止砂土、氧化搀杂、有机物质的带入,把握住废料的归类分选,并加大投入,进步预处理水平,完成预处理的规范化是当时我国再生铝出产所需处理的问题之一。[next] 2.配料熔化 2.1配料 配料指按出产产品的成分要求,制作炉料。配料直接关系到能否出产出合格的产品。配料应遵从以下准则:以出产合格的产品为动身点,密切联络本厂的废铝和质料的存货,在已知库存质料及废料成分的条件下优化制作材料的份额。对合金成分规模要求窄的产品,我国厂商一般的做法是纯铝锭+合金化质料(中间合金)+成分已知的废铝;对成分规模要求宽的产品,一般选用成分已知的废铝+合金化质料(中间合金),在成分呈现误差时加适量的纯铝锭及中间合金。因为不同的合金元素合金化的办法有所不同,合金化硅时直接向合金中参加结晶硅;合金化铁和铜时,为了削减本钱一般直接加铁片、铁丝或紫铜丝,他们来历广泛本钱低价,但它们的熔入时刻长,熔入温度高,添加了能耗和铝液的烧损。并因为吸收率和加工工艺相关,往往会导致Fe、Cu含量的动摇,因而在对成分操控较严的合金锭出产中往往选用参加A1-Fe和A1-Cu中间合金的办法。实践上,不管是选用中间合金合金化,仍是直接运用金属质料,不该只重视眼前利益,要根据本钱效益比来归纳点评,断定制作什么料。总归,配料时,防止配料过错、把住原材料质量、清晰废铝成分,就确保了再生铝化学成分的榜首关。 2.2熔化 熔化是废铝和质料从固态向液态的改动进程,熔化时熔体与炉内气氛、炉体壁和其它固体相触摸,会导致某些物质的熔入或进入熔体,改动熔体的成分,进而影响再生铝的冶金质量。我国再生铝厂商绝大多数运用熔化本钱低的反射炉熔炼,少量大中型厂商因特殊需求也装备一些电炉和感应炉。反射炉用燃油或煤气作为燃料,本钱比电炉低,但在冶金质量的操控方面不如电炉。 在熔化工序中,熔体二次污染是影响再生铝合金冶金质量的首要原因,因而在出产操作进程中应留意以下几点:首要,枯燥炉料、精粹剂、精变剂和一切操作东西,防止带入水。其次,炉料尽可能除掉砂子、泥土和其他有害物,出产用的铁东西要涂涂料,防止直接与铝液触摸,导致渗铁(铁是严峻影响再生铝冶金质量的元素之一)。最终,挑选最佳的熔炼温度、浇注温度和浇注时刻,尽量防止铝液升温过高,保温时刻过长。必要时,在加料前(如在换金属种类和牌号时)还运用纯铝或相应合金洗炉,我国有些厂商并没有留意到洗炉对冶金质量影响的重要性。 在确保了冶金质量的条件后,另一个需求留意的问题是熔炼本钱问题,熔化燃油的耗费和铝液的烧损均直接影响本钱。在实践出产进程中,经过对炉料预热,可有用下降能耗10%-15%,选用非熔剂类精粹蜕变剂(如稀土复合精变剂)能够下降烧损[4]。经过以上的办法能够使再出产本钱下降,一起也能比较好的确保冶金质量。 3.净化与蜕变 3.1净化 再生铝锭的含气量及杂质含量直接影响合金铝的力学功能以及工艺功能。净化工序的首要任务是确保再生铝锭的含气量和杂质含量到达用户标准,确保再生铝锭的运用功能。精粹净化常选用咱们熟知的浮游法[6]。现在我国厂商运用的除渣剂、精粹剂一般以氯盐、硝酸盐为主的精粹剂,这类精粹剂在处理进程中与铝发作反响而发作比如AlCl3、Cl2等有害气体,这类气体对环境设备及人身健康均带来危害。在当时国家大力提倡可持续开展特别强调环保的局势下,怎么寻觅绿色无毒无污染的替代品已是我国铝合金熔炼厂商迫切需求处理的问题。选用N2或Ar精粹虽无环境问题,但作用欠佳。国外一些厂商选用动态真空除气法、SNIF法、Alpur法、MINT法[7]虽均可取得成效,但这些办法一般适用于大型接连铸造的熔炉而不适用于我国90%以上用反射炉出产再生铝的厂商。上海大学近年创造的复合精变办法就是针对我国铝出产厂商用炉特色而研制的无公害绿色精粹蜕变办法[4],它不只处理了再生铝冶金质量问题,并且还确保周边环境质量,是一种值得推行运用的技能。浇注时,在铝锭浇注口前安顿过滤网或陶瓷过滤片过虑铝液,进一步净化铝液削减渣和氧化皮带来的产品质量和皱皮问题,该法在我国再生厂商中运用的适当广泛。[next] 3.2蜕变 铝硅合金的蜕变处理是为了改进合金中硅的形状,然后改进铝合金力学功能的工序。现在我国常用的蜕变剂有以下几种:(一)钠盐蜕变剂,归于短效蜕变剂,蜕变作用好蜕变失效也快。尽管钠盐能起到蜕变作用,但因为它破坏了熔液表面细密的氧化膜,导致铝液从头吸气氧化,恶化冶金质量,尤其是对ZLl02。因而出产这类共晶铝合金锭时不建议运用短效蜕变剂[8]。(二)普通长效蜕变剂,(1)(Sr),常用A1-10%Sr和A1-14%Si-10%Sr中间合金。蜕变作用可坚持6~8小时,它的孕育其较长,孕育时刻为40分钟,并且相对报价高,来历困难,约束了它在铝再生中的运用[6]。别的,也会使熔液表面氧化膜疏松,使针孔度加剧,为了确保冶金质量中针孔度到达标准要求,一般要选用必要的除气办法,不独自运用该类蜕变剂。(2)、碲、锑、虽对共晶型Al-Si合金具有长效蜕变作用,但不少实验证明,这些元素的蜕变作用遭到冷却速率的很大影响,并且精粹剂、除渣剂会激烈下降等元素的蜕变作用[6]。因而在再生铝出产中很少运用。(3)稀土类蜕变剂,稀土不只能对硅相有蜕变作用,并且还在细化a—A1方面有显着的作用,实践还标明经稀土蜕变后具有蜕变作用的遗传性[4/9]。能够看出,就以上三类蜕变剂比较而言,稀土蜕变剂蜕变作用好,并有必定的净化作用,还有利于环保,作用安稳,本钱合算,是再生铝出产优先选用的蜕变剂。 3.3炉前冶金质量操控 炉前冶金质量操控是确保出产合格铝锭的极为重要的一个环节。经过炉前分析能够防止发作严重的冶金质量事故,拯救一些丢失,下降本钱。炉前质量检测和操控一般选用两种手法:化学分析法,光谱分析法。前者分析精度高,但其分析时刻长,往往跟不上流水线出产的节拍,并且还遭到操作者的水平缓分析环境的影响。后者,分析速度方便,运用方便,虽然设备报价昂贵些,但仍运用广泛。在检测产品成分超支和不合格时,有必要进行成分调整。在浇注前,除了要确保化学成分外,还有查看针孔度,一般选用微观腐蚀剂腐蚀后金相计算,有些合资厂商装备了熔铝分析仪进行炉前质量操控。当含气量超支时,通入N2、Ar除气直至合格。 五、结束语 废铝再生是一个利国利民的工作,也会给厂商带来丰盛的赢利,但是有必要看到,现在我国再生铝厂商出产中存在的冶金质量问题正在直接影响着我国再生铝向纵深方向开展。作者对我国再生铝出产工艺流程作了具体调研,具体分析了铝再生进程中的预处理、配料熔化、净化蜕变三个首要出产环节对我国再生铝合金冶金质量的影响,提出了改进冶金质量的相关建议和计划。值得提及的是在三个首要出产环节中,净化蜕变环节很大程度上约束了我国厂商出产高附加值产品。因而,咱们应加大技改和新工艺的投入,打破技能上的颈瓶,筛选落后工艺和设备,促进我国再生铝职业由现在的数量扩张型向质量效益型改动。信任在不久的将来我国的再生铝职业将会呈现环保与效益双赢的局势。 参考文献: [1]成越 对我国再生铝出产的几点观点 我国物质再生,1999,(1):12-13 [2]王祝堂 我国的再生铝工业 有色金属再生与运用年会,2002:38-53 [3]钱翰城,吴奇峰,赵建化等 铸造亚共晶铝硅合金绿色化评论 特种铸造及有色合金,2002(6):1-4 [4]毛协民,唐多光,张金龙等 绿色铝合金稀土复合精粹蜕变处理工艺的环境负荷点评 我国有色金属学报,2002(3):4347 [5]方圆 废杂铝预处理技能现状及评论冲国资源归纳运用,2000,(5):11-13 [6]陆树荪,顾开道,郑来苏 有色铸造合金及熔炼 西安:国防工业出版社,1983 [7]高荫恒 铝及铝合金熔液处理技能 轻合金加工技能,1989,(1):1-11 [8]潘冶,孙国雄,陈健生 第三届我国青年材料科学研讨会论文集,1991,(9) [9]唐多光 铸造合金精粹蜕变的好材料—稀土合金特种铸造及有色金属,1999,(5):42-43
铝硅玻璃的作用
2018-12-28 14:46:52
铝硅玻璃中的Al2O3和SiO2含量很高,具有较好的化学稳定性、电绝缘性、机械强度以及较低的热膨胀系数,可用于加工制造卤灯玻壳、无碱基片、无碱玻纤维及化工管道等,是一种用量较大的特种工业玻璃。
广泛应用于:钢铁、冶金、石油化工、电厂、半导体、新型光源、精密光学仪器、航空、军工、仪表、印染、锅炉厂等高压机械设备。
在纯水中可溶解的铝合金
2019-01-09 11:26:51
近日,《中国科学报》记者从中国科学院金属研究所获悉,该所专用材料与器件研究部储氢合金及应用课题组利用已有的铝水反应研究基础,研发出在纯水中即可溶解的可溶铝合金结构材料,并且可调控该合金与水反应的起始温度和在水中的溶解速率。 课题组组长、金属所研究员陈德敏告诉记者:目前,国内外开采页岩油气主要采用水平井分段压裂技术,即对已探明的不同区域的油气分段压裂。该技术可细分为三种:水力喷射分段压裂、裸眼封隔器分段压裂、快钻桥塞分段压裂。 陈德敏指出,快钻桥塞分段压裂在大庆以及北美广泛采用,该技术具有分压段数多,可进行大排量施工等特点。在该技术的主要工艺流程中,如果压裂球不可溶,球要返排回地面,需要10~15天;桥塞不可溶,要钻除所有桥塞,正常情况下需要1天。 球座和桥塞均起封堵作用。为何一直没有开发出可溶的桥塞和球座? 陈德敏的回答是:一方面,桥塞的尺寸较大,其中心管的较大直径接近80毫米,如果采用粉末冶金做铝复合材料的工艺方法,成本高,成型也较困难;另一方面,这类材料的反应温度不可控,其与水的反应温度过低,保证器件到水里不失效很难,尤其是在整个桥塞有52个零件的情况下,很难采取保护措施。此外,树脂材料同样存在上述成本问题。而镁基材料的强度低,反应温度低,力学性能和溶解性能均不满足使用要求。这些均影响了可溶桥塞和球座的开发。 储氢合金及应用课题组采用铸造工艺制备铝合金。陈德敏表示,该工艺的特点是易于成型,可根据模具的外形和尺寸浇铸各种铸件;该工艺产能大,一炉可浇铸几百公斤以上的合金;合金在常压下冶炼,工艺相对简单等。 在此研究基础上,陈德敏称,可溶球座中的问题解决起来相对简单,需要解决的是含有细小沙粒的压裂液对球座内孔表面的冲蚀问题。 课题组采取的方案是在零件表面做涂层。陈德敏说:“该涂层既要耐冲蚀,还要与合金的表面有很好的结合力,涂层的厚度也要适当,做涂层工艺时不破坏零件的形状和尺寸,不改变合金的基本性能等。”总之,课题组主要解决的是合金表面的涂层加工技术。 压裂球需配合球座或桥塞使用。压裂球落在球座上,依靠压裂液的压力实现封堵。由于球与球座的接触面积非常小,对合金的硬度有一定要求。如果球太软,球将卡在球座上;而一旦球不能返排,即生产事故。 课题组做的球在70MPa的压力下,变形很小,而且可控制溶解时间,不影响后续施工。陈德敏指出,如果国内没有可溶球,国外产品便可漫天要价。所以,从这个角度看,有了可溶球也相对给国内企业节约了部分成本。 随着可溶球等逐步研发,合金的规模生产问题被提了出来。通过沟通,目前双方的合作方式是:金属所负责合金的成分优化、铸件的冶炼成型与热处理,吉林旭峰激光负责产品的机械加工及市场营销。今年3月,生产设备在吉林市安装完毕,目前相关生产工艺正在调试之中。 课题组研发的可溶球正在国内逐渐得到认可。除大庆油田外,可溶球在其他石油企业也得到了部分应用。关于桥塞,陈德敏也透露国内外均有采购意向,有关样件正在测试中,市场应用和推广前景一片看好。
硫脲溶解金、银的试验
2019-03-05 10:21:23
能溶解金、银的功能早在1869年就被发现,但对它的体系理论研讨始于20世纪30年代,近三四十年才大力开展应用研讨。
台湾省矿业研讨及效劳安排的C.K.Chen(陈)等别离对纯度99.9%的金盘、银盘以及基隆金瓜石(Chin Kua Shia)产的含金50g/t、银200g/t、铜6.02%的矿石,进行了和溶液浸出金、银、铜的实验比照,实验结果表明,当金盘与银盘以125r/min别离在含0.5%NaCN、0.05%CaO的溶液中旋转时,金、银的化溶解速度别离为3.54×10-4和1.29×10-4mg/(cm2·s)。当浸出液改用含1%、0.55硫酸、0.1%Fe3+时,金、银的溶解速度比在化液中别离快12.2倍和10.8倍。
当运用金瓜石的矿粉别离在含0.5%、0.5%硫酸、0.1%Fe3+与含0.5%NaCN、0.5%CaO溶液、液温25℃和101.325kPa(1atm)条件下进行比照浸出实验时,不同时刻金、银、铜的溶解曲线如图1~图3所示。图1 金在和溶液中的溶出量图2 银在和溶液中的溶出量图3 铜在和溶液中的溶出量
从图中能够看出,矿石中金、银在液中的溶解速度比在溶液中要快些,铜在液中的溶解速度则比在液中慢得多。因为一般把从金矿石中进入溶液的铜视为有害杂质,故在铜于液中的溶出速度慢这点上,浸出金优于化浸出金。
后藤佐吉等人用硫脉对串木野金矿的矿石进行了浸出实验。运用的矿石含金10.9g∕t、银79.5g∕t,粒度-0.147mm(-100目)。因为矿石中含有30.5%的碳酸钙,故选用含H2SO41.5%、SCN2H41.0%、Fe3+0.3%的溶液浸出6h,金浸出率达100%,银浸出率约70%。若再延伸时刻,金即发作沉积而使浸出率下降。当延伸浸出时刻至20h,银的浸出率虽进步至80%,但金因生成沉积使浸出率下降至80%。
硫化铜表面溶解特性
2019-02-25 15:59:39
邓久帅和文书明等人使用ICP-MS、AFM和XPS分析研讨了黄铜矿在氩气与氧气环境中不同机械拌和时同和不同pH值水溶液中的溶解特性和表面性质,建立了黄铜矿在水溶液中的溶解模型。试验结果表明,在纯水中,溶液中的钢和铁的浓度与时刻的联系可拟合为方程c=ksat+b;低pH值有利于黄铜矿的溶解;表面氧化缓慢,对黄铜矿溶解性影响弱小;纯水中黄铜矿的溶解性对有用比表面积影响不大,酸性条件下黄铜矿的溶解由表面化学反应操控;长时刻溶解后黄铜矿表面呈富铜状况;溶解使表面粗糙度和晶格缺点添加。
罗正鸿等人研讨了黄铜矿在酸性介质中的溶解行为,调查了温度、酸浓度及溶浸时刻等对黄铜矿酸浸行为的影响,分析了元素硫的改变行为及残渣微观结构。结果表明,黄铜矿常压湿法氧化浸出进程的酸浸阶段会发作;黄铜矿的溶解能力随温度改变先快后慢,后段挨近线性增加,溶解首要发作在前2h;低温有利于溶解,而最适酸浸pH值约为0.4。pH值对溶解的影响小于温度的影响。
氧化性和强氧化性电解质溶液可在最大程度上进步黄铜矿的溶解速率。Gülfen研讨了硫酸溶液中Fe2O3对黄铜矿溶解的影响。Goyne、Ikiz和Padilla等人别离研讨了过氧化氢、重、次氯酸、有机酸和溶解氧溶液中黄铜矿的溶解动力学。氧化溶解机理等内容已得到了广泛研讨。
在分析办法上,Al-Harahsheh使用飞翔时刻二次离子质谱仪(TOF-SIMS)和扫描电子显微镜(SEM)研讨分析了黄铜矿的选择性氧化性质。Sasaki对pH值为2、5、11溶液中的黄铜矿氧化溶解进行了XPS分析研讨。
氯化锌溶解度
2017-06-06 17:49:59
氯化锌的化学式是ZnCl。氯化锌是无色晶体;易潮解;熔点283℃,沸点732℃,密度2.91克/厘米(25℃);溶于水、醇和醚.氯化锌溶解度为10℃时每100克水可溶解330克无水盐,氯化锌溶解度在所有固体中算比较大的.氯化锌溶解度是指在一定的温度下,氯化锌在100克溶剂里达到饱和状态时所溶解的克数,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。特别注意的是氯化锌溶解度的单位是克(或者是克/100克水)而不是没有单位。 在一定的温度和压力下,物质在一定量的溶剂中溶解的最高量。一般以 100克溶剂中能溶解物质的克数来表示。一种物质在某种溶剂中的溶解度主要决定于溶剂和溶质的性质。例如,水是最普通最常用的溶剂,甲醇和乙醇可以任何比例与水互溶。大多数碱金属盐类都可以溶于水;苯几乎不溶于水。溶解度明显受温度的影响,大多数固体物质的溶解度随温度的升高而增大;气体物质的溶解度则与此相反,随温度的升高而降低。 溶解度与温度的依赖关系可以用溶解度曲线来表示。氯化钠NaCL的溶解度随温度的升高而缓慢增大,硝酸钾KNO3的溶解度随温度的升高而迅速增大,而硫酸溶解度仪钠Na2SO4的溶解度却随温度的升高而减小。固体和液体的溶解度基本不受压力的影响,而气体在液体中的溶解度与气体的分压成正比。 物质的溶解度对于化学和化学工业都很重要,在固体物质的重结晶和分级结晶、化学物质的制备和分离、混合气体的分离等工艺中都要利用物质溶解度的差别.氯化锌溶解度一方面决定于氯化锌的本二氧化碳的溶解度随温度高低变化性;另一方面也与外界条件如温度、压强、溶剂种类等有关。
硫脲溶解金的速度
2019-02-21 10:13:28
在浸金的溶液中,浓度取决于氧化剂的浓度,它和化法相同,当浓度超越氧化剂浓度之比太多时,则过多部分因短少氧化剂的参与不能发作反响,而等于是糟蹋。
如上所述,选用Fe3+和O2的混合氧化剂是最廉价的,它实质上(处理精矿或矿石时)不需向浸液中加Fe3+,而只需鼓入空气,且鼓入的空气又是矿浆的拌和动力。在Fe3+和O2混合氧化剂中,O2虽也能直接氧化金、银,但溶液中Fe3+浓度常只能坚持与溶解O2的浓度比,作为辅佐氧化剂的O2常缺乏以使悉数Fe2+氧化为Fe3+,更不可能有多大余量。故O2实质上是使金、银等氧化溶解的首要氧化剂。
鉴于Fe2+的化彻底依靠溶解于溶液中的O2,故氧化剂的浓度实质上就是溶解进入溶液中的O2浓度(这儿且不谈二硫甲脒的氧化作用),其浓度值与化法中所述的O2浓度共同。即在室温文常压下,浸液中溶解O2的最大浓度为8.2mg∕L,相当于0.27×10-3mol。
假定金在最大溶解速度时〔SCN2H4〕/〔O2〕之比为1∶2,则浸液中的平衡浓度为 2〔O2〕。那么
〔SCN2H4〕=2〔O2〕=2×8.2mg/L=16.4mg∕L
或 〔SCN2H4〕=2×0.27×10-3mol=0.54×10-3mol
实验证明,若单独用O2作氧化剂,浸液中的极限浓度值仅需0.02%,相当于 2.6×10-3mol。考虑到运用Fe2+和O2混合氧化剂和坚持浸液中有满足浓度的游离,以加速金的溶解,实践出产作业浸液中的浓度可选用0.1%(相当于1.3×10-2mol)。在此条件下,再增大浓度也不能进步金的溶解速度。
Fe3+作为溶解金的首要氧化剂,按其与O2浓度之比,在大多数情况下浸液中含铁离子0.5~2.0g∕L就满足。但在实践中,浸液中的铁浓度常高出许多倍。Fe3+浓度的恰当增大有利于进步浓度,在金等金属离子与处于非平街系统时,可加速金的溶解,金粒表面也不会呈现钝化。故在其他条件相一起,溶金速度比化法约高10倍。
溶金的动力学研讨证明,在有氧化剂存在条件下金溶解反响的电位差较大(0.38V)。故金溶于酸性液巾的速度首要由分散作用所操控。而影响分散作用的首要因素则是浓度差。
依据菲克规律,在阴极区,溶解氧向金粒表面的分散速度为:A1{〔O2〕-〔O2〕i} (1)
在阳极区,向金粒表面的分散速度为:{〔SCN2H4〕-〔SCN2H4〕i} (2)
式中 和 分别为O2和SCN2H4的分散速度,mol/s;和 -分别为O2和SCN2H4的分散系数,cm2∕s;
〔O2〕和〔SCN2H4〕-分别为全体溶液中O2和SCN2H4的浓度,mol/mL;
〔O2〕i和〔SCN2H4〕i-分别为界面处O2和SCN2H4的浓度,mol/mL;
A1和A2-分别为阴极和阳极发作反响的表面积,cm2;
δ-能斯特界面层厚度,cm。
假定金粒界面上O2和SCN2H4的化学反响速度很快,当它们刚一抵达金粒表面便立即被耗费掉。在此极限条件下,则
〔O2〕i=0;〔SCN2H4〕i=0。
此刻,式(1)和(2)可简化为:A1〔O2〕A2〔SCN2H4〕
由式(3)可知,金的溶解速度为耗费速度的二分之一,并为重生氧耗费速度的2倍(或为普通氧耗的4倍)。
Au+2SCN2H4+H++ O2 Au(SCN2H4)2+ H2O (3)
故
金的溶解速度= A1〔O2〕
或许
金的溶解速度= A2〔SCN2H4〕
当上列反响式到达平衡时,则A1〔O2〕= A2〔SCN2H4〕
因为和水相相触摸的金粒总表面积A=A1+A2,故
金的溶解速度= (4)
如式中所示,溶金过程中应坚持必定的矿浆浓度和拌和速度,以添加触摸面积和减小分散层厚度。上式中,当浓度高而溶解氧浓度低时,金的溶解首要取决于溶解氧的浓度,(4)式可改写为
金的溶解速度= (5)
即此刻金的溶解速度跟着溶液中氧浓度的增大而加速。同理,在浓度低而溶解氧浓度高时,金的溶解首要取决于浓度。即
金的溶解速度= (6)
即金的溶解速度将随硫脉浓度的添加而加速。当和溶解氧的浓度都适合时,金的极限溶解速度可由式(5)和(6)简化为〔SCN2H4〕=即=4 (7)
已知=2.76×10-5cm2∕s
则=1.10×10-5cm2∕s
故二者分散系数的均匀值= ≈2.5
将其代入(7)式,则金到达极限溶解速度时和溶解氧二者的摩尔均匀比值为:
4 =4即浸液中氧的溶解浓度与浓度的摩尔(分子)均匀比值约等于10时,金的溶解速度最高。
锡酸钠溶解度
2017-06-06 17:50:01
锡酸钠溶解度是一种投资者想知道,因为了解它可以帮助操作。无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。【中文名称】锡酸钠 【英文名称】sodium stannate 锡酸钠【结构或分子式】Na2SnO3·3H2O 【分子量】 266.73 【CAS号】12209-98-2 【性状】 白色至浅褐色晶体 【溶解情况】 溶于水,不溶于乙醇、丙酮。 【用途】 可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。 【制备或来源】 由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。 【其他】 加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。 如果你想更多的了解关于锡酸钠溶解度的信息,你可以登陆上海
有色
网进行查询和关注。
锰硅合金冶炼原理
2019-01-25 15:50:04
在炉料的冶炼受热过程中,炉料中的锰和铁的高价氧化物在炉料区被高温分解或被CO还原成低价氧化物,到1373~1473K时,高价氧化锰逐渐被充分还原为MnO,全部的FeO进一步还原成Fe;MnO比较稳定,只能用碳进行直接还原,由于炉料中SiO2较高,MnO还没来得及还原就与之反反应结合成了低熔点的硅酸锰。因此,MnO的还原反应实际上是在液态炉渣的硅酸锰中进行的,硅酸锰的状态和熔点为 MnO+SiO2===MnSiO3 t熔=1250℃ 2MnO+SiO2===Mn2SiO4 t熔=1345℃ 由于锰与碳能生成稳定的化合物Mn3C,用碳直接还原得到的是锰的碳化物Mn3C。其反应式是 MnO•SiO2+4/3C===1/3Mn3C+SiO2+CO↑ 炉料中的氧化铁比氧化锰容易还原,预先出来的铁与锰形成共熔体(MnFe)3C,极大地改善了MnO的还原条件。 随着温度的增高。硅也被还原出来,其反应式是 SiO2+2C===Si+2CO↑ 由于硅与锰能生成比Mn3C更稳定的化合物MnSi,当还原出来的Si遇到Mn3C时,Mn3C中的碳就被置换出来,造成合金中碳量下降,其反应式为 1/3Mn3C+Si===MnSi+1/3C 随着还原出来的硅含量的提高,碳化锰受到破坏,合金中的碳含量进一步降低。 用碳从液态炉渣中还原生产锰硅合金的总反应式为 其开始反应温度为773℃。炉料中的磷约有75%进入合金。 在锰硅合金的冶炼过程中,为了改善硅的还原条件,炉料中必须有足够的SiO2,以保证冶炼过程始终处在酸性渣下进行;但是,如果渣中SiO2过量,又会造成排渣困难,通常冶炼锰硅合金的炉渣成分为 w(SiO2)=34%~42% n(CaO+MgO)/nSiO2=0.6~0.8 w(Mn)<8%
锰硅合金价格
2017-06-06 17:49:53
硅锰合金价格,国内硅锰价格暂时出现高位盘整,各地报价趋于集中,市场现货仍紧,但也有部分商家有高价现货出售,市场现货紧张局面暂时未得到完全解决,进口锰矿价格仍有上涨出现,但钢材价格有所回落调整,目前市场商家心态微妙。产品国标地区含税价格(元/吨)备注硅锰FeMn65Si17辽宁7100-7300出厂含税价硅锰FeMn65Si17天津7100-7200出厂含税价硅锰FeMn65Si17河北7000-7200出厂含税价硅锰FeMn65Si17内蒙古7000-7250出厂含税价硅锰FeMn65Si17宁夏7000-7200出厂含税价硅锰FeMn65Si17山东7000-7200
再生铝与电热法铝硅钛合金结缘伴行展望
2019-01-09 11:26:46
前些时间,笔者以“中国再生铝产业2015形势预测”为题,报道了中国再生铝业的现状及未来发展方向。报道显示,历经数十年的中国再生铝业目前基本上还是初级铸造合金锭。高端变形铝合金尚处于探索阶段,拓展产品品种,将是中国再生铝业今后发展方向。历经数十年发展,然而中国再生铝产业,迄今为止只能生产初级铝合金锭,发人深思。 (一)30年前出现的由铝硅钛三元合金配制的含钛0.6%上下的铝硅共晶合金,用于汽车发动机中的活塞、缸体、缸盖等零部件制作,经试验室试验,工业性试验,以及5万、15万公里行车试验,结果合金有以下优点:有良好的细化结晶组织作用、较高的耐热性、较高的耐磨性;能使活塞使用寿命延长35%左右,合金经济效益明显。由河南省科技委员会发布的鉴定证书注明ZL108T活塞合金技术规格、合金化学成分如下(%):Si:11-12,Cu:1.4-1.6, Mg:o.6-0.8,Mn:o.5-0.7,Ti:0.5-0.6,Fe:0.4-0.5,Al余量。 来自全国26个单位派出技术专家34人,参与鉴定,其中多家汽车制造厂、拖拉机厂、活塞厂及内燃机配件制造厂、汽车研究机构等。鉴定具有很高的专业性、权威性。与此同时产出的铝硅钛亚共晶变形合金,经过专业机构测试,其机械性能接近LD2,可作为LD3代用品,广泛应用于建筑业、运输业等诸多部门,市场空间不可限量。虽然上述产品因其生产方式、生产方法不科学,严重破坏电解工艺、损坏电解槽,被放弃、禁用,未能产业化,但产品的优越性、广泛适用性,仍然给人留下深刻的印象。以铝土矿直接电解,违规蛮干,严重破坏电解工艺,伤损电解槽被放弃禁用,理所当然,但铝硅钛三元合金,不应被忽视,应探索、研发其它方式、方法进行生产。 事实证明,对矿石进行改性加工处理,使其理化性能适应电解工艺要求的复合氧化铝,作为电解添加剂,与氧化铝混配进行电解,经试验室试验,可以在保持电解工艺正常运行的条件下,产出含有少量钛及硅的铝硅钛三元合金,可用于再生铝深加工,可以产出上述ZL108T的活塞合金和亚共晶变形合金。可惜此法竟无人问津,长期被忽视。我国再生铝产业步履蹒跚数十年,只能生产初级铸造铝合金锭。 除了电解法之外,还可以采用其它方式、方法。例如电热法、碳热法、化学置换法等。关键是要有创新发展思维理念和意愿,能勇于开拓创新。在诸多方法中,电热法产业化已有先例。可炼制含钛高硅的铝硅合金,以再生铝、废杂铝稀释较为有效、便捷、科学合理。如果能使再生铝产业与电热法结缘伴行,或将是再生铝产业转型升级、迅速产出高级铸造合金、高端变形合金的较强劲有力的引擎,使再生铝迅速走出低谷,由弱转强,面目一新。为此,笔者就电热法略述拙见如下。 (二)电热法炼制铝硅钛合金工艺过程中,有些重要环节必须妥善处理,倘漠然置之,就会遭到挫折和失败,国内外此类事例比比皆是。上世纪60年代,我国抚顺、本溪、唐山、上海等地都曾试过电热法炼制铝硅合金,无一例外,都因忽略了炼制铝硅合金的某些环节的特殊要求,先后放弃了试验。其主要原因,一是炉子选用不当,冶炼工艺事故频频,无法正常生产;二是炉料配备粗放随意,产出合金含铁高,用途受限。同时球团耐热强度不高,造碴多,涨炉底事故频频发生。 与大多数矿热还原工艺不同,炼制铝硅合金有其特殊性,有特殊要求。首先,它要求反应区能量密度足以保证产出的合金能连续不断、及时地从出口顺利淌出,而且保持均衡稳定;要求反应区温度能稳定保持在2050℃~2200℃之间,温度低了反应不完全造渣多,温度高了还原金属特别是铝会大量挥发;要求物料成分尤其是还原剂成分稳定,保持反应区导电率稳定;工艺过程炉料要均匀下移,在合金及时排出的同时,CO及碴也及时均匀排出;要求电极能埋得深,电极消耗保持均衡;总之,反应区各项工艺要素、电制度、热制度平衡而不紊乱。 长期试验研究和生产实践证明,虽然大功率三相矿热炉也能取得较好的技术指标,但与单相单电极炉相比却相形见绌,因而单相单电极炉应是优选。用三相三电极矿热炉炼制铝硅合金时,各项消耗指标都偏高,而且经常发生熔炼工艺紊乱,尤其是功率小的炉子,无法正常生产,勉强维持,产出的合金含铝量也达不到要求,究其原因主要是: (一)小功率三相炉,三根电极三个反应区,即便较大的6300kVA炉子,每相功率也只有6300/3kVA,显然反应区的能量密度太小,产量小,无法连续出炉,还原金属尤其是铝在炉子内停留时间过长,大量挥发,产率低,合金中铝含量少,只能达到30%~35%。(二)三相炉电抗大,功率因数低,一般只有0.78~0.88,加以功率小,相对地炉壁、炉面、炉底散热面积大,热效率低,电耗高。 (三)炼制铝硅合金,工艺要求采用低电压大电流,这时有效电阻及无功电阻值在不断变化,无法做到三相功率完全一致,三个反应区能量密度均衡,为了消除这种不均衡状态,就要经常变动变压器二次相序,迫使停电,破坏了熔炼工艺,金属产率低,电耗增加。与单相单电极炉比较,铝及硅的损失都大, (四)三相电炉因三相功率不均衡,需要调整,致使三根电极上下移动频繁,反应区能量密度均衡遭破坏,各项工艺要素也随之变坏,还原反应无法快速、完全地进行,生产出现紊乱,炉子经常处于不满负荷状态。 (五)三相电炉三根电极之间产生分流,这不但降低了反应区的能量密度,还使炉子上部的温度升高,降低了炉料电阻,迫使电极埋入深度变浅,导致难熔物SiC、Al4C3积存于炉底,造成塌料、涨炉底事故,无法正常生产,直至较终被迫放弃生产。 认真总结经验,同时并参考国外经验,不难得出结论,电热法炼制铝硅合金,确实有其特殊性,有一定难度,但如果炉子选用得当,炉子具备了炼制铝硅合金所必备的功能,炼制铝硅合金是完全可行的。前苏联数十年的经验证明,炉子的功率必需保证反应区能量密度足够大,足以保证每分钟的产量达到连续出炉同时带出积存于炉底部的碴,三相炉的有功功率通常是13000kVA以上,单相单电极炉的有功功率通常是10000kVA以上。 在选用三相炉时,16500kVA以上的炉子,为了使三相有功功率保持平衡,反应区能量密度均衡稳定,建议采用二次低压补偿装置(西安瑞弛冶金设备公司首创),以使功率因数提高到0.93左右。如有适用调频装置,亦应采用。在采用三相能量平衡装置时,可使三相能量保持平衡,相电压50~55V以使低电压大电流。 在选用单相单电极时,增设调频柜,可使电耗降低7%~10%,功率因数达0.93上下。在利用闲置矿热炉时,功率6300kVA的炉子改造后功率可增大1.58倍,不属国家规定淘汰之列,新建10000kVA以上单相单电极低频炉,建议采用8927416X专利技术。旧炉改造可采用两种方式:交-直-交-低频方式,十二相同步-逆变-低频方式。 8927416X专利技术特点在于,炉体安装在炉底平车上,炉膛内安装有一根自焙电极,采用低频交流电源。炉体外装有可绕炉体移动的扒皮车。炉底平车置于基础上,车板上设有多条钢轨,炉体放在钢轨上,炉底平车的移动由油缸和管路组成液压系统控制,可使炉体沿炉口方向移动,以改变电极在炉膛中的位置。电炉采用的交流电源,是三相电源采用整流、逆变电路技术后,构成的单相低频交流电源,亦即将三相市电经变压器变压,再经可控硅整流、逆变后,构成单相低频交流电源。扒皮车由车体及设于车体上的电焊机、扒皮夹子、汽动装置组成、车轮放在炉体外侧的圆形轨道上。 把三相矿热炉改造成单相单电极炉,采用交-直-交-低频方式,与8927416X专利技术不同之处是,所利用的闲置矿热炉原有炉体是固定的,而电极是可移动的,可以根据工艺需要随时改变其与出口之间的距离。采用十二相同步-逆变-低频方式时,原有炉体也不变,只将固定电极装置改为可移动,原有变压器留用,其接线为A/Y,需再添一台Y/Y性能变压器,组成十二相同步-逆变-调频交流电源,功率增大2/1.265倍。用上述两种方式改造的炉子,所用电极的直径正好与原有炉体的直径相适应。炉子具有的电气特性,完全符合炼制铝硅合金的工艺要求。 两台6300kVA经改造的单相单电极低频炉,其产量高于一台普通16500kVA三相炉子的产量,其创造的技术、经济效益更优于后者。前苏联长期实践经验证明,采用单相供电的六根电极排成一行的长方形电炉,炼制铝硅合金较有发展前途,它具有良好的工艺与电气特性,功率因数提高5%~7%,电耗下降15%。 鉴于各地多有闲置三相矿热炉,建议选择条件好的炉子,就地(或移地)加以改造,将其改造成为单相单电极低频炉。改造后的炉子将具有诸多优点。现以6300kVA三相炉子,以十二相同步——逆变——低频方式改造为例,加以说明: (1)改造后的炉子,功率增大为9960kVA,完全可保证连续出炉的工艺要求。 (2)利用原有炉体、设施,可节省大量投资,并不难在3~5个月内投入生产。 (3)由于单相单电极能量密度大,反应区各项技术要素稳定,温度易于控制在所要求的2050℃~2200℃之间。 (4)由于只有一根电极,消除了电极间分流,电极埋入深度大,保证了电流通过电弧直达炉底,反应区能量密度衡定,还原反应正常进行,提高了热效率,减少了热损失。 (5)改造后的炉子电极与出炉口之间距离可调整(电极可移动)温度高,保证了还原金属及炉渣及时排出,金属收率提高,同时中间产物SiC、Al4C3等难熔物较易被Al2O3还原,避免涨炉底现象发生。 (6)一根可移动电极,可保持电炉满负荷运行,功率利用率可达100%,必要时改变电极与出炉口之间的距离,超负荷运行,可利用“平谷峰”电价制度,于夜间(谷时)多用电,以降低平均电价。 (7)由于一根电极,暴露于空气中炉料中面积小因而消耗少,铁质电极壳相应消耗少,有利于降低合金含铁量。 (8)一根电极便于调频柜安装、维护,而低频的应用与推广,是国家节能措施,将工频50Hz调低为0~3Hz,可以减少大电流线路的电抗,节能降耗。频率0~3HZ具有直流的功能,功率分布合理,不偏弧,电流集肤效应减少,均匀流过电极,温度高而平稳,原料还原率高,电磁搅拌力大,微粒渣反复碰撞形成大颗粒,易于分离,使合金中混渣少,质量高,并有利于合金精制。 (9)单相单电极低频炉,不但优于三相炉,也优于直流炉。直流电炉2/3的功率在阳极(炉底),由于热量过于集中,不能充分利用,并造成局部过热,导致还原金属大量挥发,使金属收率降低,电耗增大。国外使用直流炉炼制铝硅合金,每吨合金耗电15000度以上,国内在炼制工业硅时每吨硅耗电竟高达16500度,而低频炉可使电耗低于13000度/吨合金。(10)一根电极,消除了三相三根电极的三角区,便于操作,特别是便于机械化、自动化改造,也便于采用中空电极,用氮气将氧化铝、刚玉或高铝矿粉与炭粉吹进反应区,使其直接反应,以提高合金中铝含量。 (11)单相单电极低频炉较三相炉排出烟尘少30%,噪音小,利于环保达标,利于粉末提纯加密技术的应用,实施无废料废渣生产。 一座改造后的10000kVA单相单电极低频矿热炉,可年产含钛铝硅合金约6000吨,按每kVA计算的年产量约为普通三相炉1.3倍。改造一台6300kVA三相炉为10000kVA单相单电极低频炉,所投资金不难在投产后一年内收回。 正是由于单相单电极炉的优越功能,上世纪40年代,前苏联一种被称为‘米格炉’的单相单电极炉风行一时,但由于对电网干扰大被禁止。我国在上世纪50年代由前苏联帮助建造的供炼硅用5000kVA单相双电极矿热炉,采用连续出炉工艺吨硅单耗可较三相炉低约10%以上。单相单电极炉较三相三电极优势明显。然而迄今为止国内尚未有以单相单电极炉成功炼制铝硅合金案例,注重点仍倾向于大功率三相三电极炉,两家规模企业以铝硅合金立项,建造的功率16500kVA矿热炉,投产后都转产铁合金。另外多家试炼制过铝硅合金的企业,所选矿热炉都是三相三电极炉,因而在优选单相单电极炉同时,不可忽视三相三电极炉。三相三电极炉经技术改造后,完全可以适应炼制铝硅合金的工艺要求。例如有功功率大于13000kVA的炉子,采用二次低压补偿,增设三相平衡自动调整装置和调频柜后,按低电压大电流要求相电压控制在50V~55V之间,反应区下移电极埋入深,使反应区能量达到较佳限度,满足冶炼工艺要求,炼制出合格合金,使冶炼工艺运行正常稳定。 至于炉料制备,必须按确定的Al2O3/SiO2(以下以A/S表示)平衡配料,严格按操作规程进行,这是炼制铝硅合金、铝硅钛合金工艺得以正常进行的必备条件。炉料需经加工清除其中有害杂质,在所有杂质中较为有害的是Fe2O3,而合金中铁的含量很大程度决定合金的市场竞争力。含铁过高,用于稀释的原铝(或再生铝、废杂铝)的量加大,配制的合金成本高,利润降低。因此,要求在炼制的合金成本不增加的前提下,含铁愈低愈好,为此特别限定合金的含铁量,一般不超过1.5%。 在限定炼制铝硅合金铁含量的条件下,对原料选用、加工方法,特别是除铁方法的选定,必须做足文章,因为这涉及到市场供求如物料价格高低、加工费用大小,加工难易程度,以及国家政策要求等诸多方面因素的综合分析、评估等。比方河南的氧化铝工业,由于实施选矿—拜耳工艺流程,副产大量尾矿,为使尾矿资源化,获得国家免税待遇,可选用除铁尾矿作原料,也可以废弃低铝硅比铝土矿,经除铁、除杂后,用以炼制铝硅合金,两者都具有量大质优特点;山西省资源条件更为优越,高岭土普遍含铁低,平均在0.3%上下,朔州、忻州等高铝煤产地,排放的高铝粉煤灰、煤矸石更为可贵。平朔二矿所产粉煤灰中Al2O3含量达47%,Fe2O3含量只有0.44%,不需要除铁加工。另外,怀仁某煤矿所产煤灰粉中Al2O3含量高达54.22%,A/S1.59,而Fe2O3含量为0.8%,如用作电热炼制铝硅合金原料,也不需要除铁加工,怀仁所产洗选矸不需要添加含Al2O3物料,还原剂可选用洗选精煤,完全可以在煤上多下功夫。此外内蒙古、陕北等地也有高铝煤矸石、粉煤灰产出,托克托电厂排放的粉煤灰Al2O3含量达54.77%,SiO2:36.5%、A/S1,51、Fe2O3含量2.29%,经高梯度磁分选可降至0.6%,无需添加含Al2O3物料,可直接用以制团。实际上,全国可资源利用的炼制铝硅合金原料可谓取之不尽,用之不竭。 原料制备的另一个重要环节是制团工艺。球团要求细度、导电度、机械强度、孔隙度等要充分满足冶炼工艺要求,球团耐热强度决定冶炼过程造碴多少的决定因素,耐热强度必须保证球团顺利进入反应区。正常运转时约有14%~17%的残碴形成,其成分主要是多铝红柱石(3Al2O3.2SiO2)、刚玉、六铝酸钙(Ca.6Al2O3)、SiC、AlOC等,通常在连续出炉时被带出炉外,返回流程,如果球团耐热程度不够,造碴过多无法及时排出炉外,会引发涨炉底事故,事故频发会造成无法正常生产。 总之,性能优越适用矿热炉,优良合格球团,是炼制铝硅合金的必备条件,不可漠然置之。 (三)除了上述通用方式,还可创新其他探索方法,例如炼制铝硅钛合金或铝铁合金使其分离制取含铁低,并含有其他有益成份的铝合金或含有少量铝的铁合金,而产出的含有少量硅、钛的铝合金,与再生铝、废杂铝熔配如同上述成分的铝硅亚共晶变形合金。 上世纪90年代,我国铝硅铁首创焦作李封铁合金厂,去前苏联参观访问回国后即试验电热法炼制铝硅铁合金一举成功,投产后头3天炼出的合金成分如下: 如果能使铁含量保持到10%或以下,运用振动法、重力离心法、或水淬—磁选法,或可能把铁含量降至2%~3%,含铁2%~3%的铝硅合金与适量再生铝或废杂铝熔配,可配制出含铁0.7以下,含钛适量的铝硅亚共晶变形合金,合金机械性能,经测试与LD2接近,可作为LD2的代用品广泛应用于建筑业、运输业等方面,从而使产能过剩的铝硅铁就可在自救的同时助推再生铝业转型升级脱困转强。 可配制的铝硅亚共晶变形合金成份及测试结果如下:1.Al-6%Si-1%Ti合金可以轧制成板、挤压成各种规格的棒、管、型材等。勿需中间退火可直接将管毛料拉拔成一定规格尺寸的半成品。 2.为保证得到具有较好综合性能的Al-6%Si变形铝合金,钛含量应该限制在0.5%~1.0%的范围较适宜。 3.Al-6%Si-1% Ti合金板的机械性能,在冷变形状态下抗拉强度、屈服强度比工业纯铝高约5~7kg/mm2,延伸率基本相当:在退火状态时,Al-6%Si-1% Ti合金的抗拉强度比工业纯铝高约5kg/mm2,屈服强度略高,延伸率基本相同,与同样状态下的LD2合金相比,抗拉强度略低,延伸率相对较高。 4.Al-6%Si-1%Ti合金挤压棒的机械性能,在退火状态下抗拉强度、延伸率比工业纯铝高,与同状态下的LD2合金棒之抗拉强度基本接近,但延伸率和硬度要略高些,断面收缩率约低15%有希望成为退火状态下LD2合金棒的代用材料。 5.该合金成型性好,型材可一次弯成900角不裂。如与废杂铝熔配,废杂铝中铜、锌等金属有益无害。此外还有一种过共晶铝硅合金早已问世也应重视。 关键仍是除铁,2%~3%的铁含量,在稀释硅的同时也被稀释。倘铁含量稀释不到位,再以重力离心法二次除铁,可将其清除到0.5%以下。 研究表明,铝硅铁合金中三元相为:Fe2SiAl8、FeSiAl6、FeSiAl4,且在硅中溶解极小。用振动法、重力离心法、水淬-磁选法有可能把铁清除到2%~3%上下,自然混锌法亦可一试。不论哪种方式,产出的副产品都可再利用,其经济效益仍可维持高位。 利用铁在高温时能有效抑制铝的挥发,碳热法炼制铝硅合金,也是一个可行的选项。国外许多国家都曾试验过。日本企业以高温间接加热法,以氧化铝、氧化铁粉、石墨粉按重量比60:15:25混合制团,在21500C高温下,保温30分钟,炼制出铝铁Fe/AL2.61的铝铁合金。由于铁在铝中固溶度受熔体温度左右,低温时固溶度随之降低,共晶温度时降至0.03%~0.05%,其时铁呈原子团存在而不紊乱,可以多种方式予以清除;由于铁不熔于锌和铅也可以混锌法、混铅法进行处理。上世纪80年代日本人还曾以高炉法进行试验,产出的合金含铝60%以上,含铁20%~25%,含硅10%~15%,虽然两种方式都未能产业化,但都有改进优化余地,具有一定参考价值。(王成之)
醋酸锌溶解度
2017-06-06 17:50:00
经常配置溶液的朋友一定非常关注醋酸锌溶解度问题,有很多朋友提出醋酸锌溶解度是不是随着温度的变化而变化等问题。在这里小编为您做一个简单的简答。醋酸锌溶解度相对来说较稳定,不太会随温度的变化而发生非常大的变化。通过实验,我们发现1g醋酸锌溶于1.3ml水.醋酸锌分子式: Zn(CH3C0O)2·2H2O;分子量:219.51 ;醋酸锌相对密度为1.735g/cm3 .醋酸锌生产所用原料:冰醋酸,醋酸,氧化锌,氧化锌.通过醋酸锌溶解度我们可以和其他化学物质联合起来配置各种各样的溶液,从这些溶液又可以通过一定的温度或者其他条件析出晶体。得到的晶体又可以通过其他很多种途径制出我们平日生活中所需要的物品。醋酸锌溶解度比起其他一些材料要来的高,正是利用了醋酸锌溶解度高的性质,醋酸锌广泛被用作醋酸乙烯、聚乙烯醇生产催化剂,印染媒染剂,医药收敛剂,木材防腐剂,瓷器釉料等.
影响金溶解速度的因素
2019-02-19 11:01:57
一、和氧浓度对金溶解速度的影响
金、银溶解时,所需的和氧的浓度是成份额的。依照反响式(1),1mol(分子)氧需求4mol(分子)的CN-,两者涣散系数的均匀比值为1.5。已知为空气所饱满的化液中含〔O2〕=8.2mg∕L,或为0.27×10-3mol(分子)。则〔CN-〕=4×1.5×0.27×10-3=6×0.27×10-3mol(离子),或为0.01%。在实践出产中,一般运用含0.02%~0.06%NaCN的水溶液。
4Au+8NaCN+O2+2H2O 4NaAu(CN)2+4NaOH (1)
溶液中浓度的调整是经过操控投入量来完成的。而氧浓度则是凭借充气机械向溶液中充气到达的。在正常状况下,充气机械的充气能使氧在溶液中的溶解度到达7.5~8mg∕L,只要在淡薄的溶液中才干到达某一稳定值。大都工厂的实践证明:在常压充气条件下,金的最大溶解速度是在浓度为0.05%~0.1%的规模内;而单个情况下则在0.02%~0.03%的规模内。只要进行渗滤化作业,或许处理含有较多的耗费杂质的矿石,以及含有酸盐的脱金贫液回来循环运用时,才运用较高的浓度。
实验标明,在浓度低于0.05%时,由于氧在溶液中的溶解度较大,以及氧和在稀溶液中的涣散速度较快,金的溶解速度随浓度的增大而直线上升到最大值。今后,跟着浓度的增大而金的溶解速度上升缓慢。当浓度超越0.15%后,虽然再增大浓度,金的溶解速度不光不会增大,反而略有下降(图1)。这可能是由于氧和CN-的份额失调。以及溶液pH添加,使离子发作水解引起的:
CN-+H2O HCN+OH-图1 不同浓度对金、银溶解速度的影响
在低浓度的溶液中,溶解速度取决于的浓度;但当浓度增高时,溶解速度与浓度无关,而随氧的供入压力的上升而增大(图2)。为此,可以用渗氧溶液或高压充气来强化金溶解的进程。如在709.275kPa(7atm)充气的条件下化,不同特性矿石中金的溶解速度可进步10倍、20倍,乃至30倍,且金的收回率约可进步15%。图2 24℃时不同压力与不同NaCN浓度对银溶解速度的影响
二、杂质对溶解速度的影响
向化溶液中参加某些元素,能加快金的溶解。有些研讨者证明,在必定的条件下,参加少数铅、、和铋,能进步金的溶解率。至少,存在的少数铅可成为溶解金的增效剂(图3)。但铅的很多存在,特别是在pH高的情况下,会在金粒的表面生成Pb(CN)2薄膜而按捺金的溶解。图3 在0.1%NaCN溶液中铅离子浓度对金溶解速度的影响
硫离子的存在,会在金粒表面生成一层不溶的硫化亚金薄膜,而使金难于溶解。或许与生成对金不起溶解效果的硫代酸盐而耗费。即便溶液中的硫化物含量很低(5×10-4%)也会显着下降金的溶解速度(图4)。图4 在0.25% KCN溶液中Na2S浓度对金、银溶解速度的影响
化处理浮选精矿时,由精矿带入化液中的黄药和黑药同样会下降金的溶解速度。我国某选金厂化液中的黄药浓度由33mg∕L添加至110mg/L时,金的化浸出率由74.2%下降至55.6%。这首要是由于金粒表面为黄原酸金薄膜掩盖之故。为进步金的收回率,浮选精矿或尾矿在化前有必要进行脱药。
精矿的脱药,一般是在浮选后对精矿进行洗刷和浓缩,以到达脱药意图。某矿磨矿粒度65%~0.074mm(200目),浮选后为更好的脱除黄药和2#油,将浮选精矿经旋流器脱药后,再磨矿至溢流细度98%~100% 0.074mm(-200日)后浓缩,可将浮选药剂脱掉96%。终究精矿送化提金,金的年均匀浸出率达90.57%。
矿石中存在的碳以及硅、铝、铁等生成的氢氧化物均具有吸附效果,对化作业晦气。
三、pH值对金溶解速度的影响
化作业时一般参加若干数量的碱以避免的水解丢失。但碱量过多而形成pH值过高时,金的溶解速度会显着下降。这是由于在高的pH情况下,氧的反响动力学对金的溶解很晦气。别的,在钙离子存鄙人,pH值增高时,会因金属表面生成薄膜而使金的溶解速度显着下降(图5)。图5 钙离子对金溶解速度的阻滞效应
很多研讨标明,金化浸出的最佳pH值为9.4。实践出产作业的最佳pH值规模可选在9.4~10之间。如条件答应,化浸出作业取下限值,锌置换作业则取上限值,后者pH值增大,可减小锌与水的反响优势,下降锌的耗费。
不同浓度的相应pH值列于下表。在不同pH值(即不同KOH浓度)下金、银的溶解速度如图6。从图中看出,KOH浓度达0.1mol∕L以上溶解速度呈直线下降。表 各种浓度KCN溶液的相应pH值KCN∕%pH0.0110.160.0210.310.0510.400.1010.510.1510.660.2010.81图6 溶液的pH值对金、银溶解速度的影响
四、温度对金溶解速度的影响
假如温度处在不影响金溶解作业的答应改变规模内,反响物浓度将随温度和涣散率的添加而添加,温度每添加10℃,反响物浓度约增大20%。也就是说,进步温度可加快化学反响速度。即温度每升高10℃,分化速度添加近两倍。但费事的是,添加温度会影响氧的溶解度。当矿浆温度挨近100℃时,氧的溶解度已降到近于零。总的来说,金的最高溶解速度在温度约85℃(图7)时到达极限,如温度再增高,就会因氧的溶解度削减而下降金的溶解速度。且为了进步矿浆温度需耗费很多燃料,而会添加化作业的本钱。特别是跟着矿浆温度的升高,会增大溶解贱金属的速率,加快碱金属和碱上金属的水解,形成耗费量的添加。这些不良影响,是添加矿浆温度以进步金的溶解速度和缩短化时刻所赔偿不了的。因而,除冰冷区域在冬天为了不使矿浆冻住而采纳保温办法的加温外,一般均在不低于15~20℃的常温条件下进行化。图7 温度对金在0.25%KCN溶液中溶解速度的影响
典型的涣散操控进程中,金、银的分化活化能规模在8.37~20.93kJ(2~5千卡)/mol(分子)之间。
五、金粒度对金溶解速度的影响
金粒的巨细是决议金溶解速度一个很首要的要素。假定金的溶解速度为3mg∕(cm2·h),寻么,直径44μm(325目)的球状金粒的彻底溶解需求14h;直径149μm(100目)的球状金粒则需48h。为此,在化前有必要首要除掉粗粒金,以进步金的收回率和尽可能缩短化作业时刻。
化工艺进程中,一般根据化作业的特色以筛目将金粒分为三种粒度:大于74μm(200目)为粗粒金,37~74μm(200~400目)为细粒金,小于37μm(400目)为微粒金。为便于作业,有时将大于495μm(32日)的金粒称为特粗粒金。
粗粒和特粗粒金,在化作业中溶解很慢,需求很长时刻才干彻底溶解。关于这类金粒,选用延伸化时刻往往是不合算的,由于绝大大都金矿石中的金首要呈细粒和微粒存在。国内外许多化法矿山所选用的收回矿石中粗粒和特粗粒金的办法,常常是在化前先进行混或许重选捕收,避免未溶完的粗粒金丢失于尾矿中。
细粒金在一般的化作业进程中都能很好地溶解。这是由于在相应的磨矿粒度下,大部分被解离呈单体金。
微细金粒在磨矿作业中被解离呈单体的常不多,其间的大大都仍处在其他矿藏或脉石的包裹中。处于硫化矿藏中的微粒金,化前常常需先进行氧化焙烧。石英脉石包裹的微粒金在化进程中是难于浸出的。用化法收回这类微粒金,一般需求将矿石磨得更细,以添加金粒的解离程度。这就会增大磨矿本钱,且给化矿浆的固液别离带来困难,增大和已溶金的丢失。关于某些微粒金矿石,常常由于矿石磨矿粒度不可能再细,而不可能选用化法处理。
故可以为,矿石中金粒巨细常常是决议能否选用化法的重要要素之一。
六、矿泥含量和矿浆浓度对金溶解速度的影响
矿泥含量和矿浆浓度会直接影响金的溶解速度。矿浆中矿泥和矿砂的浓度大,会影响金粒与溶液的触摸和溶液中有用组分的涣散速度,而使金的溶解速度下降。在一般情况下,化矿浆中粒状矿砂的浓度应不大于30%~33%。当矿浆中含有较多的矿泥时,化矿浆中的固体物料浓度应小于22%~25%。
矿泥的损害首要在于增大矿浆的粘度。不论是矿石带入的原生矿泥,仍是因磨矿而生成的次生矿泥,它们均以高度涣散的微细粒度进入矿浆中,生成极难沉积的胶状物长时刻呈悬浮状况,而下降金的溶解速度,且形成矿浆的洗刷过滤困难,使已溶解的金丢失于尾矿浆中。
硫酸镍溶解度
2017-06-06 17:49:57
溶解度,在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。1、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的克数,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。 2、气体的溶解度通常指的是该气体(其压强为1标准大气压)在一定温度时溶解在1体积水里的体积数。也常用“g/100g水”作单位(自然也可用体积)。 3、溶解度是指在一定的温度下,某物质在100克溶剂(通常是水)里达到饱和状态时所溶解的克数. 4、特别注意:溶解度的单位是克(或者是克/100克水)而不是没有单位。物质溶解与否,溶解能力的大小,一方面决定于物质(指的是溶剂和溶质)的本二氧化碳的溶解度随温度高低变化性;另一方面也与外界条件如温度、压强、溶剂种类等有关。在相同条件下,有些物质易于溶解,而有些物质则难于溶解,即不同物质在同一溶剂里溶解能力不同。通常把某一物质溶解在另一物质里的能力称为溶解性。例如,糖易溶于水,而油脂不溶于水,就是它们对水的溶解性不同。溶解度是溶解性的定量表示。 固体物质的溶解度是指在一定的温度下,某物质在100克溶液里达到饱和状态时所溶解的质量。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。如20℃时,食盐的溶解度是36克,氯化钾的溶解度是34克。这些数据可以说明20℃时,食盐和氯化钾在100克水里最大的溶解量分别为36克和34克;也说明在此温度下,食盐在水中比氯化钾的溶解能力强。硫酸镍溶解度在20度的环境下, 溶解度为37.7克。硫酸镍溶解度就是17.8克,如果在5%-10%(体积比)的硫酸中的溶解度肯定小于这个数但不好计算,我给你一个估计值10%硫酸,溶解度10克左右吧。
中低铝硅比铝土矿选矿脱硅方法
2019-01-18 09:30:15
中低铝硅比铝土矿选矿脱硅方法。将铝土矿磨至合适的细度后进行分级,分为1-2个粗粒级别和细粒级别,粗粒级全部或部分为精矿1,细粒级加入浮选药剂进行浮选,得到的浮选精矿为精矿2,精矿1和精矿2合并为铝土矿选矿精矿,浮选过程粗扫选循环和精选循环分别产出尾矿,作为铝土矿选矿尾矿。本工艺的过程可以完全保证精矿细度满足氧化铝生产的要求,使浮选作业的药耗减少30%以上,浮选作业的处理能力提高30%以上,铝硅分离的效果好,生产过程易稳定,工艺简单,经济效益显著。
锰硅合金的知识
2018-12-12 09:37:20
俗称硅锰合金。
(1)用途适用于炼钢及铸造作合金剂、复合脱氧剂和脱硫剂。
(2)牌号和化学成分见表。
锰硅合金的牌号和化学成分
牌 号化学成分(质量分数)(%)MnSjCPSIⅡⅢ≤
FeMn64Si2760.O~67.O25.0~28.0O.5O.10O.150.25O.04
FeMn67Si2363.0~70.O22.0~25.00.70.100.150.25O.04
FeMn68Si2265.0~72.020.0~23.O1.2O.100.15O.250.04
FeMn64sj2360.O~67.020.O~25.Ol.2O.10O.15O.250.04
FeMn68Sil865.0~72.O17.O~20.O1.8O.10O.15O.25O.04
FeMn64Sil860.0~67.O17.O~20.O1.80.100.150.25O.04
FeMn68Sil665.0~72.014.0~17.02.50.100.150.250.04
FeMn64Sil660.O~67.O14.O~17.02.5O.20O.25O.300.05
注:1.硫为保证元素,其余均为必测元素。
2.锰硅合金以块状或粒状供货,其粒度范围及允许偏差应符合下表的规定。
等 级粒度范围
/mm偏差(%)筛上物筛下物≤
l20~30055
210~15055
310~10055
410~5055
含铝硅矿物预脱硅工艺研究进展
2019-02-21 11:21:37
铝出产选用的是含铝矿藏,因为铝和硅的性质附近,矿藏在含铝的一起也含有硅。硅的存在,对铝的出产有很大影响。假如硅含量过高,则在除硅进程中会构成很多铝的丢失,并且产渣量也非常大。因而,从含铝矿藏中提取铝要求矿藏有较高的铝硅比。含铝矿藏首要为铝土矿和粉煤灰。要使其得到有用运用,就需求对粉煤灰与部分铝土矿进行预脱硅,进步铝硅比。
现在常选用的含铝矿藏预脱硅办法首要有物理法、化学法和生物法。
一、物理法
物理办法脱硅的特色是:以天然形状除掉含硅杂质矿藏,下降铝土矿矿石中SiO2的含量。物理脱硅是铝土矿预脱硅的首要办法,可是用这种办法对粉煤灰预脱硅现在没有见相关报导。物理脱硅法首要包含浮选法、挑选性碎解法,洗矿、筛分和挑选性絮凝法,其间最重要的是浮选法,浮选法又分为正浮选和反浮选。
(一)正浮选脱硅-阴离子捕收剂浮选脱硅
正浮选是指经过按捺铝硅酸盐矿藏,选用阴离子捕收剂浮选。
M.A.Eygeles,et al.研讨了以油酸、塔尔油和机油混合物作捕收剂,乙氧基化合物OP-7为起泡剂,硅酸钠、六偏磷酸钠为调整剂,挑选性浮选别离高岭石、石英和三水铝石的混合物。但因为铝土矿精矿收回率较低,浮选本钱较高,这种办法未得到工业运用。L.M.Lyushnya,et al.以脂肪酸、中性油和OP-7混合物为捕收剂,以硅酸钠、六偏磷酸钠、钠、铜铁灵或茜素为调整剂浮选别离三水铝石或一水软铝石和高岭石等的混合矿,取得了氧化铝,但档次较低,收回率也低。P.I.Andreev,et a1.研讨了油酸盐对三水铝石的捕收机理。经过水洗,证明油酸根在三水铝石表面发作了化学吸附作用。V. V. Ishchenko,et al.经过红外吸收光谱证明了油酸钠在矿藏表面上化学吸附,也研讨了捕收剂在矿藏表面的吸附。成果标明,跟着矿浆pH添加,番笕和油酸钠在三水铝石、高岭石及菱铁矿上的吸附添加,但吸附率不同。富田坚二以为,铝矾土浮选的重要工作是涣散脉石,用脂肪酸、番笕、烷基硫酸、烷基磺酸盐等作捕收剂,磷酸钠及六偏磷酸钠作调整剂,在碱性或弱碱性介质中,因为三水铝石比高岭石等脉石矿藏的浮选速度快,然后可使它们别离。
20世纪60年代以来,我国对一水硬铝石型铝土矿进行了广泛的浮选脱硅实验研讨。海南某三水铝石型铝土矿原矿铝硅比为5.3,正浮选脱硅后的精矿铝硅比达8.32,Al2O3收回率达72.94%;山东、河南等地的一水硬铝石型铝土矿:原矿铝硅比为4.6~5.78,精矿铝硅比达8.09~9.23,Al2O3收回率达71.12%~88.50%。以氧化白腊皂和塔尔油为捕收剂,以羧甲基纤维素(CCMC)、、硫酸钠、六偏磷酸钠等为调整剂,在碱性条件下对云母-水硬铝石型铝土矿进行浮选,成果标明,少数的六偏磷酸钠有利于氧化铝的收回和进步铝硅比。在以氧化白腊皂和塔尔油为捕收剂对山西阳泉太湖石铝土矿进行半工业选矿实验中,碳酸钠和六偏磷酸盐是一水铝石与高岭石的有用调整剂,相同选用碱法浮选,可使一水硬铝石-水云母型铝土矿的铝硅比从5.53进步到10.35,Al2O3收回率为88.9%。梁爱珍用廉价的水玻璃替代贵重的六偏磷酸盐,用挑选性较好的癸二酸下脚脂肪酸替代塔尔油,用腐殖酸铵作为按捺剂,研讨了铝土矿的浮选,成果以为腐殖酸铵能够扩展铝矿藏和硅矿藏的可浮性差异,进步一水硬铝石的浮游速度,下降氧化铝在尾矿中的丢失。
以上浮选脱硅工艺,多停留在实验室阶段,还没有工业运用,有以下几个原因:1)磨矿粒度太细,一般为-0.074mm大于95%;2)精矿中氧化铝收回率为80%,均匀铝硅比为8~9,目标不对错常抱负;3)精矿水含量较大。
(二)反浮选脱硅-阳离子捕收剂浮选脱硅
一般来讲,铝土矿中有用矿藏含量相对较高,含硅杂质矿藏的含量相对较少,尤其是一水硬铝石。选用正浮选工艺流程,泡沫量很大,所以人们天然就考虑用反浮选来预脱硅。反浮选脱硅是经过按捺水铝石,选用阳离子捕收剂浮选铝硅酸盐矿藏。
文献标明:在矿浆pH为7~8时,胺基阳离子捕收剂可有用的选出鲕状绿泥石等硅酸盐矿藏,六偏磷酸钠有助于矿浆涣散。V.V.Ishchenko,et al.用十二胺做反浮选,原矿铝硅比为1.7~2.4,浮选拌和速度为1750r/min,液固提及质量比为3∶1,终究取得的精矿铝硅质量比达7左右,精矿产率为27.40%。光谱研讨标明,胺在高岭石和三水铝石表面的静电吸附量不同,在中性和弱碱性溶液中,胺以分子和离子态共吸附在高岭石表面。S.A.Tikhonov,et al.用ANP-14和工业油的混合物,在阳离子药剂2B和硫酸铝存在下浮选别离铝土矿中的石英。实验标明,松香胺的醋酸盐也能挑选性浮出石英。V.V.Ishchenko,et al.研讨标明:十二胺、ANP-14、十六胺、ANP-2、初级脂肪胺类等阳离子捕收剂能浮选出铝土矿中的石英和高岭石;pH值对捕收剂吸附量影响很大。不足之处是捕收剂用量较大,氧化铝收回率较低。
张云海等以化十六烷基毗啶盐为捕收剂,Arbacol-H和白雀树皮为调整剂在实验室去除低档次铝土矿中的80%~90%的高岭石,但药剂本钱较高,氧化铝收回率较低。刘广义等以十二胺醋酸盐为捕收剂对单矿藏进行浮选实验,在pH为6~8范围内,SA与十二胺醋酸盐组合能按捺90%以上的一水硬铝石的浮出,而软质高岭石与叶蜡石的上浮率大于80%。李耀吾等以C10~C20脂肪胺为捕收剂,从一水硬铝石型铝土矿中浮选出大部分叶蜡石,不足之处是氧化铝精矿收回率较低,操作准则也比较严厉。
二、化学法
选用化学药剂损坏矿石中的铝硅酸盐矿藏晶体结构,进步SiO2的活性。活性较差的SiO2在低温条件下可溶于碱溶液而被脱除,然后完结进步铝硅比的意图。
含铝矿藏的化学法预脱硅研讨最早见于上世纪40年代,由德国劳塔厂为了处理匈牙利、奥地利和前南斯拉夫的高硅铝土矿而提出的。将铝土矿在700~1000℃下焙烧,然后用10%的苛性碱溶液于90℃下溶出焙砂。焙烧最佳温度在900~1000℃之间,脱硅率最高可达80%,精矿的铝硅比由原矿的4.5进步到20,Al2O3丢失率在5%以下。存在的问题是溶出时的液固体积质量比过大,溶出时刻过长。
邬国栋等运用粉煤灰中SiO2和Al2O3不同矿藏相在相同温度下与碱反响速度的不同,研讨了低温分步溶出硅和铝,别离粉煤灰中的硅。实验最佳条件为:粉煤灰先经过950℃高温焙烧预处理,然后在2~3mol/L的碱溶液中溶出,液固体积质量比为50,溶出温度为120~130℃,溶出时刻为4~6h,成果氧化硅溶出量为29.23%,氧化铝溶出量为1.26%,溶出比为23.2。
张战军等依据高铝粉煤灰的化学与物相组成特色,确立了运用NaOH提取非晶态SiO2的工艺。当NaOH质量浓度为250g/L、灰碱质量比1∶0.5、反响温度95℃、反响时刻4h时,SiO2的提取率到达41.8%,铝硅质量比由1. 29进步到2.39。
张开元经过研讨指出:当粉煤灰与溶液的体积比为1/5,NaOH溶液质量浓度为160g/L、溶出温度100℃,恒温反响2h,预脱硅作用最好。
秦晋国在200710061662号专利中提出了一种对粉煤灰进行预脱硅进步铝硅比的办法。该办法是先运用酸浸、碱浸或焙烧的办法对粉煤灰进行活化处理,然后再以质量浓度大于400g/L的NaOH溶液于80~150℃下浸出,将其间的硅以硅酸钠方式溶出,使得碱浸渣中的铝硅比≥2。在200710065366.7专利中提出,在溶液质量浓度为150~300g/L,与粉煤灰的质量比为(0.3~0.8)∶1,反响温度为90~150℃,反响时刻为2~4h条件下,脱硅溶液中的SiO2的质量浓度为50~80g/L,铝硅质量比为40~50。
化学法预脱硅作用较好,能够很好地进步粉煤灰中的铝硅比,但也存在运用高浓度碱液、液固体积质量比大、物料流量大和苛性碱耗费高级许多晦气问题,并且化学脱硅脱除的对错晶态的SiO2,矿石中本来存在的α-SiO2无法脱除,因而这一办法没有完结工业运用。
三、生物法
用微生物分化硅酸盐和铝硅酸盐矿藏,可将铝硅酸盐矿藏分子损坏成为氧化铝和二氧化硅,并使二氧化硅转化为可溶物,而氧化铝不溶,二者得以别离。与其他脱硅办法比较,生物脱硅法具有显着的长处,是现在最具有远景的脱硅办法。用此办法能够得到较高工艺目标,并基本上对环境没有污染。
常用的微生物首要是异养菌。这些微生物需求有机物质作为碳和能量来历。代表性的微生物有环状芽孢杆菌、胶质芽孢杆菌、多黏芽孢杆菌及黑曲霉菌。经过紫外线照耀等办法可使这些细菌发作诱变,诱变体对矿藏的溶解能力会大大加强。这些细菌的特色是在它们在生长进程中需求硅。
前苏联针对哈萨克斯坦矿床的高岭石,提出了选用杆菌胶质类细菌对细泥和磁性产品进行浸出。在浸出温度28~30℃,液固体积质量比为5∶1,浸出时刻为9d条件下,脱硅率约62%,Al2O3收回率约99%。
Andreer P.L.用异养黏液芽孢杆菌处理含三水软铝石(37.4%)-一水软铝石(12%)-高岭石(16%)-石英(20.06%)型铝土矿,取得的精矿组成为三水软铝石(53%)-一水软铝石(17%)-高岭石(11.6%)-石英(12%)。
S.Grudeu用环状芽孢杆菌和黏液芽孢杆菌在35~37℃、pH5.6~6.5、拌和速度180~240r/min条件下,浸泡铝土矿7d,矿石的铝硅比由1.7增大到5.4。
S.Grudev用实验室驯化的环状芽孢杆菌处理石英-高岭石-三水软铝型铝土矿,精矿中Al2O3收回率高达93.3%。
Bandyopadhyay用黑曲霉菌的变株脱去了铝土矿中59.5%的铁和56. 2%的硅酸盐。
生物脱硅可在室温下完结,不需高温、高压条件;挑选性好,氧化铝丢失少;设备简略,费用低。可是,现在生物脱硅仍处在实验室和小型实验阶段,离工业出产还有较大间隔。首要原因是:1)细菌浸出速度慢,周期长,菌剂稳定性差,条件要求严苛,出产率低,难以构成规划;2)细菌是一种异养型生物,需求有机物作营养物质,可是现在没有找到一种廉价的培育基作为培育细菌的有机养料;3)在微生物挑选方面,现在还未能从遗传和变异上处理异养菌的除杂和退化等技能难题;4)浸出液假如处理不妥,或许会给环境带来污染。
四、结束语
流化床粉煤灰的焚烧温度比较低,煤中的高岭石等矿藏成分未被损坏,矿藏成分与铝土矿附近,因而铝土矿的预脱硅处理办法可学习来处理粉煤灰进行预脱硅。流化床粉煤灰,能够选用先焙烧处理,然后用碱溶或浮选工艺进行处理,对此,首要考虑焙烧改性条件,如焙烧温度、参加试剂品种和参加试剂量,还要考虑浮选药剂的品种和浮选条件等。
贵金属萃取的溶解工艺
2019-02-20 15:16:12
高含量金铂钯贵金属用加盐稀剂快速溶解,用无水乙醇赶硝过滤后用水调金属含量100G/L,用调至1.5MOL,用氧化剂调溶液为氧化性,再上机萃取,此刻DBC不共萃铂钯铱,S201不共萃铂铱,N235不共萃铱,萃取时工艺流通,在深圳江先生厂处试验两种方法(一起在老家也在试验,用DDO、绚烂绿,碘量法盯梢检测铂钯金铱的走向,电话报数据)萃取。
一是经溶解无水乙醇赶硝过滤、调含量、调酸后直接萃取,成果S201萃取钯慢(10分钟),部分钯难以萃取,并且有少数铂共萃。
二是加盐稀剂快速溶解,用无水乙醇赶硝后过滤,调含量、调酸后加定量氧化剂氧化10分钟,上机萃取,经屡次重复试验,金铂钯铱萃取别离十分完全,特别是S201萃取钯敏捷(3.5分钟),钯在萃残夜中无残留,铂不共萃,这已成为我萃取别离、精炼金铂钯造液准则。
锰硅合金生产节能措施
2018-12-10 09:42:47
3月28日消息:随着世界各国对能源消耗的关注,节能降耗已经成为锰硅合金行业的重要环节,也是企业生存的关键。 锰硅合金的生产有电炉法和高炉法两种,我国主要使用电炉法生产,降低电耗可以从以下方面入手。 1、提高炉料电阻 节约电能的根本思想是提高电弧电阻炉的有功功率。根据功率公式(P=I2R),提高R料,从而提高有功功率。 2、调整焦炭配入量和粒度级配 焦炭层过厚,电极上抬,熔池温度低,熔体从炉内排出不畅;焦炭层过薄,电极插入过深,易翻渣,恶化炉况,影响电耗。两种情况都会导致渣比增大,增加电耗。因此控制合适的焦炭厚度至关重要,通过调整粒度可以达到这一目的。 3、降低渣比 降低渣比可以减少热损失,提高锰回收率,有效地降低电耗。主要措施有提高Mn、Si的还原率和适当提高炉温。 4、合理渣型 炉渣成分决定着合适的冶炼温度、碱度、粘度、电性等因素,并影响元素在合金与炉渣中的分配。锰硅合金生产的理想炉渣成分为:MnO8%~10%,CaO12%~15%,MgO4%~5%,SiO232%~36%,Al2O334%~43%。 5、提高入炉含锰物料品位 对于锰硅合金冶炼,提高入炉锰品位,可以提高锰回收率,降低电耗。锰矿品位低,则渣量大,还原剂、熔剂消耗增多,导致电量增加。实验表明,入炉锰矿品位每降低1%,就将多消耗64kWh/t的电。 6、选取合理的冶炼周期 矿热炉冶炼锰硅合金的周期,是由炉内熔池反应区容积大小和渣中元素Mn、Si的还原程度决定的,实际生产中常根据炉内不发生“翻渣”现象为界。适当延长冶炼时间,从而达到锰硅合金矿热炉实施低渣比冶炼操作。由于入炉有功功率的提高,保证了炉内焦炭层反应区的高温条件,使Mn、Si的还原率大幅度提高,节省了电能。但冶炼时间不能过长,否则出铁温度过高将造成合金中锰的挥发损失,降低Mn的回收率。此外,MnO含量已接近还原平衡的“乏渣”,留在炉内,会使冶炼电耗增加。因而,根据具体的操作条件,通过实践决定合理的冶炼时间。 7、留渣法操作 留渣法冶炼铁合金是日本首先提出来的一项新型的铁合金工艺技术,特点是利用炉渣电阻热代替常规的电弧热,促使炉内反应区扩大,达到降低电耗,提高硅、锰回收率及产量并降低电耗的目的。留渣法生产的优点是:一、在渣层中能量转换率稳定;二、在出炉操作中放出的熔液温度稳定;三、扩大了反应区,气体分布均匀,热能利用率高;四、炉渣和合金分离较彻底。 (miki)
铝镍合金
2017-06-06 17:49:59
铝镍合金别称雷氏合金,具有活性较高的催化性能,干燥的铝镍合金在空气中能自燃,应保存在无水乙醇中。它是一种还原或加氢反应的催化剂,多用于有机合成中。中文名称: 铝镍合金 结构式:英文名称: Aluminium-nickel 别 名: Nickel-aluminium alloyCAS: 12635-29-9化学式: AlNi 安全信息:分子量: 85.67铝镍合金有毒吗?回答是肯定的。有!,铝合金高压锅当然有它的坏处,吃多了铝,容易得老年痴呆,影响孩子的大脑发育。所以大家最好用不锈钢的锅!特别是现在有很多的家庭还在使用铁丝球擦洗铝合金高压锅,这是特别危险的!在农村里还很流行用铅壶装酒。大家千万要注意,如果吃了以后先会肚子疼,去医院医生很可能看不出你的病因。其实这就是所谓的“铅中毒”。特别提示:使用铝镍合金锅炒菜确实对身体有害,应该换掉!
铝镍合金
2017-06-06 17:49:58
铝镍合金别称雷氏合金,具有活性较高的催化性能,干燥的铝镍合金在空气中能自燃,应保存在无水乙醇中。它是一种还原或加氢反应的催化剂,多用于有机合成中。中文名称: 铝镍合金 结构式:英文名称: Aluminium-nickel 别 名: Nickel-aluminium alloyCAS: 12635-29-9化学式: AlNi 安全信息:分子量: 85.67铝镍合金有毒吗?回答是肯定的。有!,铝合金高压锅当然有它的坏处,吃多了铝,容易得老年痴呆,影响孩子的大脑发育。所以大家最好用不锈钢的锅!特别是现在有很多的家庭还在使用铁丝球擦洗铝合金高压锅,这是特别危险的!在农村里还很流行用铅壶装酒。大家千万要注意,如果吃了以后先会肚子疼,去医院医生很可能看不出你的病因。其实这就是所谓的“铅中毒”。使用铝锅炒菜确实对身体有害,应该换掉!
锌焙砂在稀酸中的溶解
2019-02-21 15:27:24
氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。
(1)
(2)
求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。
关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导
Λi0∕(Ω-1·cm2·equ-1)离子扩散系数
D∕(cm2·s-1)离子搬迁率
u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3
几个边界条件为
在固液界面即r=rt时, Ci=Cis (3)
因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件
(4)
(5)
(6)
式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。
在溶液体相即r=∞, E=0 (7)
Ci=Cib (8)
体相浓度用质量平衡和体相的化学平衡求算
(9)
(10)
(11)
(12)
(13)
式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。
计量联系 (14)
硫酸根通量 (15)
数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。
假如半径rt的球形粒子含有Nmol的ZnO,则
(16)
式中,Mw为ZnO的分子量。
因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下
(17)
式中JZn-流离表面的锌的净通量;
JH-流向表面的酸的净通量。
由式(16)和式(17)得出
(18)
方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为
(19)
即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。
(20)
粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算
(21)
总的浸出率由下式断定
(22)
为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。
王水溶解金与还原反应
2019-02-21 10:13:28
金在通常情况下只能溶解于和碱金属溶液中,因而工业上发作的含金废液首要有含金废溶液和含金化废液两类。
1、含金废将含金固体废料溶于是最常用的将金转入溶液的办法。所得溶液酸度较大,常称为含金废,金在其间以+3价氧化态存在。从中收回金的根本原理是向这些游离状况或配位状况的金离子供给电子,使其转化为原子状况而得到金的单质。常用的向金离子供给电子的办法有两种:一是在废溶液中参加恰当的复原剂使金离子得到复原;二是经过电解办法向金离子供给电子,使金在阴极分出。
现在在工业上得到运用并可用于收回废中金的复原剂首要有硫酸亚铁、钠、生动过渡金属(如锌粉和铁粉等)、亚(NaHSO3)、草酸、和等。运用复原法收回金时有必要留意废的酸性和氧化性的强弱。通常情况下,废的酸性和氧化性很强,在参加复原剂之前有必要设法下降其酸性和氧化性。常用的办法是将含金废过滤除掉不溶性杂质,所得滤液置于瓷质或玻璃内衬的容器中加热煮沸,在此进程中以少数屡次的办法滴加必定量的,使废中的氮氧化物气体逸出。此操作俗称为赶硝。赶硝是否彻底的简略判别标准是从废中逸出的气体色彩有必要为无色。
硫酸亚铁是工业用处很广的廉价无机复原剂,它与废效果发作的氧化复原反响如下:
3FeSO4+HAuCl4HCI→FeCl3+Fe2(SO4)3+Au↓
将经过过滤和赶硝的含金废趁热抽人高位槽,在拌和下滴加到过量的饱满硫酸亚铁溶液中,硫酸亚铁溶液能够恰当加热。当取少数0.1mol/LHAuCl4溶液滴加到少数硫酸亚铁的反响混合物中无显着反响时,能够以为反响混合物现已没有复原性。中止滴加废,持续拌和2h后,静置沉降。用倾桁法别离堆积下来的黑色金粉,用水洗净后铸锭得到粗金。所得滤液会集起来,用锌粉进一步处理。
因硫酸亚铁的复原才干较小,用硫酸亚铁处理含金废时除贵金属以外的其他金属很难被它复原,因而即便处理含贱金属较多的含金废液,其复原产出的金的档次也可达98%以上。但此法效果缓慢,结尾不易判别而且金不易被彻底复原,因而需求锌粉进一步处理尾液。
钠也是一种工业上常用的廉价复原剂,许多冶炼厂商在焙烧含硫矿藏或其他物料时,为了下降烟尘中的二氧化硫含量,通常将除尘后的烟气导入溶液中,所得溶液中钠的含量较高,能够用此溶液直接作为处理含金废的复原剂以到达以废治废和综合运用的意图。将经过除尘和净化的含二氧化硫的气体直接通入含金废中能够到达相同的效果。钠复原含金废的反响方程式如下:
Na2SO3+2HCl→SO2+2NaCl+H2O
2SO2+2HAuCl4+6H2O→2Au↓+8HCl+3H2SO4
具体操作如下:将经过过滤和赶硝的含金废趁热抽入高位槽,在拌和下滴加到过量的饱满钠溶液中,复原时恰当加热溶液,有利于产出大颗粒黄色海绵金。参加少数聚乙烯醇(参加量约为0.3~30g/L)作凝聚剂以利于漂浮金粉沉降,充沛反响后静置。用倾析法别离堆积下来的黑色金粉,用水洗净后铸锭得到粗金。
锌粉是黄金精粹进程中常用的金属复原剂,其特点是复原容量大,置换金的速度快。缺陷是过量锌粉与置换所得金粉混在一同,有必要再用硝酸或将剩余的锌粉溶解掉才干得到较纯的金粉。将经过过滤和赶硝的含金废趁热抽入高位槽,调理溶液的pH=1~2,参加过量锌粉。充沛反响后离心别离,所得金锌混合物用去离子水重复清洗到没有氯离子中止。在拌和下用硝酸溶煮,所得金粉的色彩为正常的金黄色,聚会杰出,用水洗净后铸锭得到粗金。置换进程中操控pH=1~2的意图首要是为了避免锌盐水解,有利于产品澄清和过滤。置换产出的金属堆积物含有过量锌粉,可用硝酸或将其溶解。需求留意的是选用溶解时,堆积中不该含有硝酸根,除银、铅、外,其他贱金属都易被溶解。选用硝酸溶解时,硝酸简直能溶解夹杂在金粉中的一切普通金属杂质,但堆积中不该含氯离子,不然复原所得的金粉有或许再次被溶解掉。别的,还可选用硫酸来溶解锌及其他杂质,堆积金不易从头溶解,但钙、铅离子不能与堆积别离,产品易呈黑色。
对含金量很低且量大的废,赶硝处理时能源耗费太大,能够选用亚(NaHSO4)作为复原剂进行复原处理,用亚进行复原时不需求赶硝。具体操作是:将含金废过滤后,先用碱金属或碱土金属的氢氧化物(例如含质量25%~60%的NaOH或KOH)或碳酸盐的溶液调整含金废的pH值为2~4,并将其加热至50℃并坚持一段时间,参加少数硬脂酸丁酯作凝聚剂。在拌和下滴加NaHSO4饱满溶液堆积金。所得金粉经洗刷后能够熔铸成粗金,含量约为98%。
运用草酸、、抗坏血酸和等有机复原剂对含金废进行复原处理的最大优点是不会引进新的杂质,但本钱较高,从含金废中收回金粉时很少选用,在将电解金加工成特定粒度的金粉工业产品时用得较多。
各种复原剂收回金后的尾液中是否还含有金,即收回是否彻底,可选用以下办法进行判别:按尾液色彩判别,若尾液无色,则金已根本堆积提取彻底;用氯化亚锡酸性溶液查看,有金时因为生成胶体细粒金悬浮在溶液中,使溶液呈紫红色;不然阐明尾液中金已提取彻底。
2、含金化废液第二大类含金废液是含金化废液,首要包含电镀进程发作的镀金废液(一般酸性镀金废液含金4~12g/L,中等酸性镀金废液含金4g/L,碱性废液含金达20g/L)、化法提金发作的废水以及含金化产品(如化亚金钾等)出产进程中发作的废水。常用的含金化废水中金收回办法首要有电解法、置换法和吸附法等。依据含金化废水的品种和金含量的凹凸能够挑选单种办法处理,也能够采纳几种办法联合处理。
①电解法将含金化废水置于一敞开式电解槽中,以不锈钢作为阳极,纯金薄片作为阴极,操控液温为70~90℃,通人直流电进行电解,槽电压约5~6V。在直流电的效果下,金离子迁移到阴极并在阴极上堆积分出。当槽中镀液经过守时取样分析且金含量降至规则浓度以下时完毕电解,再换上新的废镀液持续电解提金。当阴极分出金堆集到必定数量后取出阴极,洗刷后铸成金锭。
电解法处理含金化废水除选用上述开槽电解外,还能够用闭槽电解进行处理。即选用一关闭的电解槽进行电解作业,溶液在体系中循环,操控槽电压为2.5V进行电解。当废镀液含金量低于规则浓度时中止电解,然后出槽、洗净、铸锭。电解尾液经吸收槽处理合格后,抛弃排放。闭槽电解的自动化程度较高,对环境比较友爱,但一次性设备投入较大。
②置换法含金化废水中的金通常以[Au(CN)2]-的方式存在。在含金化废水中参加恰当复原剂,即可将[Au(CN)2]-中的金复原出来。依据含金化废水的品种和含金量,复原剂能够选用无机复原剂(如锌粉、铁粉、硫酸亚铁等)或有机复原剂(如草酸、、抗坏血酸、甲醛等)。无机复原剂报价比有机复原剂低,但处理含金化废水今后,过量的无机复原剂有必要设法除掉。有机复原剂报价较高,但复原金合作物后的产品与金很简单别离。因为金在收回进程中首要得到粗金,后边提纯在所难免。因而,实际操作中一般选用无机复原剂(特别是锌粉和铁粉)进行复原,将金置换成黑金粉沉人槽底。锌粉复原的反响方程式如下:
2KAu(CN)2+Zn→K2Zn(CN)4+2Au↓
具体操作进程为:将含金化废水取样分析,断定其间的含金量。将废液置于塑料容器中,参加约1.5倍理论量的锌粉,拌和。为加快置换进程,含金废镀液应恰当稀释和酸化,操控pH=1~2。在酸化废液时易放出HCN气体,所以有关作业应在通风橱中进行。置换产品过滤后,浸入硫酸以去除剩余的锌粉,再经洗刷、烘干、浇铸即得粗金。滤液经过分析含金量和游离含量,当含金量和游离含量低于规则值时能够排放;不然应进一步进行处理。
③活性炭吸附法活性炭对金合作物具有较高的吸附才干,活性炭吸附的作业进程包含吸附、解吸、活性炭的返洗再生和从返洗液中提金等进程。
含金化废水经化验含金量后,置于塑料容器中。参加恰当粒度的活性炭,充沛拌和。将吸附混合物离心脱水,所得液体搜集后会集处理。将所得湿固体参加到由10%NaCN和1%NaOH组成的混合液中,加热至80℃,充沛拌和下进行解吸金。过滤或离心脱水,所得滤液即为含金返洗液,将活性炭参加到去离子水中,充沛拌和,脱水,重复三次。所得滤液并人含金返洗液中,活性炭经枯燥后能够从头运用。返洗液中金的含量现已大大提高。可用电解或复原的办法将返洗液中的金提取出来。
用活性炭处理含金化废水时,废液中[Au(CN)2]-被活性炭的吸附一般以为是物理吸附进程。活性炭孔隙度的巨细直接影响其活性的巨细,炭的活性愈强对金的吸附才干愈大。常用活性炭的粒度为10~20目和20~40目两种。活性炭对金吸附容量可达29.74g/kg,金的被吸附率达97%。南非专利以为,先用臭氧、空气或氧处理废化液,再用活性炭吸附可获得更好效果。此外,解吸剂可选用能溶于水的醇类及其水溶液,也可选用能溶于强碱的酮类及其水溶液。这类解吸剂的(体积百分数)组成为:H2O(0~60%),CH3OH或CH3CH2OH(40%~100%),NaOH(≥0.11g/L);或许CH3OH(75%~100%),水(0~25%),NaOH(20.1g/L)。
④离子变换法因为含金化废水中金以[Au(CN)2]阴离子的方式存在,因而能够选用恰当的阴离子交流树脂从含金废液中离子交流金,再用恰当的溶液将[Au(CN)2]一阴离子从树脂上冼提下来。将阴离子交流树脂装柱,先用去离子水试验柱的流速,调理适宜后将经过过滤的含金废液经过离子交流柱,守时检测流出液含金量。当流出液的含金量超出规则标准时中止通入含金化废水。用溶液或溶液重复洗提金,使树脂再生。洗提液含金量大大提高,用电解或复原的办法将洗提液中的金提取出来。
⑤溶剂萃取法其根本原理是运用含金化废水中的金合作物在某些有机溶剂中的溶解度大于在水相中的溶解度而将含金合作物萃取到有机相中进行富集,处理有机相得到粗金。试验标明,可用于萃取金的有机溶剂有许多,如、醚、二丁基卡必醇、甲基异丁基酮(MIBK)、磷酸三丁酯(TBP)、三正辛基氧化膦(TOPO)和三辛基甲基胺盐等都能够从含金溶液中萃取金。萃取作业时,含金废液的萃取道次一般操控在3~8次,如萃取剂挑选恰当,萃取收回率一般都能到达95%以上。
重法(CODCr)
概述
一、原理
在强酸性溶液中,必定量的重氧化水样中复原性物质,过量的重以试亚铁灵作指示剂、用硫酸亚铁铵溶液回滴。依据用量算出水样中复原性物质耗费的氧。
二、搅扰及其消除
酸性重氧化性很强,可氧化大部分有机物,参加硫酸银作催化剂时,直链脂肪族化合物可彻底被氧化,而芳香族有机物却不易被氧化,不被氧化,挥发性直链脂肪族化合物、等有机物存在于蒸气相,不能与氧化剂液体触摸,氧化不显着。氯离子能被重铬酸盐氧化,而且能与硫酸银效果发作堆积,影响测定成果,故在回流前向水样中参加硫酸,使成为络合物以消除搅扰。氯离子含量高于2000mg/L的样品应先作定量稀释、使含量下降至2000mg/L一下,再行测定。
三、访法的适用规模
用0.25mol/L浓度的重溶液可测定大于50mg/L的COD值。用0.25mol/L浓度的重溶液可测定5~50mg/L的COD值,但精确度较差。
仪器
1、回流设备:带250ml锥形瓶的全玻璃回流设备(如取样量在30ml以上,选用500ml锥形瓶的全玻璃回流设备)。
2、加热设备:电热板或变组电炉。
3、50ml酸式滴定剂。
试剂
1、重标准溶液(1/6=0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。
2、试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。
3、硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边拌和便缓慢参加20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重标准溶液标定。
标定办法:精确西艘10.00ml重标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢参加30ml浓硫酸,混匀。冷却后,参加三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的色彩由黄色经蓝绿色至红褐色及为结尾。
式中,c—硫酸亚铁铵标准溶液的浓度(mol/L);V—硫酸亚铁铵标准滴定溶液的用量(ml)。
4、硫酸-硫酸银溶液:与2500ml浓硫酸中参加25g硫酸银。放置1~2d,不时摇摆使其溶解(如无2500ml容器,可在500ml浓硫酸中参加5g硫酸银)。
5、硫酸:结晶或粉末。
精密度和精确度
六个试验室分析COD为150mg/L的邻笨二氢钾一致分发标准溶液,试验室内相对标准偏差为4.3%;试验室间相对标准偏差为5.3%。
留意事项
1、运用0.4g硫酸络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸,是坚持硫酸:氯离子=10∶1(W/W)。如呈现少数堆积,并不影响测定。
2、水样去用体积可在10.00~50.00mL规模之间,但试剂用量及浓度按相应调整,也可得到满足成果。
3、关于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。
4、水样加热回流后,溶液中重剩余量应为参加少数的1/5~4/5为宜。
5、用邻笨二氢钾标准溶液检测试剂的质量和操作技能时,因为每克邻笨二氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。
6、CODCr的测定成果应保存三位有用数字。
7、每次试验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时特别留意其浓度的改变。