您所在的位置: 上海有色 > 有色金属产品库 > 铝铜铁合金热处理工艺

铝铜铁合金热处理工艺

抱歉!您想要的信息未找到。

铝铜铁合金热处理工艺专区

更多
抱歉!您想要的信息未找到。

铝铜铁合金热处理工艺百科

更多

铝合金轴套的热处理工艺详解

2019-01-15 09:49:09

轴套的热处理工艺:    轴套是齿轮泵的主要零件之一,装在高速运转的齿轮两端起轴承支撑作用。它必须有足够的强度和良好的耐磨性。为了保证零件的性能要求,我厂采用非标准铝锡合金,Cu的作用是强化基体。Sn可形成较软的低熔点Al-Sn共晶体,增加耐磨性。原热处理工艺为515℃固溶6h水冷,180℃时效8h空冷。这种工艺存在两个问题:    (1)Al-Sn共晶体过烧加入锡形成含锡为99.5%的Al-Sn共晶体,其熔点为229℃。当工件加热到515℃时,Al-Sn共晶体过烧,淬火冷却时形成复熔球团。在形成复熔球团过程中,一方面晶界氧化,使晶粒强度下降,另一方面又产生了许多显微空隙,使晶粒界面能增加,金属的强度降低,在使用过程中易过早失效。    (2)工艺生产时间长,达16h之多,生产效率低,能耗大。    由金相观察和力学性能试验数据可以看出,250℃×7h处理工艺比较理想。Al-Sn共晶体呈断网状沿晶界分布,一方面Al-Sn共晶体分布比较均匀,保证有良好的耐磨性,另一方面Al-Sn共晶体没有分割基体,使合金有较好的塑性和韧性。采用250℃×7h处理工艺可以得到较高硬度,是因为该合金含Cu量较少,金属模冷却速度快,在铸造冷却过程中,已保证Cu熔入固溶体,起到了淬火作用。通过自然时效提高了硬度,也证明了这一点。250℃×7h空冷工艺比515℃×6h水冷+180℃×8h空冷工艺的抗拉强度提高47%。250℃×7h空冷工艺温度稍高于Al-Sn共晶体的熔点,是为了在不使共晶体过烧的前提下,通过较短的保温时间得到Al-Sn共晶体的断网状分布。在工艺试验的基础上进行了小批量(400件)试生产,经硬度、金相检查和试验台做产品出厂试验,均全部合格。该工艺于1996年正式投产至今,已生产轴套几十万只,全部合格。工效提高1.3倍,一年可节约资金约7万元,节电超过8万kW.h。

铝青铜热处理工艺实验

2019-05-30 19:31:05

 铝青铜热处理技术实验     铝青铜合金材料的硬度性能与许多要素有关,像浇注温度、冷却速度、净化程度、热处理技术等,其间热处理技术参数的正确挑选与匹配是进步合金材料硬度的首要途径之一. 铝青铜的强化首要是经过固溶、沉积、弥散等办法进行的,热处理的固溶、时效的温度和时刻等要素是影响合金的相变及相散布的首要要素. 假如经过实验来逐个确认一切技术参数的最佳匹配值,既浪费了很多的人力物力,一起也无法找出归纳可信的实验定论. 因而选用正交实验,有方案、合理地在正交表上组织较少的实验次数,较短的实验周期,敏捷找出影响成果目标的首要要素,从而找到较优技术条件 。

铸造铝合金热处理工艺知识介绍

2018-06-20 14:27:14

铸造铝合金热处理是指选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间,再以一定得速度冷却,改变其合金的组织结构。热处理过后的铝合金可以提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。那铸造铸造铝合金是怎样进行热处理的?主要的热处理方法有哪些?常用的铸造铝合金热处理方法有以下几种,主要是加热的温度、保温时间和冷却时间的不同:①某些湿砂型和金属型铸造的工件,由于结晶速度比较快,固溶体呈一定过饱和状态,可直接加热到150~200℃人工时效,保温3~24h。该热处理方式可以改善工件的切削加工性能,降低工件加工后的表面粗糙度(代号T1)。②铸造或切削加工铝合金后,将其加热到290℃,保温2~4h,该热处理方式可以消除铸造内应力或切削加工产生的内应力和切削加工产生的表面加工硬化,提高工件的尺寸稳定性及材料的塑性(代号T2)。③铸造铝合金加热到500~535℃,保温2~15h,并在20~100℃水或油中淬冷,然后进行自然时效。该热处理方式可以提高合金的强度、塑性及耐腐蚀性能。可用于在腐蚀作用的环境中工作的零件(代号T4)。④固溶热处理+低温或短时(3~5h)人工时效,以便使材料具有较高的强度和塑性(代号T5)。⑤固溶热处理后在150~180℃保温5~18h,然后进行人工时效,使材料强度进一步提高,但塑性有所降低(代号T6)。⑥固溶热处理后加热至230~250℃保温2~10h,目的是在材料强度能达到一定水平的前提下,使合金具有稳定的组织,使工件有较高的尺寸稳定性。多用于在较高温度下工作的零件(代号T7)。⑦固溶热处理后,加热至290~330℃保温3~5h,使工件获得更高的尺寸稳定性,并使合金具有较高的塑性(代号T8)。以上几位常见的几种热处理的方式,但不同的 铝合金 的热处理方法也不一样,现代铸造铝合金按主要加入的元素分的铝硅系、铝铜系、铝镁系及铝锌系这4个系列的热处理都不太一样。根据加入的合金的含量高低,热处理方式也不相同。下面再以不同合金的形式来解释其合金的热处理。1.在以硅为主加合金元素的铸造铝合金合金ZL102,采用固溶热处理+时效处理强化的效果很小,一般不进行热处理,或只进行T2处理。添加Mg、Cu、Mn等合金元素的Al-Si合金可时效强化,常进行T5、T6处理。其中Al-Si-Mg-Mn (ZL104)中的共晶体熔点很低,固溶热处理加热温度须控制在530℃以下。淬火冷却后应立即进行人工时效。2.在以铜为主加元素的二元铸造铝合金铜含量较低(4%~5%Cu)的合金ZL203可进行T4和T6处理;铜含量较高的ZL202合金(9%~11%Cu)塑性较差,一般只进行T2处理;Al-Cu-Mn三元合金ZL201可进行T4、T5及T7处理。固溶热处理应采用分段加热,先加热至比正常固溶热处理稍低的温度保温,使低熔点共晶体中的化合物溶解,然后再加热至正常固溶热处理温度,使过剩相进一步充分溶解。3.以镁为主加元素的 铸造铝合金ZL301(镁含量约10 %Mg),可采用T4处理。固溶热处理的加热温度为(400±5)℃,保温10~20h,淬火后自然时效。Al-Mg合金铸件应避免在硝盐浴中加热,以免发生爆炸。Al-Zn铸造合金铸件铸造时已产生时效强化效应,可直接进行T8处理,以充分消除铸造内应力,稳定工件尺寸。

铝金属的化学热处理工艺

2019-03-01 10:04:59

热处理工艺一般包含加热、保温、冷却三个进程,有时只要加热和冷却两个进程。这些进程相互联接,不行连续。加热是热处理的重要工序之一。金属热处理的加热办法许多,较早是选用木炭和煤作为热源,进而运用液体和气体燃料。电的运用使加热易于操控,且无环境污染。运用这些热源能够直接加热,也能够通过熔融的盐或金属,以致起浮粒子进行直接加热。    金属加热时,工件暴露在空气中,常常发作氧化、脱碳(即钢铁零件表面碳含量下降),这关于热处理后零件的表面功能有很晦气的影响。因而金属一般应在可控气氛或维护气氛中、熔融盐中和真空中加热,也可用涂料或包装办法进行维护加热。    加热温度是热处理工艺的重要工艺参数之一,挑选和操控加热温度,是确保热处理质量的首要问题。加热温度随被处理的金属材料和热处理的意图不同而异,但一般都是加热到相变温度以上,以取得高温安排。别的改动需求必定的时刻,因而当金属工件表面到达要求的加热温度时,还须在此温度坚持必定时刻,使表里温度共同,使显微安排改动彻底,这段时刻称为保温时刻。选用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时刻,而化学热处理的保温时刻往往较长。    冷却也是热处理工艺进程中不行短少的过程,冷却办法因工艺不同而不同,首要是操控冷却速度。一般退火的冷却速度较慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就能够用正火相同的冷却速度进行淬硬。    金属热处理工艺大体可分为全体热处理、表面热处理和化学热处理三大类。依据加热介质、加热温度和冷却办法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属选用不同的热处理工艺,可取得不同的安排,然后具有不同的功能。钢铁是工业上运用较广的金属,并且钢铁显微安排也较为杂乱,因而钢铁热处理工艺品种繁复。    全体热处理是对工件全体加热,然后以恰当的速度冷却,以改动其全体力学功能的金属热处理工艺。钢铁全体热处理大致有退火、正火、淬火和回火四种根本工艺。    退火是将工件加热到恰当温度,依据材料和工件尺度选用不同的保温时刻,然后进行缓慢冷却,意图是使金属内部安排到达或挨衡状况,取得杰出的工艺功能和运用功能,或许为进一步淬火作安排预备。正火是将工件加热到适合的温度后在空气中冷却,正火的作用同退火类似,仅仅得到的安排更细,常用于改进材料的切削功能,也有时用于对一些要求不高的零件作为较终热处理。    淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但一起变脆。为了下降钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一恰当温度进行长时刻的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是全体热处理中的“四把火”,其间的淬火与回火关系密切,常常合作运用,缺一不行。    “四把火”跟着加热温度和冷却办法的不同,又演变出不同的热处理工艺。为了取得必定的强度和耐性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火构成过饱和固溶体后,将其置于室温或稍高的恰当温度下坚持较长时刻,以进步合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。    把压力加工形变与热处理有用而严密地结合起来进行,使工件取得很好的强度、耐性合作的办法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,坚持处理后工件表面光洁,进步工件的功能,还能够通入渗剂进行化学热处理。    表面热处理是只加热工件表层,以改动其表层力学功能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,运用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或部分能短时或瞬时到达高温。表面热处理的首要办法有火焰淬火和感应加热热处理,常用的热源有氧或氧等火焰、感应电流、激光和电子束等。    化学热处理是通过改动工件表层化学成分、安排和功能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改动了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时刻,然后使工件表层进入碳、氮、硼和铬等元素。进入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的首要办法有渗碳、渗氮、渗金属。    热处理是机械零件和工模具制作进程中的重要工序之一。大体来说,它能够确保和进步工件的各种功能,如耐磨、耐腐蚀等。还能够改进毛坯的安排和应力状况,以利于进行各种冷、热加工。    例如白口铸铁通过长时刻退火处理能够取得可锻铸铁,进步塑性;齿轮选用正确的热处理工艺,运用寿命能够比不经热处理的齿轮成倍或几十倍地进步;别的,价廉的碳钢通过进入某些合金元素就具有某些价昂的合金钢功能,能够替代某些耐热钢、不锈钢工模具则简直悉数需求通过热处理方可运用。

铝金属热处理工艺基本知识

2019-03-08 12:00:43

热处理工艺一般包含加热、保温、冷却三个进程,有时只要加热和冷却两个进程。这些进程相互联接,不行连续。加热是热处理的重要工序之一。金属热处理的加热办法许多,最早是选用木炭和煤作为热源,进而运用液体和气体燃料。电的运用使加热易于操控,且无环境污染。运用这些热源能够直接加热,也能够通过熔融的盐或金属,以致起浮粒子进行直接加热。  金属加热时,工件暴露在空气中,常常发作氧化、脱碳(即钢铁零件表面碳含量下降),这关于热处理后零件的表面功能有很晦气的影响。因而金属一般应在可控气氛或维护气氛中、熔融盐中和真空中加热,也可用涂料或包装办法进行维护加热。  加热温度是热处理工艺的重要工艺参数之一,挑选和操控加热温度,是确保热处理质量的首要问题。加热温度随被处理的金属材料和热处理的意图不同而异,但一般都是加热到相变温度以上,以取得高温安排。别的改动需求必定的时刻,因而当金属工件表面到达要求的加热温度时,还须在此温度坚持必定时刻,使表里温度共同,使显微安排改动彻底,这段时刻称为保温时刻。选用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时刻,而化学热处理的保温时刻往往较长。  冷却也是热处理工艺进程中不行短少的过程,冷却办法因工艺不同而不同,首要是操控冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就能够用正火相同的冷却速度进行淬硬。  金属热处理工艺大体可分为全体热处理、表面热处理和化学热处理三大类。依据加热介质、加热温度和冷却办法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属选用不同的热处理工艺,可取得不同的安排,然后具有不同的功能。钢铁是工业上运用最广的金属,并且钢铁显微安排也最为杂乱,因而钢铁热处理工艺品种繁复。  全体热处理是对工件全体加热,然后以恰当的速度冷却,以改动其全体力学功能的金属热处理工艺。钢铁全体热处理大致有退火、正火、淬火和回火四种根本工艺。  退火是将工件加热到恰当温度,依据材料和工件尺度选用不同的保温时刻,然后进行缓慢冷却,意图是使金属内部安排到达或挨衡状况,取得杰出的工艺功能和运用功能,或许为进一步淬火作安排预备。正火是将工件加热到适合的温度后在空气中冷却,正火的作用同退火类似,仅仅得到的安排更细,常用于改进材料的切削功能,也有时用于对一些要求不高的零件作为终究热处理。  淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但一起变脆。为了下降钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一恰当温度进行长时刻的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是全体热处理中的“四把火”,其间的淬火与回火关系密切,常常合作运用,缺一不行。  “四把火”跟着加热温度和冷却办法的不同,又演变出不同的热处理工艺。为了取得必定的强度和耐性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火构成过饱和固溶体后,将其置于室温或稍高的恰当温度下坚持较长时刻,以进步合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。  把压力加工形变与热处理有用而严密地结合起来进行,使工件取得很好的强度、耐性合作的办法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,坚持处理后工件表面光洁,进步工件的功能,还能够通入渗剂进行化学热处理。  表面热处理是只加热工件表层,以改动其表层力学功能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,运用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或部分能短时或瞬时到达高温。表面热处理的首要办法有火焰淬火和感应加热热处理,常用的热源有氧或氧等火焰、感应电流、激光和电子束等。  化学热处理是通过改动工件表层化学成分、安排和功能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改动了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时刻,然后使工件表层进入碳、氮、硼和铬等元素。进入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的首要办法有渗碳、渗氮、渗金属。  热处理是机械零件和工模具制作进程中的重要工序之一。大体来说,它能够确保和进步工件的各种功能,如耐磨、耐腐蚀等。还能够改进毛坯的安排和应力状况,以利于进行各种冷、热加工。  例如白口铸铁通过长时刻退火处理能够取得可锻铸铁,进步塑性;齿轮选用正确的热处理工艺,运用寿命能够比不经热处理的齿轮成倍或几十倍地进步;别的,价廉的碳钢通过进入某些合金元素就具有某些价昂的合金钢功能,能够替代某些耐热钢、不锈钢;工模具则简直悉数需求通过热处理方可运用。

铝合金铸件T6热处理工艺程序

2019-01-10 11:46:21

铝合金T6处理是固溶处理加人工时效处理,不同成分的铝合金只要热处理是固溶处理加人工时效处理就可以称为T6处理,表明其热处理状态。    铝合金铸件T6热处理工艺程序:加热-保温-淬火-时效。    热处理前的准备(设备:铝合金固溶(淬火)炉):    1、热处理前应检查热处理设备、控制系统及仪表等是否正常。    2、铸件在装炉前应干燥无油污,赃物、易爆,等处理的铸件应按合得奖号、外廓尺寸、铸件壁厚及热处理规范进行分类,不同牌号不应相混装炉。    3、形状易产生翘曲的铸件应放在专用的底盘或支架上,不允许有悬空的悬臂部分,大型铸件应单个放在专用架上装炉。    4、检查铸件性能的单铸或辅铸试棒应随零件一起同炉热处理,以决定反映铸件的性能。    加热及保温:    1、加热到设定温度后在保温期间应随时检查、校正炉膛各处温度(?℃),防止局部高温或烧化。    2、在断电后短时间不能恢复时,应将在保温中的铸件迅速出炉淬火,等恢复正常后,再装炉、保温和进行热处理,其总的保温时间应稍许延长。    出炉冷却:    1、保温结束后,打开炉门放下料筐将铸件迅速降落到水池中,淬入规定冷却介质中冷却。    2、淬火转移时间是指从铸件出炉到铸件全部淬入介质中,总的时间较好不超过15s。    铸件变形的校正:    1铸件变形应在淬火后立即校正,矫正模具和工具应在淬火前事先准备。    2根据铸件特点和变形情况选择相应的矫正方法,矫正时用力不宜过猛,要缓慢均匀。    时效操作:(设备:铝合金时效炉):    1、需进行人工时效的铸件,应在淬火后尽快进行0.5h内进行时效处理。可将淬火后的料筐直接推到时效炉内,但产品的温度不得超过时效温度。    2、将自动控温仪表定温,然后送电加热,开动风扇。    3、保温时间到后,断开电源。

如何优化铝材挤压和热处理工艺

2019-01-09 09:34:23

1.铸锭加热 对挤压生产来说,挤压温度是较基本的且较关键的工艺因素。挤压温度对产品质量、生产效率、模具寿命、能量消耗等都产生很大影响。 挤压较重要的问题是金属温度的控制,从铸锭开始加热到挤压型材的淬火都要保证可溶解的相组织不从固溶中析出或呈现小颗粒的弥散析出。 6063合金铸锭加热温度一般都设定在Mg2Si析出的温度范围内,加热的时间对Mg2Si的析出有重要的影响,采用快速加热可以大大减少可能析出的时间。一般来说,对6063合金铸锭的加热温度可设定为:未均匀化铸锭:460-520℃;均匀化铸锭:430-480℃。 其挤压温度在操作时视不同制品及单位压力大小来调整。在挤压过程中铸锭在变形区的温度是变化的,随着挤压过程的完成,变形区的温度逐渐升高,而且随着挤压速度的提高而提高。因此为了防止出现挤压裂纹,随着挤压过程的进行和变形区温度的升高,挤压速度应逐渐降低。 2.控制铝材挤压速度 挤压过程中必须认真控制挤压速度。挤压速度对变形热效应、变形均匀性、再结晶和固溶过程、制品力学性能及制品表面质量均有重要影响。 挤压速度过快,制品表面会出现麻点、裂纹等倾向。同时挤压速度过快增加了金属变形的不均匀性。挤压时的流出速度取决于合金种类和型材的几何形状、尺寸和表面状况。 6063合金型材挤压速度(金属的流出速度)可选为20-100米/分。 近代技术的进步,挤压速度可以实现程序控制或模拟程序控制,同时也发展了等温挤压工艺和CADEX等新技术。通过自动调节挤压速度来使变形区的温度保持在某一恒定范围内,可达到快速挤压而不产生裂纹的目的。 为了提高生产效率,在工艺上可以采取很多措施。当采用感应加热时,沿铸锭长度方向上存在着温度梯度40-60℃(梯度加热),挤压时高温端朝挤压模,低温端朝挤压垫,以平衡一部分变形热;也有采用水冷模挤压的,即在模子后端通水强制冷却,试验证明可以提高挤压速度30%-50%。 近年来在国外用氮气或液氮冷却模具(挤压模)以增加挤压速度,提高模具寿命和改善型材表面质量。在挤压过程中将氮气引到挤压模出口处放出,可以使被冷却的制品急速收缩,冷却挤压模和变形区金属,使变形热被带走,同时模子出口处被氮的气氛所控制,减少了铝的氧化,减少了氧化铝粘接和堆积,所以氮气的冷却提高了制品的表面质量,可大大的提高挤压速度。CADEX是较近发展的一种挤压新工艺,它挤压过程中的挤压温度、挤压速度和挤压力形成一个闭环系统,以较大限度地提高挤压速度和生产效率,同时保证较优良的性能。 3.机上淬火 6063-T5淬火是为了将在高温下固溶于基体金属中的Mg2Si出模孔后经快速冷却到室温而被保留下来。冷却速度常和强化相含量成正比。6063合金可强化的较小的冷却速度为38℃/分,因此适合于风冷淬火。改变风机和风扇转数可以改变冷却强度,使制品在张力矫直前的温度降至60℃以下。 4.张力矫直 型材出模孔后,一般皆用牵引机牵引。牵引机工作时在给挤压制品以一定的牵引张力,同时与制品流出速度同步移动。使用牵引机的目的在于减轻多线挤压时长短不齐和抹伤,同时也可防止型材出模孔后扭拧、弯曲,给张力矫直带来麻烦。张力矫直除了可以使制品消除纵向形状不整外,还可以减少其残余应力,提高强度特性并能保持其良好的表面。 5.铝材人工时效 时效处理要求温度均匀,温差不超过±3-5℃。6063合金人工时效温度一般为200℃。时效保温时间为1-2小时。为了提高力学性能,也有采用180-190℃时效3-4小时,但此时生产效率会有所降低。

2017铝合金相关技术标准与热处理工艺

2018-12-20 09:35:41

相关技术标准  铝板带国家标准(GB/T 3880-2006),适用于铝合金板带材料的统一标准。  热处理工艺  状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。

沉淀硬化不锈钢的热处理工艺

2018-12-14 11:31:01

1.固溶处理   经固溶处理(1000~1050℃,1h,空冷)获得的组织是奥氏体加少量铁素体,在随后500~800℃进行调整处理时,由于原子在铁素体中扩散速度要比在奥氏体中快,且铁素体内含铬量高,碳化物(Cr23C6)易沿着α(δ)和r的相界面析出,又降低了奥氏体中碳及合金元素的含量,从而提高这类钢的Ms点,使之获得更多的马氏体。α(δ)铁素体量不能过多,否则不利于热加工,也不参与马氏体转变,会降低钢的强度。   2.调整处理   固溶处理后进行的中间处理,一般又称调整处理,目的是获得一定数量的马氏体,从而使钢强化,常用以下三种方法:   (1)中间时效法(简称T处理法)固溶处理后再加热至(760±15)℃,保温90min,因有Cr23C6碳化物从奥氏体中析出,降低了奥氏体中的碳及合金元素含量,使Ms点升高到70℃,随后冷却到室温便得到马氏体+α铁素体+残余奥氏体组织,残余奥氏体在随后510℃时效才分解完。   (2)高温调整及深冷处理法(R处理法)固溶后,行先加热到950℃保温90min。由于升高了Ms点,冷却到室温,可得到少量马氏体;之后再经-70℃冷处理,保温8h,就可获得一定数量的马氏体。   (3)冷变形法(C处理法)固溶处理后,在室温下冷变形,冷变形时形成马氏体的数量与变形量及不锈钢的成分有关。一般变形量在15%~20%就能获得必要数量的马氏体,过大的变形量会使马氏体发生加工硬化,使塑性显著下降。   3.时效处理(H处理)   调整处理后,均须进行时效处理。时效处理是这类钢进行强化的另一途径。当时效温度高于400℃,会从马氏体中析出金属间化合物(如Ni3Ti等),呈高度弥散分布,起沉淀硬化作用。一般在约500℃进行时效,可获得高的强度及硬度。.

高铬铸铁耐磨材料热处理工艺介绍

2018-08-30 10:45:20

高铬铸铁是重要的耐磨材料,其化学成分主要是C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35。高铬铸铁的热处理工艺主要是:1、高温加热的加热到950~1000℃,经过保温冷淬火后再进行 200~260℃的低温回火。2、高温团球化处理1140~1180℃保温16h空冷却,采用该方面可以明显提高耐磨材料的耐磨性,是制作耐磨材料的重要方法。高铬铸铁耐磨材料经过高温加热,保温,冷却,再加热的过程,硬度可以达到HRC58-62,耐磨性也非常高,是重要的耐磨材料。高铬铸铁的耐磨性最好,应用范围最广,是耐磨材料的最主要产品。