锰铁的生产
2019-01-25 10:19:06
锰和铁组成的铁合金,在炼钢中用作脱氧剂和合金添加剂,是用量最多的铁合金。冶炼锰铁用的锰矿一般要求含锰40%~50%,锰铁比大于7,磷锰比小于0.003。冶炼前,碳酸锰矿要先经焙烧,粉矿需经烧结造块。含铁含磷高的矿石一般只能搭配使用,或通过选择性还原得低铁低磷的富锰渣。冶炼时用焦炭作还原剂,某些厂也配用瘐煤或无烟煤。辅助原料主要为石灰,冶炼锰硅合金时一般要配加硅石。
锰铁产品按不同含碳量分为碳素、中碳、低碳三类。在锰系铁合金名常用的还有锰硅合金、镜铁和金属锰。碳素锰铁国际上一般标准为含75%~80%,我国为适应锰矿品位低的原料条件,规定了含锰较低的牌号(电炉锰铁含锰65%以上,高炉锰铁含锰50%以上)。冶炼碳素锰铁过去主要用高炉,随着电力工业的发展,用电炉的逐渐增多。目前西欧和我国用高炉为主,挪威、日本都用电炉,原苏联、澳大利亚、巴西等国新建锰铁工厂也采用电炉。
一、高炉冶炼
一般采用1000m3 以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在电炉顶下降的过程中,高价的氧化锰(MnO2 ,Mn2O3, Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比(1600kg/t)左右和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1:3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和CO量比炼铁高炉为高,炉顶温度也较高(350℃以上)。富气鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降炉顶温度,对锰铁的冶炼有显著的改进作用。
二、 电炉冶炼
锰铁的还原冶炼有熔剂法(又称低锰渣法)和无熔剂法(高锰渣法)两种。熔剂法原理和高炉冶炼相同,只是以电能代替加热用的焦炭。通过配加石灰形成高碱度炉渣(CaO/SiO2为1.3~1.6)以减少锰的损失。无熔剂法冶炼不加石灰,形成碱度较低(CaO/SiO2<1.0)含锰较高的低铁低磷富锰渣。此法渣量少,可降低电耗,且因渣温较低可减轻锰的蒸发损失,同时副产品富锰渣(含锰25%~40%)可作冶炼锰硅合金的原料,取得较高的锰的综合回收率(90%以上)。现代工业生产大多采用无熔剂法冶炼碳素锰铁,并与锰硅合金和中低碳锰银的冶炼组成联合生产流程。
现代大型锰铁还原电炉容量达40000~75000kV·A,一般为固定封闭式。熔剂法的冶炼电耗一般为(2.5~3.5)×3.6GJ/t,无熔剂法的电耗为(2~3)×3.6GJ/t。
锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约(3.5~5)×3.6GJ/t。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。
三、电炉精炼
中、低碳锰铁一般用1500~6000Kv·A电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:
MnSi+2MnO+2CaO→2Mn+2CaO·SiO2
采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2<1.3)操作,所得含锰较高(20%~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在3.6GJ左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。
四、吹氧精炼
用纯氧吹炼液态碳素锰铁或锰硅合金钶炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。
应当指出,据统计70年代用于钢铁工业的锰占世界锰矿总开采量的95%以上(其中约98%用于炼钢),余额半数用于有色金属合金,半数用于电池、化学工业等。关于锰在其他方面的加工利用,如电池用二氧化锰和一些锰化学产品的生产,可参阅有关专著。
高炉锰铁的生产---高炉锰铁冶炼操作
2019-01-25 15:49:34
锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点: ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。 ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。 ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。 ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。 ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。 以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。 1.高炉锰铁冶炼的装料制度 高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。 (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。 (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。 (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。 (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。 生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。 2.送风制度 锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。 在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。 在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。 3.热制度 高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。 炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。 焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。 在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。 4.造渣制度 高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。
高炉锰铁的生产---高炉锰铁冶炼原理
2019-01-25 15:49:34
高炉锰铁冶炼以炭作发热剂和还原剂,在高炉中将锰和铁的氧化物还原,生成锰铁合金及炉渣、煤气,是一系列复杂的物理化学过程。 1.锰在高炉内的还原过程 在高炉上部的较低温度区域,锰的高价氧化物易分解,逐级还原为MnO,但由于锰矿石中含有SiO2,MnO在未达到还原温度以前,即与脉石中(或燃料熔剂中)的SiO2结合生成硅酸锰进入渣中,锰的还原实际上是在液态炉渣中进行的。炉渣中的硅酸锰比自由状态的MnO更稳定,使锰的还原更加困难,需要的温度更高。 2.锰铁炉渣的形成及其对冶炼的影响 在冶炼锰铁高炉不同高度取样进行岩相分析,并测定炉渣粘度、温度,将测定结果编制锰铁高炉造渣过程示意图(图1)。图中表明,在温度600~700℃区间内,炉料以固相存在,这里MnO2还原为Mn3O4,吸附水和结晶水蒸发。到750~900℃区间锰矿石局部进入到塑性状态——矿石熔结,新的矿相如3CaO·SiO2,2CaO·SiO2及3CaO·2SiO2开始出现。800~1000℃温度范围内,除塑性体外还出现了液相。由于在该区域内存在着钙锰橄榄石(2CaO·SiO2,2MnO·SiO2)而生成液相,使得该区域透气性变差。在此温度区间矿石已经软化并转变成为塑性状态并生成含锰的液相初渣。当温度高于1100℃以后,除塑性体外主要的是液相,其成分基本上与上区域相似,大部分石灰仍为固相。在炉腹区域,由于大量锰从炉渣中由碳进行直接还原,渣中CaO含量急剧增加,MnO含量相应降低。在炉缸中,熔渣最终吸收焦炭中的灰分及熔剂中的CaO,MgO等,形成终渣。[next] 在高炉锰铁炉渣的形成过程中,炉渣中各组分对冶炼有不同程度的影响。表1 CaO含量与炉渣、铁水温度的关系CaO含量/%铁水温度/℃炉渣温度/℃281295135035144514803915151587
炉渣中的CaO可以改善硅酸锰的还原条件,将硅酸锰中的MnO置换出来,增加渣中自由MnO的浓度,利于MnO的还原。炉渣中CaO含量与MnO含量的关系见图2。炉渣中的CaO可以提高炉渣及铁水温度,对MnO还原有利。表1说明了CaO含量与炉渣、铁水温度的关系。在生产中,渣中CaO含量不应超过高炉工作条件允许范围,还和炉料中SiO2的含量有一定关系,n(CaO)/n(SiO2)之比为炉渣碱度,CaO含量过高使炉渣碱度过高,会使炉缸阻塞,炉况不顺。 炉渣中合适的MgO既可调节炉渣碱度,又可改善渣的流动性,为MnO的还原创造有利条件,从而促使高炉各项指标的改善。根据国内生产实践,n(CaO)/n(SiO2)=1.40~1.55时,渣中MgO含量增加1%,渣中MnO含量可降低0.5%~1%。 渣中的A12O3对MnO的还原也有影响,如图3所示。在相同碱度下,渣中MnO含量随其中Al2O3的增加而降低。这是因为A12O3含量的增加,提高了炉渣的熔点.初渣在高炉中形成的位置降低,炉料预热充分,带入炉缸的热量增加,MnO的还原速度加快创造了条件。但A12O3含量过高,会使炉渣粘度增高,反而恶化MnO的还原条件。高炉生产实践证明:炉渣中A12O3的含量应控制在10%~15%为宜,最高不要超过20%。[next] 3.煤气流在高炉内的形成及运动规律 高炉内煤气产生于风口区的焦炭燃烧(2C+O2===2CO).风口前生成的煤气分布称煤气初始分布。其分布情况决定于风口布置、风口个数、风口直径、风口角度及伸入炉内的长度、风量大小和风温高低。以上因素综合体现为鼓风功能。鼓风动能高,煤气流向中心集中,中心气流发展,反之边缘气流发展。 煤气的第二次分布发生在高炉中部的软融带。软融带的形状大体可分为V型、倒V型和W型。软融带形状与高炉上下部调节、炉内温度分布、炉料性质等有关。软融带形状不同,煤气通过后流向也不同。根据对炉喉CO2曲线的检测分析,高炉内煤气流的分布主要有四种类型。 (1)边缘发展型——煤气主要沿炉墙附近的边缘通过。 (2)双峰型——煤气主要由边缘与中心两条通路经过。 (3)中心发展型——也称双峰漏斗型、煤气主要由中心区通过。 (4)平坦型——煤气沿高炉截面均匀通过。 以上四种类型煤气分布对高炉冶炼过程影的响如表2.所示。 生产实践表明,锰铁高炉炉喉煤气CO2径向分布采用双峰漏斗型曲线控制较为理想,如图4所示。采用此种曲线操作,其软融带为倒V型,“气窗”面积大,煤气易于通过,使高炉操作顺行。
高炉锰铁的生产---高炉锰铁冶炼用原料
2019-01-25 15:49:34
高炉锰铁冶炼用原料主要有锰矿、焦炭和熔剂。 1.锰 矿 高炉冶炼用的锰矿有氧化矿、碳酸盐矿、焙烧矿和烧结矿。 矿石中的锰是高炉锰铁冶炼中的主要回收元素。锰矿石含锰量的高低直接影响锰铁冶炼技术经济指标。高炉生产实践表明,锰矿中含锰量波动1%,焦比波动50~80kg,产量波动3%~5%,因此对入炉矿中含锰量要求越高越好。 锰矿中SiO2的含量是影响渣量的主要因素。据分析,入炉锰矿中的m(SiO2)/m(Mn)波动10%,相当于含锰量波动1%,应当尽量选用m(SiO2)/m(Mn)低的矿石入炉。我国各厂家入炉混合矿的m(SiO )/m(Mn)一般控制在0.3~0.8。 锰矿中的m(Mn)/m(Fe)决定产品的含锰量,生产不同牌号的锰铁,需用不同m(Mn)/m(Fe)比值的锰矿。 锰矿中的磷是高炉锰铁生产中的控制元素,希望越低越好。磷在钢铁产品中大都属有害元素。磷在高炉冶炼中理论上百分之百还原。因此锰铁产品中的磷含量取决于矿石、焦炭中的含磷量。但在高炉冶炼中,Mn的回收率和锰矿石的品位会在较大范围内变化,因此产品中的含磷量也随之变化。 锰矿石中允许的含磷量按下式计算: w(P矿)={[P]/np-(w′pK+w″pФ+w″pD)}÷H 式中 w(P矿)——入炉锰矿石的含磷量,%; [P]——产品中允许含磷量上限,%; np——磷在高炉中的还原率(理论上100%,实际上80%左右); w′p,w″p,w″p——分别为焦炭,熔剂 和其他附加物的含磷量,%; H,K,Ф,D——分别为冶炼每吨锰铁所需矿石、焦炭、熔剂和其他附加物单耗,kg/t. 某厂高炉锰铁冶炼对入炉锰矿的m(Mn)/m(Fe)及m(P)/m(Mn)要求下见表。 各牌号高炉锰铁对锰矿m(Mn)/m(Fe)、m(P)/m(Mn)的要求牌号锰铁成分 (%)对入炉锰矿要求MnPm(Mn)m(P)/m(Mn)Ⅰ组Ⅱ组m(Fe)Ⅰ组Ⅱ组≥≤≥≤FeMn78780.330.56.220.003750.00493FeMn74740.380.54.680.003960.00521FeMn68680.40.63.590.004410.00662FeMn64640.40.62.90.004690.00703FeMn58580.50.62.380.006250.0075
锰矿中的铅在冶炼时易还原也易挥发,还原后沉积在炉底,严重时会破坏炉底,炉温高时易挥发,在高炉上部结瘤。一般为要求锰矿中Pb含量<0.1%。锰矿中的锌易挥发在高炉上部沉积,对炉墙砖衬和炉壳有破坏作用,也可能和炉衬混合形成炉瘤。通常要求锰矿中Zn含量<0.2%。 锰矿石入炉粒度一般为5~60mm,含粉率要求小于5%。 2.焦 炭 焦炭在高炉冶炼中不但是还原剂和发热剂,而且是整个高炉料柱的骨架。焦炭质量的好坏一方面要看其化学成分,另一方面要看其物理性能——粒度和强度。锰铁高炉冶炼用焦炭主要有冶金焦、气煤焦和土焦。不同焦炭质量差别较大,使用时应综合考虑。 对焦炭的基本技术要求: (l)高而稳定的固定碳含量。固定碳含量越高,作为还原剂和发热剂的能力越大,对降低焦比,改善技术经济指标有利。 (2)较低的灰分可以减少渣量及灰分带入的磷含量。 (3)较高的机械强度,可防止和减轻焦炭在炉内下降过程中产生粉末、恶化料柱透气性。挥发分低的焦炭机械强度比较好。 焦炭中的水分虽然对高炉冶炼过程无影响,但水分波动会影响配料的准确性。因此,希望焦炭水分稳定为好。焦炭入炉粒度一般为20~60mm。 3.熔 剂 高炉锰铁冶炼所用熔剂为石灰石、生石灰、白云石等。 对石灰石和生石灰要求CaO含量越高越好。CaO含量高,带入的渣量相对减少。使用白云石调节渣时,要求白云石的MgO含量尽量高。 熔剂入炉粒度要求:石灰石和白云石15~75mm,生石灰为20~l00mm,小高炉偏下限,中型高炉偏上限。
电炉高碳锰铁的生产(二)
2019-01-25 15:49:34
三、电炉锰铁冶炼用的原料 原料为锰矿、焦炭和熔剂 1.锰矿 锰矿的品种主要有氧化锰矿、烧结矿、焙烧矿和人选富锰渣等。 锰矿中除了主要成分Mn外,还含有一定数量的Fe,CaO,Al2O3,SiO2,P,S等杂质,应根据冶炼产品的要求进行控制。 锰矿中的锰铁比是决定产品含锰量的重要技术参数,秤不同牌号的高碳锰铁,对入炉锰矿的m(Mn)/m(Fe)要求不同,某厂采用熔剂法冶炼 时对入炉锰矿的含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求见表2。表2 熔剂法治炼对入炉锰矿含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求牌号Mn含量m(Mn)m(P)/m(Mn)m(Fe)ⅠⅡ≥≤FeMn78C8.040%8.80.0020.004FeMn74C7.535%6.40.0020.0042FeMn68C7.034%4.50.0030.0057
锰矿中的CaO,MgO均为碱性氧化物,对调整炉渣碱度和流动性有利,一般不予限制。锰矿中的Al2O3在一定范围内能控制渣中含锰量,但Al2O3过高,会使炉渣熔点升高,流动性变差,渣铁分离困难,影响冶炼技术经济指标。一般要求入炉锰矿中Al2O3含量不超过10%。采用熔剂法生产时入炉锰矿中的SiO2含量越低越好。因SiO2含量高,会增大石灰用量,增大渣量,电耗升高。锰矿中的硫一般以MnS,CaS的形式进入渣或挥发,只有约1%进入合金,一般不作限制。 对入炉锰矿的水分庆控制在8%以下,因水分太高,波动大会影响配料的准确性。在熔剂法生产时会使石灰吸水粉化,造成炉内透气性差,产生刺火、塌料,使炉况恶化,电耗增加。 入炉锰矿粒度根据电炉容量大小而定,对6000KVA以上电炉入炉粒度一般为10~80mm,小于10mm的粉矿不超过总量的10%。 2.焦炭 作为还原剂用的焦炭主要有冶金焦、气煤焦、半焦等。对入炉焦炭,要求固定碳含量高、电阻率大、灰分低、磷低。灰分低带入的渣量少,含磷相应减少,可降低冶炼电耗。电阻率大,容易使电极下插,对稳定操作有利。 入炉焦炭粒度一般为3~25mm,小于3mm的焦末不得入炉。焦炭所含水分不得超过7%,而且波动量应尽量小。 3.溶剂(石灰) 要求石灰中CaO含量高,SiO2及P,S杂质含量低。一般CaO含量大于80%,SiO2含量不超过6%,P,S应分别低于0.05%和0.8%。石灰入炉粒度一般为10~60mm.[next] 四、电炉高碳锰铁冶炼工艺操作 1.冶炼方法 电炉高碳锰铁的冶炼 是连续进行的,即连续加料冶炼,定时出铁。根据入炉锰矿品位的不同及炉渣碱度控制的不同,在电炉内生产高碳锰铁有熔剂法、无熔剂法、少熔剂法三种方法。 (1)熔剂法 采用碱性渣操作,炉料中除锰矿、焦炭外,还配入一定量的熔剂(石灰)并用足还原剂。采用高碱度渣操作,炉渣碱度n(CaO)/n(SiO2)控制在1.3~1.4,以便尽量降低渣中含锰量,提高锰回收率。 (2)无熔剂法 采用酸性渣操作,炉料中不配加石灰,在还原剂不足的条件下冶炼,用这种方法生产,既可获得高碳锰铁,又可获得生产硅锰合金和中、低锰铁的含Mn30%的低磷富锰渣。其优点是电耗低,锰的综合回收率高。其不足是采用酸性渣操作,对碳质炉衬侵蚀严重,炉衬寿命较短。 (3)少熔剂法 采用介乎熔剂法和无熔剂法之间的“偏酸性渣法”。该法是配料中加入少量石灰或白云石,将炉渣大碱度控制在0.6~0.8之间,在弱碳的条件下冶炼。生产出合格的高碳锰铁和含锰25%~40%及适量CaO低磷、低铁锰渣。此渣用于生产硅锰合金时既可减少石灰加入量又可减少因石灰潮解而增加的粉尘量,因而可改善炉料的透气性。 采用何种方法与入炉矿的品位有关。入炉矿石的品位较低一般采用熔剂法,入炉矿石的品位高(高品位进口矿)则用无熔剂法或少熔剂法生产高碳锰铁。 2.冶炼工艺操作 电炉高碳锰铁的生产操作过程主要有配料、加料、炉况维护及出铁浇铸等。 (1)配料及加料 根据配料计算得出配料比后,按锰矿石、焦碳、石灰(白云石)的顺序进行称量配料,然后通过运输系统将配好的料送到炉顶料仓或加料平台。根据炉内需要分批加入炉内。 (2)炉况维护 在电炉冶炼过程中,由于原料的波动、电气及机械设备等因素的影响,炉况难以长期保持稳定状态,总是在波动变化。因此要对炉况随时、监测,并根据其变化作出准确判断,及时采取措施调整和处理,使炉况恢复到正常状态。 (3)炉况判断及处理 炉况正常的标志是: ①操作电流稳定,电极插入深度合适,电极电压正常。 ②料面高度合适,冒火均匀,炉料化料均匀,电极周围刺火及塌炎现象少。 ③封闭炉内炉气压力、成分、温度正常。 ④炉渣成分稳定,产量稳定,各项技术经济指标良好。 ⑤合金成分稳定,产量稳定,各项技术经济指标良好。 炉况的变坏不多是由于还原剂配入过多或不足以及炉渣碱度过高或过低造成的。 还原剂过多时,由于炉料电阻率减小,电流增大,电极上抬,炉内化料速度减慢,电极周围刺火严重,炉气压力与温度上升,锰的挥发损失增大,炉底温度下降,出炉困难,产品含硅量增高。此时应向电极周围适量减碳,并调整料批中焦炭的配入量。 还原剂不足时,电极下插过深,电极消耗增大,负荷上不去,电流不稳定;炉口翻渣;炉渣中含锰量升高,产品中硅低磷高,渣多铁少。此时可向电极周围附加适量焦炭,并在料批中提高焦炭配比。 炉渣碱度过高时,在炉内表现为电极上抬;料面刺火,翻渣;炉渣流动性差,出铁量少,炉渣发暗百粗糙,断面孔,冷却后很快粉化。炉渣碱度过低时,电极插入深,炉渣稀,流动性好,渣表面皱纹少,渣中跑锰多。针对上述情况,应及时调整石灰配入量将渣碱度调整到正常范围。 (4)出铁及浇铸 正常生产电炉要按一定时间间隔定时出铁,出铁次数根据电炉大小容量而定。一般大电炉每班出铁4~5次,中小型电炉每班2~3次。根据一些厂的生产经验,在炉内冶炼状况正常的情况下,适当延长出铁间隔单间,对提高产品质量,降低焦比、电耗有较好作用。[next] 五、配料计算 在铁合金生产中因为生产中的诸多因素不可能精确测算。因此要做到精确的配料计算是不容易的。而且在实际中意义也不大。通常以原料成分、生产中的控制参数及经验数据为依据,进行初步测算,投入生产后再根据其炉内情况进行调整。计算条件如下: 冶炼合金成分为:Mn66%,SiO22%,C6.8%,P0.3%,Fe23%,其他0.9%。 原料成分为: 锰矿:(综合矿)Mn34%,Fe10%,P0.12%,SiO29%,CaO1.5% 焦矿:C80% 石灰:CaO80% 炉渣碱度:n(CaO)/n(SiO2)=1.4 各元素在冶炼产物中的分配如表3所示。焦炭利用率为90%。表3 锰矿中元素分配(%)元素入合金入渣挥发MN781012Fe955/P751015
以100kg锰矿为计算基础计算。 (1)焦炭用量计算 焦炭用量为锰、铁、硅还原用碳量及合金渗碳量之和: ①100kg锰矿还原得合金部量 锰、铁、磷总量为: 100×34%×78%+100×10%×95%+100×0.12%×75%=36.11kg 锰、铁、磷所占合金比例为: 100%-C含量-Si含量-其他=100%-6.8%-2%-0.9%=90.3% 100kg锰矿得合金总量为: 36.11kg÷90.3%=40.12kg 合金中的硅含量为: 40.12kg×2%≈0.824kg ②合金渗碳量 40.12kg×6.8%=2.728kg ③锰、铁、硅还原用碳量 还原MnO,用碳量为:MnO+C===Mn+CO 还原FeO用碳量为:FeO+C===Fe+CO 焦炭总用量(干基)为: (2.72+6.672+2.036+0.686)÷90%÷80%=16.83kg (2)石灰用量 渣中的SiO2含量为 石灰用量为:(6.22×1.4)÷80%=10.89kg (3)原料配比为:锰矿100kg;焦碳16.8kg;石灰10.89kg.
电炉高碳锰铁的生产(一)
2019-01-25 15:49:34
一、电炉高碳锰铁的牌号及用途 电炉高碳锰铁是含有少量硅、磷、硫杂质的Mn-Fe-C三元合金,锰铁中锰与铁之和为92%左右,含 碳6%~7%。锰、铁、碳在合金中通常以Mn3C,FeC的形式存在。高碳锰铁的溶点为1220~1270℃,密度为7.1~7.4g/cm3,抗压强度为70~90MPa.合金中锰与铁能以任意比例互溶,但锰含量超过82%时,易受空气中水分的侵蚀而消散成粉末;因此当含锰量超过82%的产品在运输中应注意防潮。 电炉高碳锰铁主要用于炼钢作脱氧剂、脱硫剂及合金添加剂。作为合金添加剂加入钢中能改善钢的力学性能,增加钢的强度、延展性、韧性及耐磨能力。随着中、低碳锰铁生产工艺的进步,高碳锰铁还可以用于生产低碳锰铁。 电炉高碳锰铁牌号及其化学成分如表1所示。表1 电炉高碳锰铁牌号及化学成分类别牌号化学成分(%)MnCSiPSⅠⅡⅠⅡ≤电炉高碳锰铁FeMn78C8.075.0~82.07.51.52.50.20.380.03FeMn74C7.570.0~77.07230.250.380.03FeMn68C7.065.0~72.072.54.50.250.40.03
二、电炉法高碳锰铁的冶炼原理 电炉法生产高碳锰铁是以电能为热源,焦炭为还原剂,在炉身较矮的还原电炉中生产高碳锰铁的一种方法。 冶炼原理:高碳锰铁冶炼主要是锰的高价氧化物受热分解为低价氧化物的低价氧化物进一步还原成锰金属的过程。 MnO2受热后极易分解。当温度高于753K时MnO2分解变成Mn2O3。 在正常生产过程 中锰的高价氧化物也可以被炉内反应生成的CO还原成低价氧化物,其反应式如下: MnO比较稳定,一般条件下不易分解(与氧接触在一定条件下易被重新氧化)。 在冶炼温度下,MnO不可能被CO还原。这样进入炉内高温区的锰氧化物均以MnO形式存在,只能通过碳直接接触MnO使其还原成锰。 碳还原MnO的反应式如下: 由以上反应式可以看出:碳还原MnO生成Mn3C所需的温度比生成锰所需的温度低,因而用碳作还原剂生产锰铁时,得到的不是单质锰而是锰的碳化物(Mn3C);合金中含碳量通常6%~7%。[next] MnO为金属氧化物,易与炉料中的SiO2结合生成硅酸盐: MnO+SiO2===MnO·SiO2 2MnO+SiO2===2MnO·SiO2 这些反应降低了渣中自由MnO的浓度,使得充分还原MnO变得困难。 为减少MnO在炉渣中的排弃损失,提高锰的回收率,可在炉料中配入碱性大于MnO的金属氧化物,比如石灰、白云石等,让石灰中的CaO与SiO2结合,生成相应的硅酸盐把MnO置换出来即: MnO·SiO2+CaO===CaSiO2+MnO 2MnO·SiO2+2CaO===2CaSiO2+2MnO 置换了来的MnO呈自由状态,易被碳直接还原。 冶炼用的锰矿石,通常都伴生有铁、硅、钙、镁、铝、磷等元素的氧化物,在加热还原锰氧化物的过程中,炉料带入的铁、磷、硅的氧化物也被碳还原: FeO+C===Fe+CO 还原出来的Fe与Mn组成锰铁的二元碳化物[(MnFe)3C],从而大大改善了MnO的还原条件;在有铁存在的条件下,当温度接近1100℃时,MnO的还原即可进行。 炉料中磷氧化物(P2O5)可以被碳和锰充分还原: 被还原出来的磷约75%进入合金,5%残留渣中,其余挥发。 炉料中带入的SiO2比MnO稳定,只有在较高温度下才能被碳还原。 控制高碳锰铁冶炼温度不超过1550℃,就可以有效地抑制SiO2的还原,使大部分SiO2进入炉渣。 炉料中的其他氧化物,如CaO,Al2O3,MgO等,则较MnO更稳定,在高碳锰铁冶炼条件下不可能被碳还原,几乎全部进入炉渣。 炉料中的硫主要来自焦炭。有机硫在高温下挥发。硫酸盐中的硫一般以MnS或CaS的形式熔于渣中。通常炉料中的硫只有1%左右熔于合金。
锰铁的用途
2017-06-06 17:50:07
锰铁的用途 1、微碳锰铁的用途及特点 该产品不但适用于低碳合金结构钢,尤其适用于高质量的品种钢,而且不用改变原有的炼钢工艺,能优化合金,改善钢的内在质量,降低炼钢合金成本,具有明显的经济效益。 2、低碳锰铁、中碳锰铁的用途:该产品是生产不锈钢、高温耐热钢、结构钢、工具钢等特种钢和电焊条的主要原料。低碳锰铁(粉)性状及用途:灰黑色不规则粉末或块状,主要应用于焊材
行业牌号化学成份%备注:粒度为-60、-80、-200目等规格MnCSiPSⅠⅡⅠⅡ大于不大于FeMn85aC1.085.01.01.00.100.02FeMn80aC1.580.01.50.71.50.200.300.02FeMn78aC1.578.01.51.52.50.200.330.03FeMn75aC1.575.01.51.52.50.200.330.03锰铁黑可用于卷钢涂料、高性能的工业用漆以及耐热的工程塑料。它是一种优良的太阳能吸收剂,可用于制作太阳能收集器用的涂层。因含有锰,对橡胶有损害,故不能用于橡胶。同时因含锰和铁,对某些塑料有脆化作用。物化性质: 是铁和锰的氧化物,其实际组成随配比的不同而异。颜料的密度5.9~6.0g/cm3,吸油量46%,有遮盖力,其着色力是这类颜料中较高的,有优越的耐候性、耐高温性和耐化学品性。 更多有关锰铁的用途信息请详见上海
有色
网
锰铁矿价格
2017-06-06 17:49:50
锰铁矿价格,上海有色网资讯:铁矿石价格上涨65%已成定局。据国内铁矿石谈判发来消息:CVRD(巴西淡水河谷公司)已于北京时间2月18日20时正式宣布与新日铁和浦项达成2008财年铁矿石协议:南部铁精粉上涨65%,卡拉加斯粉上涨71%。2008财年淡水河谷南部粉矿价格(离岸价)将由2007财年的72.11美分/干公吨度上涨65%至118.98美分/干公吨度;而品质较好的Carajas粉矿价格将由125.17美分/干公吨度上涨71%至125.17美分/干公吨度。2005年至2007年,国际铁矿石基准价格涨幅分别为71.5%、19%和9.5%价格500-800元/吨更多关于锰铁矿价格资讯,请浏览SMM网
锰
频道!
中低碳锰铁生产的其他方法
2019-01-25 15:50:04
一、波伦法 法国电冶金公司吉弗尔铁合金厂用一台12000kWA自焙电极还原炉生产的含Si35%,Mn60%的液态高硅锰硅合金;另用经过球磨的锰矿与焦粉相配合制取冷球团,在900~1000℃的回转窑中焙烧,将烧好的球团矿倒入10000KWA的倾动式电炉中熔化,待球团矿完全熔化后,再将熔渣全部倒入装有液态高硅锰硅合金铁水包中混合,反复与另一个铁水包相互倒包,冲兑搅拌,其间加入适量的石灰造渣,最后获得的合金即为低碳锰铁。采用此法,该厂每年可以生产30000t含碳、磷、硅都 很低的低碳或超低碳锰铁。 二、乌达康转炉法 1973年瑞典某铁合金厂在其冶炼车间装置了一台容量8t的乌达康转炉,转炉下部装有2500kW熔沟式感应器。生产时先将还原炉生产的液态锰硅合金兑入炉内,以氮气为载体向合金液中喷吹锰矿和石灰粉剂,待合金中硅含量降到7%时,倒掉含MnO较低的熔渣,继续喷吹锰矿和石灰粉剂,待合金中硅含量低于1%时,将金属液倒出,熔渣仍然留在炉内,等待液态锰硅合金兑入继续下一炉的冶炼。从转炉倒出的金属液浇铸冷凝破碎后即为中低碳锰铁产品。 乌达康转炉投产后一直平稳运行,每生产一吨含Mn86%的中碳锰铁消耗为:含Si20%的锰硅合金664kg,石灰335kg,电耗260kWh,锰回收率85%,硅的利用率在90%以上。
高碳锰铁
2017-06-06 17:50:07
高碳锰铁是什么?锰铁:锰和铁组成的铁合金。主要分类:高碳锰铁(含碳为7%)、中碳锰铁(含碳1.0~1.5%)、低碳锰铁(含碳0.5%)、
金属
锰、镜铁、硅锰合金。技术情况 现代大型锰铁还原电炉容量达40000~75000千伏安,一般为固定封闭式。熔剂法的冶炼电耗一般为2500~3500千瓦?时/吨,无熔剂法的电耗为2000~3000千瓦?时/吨。锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约3500~5000千瓦?时/吨。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。电炉精炼 中、低碳锰铁一般用1500~6000千伏安电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:MnSi+2MnO+2CaO─→3Mn+2CaO?SiO2 采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2小于1.3)操作,所得含锰较高(20~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在1000千瓦?时左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。 吹氧精炼 用纯氧吹炼液态碳素锰铁或锰硅合金可炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。高碳锰铁配料计算、计算依据:1.1 入炉锰矿平均成分:%Mn Fe P S Cao SiO2 MgO Al2O343 6 0.07 0.05 3 9 1 41.2 锰矿元素分配:%元素 入合金 入渣 挥发Mn 62 28 10Fe 95 5 P 90 8 2Si 4 961.3 焦碳成分:固定碳:82%、灰分:15%、挥发分:3%、焦碳利用率:90%、炉口烧损:10%、水分:10%、焦碳灰分中含SiO2:50%、Cao:3%、MgO:2%1.4 以100Kg干基锰矿做为计算基础。2、合金成分的预算每100Kg锰矿可得:Mn=43×0.62=26.66KgFe=6×0.95=5.7KgP=0.07×0.90=0.063KgMn+ Fe+ P=26.66+5.7+0.063=32.423Kg(Mn+ Fe+ P)合金名的百分比为:[100 -(6.5+1.5+1.0)]% =91.0%所以合金总量 =32.423/0.91=35.63Kg预计合金成份:Mn = 26.66/35.63 = 74.8%Fe = 5.7/35.63 = 16%P = 0.063/35.63 = 0.18%C = 6.5%Si = 1.5%其它 = 1%3、焦碳配入量计算:3.1 锰矿中锰的高价氧化物受热分解成Mn3O4 ,Mn3O4还原成MnO需碳量:Mn3O4 + C = 3MnO + CO43 × 12 / 165 = 3.12kg3.2 还原进入高碳锰铁和挥发的锰需碳量: MnO + C = Mn + CO43×(0.62+0.1) ×12/55 = 6.75kg3.3 氧化铁还原需碳量:FeO + C = Fe + CO6 × 0.95×12 / 56 = 1.22kg3.4 五氧化二磷还原需碳量:P2O5 + 5C = 2P + 5CO0.07×(0.9+0.02) ×5×12/(2×31)= 0.062kg3.5 二氧化硅还原需碳量:SiO2 + 2C = Si + 2CO9 × 28/60× 4% × 2 × 12/28 = 0.144kg3.6 高碳锰铁渗碳量:35.63×0.065 = 2.316kg3.7 总需碳量:3.12+6.75+1.22+0.062+0.144+2.316=13.612 kg焦碳的固定碳为82%,利用率为90%,需干焦碳为:13.612/(0.82×0.90)= 18.44kg4、配料比:锰矿:100kg(干),焦碳18.44kg(干,固定碳82%)。5、富锰渣成分计算:%5.1. 100kg锰矿产渣量:MnO:100×43%×28%×[(55+16)/55] = 15.54kgFeO:100×6%×5%×72/56] = 0.4kg锰矿中SiO2有96%进入炉渣中,MgO、Al2O3、CaO全部进入渣中:9×96% + 1 + 4 +3 = 16.64kg焦碳灰分全部进入渣中:18.44×15% = 2.77kg100kg锰矿产渣量:15.54+ 0.4+ 16.64+ 2.77= 35.35kg5.2 富锰渣成分:%Mn SiO2 FeO Cao MgO Al2O3 P34 28 1 8 3 11 0.015 5.3 炉渣三元碱度(8 + 3)/28 = 0.4注:炉渣流动性不好时可用白云石调整。5.4 渣铁比:100Kg锰矿生产35.63Kg高碳锰铁 (实重)和35.35Kg低磷富锰渣渣/铁 = 35.35/35.63≈16、生产1吨高碳锰铁消耗的原料:锰矿 - (100/35.63×74.8/65)×1000 = 2439Kg焦碳 - (18.44/35.63)×1000 = 517Kg (干基)高碳锰铁是什么如上述,更多信息请详见上海
有色
网