您所在的位置: 上海有色 > 有色金属产品库 > 高硅铝铁合金相图

高硅铝铁合金相图

抱歉!您想要的信息未找到。

高硅铝铁合金相图专区

更多
抱歉!您想要的信息未找到。

高硅铝铁合金相图百科

更多

铝铜合金相图

2017-06-06 17:50:04

 

高硅铝合金焊接性现状

2019-01-10 09:44:15

在近年来,国内外研究者从制定、性能评定等方面对高硅铝合金做了大量研究,但对其焊接性的研究不多,很大程度上限制了硅铝合金的推广应用。随着科技的迅猛发展,研究解决高硅铝合金的焊接问题显得很有必要。高硅铝合金在航天、航空、汽车、空间技术等高科技领域具有广泛的应用,可以制造微电路封装壳体、基板及其盖板的热管器件、活塞、发动机气缸等耐磨部件。高硅铝合金具有广泛发展应用领域关键在于合金的优异特性,高硅铝具有热传导性能热膨胀系数低、机械性能良好、易于精密机加工等优点。但是由于铝和氧的亲和力非常强,易被氧化生成难熔物氧化膜。在材料的焊接中氧化膜严重影响焊缝的熔合形成。并且高硅铝中含有大量的硅,容易导致硅裂。因此高硅铝的高效、优质连接问题成为焊接领域的重点之一。    高硅铝的焊接性    在高硅铝的焊接过程中,容易出现夹杂、气孔、裂纹等缺陷,其中如何尽可能的避免氧化产生夹渣是重要研究方向。    氧化    高硅铝中的铝极易与氧亲和,生成致密的三氧化二铝薄膜,结实致密,其熔点高达2050℃,远远大于高硅铝合金的熔点,在焊接过程中,致密的氧化膜很难去除,严重影响着金属间的结合且容易造成夹渣。为了防止夹渣的出现可以采取一些措施,在焊接前清除表面的氧化膜,可以用机械清理法,也可采取化学清理法。机械清理法主要是用打磨机、锉刀、刮刀、钢丝刷打磨的方法清理氧化膜;化学清理法不仅可以清理氧化膜,还可以清理表面油污。    焊接气孔    产生气孔的气体有H2/CO/N2等。其中H是气孔的主要来源。致密的氧化膜容易吸附水分,焊接时,氢在液态铝中的溶解度为0.7ml/100g,而在660℃凝固状态时,氢的溶解度为0.04ml/100g,使原来溶于液态铝中的氢大量析出,形成气泡,又高硅铝合金本身的导热性能非常好,熔池结晶过程很快,因此冶金反应产生的气体来不及逸出熔池的表面,残留在焊缝中形成气孔。保护气体不纯及空气侵入焊接区等,也能使焊缝产生内部气体和表面气孔。而且对于粉末冶金制备的硅铝合金,在熔化焊温度下闭塞气体的含量很高,极易造成气孔缺陷。由于高硅铝焊接气孔的产生与该合金表面的氧化膜密切相关,因此要防止气孔的产生,首先焊接区域合金表面的氧化膜在焊接前必须彻底去除,另外焊接区域在焊接前容易被污染,因此焊接前注意防止污染,特别是焊接端面区域应保持洁净。要获得优质的焊接接头,还应采用合适的焊接方法、规范和保护措施进行焊接,并严格控制操作环境的湿度。    焊接裂纹    高硅铝焊接过程中,焊缝结晶凝固金属从液态金属到固态金属的过程中,熔池凝固收缩产生拉应力,在焊接凝固的初期,温度比较高,金属的流动性好,金属液体可以在已经凝固的晶粒之间自由的流动,可以填充拉应力造成的间隙,不会形成裂纹,在结晶的过程中,较先结晶的晶粒致使焊接热影响区开裂,但有研究表明,焊接熔池越小,产生裂纹的可能性越小。    另外高硅铝的合金中硅含量高,受热硅相变粗大,对合金的韧性和塑性产生不利影响,易产生应力变形和裂纹。

高硅铝的焊接方法

2018-12-19 17:39:50

能够连接高硅铝的焊接方法有:熔化焊、钎焊和固相焊接三大类。熔化焊接的接头性能差,一般采用快速热循环和低热输入的高能量密度焊,包括电子束焊和激光焊,有助于减少熔化焊所引发的缺陷,因此近年来在这方面开展的研究较多。钎焊方法是在母材金属不熔化情况下,通过钎料熔化后填满间隙,并与母材金属之间发生溶解、扩散等冶金作用的金属焊接方法。固态焊接技术是指对焊件表面清理后,施加静态或动态压力,加热或不加热,在母材不熔化情况下使两种材料发生固相结合的焊接方法。摩擦焊、扩散焊、爆炸焊、超声波焊等均属此类。高硅铝合金可用的压焊方法有:摩擦焊、真空扩散焊等。  激光焊接  已有研究表明,高硅铝材料需要采用功率较低的熔焊方法连接,由于合金中的Si元素含量较高,焊缝金属组织中会形成针状共晶硅和粗大板状多角形的初生硅,严重割裂基体;近缝区的金属易产生过热、晶粒长大的现象,导致焊接力学性能显著降低而失去使用价值。而激光焊接具有功率密度大、焊缝深宽比例大、热影响区小、工件收缩和变形较小、焊接速度快等优点,这种焊接方法适合高硅铝的焊接。张伟华等人研究了ZL109硅铝合金CO2激光焊接接头的组织和性能,获得了焊接组织致密、晶粒细小的接头,焊接的热输入对接头力学性能有显著的影响,热输入增大,接头抗拉强度和断后伸长率均先增加后降低,当热输入为44J/mm抗拉强度和断后伸长率达到最大值,分别为121.2MPa和4.3%。  电子束焊接  电子束焊接时利用高电场产生的高速电子,经聚焦后形成电子流,撞击被焊金属的焊接部位,将其动力转化为热能,使被焊金属熔合的一种焊接方法。电子束流具有能量密度高、穿透能力强、焊缝深宽比大、焊接速度快、输入能量较小,因此热影响区小、焊接变形小。所以,电子束焊接质量好,焊缝力学性能高。石磊等人将AlSi12CuMgNi铝合金挤压铸造的活塞顶圈和锻造的活塞裙进行真空电子束焊接,对优化工艺条件下焊接接头的微观组织和力学性能进行了研究。结果表明,接头成形良好,没有明显的热影响区,焊缝狭窄;焊缝区域主要由细小的α-Al相、α+Si共晶体、初晶硅以及Mg2Si等强化相组成;焊缝中心组织为细小的等轴晶和树枝晶;熔合区组织主要为柱状晶。接头强度不低于挤压铸造母材,焊缝硬度高于母材;焊接接头的拉伸断口断面上分布大量撕裂棱和解离面,呈脆性断裂。  钎焊  钎焊和熔焊方法不同,常规钎焊是采用(或过程中自动生成)比母材熔化温度低的钎料,操作温度采取低于母材固相线而高于钎料液相线的一种焊接技术。钎焊时工件常被整体加热或者钎缝周围大面积均匀加热,因此工件的相对变形量以及焊接接头的残余应力都比熔焊小得多。在现在制造业中高硅铝材料一般都用在航空航天机械制造业中的高精密器件。对于这些器件采用钎焊方法焊接,对工件的影响也是最小的。由于高硅铝合金中含有硬质硅相,钎料对该系列材料的润湿性能较差,用普通的软钎焊方法难以实现有效连接,侯玲等人在进行高硅铝钎焊试验中采用了在65Si35A1合金基体上进行先化学预镀Ni,再分别镀Ni-Cu-P、Au和Cu层的方法,有效地改善了它的软钎焊性能。采用Sn-Pb、Sn-Ag-Cu、Sn-In、Sn-Bi几种软钎料对不同镀层的65Si35Al合金试样进行炉中软钎焊试验分析,内容包括利用金相显微镜、带有能谱分析(EDS)功能的扫描电子显微镜等测试手段,对焊接接头的微观组织结构及形貌、物相成分等进行检测,探讨了钎焊工艺参数对65Si35Al合金的钎焊接头质量的影响,分析了接头产生宏观缺陷和微观缺陷的原因以及钎料对不同镀层润湿性能的差别。  摩擦焊  摩擦焊是利用工件端面相互运动、相互摩擦所产生的热,使端部达到热塑性状态,然后迅速顶锻,完成焊接的一种方法。这种焊接方法的研究时间并不长,是1991年提出的工艺,但是也得到了很快的发展。N.ARODRIRIGUEZ等人研究了A319和A413铝硅铸造合金的摩擦焊接。实验结果表明在焊接焊缝区中粒子间距降低,相应的硬度也得到了提高。季亚娟等人研究了ZL114A铝合金在不同参数的条件下搅拌摩擦焊接头的硬度、组织及力学性能。实验结果:焊接中心区域的组织是细小的等轴晶。硅粒子在焊接过程中得到了细化,也均匀的布满于整个焊缝区,焊缝的晶粒细小、均匀而致密,未观察到气孔裂纹等缺陷。  扩散焊接  扩散焊接是借助于高温下相互接触着的材料之间有局部的塑性变形,表面间的紧贴和表面之间的互扩散而产生金属键的结合,从而获得一定形式的整体接头。原子间的相互扩散是实现扩散连接的基础,扩散焊需要采用较大的压力,配合面精度要求高,对于复杂构件很难均匀加压,甚至还需昂贵和复杂的夹具,因此,扩散焊的要求比较高端。扩散焊可以分为异种材料扩散焊、同种材料扩散焊、加中间层扩散焊、超塑性成形扩散焊、等静压扩散焊、过渡液相扩散焊(TLP)等,其中过渡液相扩散焊(TLP)结合了钎焊和固相扩散焊二者优点形成了新的连接方法,其原理是将与基体材料相匹配的中间层合金置于连接面,国内外学者开始了对这种方法深入的研究。国内对TLP的研究尚处于起步阶段,主要是针对一些异种难焊金属的焊接工艺。与国内所作的研究相比,国外的研究方向要广一点,不仅涉及了工艺的研究,更多的是对TLP焊接的模拟,对TLP工艺实现的一些关键因素进行了重点研究。目前国内外对TLP的研究主要有以下几个方面:山东电力研究院工程师王学刚等采用自行研制的Fe—Ni—Si—B系非晶金属箔带作为中间层材料和TLP工艺,在开放式气体保护环境下焊接电站常用钢管,可获得连续均匀的焊缝组织和优于手工熔化焊的力学性能。工艺参数中包括中间层材料、加热温度、保温时间、压力及对焊接端面要求。刘黎明、牛济泰等人采用真空扩散焊焊接铝基复合材料SiCw/606Al,通过系列试验研究,结果表明:该种材料扩散焊时,焊接温度是影响接头强度的主要工艺参数,当焊接温度介于基体铝合金液-固两相温度区间时,结合面上出现了液态基体金属,可获得较高的接头强度。国内外有不少研究人员从事扩散焊接的研究,但对硅铝合金扩散焊研究并不多,在这方面研究前景和探索空间比较长远。  高硅铝合金在航天、航空、汽车、空间技术等领域发挥着重要的作用,对高硅铝合金的研究越来越深入,在高硅铝合金发展与应用中,与之相关的焊接方法、焊接技术投入更多研究也是一大趋势。这些领域的应用对高硅铝的焊接接头性能要求非常高,再加上高硅铝材料含硅高、易氧化的特性,这对高硅铝焊接技术、焊接方法要求也非常高,一般的熔焊和钎焊焊接出来的接头在有些应用上达不到焊件的焊接要求,采用更先进的焊接方法——扩散焊是硅铝合金焊接研究的趋势。

高硅铝合金快速凝固的成分和性能

2018-12-27 16:25:57

合金成份状态凝固工艺σb/MPaσ0.2/Mpaδ/%a/μm.(m.k)-1Al-12Si-1.1Ni热挤离心雾化33325313 Al-12Si-7.5Fe热挤气体雾化3252608.5 Al-20Si-7.5Fe热挤气体雾化3802602 Al-25Si-3.5Cu-0.5Mg热挤多级雾化376  17.4x10-6Al-20Si-5Fe-1.9Ni热挤气体雾化414 1 Al-17Si-6Fe-4.5Cu-0.5Mg热挤喷射沉积550460117.0x10-6Al-20Si-3Cu-1Mg-0.5Fe热挤+T6气体雾化535   Al-25Si-2.5Cu-1Mg-0.5Mn锻造气体雾化490 1.216.0x10-6

喷射成形高硅铝合金产品开拓创新

2019-01-14 13:50:25

国内材料学科研究十余年的新型电子封装材料--喷射成形高硅铝合金,现已走出实验室,实现产业化。率先迈出这一步是位于重要镇江经济技术开发区的江苏豪然喷射成形合金有限公司。    高硅铝合金材料在国内实现量产,标志着国外长期以来对此类合金的技术封锁和出口限制已被打破。这也是该公司继国内实现喷射成形高性能铝合金产业化后的又一突破。    该公司董事长张豪博士及其技术团队拥有该合金材料制备工艺、技术的自主知识产权;投入生产的喷射成形产业化装备及其自动化控制系统,也由该技术团队自主研发制造,具有自主核心技术,填补了国内此类装备研制的空白。该公司的铝合金喷射成形产业化装备,已被江苏省经信委认定为全省首批首台套重大装备及关键部件。    喷射成形硅铝合金电子封装材料具有与芯片相匹配的热膨胀系数、高热传导率、低密度和高刚度的特性,主要应用领域为高端电子和精密光学器件等行业。该公司现已投产的装备可以生产含硅量27-70%、Φ300mm×1200mm的硅铝合金圆锭。以含硅量50%的合金材料与钢对比,减重2/3以上,导热性率提高两倍,热膨胀系数则相同。该合金材料已经某电子研究所使用,材料的膨胀系数、热导率、强度、气密性及密度等性能指标达到或超过国际同类产品水平,并验证了该材料的机加工、焊接、表面处理等工艺性能,可满足实际应用的需要。    运用喷射成形技术制备金属材料,在国外已有30年以上的历史,但长期以来此项技术及产品被封锁、控制。在中南大学获得材料学博士学位的张豪,投身于该技术的研究已有近20年,已经掌握了以喷射成形技术生产高性能铝合金、铝硅合金电子封装材料、高速工具钢三类新材料的核心技术和自主知识产权。该公司还制定了国内首部喷射成形铝合金企业标准,并承担着制定国家首部喷射成形铝合金材料行业标准的任务。

硅铝线

2017-06-06 17:50:05

硅铝线,是一种同时使用硅和铝制作的一种铝线。硅guī(台湾、香港称矽xī)是一种化学元素,它的化学符号是Si,旧称矽。原子序数14,相对原子质量28.09,有无定形硅和晶体硅两种同素异形体,属于元素周期表上IVA族的类 金属 元素。硅也是极为常见的一种元素,然而它极少以单质的形式在自然界出现,而是以复杂的硅酸盐或二氧化硅的形式,广泛存在于岩石、砂砾、尘土之中。硅在宇宙中的储量排在第八位。在地壳中,它是第二丰富的元素,构成地壳总质量的25.7%,仅次于第一位的氧(49.4%)。1787年,拉瓦锡首次发现硅存在于岩石中。然而在1800年,戴维将其错认为一种化合物。1811年,盖-吕萨克和Thénard可能已经通过将单质钾和四氟化硅混合加热的方法制备了不纯的无定形硅。1823年,硅首次作为一种元素被贝采利乌斯发现,并于一年后提炼出了无定形硅,其方法与盖-吕萨克使用的方法大致相同。他随后还用反复清洗的方法将单质硅提纯。铝以化合态的形式存在于各种岩石或矿石里,如长石、云母、高岭石、铝土矿、明矾时,等等。有铝的氧化物与冰晶石(3NaF·AlF?)共熔电解制得。1800年意大利物理学家伏特创建电池后,1808~1810年间英国化学家戴维和瑞典化学家贝齐里乌斯都曾试图利用电流从铝钒土中分离出铝,但都没有成功。贝齐里乌斯却给这个未能取得的 金属 起了一个名字alumien。这是从拉丁文alumen来。该名词在中世纪的欧洲是对具有收敛性矾的总称,是指染棉织品时的媒染剂。铝后来的拉丁名称aluminium和元素符号Al正是由此而来。想要了解更多硅铝线的相关资讯,请浏览上海 有色 网( www.smm.cn )铝频道。

高硅铝土矿的选矿技术

2019-02-12 10:07:54

一、浮选法脱硅     浮选法脱除硅是现在国内外进步铝土矿质量的有用办法之一,也是用得较多的办法。很多的研讨工作标明:浮选铝矿藏的有用捕收剂有脂肪酸和磺酸盐类;调整剂有六偏磷酸钠、丹宁酸、焦磷酸钠、苏打、碳酸钠等。反浮选以胺类捕收剂作用较好;在矿浆pH=7~8时,用阳离子胺类捕收剂可有用地选出鲕绿泥石等硅酸盐矿藏,一起六偏磷酸钠有助于矿浆的涣散。     我国山东、山西、河南等地高岭石-一水硬铝石铝土矿的实验研讨标明:当矿石磨至-200目占97%(或-300目占90%),以碳酸钠和为调整剂,六偏磷酸钠为抑制剂,用氧化白腊皂和塔尔油(或癸二酸下脚料的脂肪酸)为捕收剂,浮选脱硅作用较好,其浮选半工业实验成果见表1,可见用惯例浮选法能使铝矿石的铝硅比由5左右进步到8以上。 表1  我国各矿区铝土矿半工业浮选成果产品名称含Al2O3/%含SiO2/%精矿Al2O3 回收率/%铝硅比原矿精矿尾矿原矿精矿尾矿原矿精矿山西孝义 河南小关 广西平果 黔中铝矿66.04 64.27 52.33 66.8076.25 71.34 56.13 70.4955.96 50.23 34.40 55.8013.07 13.97 9.06 12.237.85 7.73 6.13 8.7123.17 26.35 22.81 23.1071.12 73.81 88.50 79.615.1 4.6 5.78 5.478.41 9.23 9.13 8.09     此外,对山东潭水和辽宁小市等低铝硅比矿石(铝硅比为2~2.6),小型实验成果也证明,精矿铝硅比可进步到3.5~4.0,Al2O3的回收率可达50%~70%,这样就使这睦本来不能运用的低质铝土矿,可作为烧结法炼铝质料。     二、絮凝脱硅     关于细粒嵌布的一水铝石型铝土矿,含泥较多时可用选择性絮凝法脱硅。对该种矿石首要将其细磨至-5μm占30%~40%,然后增加调整剂苏打和苛性钠、涣散剂六偏磷酸钠,再运用聚胺聚合物进行选择性絮凝,使悬浮物和沉淀物别离,此项技能的关键是选用高效的选择性絮凝剂。     三、细菌浸出脱硅     因为铝土矿中矿藏细微,使机械富集遭到必定约束,因而许多学者以为细菌选矿是最有出路的办法之一。该项工艺运用食硅细菌损坏铝代硅酸的结构,如可将一个高岭土分子损坏成为氧化铝和二氧化硅,使SiO2转化为可溶物,从而使氧化铝不溶物得以别离。此法对处理胶状极细粒铝土矿特别合适。     国内外对铝土太矿细菌浸出脱硅都做了很多研讨工作,取得了必定开展。如国外某矿原矿属三水铝土矿,含Al2O343.6%、SiO213.8%、TiO222%、Fe2O39.1%。原矿磨至-0.074mm。进行分级脱泥,+0.3mm粒级进行磁选,非磁性产品为铝精矿,细泥和磁性产品进行细磨浸出,浸出温度30℃,液固比为1:5,浸出时刻9d,浸液用沸石吸附氧化铝,再选使铝硅别离,其半工业实验成果见表1。 表1  细菌选矿半工业实验成果产品名称产率/%档次/%回收率/%铝硅比Al2O3SiO2Al2O3SiO2非磁性产品(精矿) 固体沉淀物 铝土矿总精矿 含铝溶液 硅溶液 原矿26.6 51.3 77.9 22.1 - 100.048.3 49.3 49.0 - - 43.66.4 7.0 6.8 - - 13.829.5 58.0 87.5 12.3 0.20 100.012.2 26.0 38.2 2.1 59.7 100.07.4 7.0 7.2 - - 3.2     四、化学法脱硅     对细粒级嵌布的难选铝土矿或许高岭石以微晶状的细微合体与铝矿藏严密共生,用惯例的选矿办法难以选别,可选用化学法处理。现在开展化学法脱硅主要是预先焙烧(或未经焙烧)-浸出以脱去硅、铁,其工艺包含预焙烧、溶浸脱硅、固液别离等工序。     美国用该法可从铝硅比为0.76~0.86的含铝质猜中取得4.4~6.85合适于烧结法处理的产品:原矿铝硅比为2时,可进步到16.6~27.5。澳大利亚该法,将原矿在1000℃条件下焙烧60min,然后用10%的NaOH溶液浸出2h,可使77%的SiO2脱除,而铝的回收率可达96%~98%,铝硅比可从2.4进步到8.9~9.8。前苏联在处理高硅三水铝石矿时不经焙烧,直接以200~237g/L Na2Ok的铝酸钠碱溶液浸出,液固比7~10,95℃下浸出4~6h,原矿铝硅比4.39,脱硅精矿铝硅比可达7~8。     我国山东铝厂,对山西含Fe2O34%、铝硅比4~5的铝土矿,经(1000±100)℃焙烧,以含NaCO3的NaOH溶液,在3kg/cm2压力下浸出15min,可使精矿铝硅比达12~13。精矿拜耳法溶出,增加过量的石灰,由惯例的4%~5%过量至15%~20%;再用210~300g/L Na2Ok的循环碱液,在60~32kg/cm2下压煮浸出,Al2O3溶出率为87.5%,化学碱耗为16~38kg/t,Al2O3脱硅功率为57%~62%。     以上介绍了高硅铝土矿脱硅的几种办法,而在实践出产过程中,常常是这几种办法的联合流程,其脱硅作用比独自选用任何一种都好。

铜铁合金

2017-06-06 17:50:00

铜铁合金(SB02)是少量加入稀土可以细化铜铁合金,铜和铁的融化温度相差不大,都在1200度左右,它们完全可以相容。低合金化铜合金具有高导电性的特性。它们没有青铜的弹性高,但是与纯铜相比,其硬度要大得多。在过去十年里,SB02(C19400)材料凭借于它的高导电性和合理的价格,对于引线框架的重要性日益增强,同时,也在世界范围内成为了引线框架应用中最常用的铜合金材料。元件的小型化和高密度的包装要求,使得高导电性材料变得越来越重要。因此,有时也被应用于汽车电器中特殊的电气连接件、中央保险和接口盒。 

几种快速凝固高硅铝合金的成分和性能

2019-01-02 14:54:40

合金成份状态凝固工艺σb/MPaσ0.2/Mpaδ/%a/μm.(m.k)-1Al-12Si-1.1Ni热挤离心雾化33325313 Al-12Si-7.5Fe热挤气体雾化3252608.5 Al-20Si-7.5Fe热挤气体雾化3802602 Al-25Si-3.5Cu-0.5Mg热挤多级雾化376  17.4x10-6Al-20Si-5Fe-1.9Ni热挤气体雾化414 1 Al-17Si-6Fe-4.5Cu-0.5Mg热挤喷射沉积550460117.0x10-6Al-20Si-3Cu-1Mg-0.5Fe热挤+T6气体雾化535   Al-25Si-2.5Cu-1Mg-0.5Mn锻造气体雾化490 1.216.0x10-6

硅铁合金

2017-06-06 17:50:00

硅铁合金就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂。硅铁牌号和化学成份  牌号 化学成分   Si Al Ca Mn Cr P S C   范围 不大于   FeSi75AI1.0-b 72.0-80.0 1 1 0.5 0.5 0.04 0.02 0.2   FeSi75AI1.5-b 72.0-80.0 1.5 1 0.5 0.5 0.04 0.02 0.2硅铁合金应用硅铁在钢工业、铸造工业及其他工业生产中被广泛应用。   硅铁是炼钢工业中必不可少的脱氧剂。炬钢中,硅铁用于沉淀脱氧和扩散脱氧。砖坯铁还作为合金剂用于炼钢中。钢中添加一定数量的硅,能显著提高钢的强度、硬度和弹性,提高钢的磁导率,降低变压器钢的磁滞损耗。一般钢中含硅0.15%-0.35%,结构钢中含硅0.40%~1.75%,工具钢中含硅0.30%~1.80%,弹簧钢中含硅0.40%~2.80%,不锈耐酸钢中含硅3.40%~4.00%,耐热钢中含硅1.00%~3.00%,硅钢中含硅2%~3%或更高。高硅硅铁或硅质合金在铁合金工业中用作生产低碳铁合金的还原剂。硅铁加入铸铁中可作球墨铸铁的孕育剂,且能阻止碳化物形成,促进石墨的析出和球化,改善铸铁性能。   此外,硅铁粉在选矿工业中可作悬浮相使用,在焊条制造业中作焊条的涂料;高硅硅铁在电气工业中可用制备半导体纯硅,在化学工业中可用于制造硅酮等。   在炼钢工业中,每生产一吨钢大约消耗3~5kg75%硅铁。   熔点:75SiFe为1300℃硅铁合金物理状态:硅铁浇注厚度,FeSi75系列各牌号硅铁锭不得超过100毫米;FeSi65锭不得超过80毫米。硅的偏析不大于4%。大粒度:50-350mm,中粒度:20-200mm,小粒度:10~100mm,最小粒度:10-50mm,其中小粒度占90%以上。