废钢
2019-02-11 14:05:30
废钢是在出产日子工程中筛选或许损坏的作为收回使用的废旧钢铁;其含碳量一般小于2.0%,硫、磷含量均不大于0.05%。一般来说,在日子中发生的废钢为社会废钢,其首要是废旧含钢铁设备及家具电器等所发生的废钢,常见的如自行车架、轿车外壳等;出产中发生的废钢为钢铁冶金过程中发生的废钢以及机械制造加工过程中发生的废钢,在钢铁厂商中,因为出产过程中不可避免的呈现钢渣的溅起、钢坯的切头切尾等,所发生的废钢为钢厂自产废钢,其间,钢坯的切头切尾在模铸年代曾很多发生,而在连铸遍及后,发生的量现已大大削减;在机械加工过程中发生的废钢,则因为成分均匀、无锈等要素,可作为再生料废钢,但发生规划及量均较少。
废钢因为其发生的状况不同,而存在各种不同的形状,其功能与发生此种废钢的成材根本相同,但也遭到时效有效性、疲惫性等要素的影响,而功能有所下降;我国废钢铁资源发生的地域散布也不平衡,全国80%以上的废钢铁资源散布在京、津、沪、粤、辽、黑、冀、晋、鲁、鄂、川及江苏这12个工矿厂商比较会集、人口比较稠密的省市;其它区域因为地舆条件较差、人口较少,生成的废钢资源缺乏20%。废钢加工一般状况下选用机械加工,常用机械为压包机、切割机等。废钢首要用于长流程转炉中的炼钢添加料或短流程电炉的炼钢主料。
国内废钢资源:我国粗钢产量的迅速增长首要是自2000年开端,年增长率在20%左右,由此,导致我国社会钢铁积蓄量中,50%左右是在2000年及今后所出产,而因为遭到筛选年限的约束,形成我国将成器处于废钢资源的匮乏时期,满意不了钢铁工业快速开展的需求,据废钢栏目数据,2009年,国内首要钢厂废钢单耗仅为120千克左右,处于比年下降的态势。
2009年,我国全年进口废钢量达1366.92万吨,创前史新高,全年进口废钢费用达50.68亿元。
废钢标准:废钢国家标准为2004年发布,一起1996年国家废钢标准废止。
冶金电炉
2019-01-04 11:57:16
生产交流单相单、双极串联两用电渣炉结构合理,配置优化,有独特的短网单、双极大电流转换开关 , 操作方便 , 维护简单 , 运行稳定可靠。可实现化渣、单级冶炼、双级冶炼。其结构形式有:1. 双臂交替单工位 ( 结晶器固定 2. 双臂交替单工位 ( 结晶器底台车移动 等。传动方式有: 1. 液压传动 ( 升降、旋转、电极夹持、底台车移动、开关油缸 。 2 机械传动 ( 球形丝杠升降、悬臂伸缩、悬臂旋转、手动夹紧 。控制系统: 液压为电液伺伏系统,机械为变频调速。规格有: 0.5t 、 1t 、 1.5t 、 3t 、 5t 、 10t 、 15t 、 20t 等。变压器类型: 无载有级调压、带载有级调压、带载无级调压、 T 型变压器等。变压器功率和调压级数需根据工艺要求、电渣坯截面直径尺寸商定。此类型电渣炉已在实际生产过程中产生较高的生产效率和良好的经济效益。
电炉处理废铅
2019-02-20 09:02:00
电炉处理再生含铅质料是先进的工艺。电炉熔炼与鼓风炉熔炼处理废铅蓄电池及再生烧结质料比较,明显的长处是焦耗低。往炉猜中参加的焦炭量只确保炉中进行复原反响的需求。这样,使用空气焚烧焦炭已无必要,成果,生成的烟气少了,削减了炉尘的排出量和烟气净化的费用。电炉熔炼时,大大削减了热丢失,既随废气又随废渣的热丢失将削减60%。
图1 鼓风炉复原熔炼铅烧结块、再生质料和返料的工艺流程图
图2 鼓风炉熔炼废铅蓄电池的工艺流程图
电池法将含铅再生质料处理成铅锑合金的工艺是由全苏有色金属科研设计院等单位研发的。工业规划的苏打复原电熔炼法在列宁诺戈尔斯克铅厂首要选用。此法的特点是在熔炼再生物料时增加苏打、石灰石和含铁物料等熔剂,直接出产契合全苏标准的铅锑合金。
在电炉出产铅锑合金时,熔炼进程中一起进行铅硫酸盐和氧化物同苏打(或许苏打-硫酸盐混合物)及炉料的其它氧化物组分和碳复原剂交互反响。
炉料在电炉的复原环境中熔化并发生出液相;粗铅散布在炉子的下部;冰铜-炉渣的熔体呈较轻相,构成熔体上部。
在电炉中进行的氧化-复原进程的反响进程归结如下:炉猜中有铅的氧化物和硫酸盐化合物,在加热时,它们与固态碳和在碳酸钠存在的条件下发作效果;铅的氧化物、硫酸盐和硅酸盐与铅和钠的硫化物发作效果。[next]
在固相中进行的流程反响进程可用以下流程和反响式表明:
Pb+CO→PbO·CO吸离→PbCO2吸离→Pb+CO2 (1)
PbO·SiO2+CO→PbO·SiO2·CO吸离→Pb·SiO2·CO2吸离→Bb+SiO2+CO2 (2)
2PbO·SiO2+CO→2PbO·SiO2·CO吸离→Pb+Pb·SiO2·CO2→2Pb+SiO2+2CO2 (3)
C+CO2→C+CO2吸离→CO·CO→2CO (4)
PbO+Na2CO3+C→Pb+Na2O+CO2+CO (5)
PbSO4+Na2CO3+3C→Pb+Na2S+3CO2+CO (6)
PbSO4+2C→PbS+2CO2 (203)
Sb2O3+3CO→Sb2O3·3CO吸离→2Sb+3CO2 (7)
与氧化铅基本上是在液相中按下列反响相互效果:
Na2S+3PbO→3Pb+Na2O+SO2 (8)
Na2S+3(2PbO·SiO2)→6Pb+Na2O+SO2+3SiO2+1.5O2 (9)
Na2S+3(Pb·SiO2)→3Pb+Na2O+SO2+3SiO2 (10)
必定数量的氯化物跟着返尘进入炉料。氯化物与硫酸钠在有碳存在的条件下按下列反响相互效果:
PbCl2+Na2CO3+C→Pb+2NaCl+CO2+CO (11)
废钢是炉料的必要的组分,确保硫化铅和硫化锑与铁复原反响的进行:
PbS+Fe←→Pb+FeS (12)
Sb2S3+3Fe←→2Sb+3FeS (13)
冰铜熔体由未进行反响的硫化铅、硫化铁和硫化钢组成。熔体的渣组分由无矿岩的组分(SiO2、CaO、Al2O3)在与碳酸钠相互效果下构成:
Na2CO3+nSiO2←→Na2O·nSiO2+CO2 (14)
Na2SO4+nSiO2←→Na2O·nSiO2+SO3 (15)
mNa2O·nSiO2+CaO←→mNa2O·CaO·nSiO2 (16)
由于再生质猜中无矿岩石的组分含量不高,故单相渣未构成,而成为冰铜-渣熔体的成分。
熔炼产品的分化彻底取决于它的物理学性质。钠质硅酸盐渣熔体溶解极少量的铅和锑,因而熔炼时金属随硫化物渣熔体的丢失不大。铅和锑的化合物在钠质硅酸盐渣熔体中的的溶解度列于表1。
表1 铅和锑的化合物在钠质硅酸盐渣熔体中的溶解表渣的成分(%)温度(℃)铅和锑化合物的平衡浓度(%)PbPbSSbSb2S2SiO2 36.39000.030.270.091.35Na2O 39.510000.0380.290.0092.40CaO 24.212000.039—0.009—SiO2 26.29000.0780.280.211.85Na2O 45.010000.1000.290.193.80CaO 20.311000.16———FeO 20.012000.181.30——SiO2 37.49000.0250.200.303.0Na2O 32.410000.035——3.1CaO 20.311000.035——3.4FeO 9.9
铅和锑的平衡浓度跟着含这两种金属硫化物的体系中温度的升高而增大。二氧化硅含量增高则下降了平衡浓度,往渣体系中参加氧化铁则进步铅的平衡浓度。
熔炼产品的定性别离,考虑到铅和锑两种金属及其渣熔体的硫化物,经过调理炉膛深度而成为可能。依据熔体温度差确保铅、锑、铜的硫化物的熔析,并有用地与冰铜体交互反响。
电熔炼进程的技能指标定于渣熔体的粘度和电导率。二氧化硅含量的进步和渣中氧化钙和含量的下降使渣的粘度增大并使其出炉困难。此外,二氧化硅的含量增高还下降了电导率。[next]
下面列出渣熔体的粘度和电导率与温度的相关联系(SiO231.0%、Na2O35.25%、CaO8.75%、FeO29%):
温度(℃) 750 900 950 1000 1050 1100 1150 1200
粘度(帕·秒) 84 36 24 14 11 80 5.9 3.4 电导率(西·厘米-1) 0.76 1.11 1.61 1.91 — — — — 在工业实践中,对再生铅质料以苏打复原进程进行过电炉熔炼,生成含有SiO228~42%、Na2O28~40%、CaO15~24%、FeO10~20%的冰铜-渣熔体。这样的成分确保得到贫铅的冰铜-渣溶体并进步了铅和锑的回收率。
电炉熔炼的实践 按工艺流程图(图3)将再生质料用电热法处理成含锑的铅。再生质料应契合ГOCT1639~78的要求。用来电炉熔炼的再生质料有:铅和含锑的铅的废料、废铅蓄电池、铅渣、铅泥、拆解蓄铅蓄电池的金属产品。含铅物料的化学成分列于表2。
图3 电炉熔炼含铅再生质料的工艺流程图
表2 电炉熔炼的含铅物料的化学成分(%)物料PbSbCuSAsSnFeSiO2其它废铅块料97.0~99.00.25~0.5——————0.5~2.75含锑的铅废料及块料90.0~95.00.25~0.5————5.0—1.5~4.5废铅蓄电池73.5~88.51.2~4.13.4~3.63.2~7.00.02~0.010.01—1.0~2.01.6~19.2废铅蓄电池崩溃后的金属产品90.0~92.53.0~4.00.20.6~0.880.010.01——3.9~6.4
电炉熔炼成铅锑合金工艺对再生质料的备料提出高要求,这些要求在于要细心进行下列工序:检验、分选、崩溃、熔炼前的预备。在一年的冰冷期间,质料必定要枯燥,剩余水分不超越4%。
在一家工厂里用电炉熔炼的炉料100%是再生质料(铅含量不低于75%)。再生质料总量的4~6%是碳酸钠,1.5~2.0%是石灰石,2~3是铁屑,5~8%是冶金焦炭。焦碳的配比依据熔炼面上发生的厚度为50~100毫米的固定层核算而定。[next]
依据出产下列成分的冰铜-渣熔体的需求来断定炉料成分:Pb3~5%,Fe全23~30%。Cu1.2~3.0%,S12~15%,Na17~20%,SiO27~9%,CaO12~14%,其它7.3~16.0%。渣-冰铜中SiO2的含量在7~9%的水平上,并限于随焦碳灰、铅渣和废铅蓄电池渣棉中的填料而进入。
用板式进料器或许螺旋进料器把炉料装入炉内,送到均匀散布的渣面上,而不构成斜坡。
炉料进入熔体后,开端进行金属的复原反响和生成渣-冰铜熔体的反响。在4~4.5小时内周期性地装入和熔炼炉料。在这个时期,装入炉内27~32吨炉料和返料(尘粒和难熔浮渣)。
熔炼进程在三相三电极电炉里进行了(图4),电极直径为0.3米。电炉的参数如下:
电炉的功率(千伏安) 2300
炉料的单位出产率(吨/米2·昼夜) 9.8
每吨炉料电极耗费(吨) 0.0096~0.011
每吨炉料耗电量(千瓦小时) 600~650
炉底面积(米2) 7.37
熔炼区电炉的尺度(米)
图4 熔炼含铅再生质料的电炉
a-纵剖面;δ-横剖面
宽 1.86
长 3.96
烟气区电炉的尺度(米)
宽 2.1
长 4.2
炉内坚持必要的温度,既考虑到电流经过渣熔体时放出热量,也由于电极和炉料间发生电弧辐射热。
电流经过三根石墨电极进入电炉作业空间,电极终端深化到渣熔体180~450毫米处。
炉膛内的热交换依托渣熔体的对流搅动而得到确保。一起,熔体中的热场适当不均匀。在接近炉壁的当地,电极区确保有最高温度1250~1300℃,在炉底区温度为1000℃,而在炉底(床)温度下降到700℃。温度的不均匀决议了炉料装入的次序。大部分炉料约90%装入接近电极的空间,而少部分(10~15%)装入比较接近炉子的边上。熔池到达1.3~1.4米水平后,开端装入铁屑。熔池温度应不低于1200~1300℃。沉积后,出产出熔炼产品。粗铅放入容积0.7米3的浇包送入精粹车间。渣-冰铜熔体注入钢锭子模,冷却、分隔并入库。熔炼产品的产出率如下:粗铅73~76%,渣-冰铜12~16%,烟气5~7%,碱浮渣0.3%。
下面列出电炉熔炼的技能经济指标:
再生质料 100
苏打(占质料的%) 5.5
石灰石 1.5
废铁 2.9
焦炭 3.8
质料单位熔炼量(吨/米2·昼夜) 8.3
熔炼产品的产出率(占质料的%)
粗含锑铅 74.0
渣-冰铜 13.0
碱浮渣 0.3
在制品蓄电池合金中的回收率(%) 铅 94.2
锑 89.0
在渣-冰铜熔体中的回收率(%)
铅 0.65
锑 2.10
每吨质料耗费的电极(千克) 13.0
电能耗费(千瓦小时/吨质料) 600
温度(℃)
炉膛内 1500
炉顶 900
出产出的铅 860
炉顶下的负压(千帕) 3.0
电热苏打-复原进程是直接出产具有铅和锑回收率高的铅锑合金的有用办法。一起,从质料的综合使用来看,该工艺不能确保充沛提取固若金汤和锡。铜随渣-冰铜的丢失约为91%,锡的丢失约为8~10%。
废钢标准
2019-03-12 11:03:26
国家废钢标准为2004年发布,原1996年废钢标准也一起吊销。
由国家质量监督查验检疫总局、国家标准化办理委员会发布的新修正的《废钢铁》国家标准(GB4223-2004)经同意发布,于2004年12月1日起正式施行。
其间: 废 钢的碳含量一般小于2.0%,硫含量、磷含量均不大于0.050%。 非合金废钢中剩余元素应契合以下要求: 镍的质量分数不大于0.30%、铬的质量分数不大于0.30%、铜的质量分数不大于0.30%。除锰、硅以外,其他剩余元素含量总和(质量分数)不大于0.60%。 废钢按其用处分为熔炼用废钢和非熔炼用废钢。熔炼用废钢
熔炼用废钢按其外形尺度和单件分量分为5个类型: 重型废钢、中型废钢、小型废钢、统料型废钢、轻料型废钢。
各类型废钢尺度的正误差应不大于10%。 熔炼用废钢按其 化学成分分为非合金废钢、低合金废钢和合金废钢。非合金废钢、低合金废钢参照GB/T 13304的规矩。 熔炼用合金废钢按化学成分及首要合金元素含量分为6个钢类46个钢组,见附录B。 非熔炼用废钢不再分类,由供需双方协议断定。废钢铁标准(GB4223-2004)由国家质量监督查验检疫总局、国家标准化办理委员会发布的新修正的《废钢铁》国家标准(GB4223-2004)经同意发布,于2004年12月1日起正式施行。
现将部分内容摘要如下:4 分类废钢铁分为废铁和废钢两大类。4.1 废铁4.1.1 废铁的碳含量一般大于2.0%。优质废铁的硫含量(质量分数)和磷含量(质量分数)别离不大于0.07%和0.40%。普通废铁、合金废铁的硫含量(质量分数)和磷含量(质量分数)别离不大于0.12%和1.00%。高炉添加料的含铁量应不小于65.0%。4.1.2 废铁按其用处分为熔炼用废铁和非熔炼用废铁。4.1.2.1 熔炼用废铁4.1.2.1.2 铁屑冷压块的密度不小于3000kg/m3。在运送和卸货时,散落的铁屑量不大于批量的5%,压块满意掉落性实验。4.1.2.1.3 经供需双方协议,也可直销表1规矩以外品种和尺度的废铁。4.1.2.2 非熔炼用废铁非熔炼用废铁不再分类,由供需双方协议断定。4.2 废钢4.2.1 废钢的碳含量一般小于2.0%,硫含量、磷含量均不大于0.050%。4.2.2 非合金废钢中剩余元素应契合以下要求:镍的质量分数不大于0.30%、铬的质量分数不大于0.30%、铜的质量分数不大于0.30%。除锰、硅以外,其他剩余元素含量总和(质量分数)不大于0.60%。4.2.3 废钢按其用处分为熔炼用废钢和非熔炼用废钢。4.2.3.1 熔炼用废钢4.2.3.1.1 熔炼用废钢按其外形尺度和单件分量分为5个类型,如表2规矩。4.2.3.1.2 各类型废钢尺度的正误差应不大于10%。4.2.3.1.3 熔炼用废钢按其化学成分分为非合金废钢、低合金废钢和合金废钢。非合金废钢、低合金废钢参照GB/T 13304的规矩。4.2.3.1.4 熔炼用合金废钢按化学成分及首要合金元素含量分为6个钢类46个钢组,见附录B。4.2.3.2 非熔炼用废钢不再分类,由供需双方协议断定。5 技能要求5.1 废钢铁有必要分类。5.2 废钢铁的单件外形尺度不大于1500mm,单件分量不大于1500kg。5.3 关于单件表面有锈蚀的废钢铁,其每面附着的铁锈厚度不大于单件厚度的10%。5.4 废钢铁内不该混有铁合金、有害物;非合金废钢、低合金废钢不该混有合金废钢和废铁;合金废钢内不该混有非合金废钢、低合金废钢和废铁。废铁内不该混有废钢。5.5 废钢铁表面和器材、打包件内部不该存在泥块、水泥、粘砂、油污以及搪瓷等。5.6 废钢铁中制止混有炮弹等爆炸性兵器弹药及其他易燃易爆物品。制止混有两头关闭的管状物、关闭器皿等物品。制止混有橡胶和塑料制品。5.7 废钢铁中不该有成套的机器设备及结构件(如有,则有必要拆解且压碎或压扁成不行复原状)。各利,形状的容器(罐筒等)应全部从轴向割开。机械部件容器(发动机、齿轮箱等)应铲除易燃晶和润滑剂的剩余物。5.8 废钢铁中制止混有其浸出液中有害物质浓度超越GB 5085.3中辨别标准值的有害废物。5.9 废钢铁中制止混有其浸出液中超越GB 5085.1中辨别标准值即pH值不小于12.5或不大于2.0的搀杂物。5.10 废钢铁中制止混有含量超越GBl3015操控标准值的有害物。5.11 钢铁中从前盛装液体和半固体化学物质的容器、管道及其碎片,有必要清洗洁净。进口废钢铁有必要向查验组织申报容器、管道及其碎片从前盛装或输送过的化学物质的首要成分。5.12 废钢铁中不该混有下列有害物;----医药废物、废药品、医疗临床废物;----农药和除草剂废物、含木材防腐剂废物;----废乳化剂、有机溶剂废物;----精(蒸)馏残渣、燃烧处置残渣;----感光材料废物;----铍、六价铬、砷、硒、镉、锑、碲、、、铅及其化合物的废物,含氟、、酚化合物的废物;----石棉废物;----厨房废物、卫生间废物等。5.13 废钢铁中制止搀杂放射性废物。废钢铁的放射性污染按以下要求操控:----废钢铁的外照耀贯穿辐射剂量率不能高于0.46μSv/h;----废钢铁的。表面放射性污染水平检测值,不能超越0.04 Bq/cm2;β表面放射性污染水平检测值,不能超越0.4 Bq/cm2;----废钢铁中放射性核素比活度制止超越GBl6487.6的规矩。5.14 废钢铁各查验批中非金属搀杂物(不含非金属有害废物)的总分量,不该超越该查验批分量的千分之五。5.15 废旧兵器由供方作技能性的安全查看后按有关规矩处理。5.16 非熔炼用废钢铁运用后,其制品的性能指标满意有关标准的规矩,且不该对大众人身安全、产业、环保等形成危险或损害。6 查验项目与查验办法6.1 查验项目6.1.1 单件的外形尺度、分量和厚度的抽样查验。6.1.2 搀杂物及清洁性的查验。6.1.3 有害物及放射性物质的查验。6.1.4 硫、磷、铬、镍、钼、钨、锰、铜等化学元素的检查查验。6.1.5 打包件的掉落实验。6.1.6 废钢铁中其他项目的查验,依据到货批的实际情况,进行检查。6.2 查验办法6.2.1 查验所需样品的取样办法由供需双方洽谈断定。6.2.2 本标准5.8条查验按GB 5085.3的规矩进行。6.2.3 本标准5.9条查验按GB 5085.1的规矩进行。6.2.4 本标准5.10条的查验,按GBl3015的规矩进行。6.2.5 本标准5.13条的查验,按SN 0570的规矩进行。6.2.6 废钢样品的制样按GB/T 222-1984的规矩进行,废铁样品的制样按GB/T 719的规矩进行。化学分析按附录A规矩的或通用办法进行,但裁定分析时应按附录A有关规矩进行。6.2.7 对废钢铁的品种、清洁性、搀杂物、外形尺度、单件分量等项目,运用衡器、卷尺等查验手法或其他检测手法进行测定。6.2.8 打包件(压块)的掉落实验:在一个查验批中随机抽取5块打包件(压块)。打包件(压块)从高于金属板或水泥板1.5m处落下三次(自由落体),此刻打包件(压块)不该有大于其分量10%的掉落物。7 查验规矩7.1 需方可对每批废钢铁进行检查查验。可将一个交货批分红多个查验批进行查验。7.2 每个查验批应由同一类型、类别以及同一钢组或牌号(合金钢)废钢铁组成。7.3 各交货批废钢铁查验后,应扣除搀杂物、铁锈等杂质的分量。8 运送和质量证明书8.1 发运装车(船)时,每车厢(船舱、集装箱)一般只允许装载同一类型(类别)、同一钢组(合金钢)的废钢铁。为补足车厢(船舱、集装箱)载重时,也可装两个以上类型(类别)、钢组的废钢铁,但应阻隔,作出清晰标识,不该混放。8.2 废钢铁交货时,每个交货批有必要附有质量证明书,进口废钢铁需一起附有放射性查验证明书。质量证明书中应注明:供方称号、废钢铁的类型类别、每批分量,合金废钢还需注明钢组以及相应的化学成分等。
电炉生产镍铁技术
2019-01-04 09:45:48
1)采用镁质材料筑炉,在筑炉过程中要配好粘合剂并控制用量;捣打时,每一层铺料厚度为40—60mm,并用风镐捣打紧密,捣打完扒毛后,方可铺料捣打下一层;在烘炉过程中要把水分烘干。
2)采用炭砖筑炉,改炭砖平放为竖放,并在炭砖中部打眼用小石墨电极连接成整体,砖缝用炭质材料填充,同时用风镐捣打紧密。
3)在筑炉时,两个出铁口要有一定高差,生产前期使用高位出铁口,当炉底侵蚀到一定程度时使用低位出铁口。
4)控制配碳量和提高二次人炉电压,控制电极下插深度,防止炉底侵蚀。
5)控制好渣型,尤其是渣中的FeO含量,其既影响渣的导电性,又影响渣的熔点,最终影响镍的回收率。
6)镍矿在人炉前需要预先经过干燥脱水,在干燥和预热时控制好配碳量和水分,有利于减少翻渣事故发生,同时也有利于因翻渣引起的电极事故。
7)电极压放时,要勤放、少放;有条件的也可改用炭素电极或石墨电极。
8)加强冶炼操作,勤观查,勤调节。
电炉熔炼的产物
2019-01-07 17:37:58
一、铜锍
不同铜锍品位及其组成见表1。
表1 不同铜锍品位及其组成,%序号CuFeSO211057.6625.86.5422049.3225.35.383304124.84.2144032.6824.33.0254528.51242.4965024.823.31.9076016.2123.090.7
注:本表资料系按X·K阿维齐祥算出的理论组成。
铜锍品位与原料中Cu/S有关。铜锍品位以40%~45%为适宜。品位过高时,铜锍中常含有一些金属(特别是加还原剂熔炼时)。铜锍品位高达55%以上时,会在炉底形成钢-铁合金,这种合金含硫低于5%,铜、铁含量在90%以上。近年来云冶铜锍品位与原料中Cu/S之关系见表2。
表2 云冶铜锍品位与原料中Cu/S之关系年份198119821983198419851986198719881989199019911992采样中Cu/S1.411.321.221.321.361.231.331.331.291.371.471.63铜锍品位,%47.0446.2344.594142.2343.2844.0943.3145.1041.9242.8442.38
云冶生产初期,原料中Cu/S较高,铜锍品位亦较高。近年来,原料中Cu/S基本稳定在1.2~1.3,铜锍品位稳定在42%~45%。
小型工厂,铜锍品位可以根据吹炼设备情况适当调整。
铜锍对金的捕集率为95%~97%,银为92%~97%。
铜锍具有良好的导电性,它受铜锍成分和温度的影响波动很大,液态铜锍的导电率一般为100~200Ω-1 ·cm-1,约为液态渣的400~800倍。
云冶铜锍化学成分见表3。
表3 云冶铜锍化学成分,%生产时间CuFeS渣Cu/铜锍Cu投产至60年代末53.8220.1521.370.870年代45.125.7322.430.9380年代44.7027.8622.930.871990~1992年42.3825.9123.310.94
国外工厂炉渣成分和铜锍品位见表4。
表4 国外工厂炉渣成分和铜锍成分,%厂别炉渣成分铜锍品位CuFeOCaOMgOAl2O3SiO2苏力切尔玛0.5445~5533~3625罗斯卡0.3838~424.1~4.52.98.137~38.545今贾0.63493.96.536.230皮尔多普0.5~0.750~5533~3630
二、炉渣
渣型应根据原料中各种成分合理选择,一般渣中主要成分为FeO+SiO2+CaO+MgO+Al2O3约为97%~98%;良好的电炉渣型SiO2+ FeO一般为75%~80%,其中SiO2=38%~40%,FeO32%~40%, SiO2∶FeO=1~1.2左右,硅酸度应为1.45~1.6。
云冶炉渣成分见表5。
表5 云冶炉渣成分,%年代CuFeOSiO2CaOMgOAl2O3SiO2/ FeO投产至60年代末0.4317.1639.6619.3310.436.742.3170年代0.4333.1536.7810.656.374.721.1180年代0.3937.8938.996.414.095.161.031990~1992年0.4039.3239.114.512.974.61
炉渣应是熔点低、粘度小、密度低及热含量低。
液态炉渣的电导率对电炉熔炼有重要意义,电炉渣的电导率主要取决于炉渣温度和炉渣成分。电导率随着氧化亚铁含量的增加而升高,随二氧化硅增加而降低。炉渣中氧化亚铁与电导率的关系见图1。图1 炉渣中氧化亚铁与电导率的关系
一般有色冶金炉渣在1350℃时电导率为0.1~2Ω-1·cm-1。
高钙镁炉渣电导率在1300~1320℃时为0.058~0.16Ω-1·cm-1;保加利亚皮尔多普厂高铁炉渣在1160~1250℃时,电导率为0.052~0.3Ω-1·cm-1。
炉渣的物理化学性质的测定数据列于表6、表7。
表6 高铁炉渣的物理化学性质测定数据(一)编号炉渣成分,%熔点℃热含1200℃ kJ/g粘度,10-1Pa·sSiO2FeOAl2O3CaOMgO1250℃1200℃1160℃134.0952.754.643.161.0710901.471.22.54.6236.3448.156.842.381.2310051.211.62.82.2337.7650.214.391.461.3511001.221.72.84.0440.0841.412.962.091.1011202.081.72.95.7542.1139.414.181.791.2511602.102.65.421.8
续表6 高铁炉渣的物理化学性质测定数据(二)编号电导率,Ω-1cm-1表面张力,N/m密度,t/m31250℃1200℃1160℃1250℃1200℃1160℃1250℃1200℃1160℃10.30.280.210.3500.3670.3983.353.433.5020.190.110.090.3300.3430.3603.153.283.3530.270.220.180.3270.3350.3483.253.323.4040.170.140.120.3050.3160.3243.153.203.3050.0060.0610.0520.2840.2860.2952.783.053.20
表7 高钙镁炉渣的物理化学性质测定数据(一)编号炉渣成分,%熔点℃热含1250℃ kJ/g硅酸度密度,t/m3FeOSiO2CaOMgOAl2O3111.5140.2217.3811.5510.4612001.441.763.27215.3741.7517.0911.399.7312201.391.733.32317.8443.2515.819.749.1611801.321.863.36419.6241.4915.775.569.1511701.431.743.55521.8639.2815.699.049.0911401.421.623.45611.4336.7620.8813.1711.3012001.411.423.29718.0934.4817.5211.7710.3612001.431.333.43820.0034.6719.2911.4610.2111701.331.323.46922.5133.7516.4710.4110.9311701.511.303.561024.6432.0315.7510.1810.3211801.381.223.571110.8441.8420.8012.408.3312101.511.493.261216.3243.1817.0911.218.0912201.431.783.331318.9942.4015.9210.957.4311701.471.723.371412.5438.2221.5913.389.1812001.511.203.291517.1337.7618.6612.638.5411951.481.423.421619.8537.4718.6111.658.0711751.391.373.411723.3835.3117.1612.757.5511701.501.193.51
续表7 高钙镁炉渣的物理化学性质测定数据(二)编号粘度,10-1Pa·s电导率,Ω-1cm-11260℃1280℃1300℃1320℃1330℃1340℃1260℃1280℃1300℃1320℃1330℃1340℃133.426.221.017.215.714.80.0440.0500.0580.0680.0780.10231.616.012.49.4329.013.810.79.49.19.00.0760.1020.1230.1380.1460.160416.011.37.85.24.43.60.0760.0830.1000.1280.1700.215517.414.010.98.67.97.20.0650.0710.0880.1390.193635.025.020.016.214.513.00.0480.0520.0540.0550.056720.814.510.98.88.30.0790.0980.1200.16587.45.03.62.60.0840.0940.1120.1430.165920.912.37.95.65.04.80.0820.0980.1230.1460.1651013.04.94.23.43.22.81116.012.09.57.67.06.41214.611.910.108.58.07.5139.88.57.26.05.44.81423.015.810.67.67.06.60.0760.0850.1101542.026.017.712.310.38.50.0840.112165.64.43.32.52.21.90.1320.172177.05.64.53.83.73.60.1020.1260.160 三、烟气
在理论上电炉熔炼每吨炉料产生烟气110~150m3,在熔炼烧结块时可低至45m3,实际上,炉顶密封不好时吸入大量空气,一般烟气量可增大到1000~1800m3/t炉料。在密封良好的情况下,实际可达500~600m3/t炉料。
烟气温度:炉顶密封不好时为170~250℃,采用密封炉顶时可达200~350℃,一般实际为300~500℃,开炉停炉或生产不正常时,温度可达800℃以上。
烟气量实例见表8。
云冶电炉烟气成分、数量见表9。
表8 烟气量实例项目依玛特拉罗斯卡茵斯皮雷森烟气量,m3/t炉料3000800~900638SO2,%2.01.0~1.24.0~6.0
表9 云冶电炉烟气成分、数量烟气成分,%电收尘进口烟气量
m3/t料电收尘出口烟气量m3/t料进口含尘g/m3出口含尘g/m3收尘效率%漏风率%SO2CO2COO2其它2.5~3.53.5~50.1~0.214~16~7573~625650~73030~400.5~194~9810~12
四、烟尘
烟尘的产出率和性质与炉料性质、物料准备、排烟系统的抽力、烟气速度、加料条件等有关。熔炼块矿时烟气含尘可少到0.2~1.3g / m3,烟尘率约为0.03%~0.05%;熔炼粉料时,烟气含尘量可高达60~120g /m3,烟尘率约为8%~10%;粒料作业时含尘量为40~60g/m3,烟尘率为6%~8%。电炉烟尘成分实例见表10。
电炉烟尘粒度组成实例见表11。
表10 电炉烟尘成分元素CuAsPbZnCd%11.173.861.351.890.06
表11 电炉烟尘粒度组成实例,%取样点粒度,μm-1.43+1.43+2.86+4.29+5.72+7.15+8.56+10.01+11.44+12.87旋风收尘器入口24.930.895.7812.6012.1717.2210.238.0023.564.60电收尘器入口12.120.273.6019.4621.5023.108.004.063.873.42电收尘器入口10.7314.0225.1016.979.2010.406.812.102.102.57电收尘器出口12.301.765.2715.2215.0821.5211.576.595.275.42电收尘器出口8.863.6213.8528.0014.3015.706.134.542.502.50
五、某些元素的分布
各种元素在电炉熔炼产物中的分布于炉料性质、炉渣成分和熔炼方法有关,电炉熔炼元素分布实例见表12。
表12 电炉熔炼元素的分布实例,%元素名称铜锍炉渣烟尘Pb82~873~610~15Zn65~807~2312~14Cd65~75约220~25Au90~98.50.3~6.00.1~1.0Ag90~990.3~6.00.1~1.0Re30~6035~70Se30~6020~4020~30Te50~7020~408~14
不锈废钢
2019-03-18 11:00:17
冶炼不锈钢,一般采用不氧化法、氧化法和返回吹氧法冶炼工艺,而采用返回吹氧法,用不锈钢废钢直接进行冶炼,则成本低,效益高。如今在国外一些发达国家,大多采用返回料吹氧法冶炼不锈钢。但这种冶炼方法所用的不锈钢废钢约占原料总量的50-80%,若没有不锈钢废钢资源,就成了无米之炊 在江浙、广东等地区,一些小企业采用感应炉熔化废钢作为原料生产不锈钢管、棒材,一些企业以不锈钢材为原料进一步再加工生产不锈钢带、焊管、线、丝等产品,也有一些小加工厂以废不锈钢可利用的边角料生厂弯头、螺丝、螺杆、化工配件等。看你到底是什么用了,一般就机械加工而言,普遍认为不锈钢硬度高,强度大,表面处理(镀铬等)较麻烦。 不锈钢种类繁多,按金相组织划分时,有马氏体型、奥氏体型、铁素体型和双相型不锈钢等。按化学成分划分时,可分为铬不锈钢和铬镍不锈钢两大系统,分别以Cr13和Cr18Ni8钢为代表,其他的不锈钢都是在这两种钢的基础上发展的。 所以看你加工到底是怎么用,比较起铁来说,不锈钢的加工要困难点中国用于冶炼不锈钢的我国,镍、铬资源贫乏,过去我国的不锈钢应用领域远没有现在这么广,不锈钢产量也小自给率不足30%,主要依靠进口,每年产生的不锈钢废资源很少,不锈钢废钢及镍、铬等资源的供需矛盾日趋突出。在我国不锈钢废钢更为紧缺,每年几乎没有多少不锈钢废钢可以回收。二是不锈钢使用寿命较长,在数年乃至几十年内不会报废。因此,不锈钢废钢则更少。因此我国的不锈钢废钢,有很大一部分依靠进口。 不锈废钢的分类和不锈钢的用途密切相关,主要有以下几个来源: 1. 生活废料: 日常生活中使用过的报不锈废钢器具等(旧料),我国从日本、韩国进口的不锈废钢大部分是属于此类,只能回炉做炉料使用。 厨房设备、餐具等,主要钢种是SUS304、430。 食品加工行业主要制造食品加工机械及容器,如粮食、啤酒饮料、乳品加工设备、速冻冷藏设备等主要钢种是304、321、1cr13及抗菌型铁素体不锈钢。 2. 工业废料: 工业生产过程中剪切、冲压下来的边角料(新料)包括一些可直接利用的管、棒、板等,数量较少。城市景观工程主要以不锈钢焊管为主,车行业主要是汽车排气管用铁素体不锈钢409,其它行业如城市供水工程、环保及石化、电力行业,也有不少不锈废钢产生。油、气、酸的泵及容器是大量产生不锈废钢罐、管、泵、阀的大市场。主要钢种为18/8不锈钢。 由于不锈废钢品种规格繁多,因此需加强对各类合金废钢的分选、加工和仓储的管理。 面对废钢吨钢消耗逐年下降、铁矿石消耗大幅增长的局面,中国废钢铁应用协会断言,未来电炉炼钢将逐步替代转炉炼钢的优势,废钢炉料亦将逐步替代铁矿石的主导地位,随着中国铁矿石资源短缺且世界铁矿石资源有限,钢铁增长过程中应:少吃矿石、多吃废钢。 据日前召开的「2007年第三届国际金属回收市场及技术论坛」提供的资料,进入21世纪以来,中国废钢铁应用呈现以下特点: 一、粗钢产量大幅增加,6年增长2.9亿吨,增幅225.9%,平均每年递增4800万吨,进入钢铁产量的高增长期。 二、废钢消耗总量大幅增加,6年增长3800万吨,增长幅130.14%,平均每年递增633万吨,但低于粗钢增长速度,显示废钢资源供应不足。 三、废钢吨钢消耗逐年下降,6年下降67kg/吨钢,降幅29.52%。而铁矿石消耗出现大幅增长,且远大于废钢消耗的增长率,意味着以铁矿石的高消耗,弥补废钢资源偏紧的资源配置倾向,发展令人担忧。 对此,中国废钢铁应用协会直指,“少吃矿石,多吃废钢”是历史发展的必然。而在阐述上述观点时该协会强调,《钢铁产业发展政策》明确指出要“逐步减少铁矿石比例和增加废钢比重”。减少原生资源的开采,增加循环资源的利用,实现资源合理配置,为实现钢铁工业可持续发展的重大战略决策。该协会进一步解释表示,据大陆钢协近期公布的资料显示,到2001年全球探明可开采铁矿石资源储量1400亿吨,储藏量基础3100亿吨。而近10年来,全球铁矿石产量每年在10亿吨以上,2005年全球粗钢产量11.29亿吨,消耗铁矿超过13亿吨,可供开采约100-200年。 到2004年大陆铁矿资源基础储量为219.7亿吨,可开采保有储量118亿吨。大陆铁矿石每年开采量将超过6亿吨,照此计算,在现行开采技术条件下,中国的铁矿石开采期只有20-40年,形势相当严峻。 铁矿石为原生资源,原生资源是有限的,不可再生的,终有枯竭的时候,而资源危机已成定势,如何节制开采、科学调整资源配置势在必行。废钢铁为钢铁生产中唯一能替代铁矿石的原料,最大限度地开发、应用废钢铁资源,成为缓解铁矿石资源危机的重要途径。随着全球经济发展,以未来的钢铁工业格局而言,电炉炼钢将会逐步替代转炉炼钢的优势,废钢炉料亦将逐步替代铁矿石的主导地位,预料在本世纪内,废钢铁将成为钢铁工业的重要支撑产业,而少量的对铁矿石的开采和应用将作为资源自然消耗的补充。 中国废钢铁应用协会表示,中国要加快工业化进程,世界要加快全球经济的发展,钢铁工业将保持持续增长,资源消耗的增加是必然的。但大陆铁矿石资源短缺,世界铁矿石资源有限,若沿袭传统的发展模式,以大量原生资源的消耗来实现工业化是难以为继的,为减少钢铁增长对铁矿石的依赖,就必须大力发展回圈经济-少吃矿石、多吃废钢,以促进资源的高效利用、全球的生态平衡。
镍电炉结构(一)
2019-01-25 15:49:32
大型铜镍太熔炼电炉一般采用矩形电炉,它是由电炉本体和附属设备所组成。 1)炉体 矩形电炉炉体主要组成部分有:炉基和炉底、炉墙、炉顶、钢骨架、加料装置、熔体放出口、排烟系统、测温装置和供电系统等,如图所示。 (1)炉基和炉底。矿热电炉炉底温度较高,需要良好的通风冷却,所以电炉基由若干个(国内某厂为96个)耐热钢筋混凝土支柱组成,支柱一般高于1.7m,便于空气流通冷却和观察炉底情况。支柱地表面向安全坑一侧倾斜,以保证炉子发生事故时,高温熔体顺利流入安全坑内。支柱上方铺设成对的工字钢梁,其上铺设一层厚钢板(国内某厂使用40#工字钢,钢板厚度为40mm),钢板上砌筑镁质的粘土质耐火砖炉底,炉底为反拱形,以防止熔体侵入后,炉底砌体上浮。炉底反拱取每米炉宽升高100~200mm。炉底主要由粘土砖层与镁砖构成,两层之间留有30~50mm镁砂层。[next] (2)炉墙。炉墙的外壳一般采用30~40mm厚钢板制成,内砌耐火砖。由于电炉高温度区集中在电极附近,所以熔池区炉墙常用镁砖或铬镁砖砌筑,而最外层耐火粘土砖,渣线以上全用耐火粘土砖,炉墙砖均为湿砌,墙体留有一定的膨胀缝。为了延长炉寿命,近年来有些工厂没炉体四周外炉墙安装冷却水套,效果很好。由于炉子两端没有熔体放出口,炉衬易损坏,故端墙较侧墙厚。两侧墙设有工作门及防爆孔,便于开停炉、观察炉况的排泄炉内高压气体之用。 (3)炉顶。因矿热电炉的炉膛空间温度不高,拱形炉顶一般用300mm厚的楔形耐火高铝砖砌成。炉顶沿炉子中心线设有电极插入孔、转炉渣返回孔。中心线两侧还设有加料孔、排烟孔。由于炉顶开洞较多,这些部位用异形砖筑。先将炉顶砖砌好后,随即浇铸灌高铝质钢纤维低水泥浇注料。 2)钢骨架及紧固装置 为了使炉墙具有必要的刚性,在砖体的外面包一层厚30~40mm的钢壳板。围板外面用骨架加固。 电炉炉底的底板为带筋钢板,安在底梁上,底梁支撑在柱状基础上。 电炉内架由许多立柱组成,立柱相互之间的距离为1.5~20.m。两侧相互对立的柱子用拉杆拉紧,拉杆分别从炉顶上面和炉底下面通过,拉杆端头用螺母和销紧螺母达压紧在夹持立的柱的横梁上,横梁和螺母之间装有弹簧,以缓冲炉墙和炉顶受热膨胀时所产生的水平推力,拉杆是用直径50~70mm的圆钢制作的接头连接。 3)排烟系统 为使烟气从炉膛均匀排出,通常在炉顶设有多个烟孔,其配置视电极排列而定。烟气经烟道、旋风收尘器、电收尘器一系列净化设备后,根据烟气SO2浓度高低送去制酸或排空。 4)电炉加料装置 物料是从炉顶上的矿仓加到炉子 里去的,一般是利用炉顶两侧的刮板运输机,将物料运至小料仓,然后经加料管加到炉膛里,物料给料和配料,采用电振器来进行。 5)熔炼产物放出口 在炉子的一端设有2~4个放低镍锍口,位于炉底以上200~500mm的不同标高上。电炉熔炼的低镍锍,通常是稍许过热的(1200℃)。当放出过热低镍锍时,放过热镍锍时,放出口附近的砖体为低镍锍所浸透,而放出口本身因受蚀而直径变大。为了使放出口具有一定的直径,在孔的外面装有耐火衬套。耐火衬套是用耐高瘟铬镁质材料组成,也有用石墨衬套的,其孔径为30mm。衬套嵌入可拆卸放出口的锥孔中,要使衬套孔的中心和砖体上的低镍锍口中心相一致,使衬套对正中心并固定起来,所用的工具是最大的铸铁环、长箍和楔子,可拆卸的放出口板用连板或楔子固定在炉子外壳上。[next] 放渣口一般为2~4个,设在炉子另一端上,距离炉底的高度为1450~1750mm。放渣口的标高低于渣面,是渣含镍最低的部位。 6)测温装置 为了便于观察炉子的工作情况,在炉体的炉墙和炉顶等不同部位、不同熔池深度分别安装有热电偶,以测量指示各部位温室度变化情况。 7)设备的冷却与知短网防尘 (1)炉底冷却。电炉炉底和导电铜排设有通风冷却高施。电炉炉底由于镍锍 过热而有可能造 成炉底渗漏镍锍,采用处部强制通风进行冷却。每台电炉各用一台风机供风。炉底风机的运行视炉底温度高氏而定。当温底正常(400~500℃),可以不通冷却风;如温度过高(大于600℃),则必须通风。 (2)供电短网(铜排)冷却。由变压侧引出的导电铜排有两种型式:一种是水冷式管状铜管采用循环水冷,另一种是片状铜排采用通风冷却。片状铜排外部装有密封罩,因此必须对导电铜排加以密封,以防止因粉尘堆积而造成片间知短路。密封罩用厚1.5~2mm钢板制成,并用炉底冷却风向罩内供风进行冷却。 8)电极装置 为了向电极供电,每根电极都有一套夹持、供电及使电极活动的装置。电极活动的装置。电极夹持的构件主要为铜瓦,并通过铜瓦向电极供电。铜瓦为铜质弧形中空或预埋铜管冷却的长瓦状水套,其弧形与电极的外圆相吻合.在同一水平上沿电极壳环抱配置,一般为6~8块。电极的上下活动机构可分为机械式与液压式两种,机械式的方法是通过卷扬设备带动电极上下活动,液压式的方法是通过固定于楼板上的液压缸的柱塞升降,带动固定于电极的压放同样可以通过机械的方法和液压的方法来完成,前者通过钢带的续接,而后者是通过多组液压设备来完成。金川公司电炉的电极压放系统一直是采用洗衣液压方式,由以前的四组上下摩擦环、中间缸、二道 摩擦环及铜瓦楔紧起缸来完成,减少了中间缸,使设备更为简单。电极装置(包括夹持系统、升降压放系统)一个重要的问题是电极的绝缘,应给予充分的注意。应保证在任何已情况下绝缘都安全可靠。
电炉熔炼的技术经济指标电炉电耗
2019-01-07 07:51:21
一般电炉熔炼耗电量占粗铜系统用电量的70%~80%,电炉用电费用占粗铜加工费的55%左右。
电炉能源的构成,电力消耗分配、电炉电耗在全部生成过程中所占比例的实例分别见表1至表3。
表1 电炉能源构成实例项目能耗,kg标煤/t铜分配,%电力1009.499.9焦炭0.70.07木柴0.30.03合计1010.4100.00
表2 电炉电力消耗分配实例类别分配,%备注燃烧用电97.07炉料熔化及设备照明用电动力用电1.88压缩风用电0.15冷却水用电0.90合计100.00表3 电炉电耗在全生产过程中所占比例实例生产工序耗标煤,kg /t铜电耗,kW·h/t铜比例,%备料0.053127.203.31电炉熔炼0.9732335.2060.77转炉吹炼0.1843211.24火法精炼0.091218.45.68电解精炼0.246590.415.36工序损耗0.058139.23.64合计1.6013842.4100.00
电炉熔炼的电耗在生产加工费中大致为65%~75%。云冶1986年铜锍中每吨铜的加工费构成见表4。
熔炼不同物料的理论电耗和实际电耗见表5。
熔炼不同物料的电能单耗见表6。
云冶电炉熔炼耗电量见表7。
国外铜电炉熔炼电能消耗实例见表8。
表4 电炉每吨铜锍中铜的加工费构成项目元/t铜锍中铜分配比,%电费133.9267.64水费8.414.25折旧费20.8710.54工资2.601.31运输费8.554.32管理费13.844.99材料费9.814.95合计198.00100.00
表5 熔炼不同物料的理论电耗和实际电耗对照表物料种类成分,%每吨干料的理论消耗量实际消耗量
kW·h/tGJ/tkW·h/t硫化铜精矿Cu33
S281263351440铜焙烧矿(540℃)Cu30~33
S16~19703~740195~206285沉淀铜Cu92
Fe6949264500硫化铜镍精矿1158322400
注:每吨干料的理论消耗量kJ/t的数据相当于kW·h/t数据。
表6 熔炼不同物料的电能单耗物料种类入炉状况电能单耗,kW·h/t炉料铜硫化物精矿制粒(经干燥)400~450铜硫化物精矿焙烧370~400铜硫化物精矿热焙砂320~340铜硫化物精矿湿精矿(含水7%)460铜氧化物精矿焙烧580铜闪速炉渣熔渣贫化处理60~80
表7 云冶电炉熔炼耗电量年代电炉功率
kVA炉料准备情况炉渣成分,%吨炉料耗电量
kW·hSiO2FeOMgOCaOAl2O3投产至60年代末16500湿度为3%~5%干燥精矿球粒干燥焙烧矿39.6617.1610.4319.536.747211970~1977年
1978~1979年16500
30000球粒干燥焙烧矿36.7833.156.3710.654.7246180年代30000球粒干燥焙烧矿38.9937.894.096.415.164211990~1992年30000球粒干燥焙烧矿39.1139.322.974.514.6436
注:1、1960~1964年原料为含水3%~5%的干燥精矿,1965年后为球粒干燥焙烧矿;2、1960~1964年电耗平均值为812.4kW·h/t料,1965~1969年电耗平均值为598.8 kW·h/t料;3、1961年平均电耗达928 kW·h/t料。
表8 国外铜电炉熔炼电能消耗实例厂名电炉功率
kVA炉料特点炉渣成分,%耗电量
kW·h/t炉料SiO2FeOMgOCaOAl2O3苏利切尔玛3000生精矿(含水8%),石英石,返料,液态转炉渣33~3645~55620~700罗斯卡12000650~700℃焙烧矿50%,干燥精矿50%37~38.538~422.94.1~4.58.1320布利赫勒克3000焙烧矿70.5%,石英石17%,石灰石8.5%,返料3%,还原剂焦炭6%~7%30~3240~458.10520~667今贾5500生精矿(含水7%~7.5%)富矿石英石返料36.3493.96.5400~417皮尔多普24000550~600℃焙烧矿、返料、液态转炉渣33~3650~55400阿纳康达36000焙烧矿+返料230茵斯皮雷森51000干精矿(含水0.1%~0.3%)300~350杰兹卡兹干5000回转窑干燥粒料500马费利拉36000回转窑干燥粉料370~410
影响炉料耗电量的主要因素有:
1、炉料的化学成分对耗电量的影响:炉料中钙、镁的碳酸盐在熔炼过程中分解,吸收大量热能,加之产生的气体与炉料接触时间较短,不能与炉料充分热交换而随烟气带走大量热能。仅碳酸盐分解一项可节省的电量,计算表明:电炉炉料氧化钙下降1%,耗电降低5~6kW·h/t料;氧化镁下降1%,耗电降低4kW·h/t料。
2、炉料大量难熔脉右时,会增加耗电量,通常脉石是氧化镁、氧化钙、氧化硅。
云冶生产初期,MgO+CaO含量达36%~42%。放渣温度为1340~1380℃,低于1320℃则无法放出。这种炉渣不仅放出温度高,热焓也随氧化钙含量升高而增高。例如炉渣含CaO21%,MgO13.37%,SiO243.01 %,Fe4.61%,A12O310.8%,热焓为1884kJ/kg,电耗一般为600kW·h/t,最高达928kW·h/t。
当炉渣中含GaO+MgO大于40%时,热焓达2010~2093kJ/kg,温度高、热焓大的炉渣,不仅本身带走大量的热,而且使铜锍过热,在放出时带走大量的热,故耗电量显著增加。炉渣含MgO与耗电量的关系实例见图1,图2为炉渣中MgO和CaO的含量与耗电量的关系实例。图1 炼铜电炉炉渣中氧化镁含量与耗电量的关系实例图2 铜电炉炉渣中氧化镁和氧化钙的含量与耗电量的关系实例
3、炉料的物理性质对耗电的影响:电炉熔炼焙烧矿或粒矿比熔炼生精矿,尤其是湿精矿耗电量低,1kg水分在炉中蒸发、过热约耗电1~l.5 kW·h。
云冶的实践证明,仔细准备炉料,可显著降低耗电量。炉料物理性质与电耗的关系实例见表9。
表9 炉料物理性质与电耗的关系实例炉料特点耗电量kW·h/t炉料干燥粉料722球团粒焙烧料400~450(1970年后)600℃焙烧矿440生精矿600
多年来云冶为了阵低耗电量,提高床能率,采用粒矿入炉,熔炼粒矿具有下列优点:
(1)料坡可以控制。电极插入渣层深度可达700~900mm,炉顶温度低,热效率高。
(2)烟气量可以减少。
(3)生产能力可以达到6~8t/m2,单位功率100~500kV·A/m2。
当加料量不变时,炉料温度每升高l0℃,电耗降低约3kW·h/t料。炉料温度对耗电的关系见表10。
表10 炉料温度对耗电的关系炉料温度,℃冷料100200300400500600700耗电量系数10.950.930.870.8550.820.780.75
(4)作业条件对炉料耗电量的影响:料坡能否形成以及料坡的状况对耗电也有影响。料坡透气性好,则烟气与炉料热交换好,烟气温度低。透气性不好,水分高的炉料往往产生塌料现象,产生大量烟尘,炉顶温度显著升高。料坡高度与炉顶温度的关系见表11。
表11 料坡高度与炉顶温度的关系料坡高度,mm0100300500炉顶温度,℃800600400约250
电炉良好的操作条件下,炉顶温度一般可以保持低于400℃。
(5)炉子的密封程度对电耗的影响:密封较好的炉子,一般每吨炉料产生出的烟气量约为700~800m3,当炉子密封不严,炉料水分高或碳酸盐矿物含量大时,烟气量可达1000~1800m3/t料,从而增加电耗。云冶密封前后烟气量、烟气温度及耗电量见表12。
表12 云冶密封前后烟气量、烟气温度及耗电量实例时间烟气温度,℃烟气量,m3/h电耗,kW·h/t料密封前19640400512密封后20624200408
(6)熔池制度对电耗的影响:合适的电极插入深度,可以避免炉渣或铜锍过热,保持熔池正常的温度分布,促进炉料熔化,是操作上降低电耗的主要途 径。
(7)电炉容量和单位功率对耗电量的影响:对于同一炉子而言,提高单位功率有利于降低电耗。单位功率提高以后,可使热效率提高。
(8)床能率与耗电量的关系:在炉子额定功率负荷下,电炉的生产能力提高,单位炉料的耗电量相应下降。电炉床能率与耗电量的关系实例见图3,图4。图3 云冶电炉床能率与耗电量的关系图4 铜电炉熔炼床能率与耗电量的关系
1-熔炼生精矿(依玛特拉厂);2-熔炼焙烧矿(罗斯卡厂)
(9)电炉的作业率对电耗的影响:电炉作业率高,则电耗低。以云冶1986年某月平均电耗为426 kW·h/t料。如不计非生产时间,电耗为391kW·h/t料。由于非生产时间的影响电耗增加35kW·h/t料。表13列出该厂全月的非生产的时间及其对电耗上升的影响。
表13 非生产时间及其对电耗上升的影响实例项目非生产时间对电耗上升的影响h所占比例,%累计比例,%kW·h所占比例,%停料保湿21353512.525.57①设备事故1423588.323.21功率过高1226787.1220.34②例行停电1016945.9316.94其它461001.25.44合计6010010035100
①工序配合失调;②功率使用不当。
镍电炉的结构(二)
2019-01-25 15:49:32
国内外铜镍硫化矿熔炼电炉的技术参数见下表: 铜镍锍化矿熔炼电炉的主要参数项目国内某厂贝辰公司①北镍公司②诺里尔斯克公司汤普森公司炉膛内部尺寸(长×宽×高)/m21.5×5.5×4.022.74×5.54×5.111.2×5.2×4.023.2×6.0×5.127.4×6.71×3.96炉床面积/m2118.2512658139184电极直径/m11.11.21.21.22电极中心距/m33.233.23.76电极数目66366电炉变压器数目33133变压器容量(总容量)/kVA5500(16500)16667(50000)30000(30000)15000(45000)6000(18000)压侧线电压/V304~470800~475550~390743~551300~160功率强度/[kVA.m-2]14039651732498炉底砌砖镁砖粘土砖铬镁砖水泥、镁砖水泥镁质填料粘土砖铬镁砖渣线炉墙镁砖铬镁砖镁砖铬镁砖镁砖渣线以上炉墙砌砖粘土砖粘土砖粘土砖粘土砖粘土砖炉衬厚度/mm807 炉底(中心)/mm1250131092013101065出渣口端墙厚度/mm1040115092010401260出锍口端墙厚度/mm10401150121511501180侧墙厚度/mm80711506901040 炉顶厚度/mm300300300300950放锍口个数34343渣口个数34241渣口距炉底高度/mm13001750150014501525熔池深度/mm21000270025002700—镍锍深度/mm600~900600~800600~800600~900600~750电炉操作功率/kW 40000270004000012000-15000每根电极平均下降距离/(mm.d-1)250450~500400~500 吨炉料电能消耗/kWh600740780~815525~625400~430吨炉料电极消耗/kg5.7~7.84.12.92.8~3.41.75~1.9
①工作电压341V,电极深度700~1000mm;②工作电压500~550V,电极深度500~700mm。
镍矿及其电炉熔炼工业指标
2019-03-06 10:10:51
镍是一种银白色金属,首先是1751年由瑞典矿藏学家克朗斯塔特(A.F.Cronstedt)分离出来的。因为它具有杰出的机械强度和延展性,难熔耐高温,并具有很高的化学稳定性,在空气中不氧化等特征,因此是一种十分重要的有色金属质料,被用来制作不锈钢、高镍合金钢和合金结构钢,广泛用于飞机、雷达、、坦克、舰艇、宇宙飞船、原子反应堆等各种军工制作业。在民用工业中,镍常制成结构钢、耐酸钢、耐热钢等很多用于各种机械制作业。镍还可作陶瓷颜料和防腐镀层,镍钴合金是一种永磁材料,广泛用于电子遥控、原子能工业和超声工艺等范畴,在化学工业中,镍常用作氢化催化剂。近年来,在彩色电视机、磁带录音机和其他通讯器材等方面镍的用量也正在敏捷添加。总归,因为镍具有优秀功能,已成为开展现代航空工业、国防工业和树立人类高水平物质文化生活的现代化系统不行短少的金属。
一、镍矿质料特色
镍归于亲铁元素,在地球中的含量仅次于硅、氧、铁、镁,居第5位。在地核中含镍最高,是天然的镍铁合金。在地壳中铁镁质岩石含镍高于硅铝质岩石,例如橄榄岩含镍为花岗岩的1000倍,辉长岩含镍为花岗岩的80倍。
已知含镍矿藏约50余种,最首要的10多种含镍矿藏列于表3.10.1中。其间硫化物,如镍黄铁矿、紫硫镍铁矿等游离硫化镍形状存在,有适当一部分镍以类质同象赋存于磁黄铁矿中。而氧化镍矿中,镍红土矿含铁高,含硅镁低,含镍为1%~2%;硅酸镍所含铁低,含硅镁高,含镍为1.6%~4.0%。现在,氧化镍矿的开发利用是以镍红土矿为主,它是由超基性岩风化开展而成的,镍首要以镍褐铁矿(很少结晶到不结晶的氧化铁)方式存在。
Ni2+具激烈亲硫性。在岩浆结晶前期,在镍含量必定的前提下,镍在岩石中的富集程度取决于硫的逸度。当有满足的硫时,镍与硫及似硫物(砷、锑)构成含镍硫化物,在硅酸矿藏结晶前分离出来,构成镍的硫(或砷)化物(如针镍矿、磁黄铁矿、镍黄铁矿、红砷镍矿、砷镍矿、镍华)。一般所谓的镁硅镍矿(即硅酸镍矿)是从蛇纹石到相似粘土的水蛇纹石与皂石等镁矿藏的一系列混合物的总称,在氧化作用条件下,部分镁被镍置换。氧化镍和硫化镍相同,现在已成为镍的重要来历。
二、矿石工业要求
硫化镍矿床的矿石按硫化率,即呈硫化物状况的镍(SNi)与全镍(TNi)之比将矿石分为:
原生矿石:SNi/TNi>70%
混合矿石:SNi/TNi45%~70%
氧化矿石:SNi/TNi<45%
硅酸镍矿石按氧化镁含量分为:
铁质矿石:MgO<10%
铁镁质矿石:MgO 10%~20%
镁质矿石:MgO>20%
镍矿石的首要有害杂质有铜(在硅酸镍矿中)、铅、锌、砷、氟、锰、锑、铋、铬等。
硫化镍矿石按镍含量可分下列三个等第,特富矿石:Ni>3%;富矿石Ni 1%~3%;贫矿石:Ni 0.3%~1%。富矿石及贫矿石需经选矿,特富矿石可直接入炉冶炼。
硫化镍矿床遍及含铜,常称含铜硫化镍矿床。在镍矿体中铜无需独自拟定目标和圈定矿体,当镍档次达不到目标而铜可独自构成矿体时,其目标为按铜履行。除铜外,一般常伴生有铁、铬、钴、锰、铂族金属、金、银及硒和碲等,这些伴生有用组分的含量要求是:Pt、Pd为0.03g/t;Os、Ru、Rh、Ir为0.02g/t;Au为0.05~0.1g/t、Ag为1.0g/t、Co为0.01%;Se为0.0005%;Te为0.0002%。
在蛇纹岩、滑石等矿床中含有较高的镍,常有收回价值,在点评该类矿床时对镍要留意归纳点评。
三、矿业简史
古代埃及和我国都曾用含镍很高的陨铁作器物。我国公元前206年(汉朝)曾经就已把握了冶炼白铜(即铜镍锌合金,含Cu 52%~80%,Ni 5%~35%,Zn 10%~35%)的技能。
1865年法国加尼尔初次在新喀里多尼亚发现硅酸镍矿,今后被他命名为硅镁镍矿。1875年开端挖掘,因为当地燃料、熔剂缺少,劳力缺乏,矿石送往法国、德国冶炼,是国际上最早用鼓风炉炼镍的矿石。1856年A.P.萨尔得在加拿大定子午线时发现在萨德伯里区域罗盘读数显得偏斜,随后,墨累据此在邻近查看,从铁帽上(即克里斯顿矿体顶盘)采样分析发现含Ni 1%、Cu 2%的矿石,但因交通不便,未引起留意,至1883年才开展工作,于1886年发现克里斯顿矿床,然后发现了国际闻名的萨德伯里超大型铜镍硫化物矿床,1901年露采出矿。从此国际镍的冶炼
硫化镍精矿电炉熔炼
2019-01-08 09:52:37
这是一种在电炉中熔炼镍精矿生产低镍锍的炼镍工艺。电炉炼镍不需要燃烧燃料,因而烟气量小,有利于环境保护;电热熔渣,容量过热,可促进镍锍与炉渣分离,提高镍回收率。采用电炉炼镍技术,要求供电充足、电价相对便宜的地区。中国的两处电炉炼镍工厂的主要参数列于下表。炼镍电炉的主要参数项目金川有色金属公司吉林镍业公司项目金川有色金属公司吉林镍业公司炉床面积/m2118,13275电耗/(kWh/t料)550~630740床能率/[t/(m2·d)]3~4.53.6精矿品位/%(Cu)2.70.85熔炼镍回收率/%94.795.8/%(Ni)5.96.8炉渣含镍/%0.18~0.210.13低镍铳品位/%(Cu)6.60.7硫利用率/% 92/%(Ni)13.2~1714
金川公司一台功率为16.5MW的电炉,采用直径lm的电极6根,炉子为矩形,尺寸为22m×6m×4.2m。电炉有3个放锍口,4个放渣口。熔池深度2.1m,控制低铳层0.6-0.9m。入炉镍精矿制粒后,进行焙烧脱除部分硫,产出焙砂进电炉熔炼。精矿焙烧在沸腾焙烧炉中完成,沸腾炉床面积7.5m2,床能率140t/(m2.d),脱硫率65%,烟气SO2浓度7%左右,可就地生产硫酸。
电炉镍铁冶炼技术措施
2018-12-07 10:48:14
炼钢技术的进步,原来采用纯镍类原料冶炼合金钢和不锈钢的钢厂,从经济角度考虑已改用非纯镍类,因此,火法冶炼发展很快。处理红土镍矿的火法冶炼有两种冶炼方法,一种方法是用鼓风炉生产,另一种方法是电炉还原熔炼得到镍铁。由于鼓风炉冶炼是最早的炼镍方法之一,随着生产规模扩大、冶炼技术进步、炼钢厂对镍类原料要求的提高,以及环境保护要求的提高,这一方法已逐步被淘汰。采用电炉熔炼:(1)熔池温度易于控制,可以达到较高的温度,可处理含难熔物较多的原料,炉渣易于过热,有利于四氧化三铁的还原,渣含有价金属较少;(2)炉气量较少,含尘量较低;(3)生产容易控制,便于操作,易于实现机械化和自动化。因此,电炉熔炼是发展趋势。
由于红土镍矿熔点在1600~1700K之间,组成红土镍矿的矿物氧化物稳定性依次为:CaO>SiO2>Fe203>NiO,氧化物稳定性大小决定该元素的还原性大小,因此,红土镍矿中各氧化物在还原性气氛中还原顺序为:NiO>Fe203>SiO2>CaO。为了提高镍铁产品质量,电炉镍铁冶炼采用选择性还原原理,即缺碳操作:在电炉还原熔炼的过程中几乎所有的镍氧化物都被还原成金属,而铁则不必全部还原成金属铁,铁的还原程度通过还原剂焦炭的加入量加以调整,镍的比重较大,在生产中容易造成炉墙和炉底被侵蚀或烧穿(生产周期短的不到1个月),电极事故频繁,产品含镍低。因此,电炉镍铁冶炼关键技术是:(1)延长炉龄,(2)减少电极事故,(3)提高产品含镍量和镍的回收率。
电炉镍铁冶炼技术措施:1)采用镁质材料筑炉,在筑炉过程中要配好粘合剂并控制用量;捣打时,每一层铺料厚度为40—60mm,并用风镐捣打紧密,捣打完扒毛后,方可铺料捣打下一层;在烘炉过程中要把水分烘干。
2)采用炭砖筑炉,改炭砖平放为竖放,并在炭砖中部打眼用小石墨电极连接成整体,砖缝用炭质材料填充,同时用风镐捣打紧密。
3)在筑炉时,两个出铁口要有一定高差,生产前期使用高位出铁口,当炉底侵蚀到一定程度时使用低位出铁口。
4)控制配碳量和提高二次人炉电压,控制电极下插深度,防止炉底侵蚀。
5)控制好渣型,尤其是渣中的FeO含量,其既影响渣的导电性,又影响渣的熔点,最终影响镍的回收率。
6)镍矿在人炉前需要预先经过干燥脱水,在干燥和预热时控制好配碳量和水分,有利于减少翻渣事故发生,同时也有利于因翻渣引起的电极事故。
7)电极压放时,要勤放、少放;有条件的也可改用炭素电极或石墨电极。
8)加强冶炼操作,勤观查,勤调节。
废钢渣用于农业
2018-12-17 09:42:53
3. 用于农业 (1) 作钢渣磷肥 钢渣是一种以钙、硅为主,含多种养分,具有速效又有后劲的复合矿质肥料,由于钢渣在冶炼工程中经高温锻烧,其溶解度已大大改变,所含各种主要成分易溶量达全量的1/3~1/2%,有的甚至更高,容易被植物吸收。钢渣中含有微量的锌、锰、铁、铜等元素,对缺乏此微量元素的不同土壤和不同作物,也同时起不同程度的肥效作用。实践证明,不仅钢渣磷肥( P 2 O 5 > 10%)肥效显著,即使是普通钢渣(P 2 O 5 4%>7%)也有肥效;不仅适用于酸性土壤,而且在缺磷碱性土壤使用也可增产;不仅水田施用效果好,即使是旱田钢渣肥效仍起作用。我国许多地区土壤缺磷或呈酸性,充分合理利用钢渣资源,将促进农业发展一般可增产 5%~10%. 施用钢渣磷肥时要注意的问题:一是钢渣磷肥宜作基肥不做追 肥使用,而且宜结合耕作翻土施下,沟施和穴施均可,但应与种子隔开 1~2cm;二是钢渣磷肥宜与有机堆肥混拌后再施用,这对中性、碱性土壤更有良好的综合肥效;三是钢渣磷肥不宜与氮素化肥(硫铵、硝铵、碳酸氢铵等)混合施用,以免挥发氮气;四是钢渣性磷肥施用时,一定要注意与土壤的酸碱性相结合,要科学地在农田应用,不使土壤变坏或者板结。 (2) 作硅肥 硅是水稻生长需求量大的元素,SiO 2 > 15%钢渣磨细至 60目以下即可作硅肥,用于水稻生产,一般每亩施用100kg,增产10%左右。 (3) 作酸性土壤改良剂 CaO、MgO含量高的钢渣磨细后,可作为酸性土壤改良剂,并且利用了钢渣中的 P和各种微量元素。 其用于农业生产,可增加农作物的抗病虫害的能力。.
进口废钢变“金贵”
2018-12-14 15:07:37
据拱北海关最新统计,今年1至10月广东口岸进口废钢163.3万吨,与去年同期相比下降18.8%;价值5.6亿美元,增长4.6%。国际废钢市场价格持续攀高等五大因素加大了废钢进口难度。 统计显示,今年1至10月,广东口岸进口的废钢162.9万吨几乎全部以一般贸易方式进口,占进口总量的99.7%,从我国香港地区、美国、欧盟进口量大,从俄罗斯进口成倍增长。1至10月,广东口岸从香港地区进口废钢59万吨,下降32%;从美国进口废钢41.8万吨,增长45.4%;从欧盟进口废钢22.3万吨,下降51.6%;从俄罗斯进口废钢18万吨,增长1.6倍。 利用废钢作为再生资源生产钢铁,可减轻环境污染和节能降耗,但国内废钢供应严重不足,每年需要大量进口以弥补缺口。分析认为,五大因素导致今年广东口岸废钢进口数量下降: 一是国际废钢市场价格持续走高;二是国外对废钢资源的保护加强;三是废钢运力比较紧张,世界主要产钢国至中国主港口的运费平均每吨上涨了2倍;四是国内宏观调控抑制废钢进口;五是国内对废钢回收再利用有所提高。 海关等部门建议,在一些拥有大量废旧车辆及装备的国家或地区,建立废旧车辆及设备的拆解加工基地,在国内建立进口废钢的加工、配送大型生产基地,以确保废钢供应安全、降低成本,为我国钢铁主业提供原料支撑。function ImgZoom(Id)//重新设置图片大小 防止撑破表格
{
var w = $(Id).width;
var m = 550;
if(w{
return;
}
else
{
var h = $(Id).height;
$(Id).height = parseInt(h*m/w);
$(Id).width = m;
}
}
window.onload = function()
{
var Imgs = $("content").getElementsByTagName("img");
var i=0;
for(;i
{
ImgZoom(Imgs[i]);
}
}.
废钢进口的种类
2018-12-12 09:37:20
废钢进口状态多样,归类复杂,海关监管难度增大,存在较高的风险。根据《中华人民共和国海关进出口税则》(以下简称《税则》)及《中华人民共和国海关总署公告》(2001年 第3号)的规定,钢铁废碎料仅指那些用于熔融回收金属或制化学品的钢铁,可按原用途使用或适于作其他用途使用的钢铁制品及不须先经熔融回收金属即可改作他用的钢铁制品,均不属于《税则》所称的废钢铁。
电炉高碳锰铁的生产(二)
2019-01-25 15:49:34
三、电炉锰铁冶炼用的原料 原料为锰矿、焦炭和熔剂 1.锰矿 锰矿的品种主要有氧化锰矿、烧结矿、焙烧矿和人选富锰渣等。 锰矿中除了主要成分Mn外,还含有一定数量的Fe,CaO,Al2O3,SiO2,P,S等杂质,应根据冶炼产品的要求进行控制。 锰矿中的锰铁比是决定产品含锰量的重要技术参数,秤不同牌号的高碳锰铁,对入炉锰矿的m(Mn)/m(Fe)要求不同,某厂采用熔剂法冶炼 时对入炉锰矿的含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求见表2。表2 熔剂法治炼对入炉锰矿含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求牌号Mn含量m(Mn)m(P)/m(Mn)m(Fe)ⅠⅡ≥≤FeMn78C8.040%8.80.0020.004FeMn74C7.535%6.40.0020.0042FeMn68C7.034%4.50.0030.0057
锰矿中的CaO,MgO均为碱性氧化物,对调整炉渣碱度和流动性有利,一般不予限制。锰矿中的Al2O3在一定范围内能控制渣中含锰量,但Al2O3过高,会使炉渣熔点升高,流动性变差,渣铁分离困难,影响冶炼技术经济指标。一般要求入炉锰矿中Al2O3含量不超过10%。采用熔剂法生产时入炉锰矿中的SiO2含量越低越好。因SiO2含量高,会增大石灰用量,增大渣量,电耗升高。锰矿中的硫一般以MnS,CaS的形式进入渣或挥发,只有约1%进入合金,一般不作限制。 对入炉锰矿的水分庆控制在8%以下,因水分太高,波动大会影响配料的准确性。在熔剂法生产时会使石灰吸水粉化,造成炉内透气性差,产生刺火、塌料,使炉况恶化,电耗增加。 入炉锰矿粒度根据电炉容量大小而定,对6000KVA以上电炉入炉粒度一般为10~80mm,小于10mm的粉矿不超过总量的10%。 2.焦炭 作为还原剂用的焦炭主要有冶金焦、气煤焦、半焦等。对入炉焦炭,要求固定碳含量高、电阻率大、灰分低、磷低。灰分低带入的渣量少,含磷相应减少,可降低冶炼电耗。电阻率大,容易使电极下插,对稳定操作有利。 入炉焦炭粒度一般为3~25mm,小于3mm的焦末不得入炉。焦炭所含水分不得超过7%,而且波动量应尽量小。 3.溶剂(石灰) 要求石灰中CaO含量高,SiO2及P,S杂质含量低。一般CaO含量大于80%,SiO2含量不超过6%,P,S应分别低于0.05%和0.8%。石灰入炉粒度一般为10~60mm.[next] 四、电炉高碳锰铁冶炼工艺操作 1.冶炼方法 电炉高碳锰铁的冶炼 是连续进行的,即连续加料冶炼,定时出铁。根据入炉锰矿品位的不同及炉渣碱度控制的不同,在电炉内生产高碳锰铁有熔剂法、无熔剂法、少熔剂法三种方法。 (1)熔剂法 采用碱性渣操作,炉料中除锰矿、焦炭外,还配入一定量的熔剂(石灰)并用足还原剂。采用高碱度渣操作,炉渣碱度n(CaO)/n(SiO2)控制在1.3~1.4,以便尽量降低渣中含锰量,提高锰回收率。 (2)无熔剂法 采用酸性渣操作,炉料中不配加石灰,在还原剂不足的条件下冶炼,用这种方法生产,既可获得高碳锰铁,又可获得生产硅锰合金和中、低锰铁的含Mn30%的低磷富锰渣。其优点是电耗低,锰的综合回收率高。其不足是采用酸性渣操作,对碳质炉衬侵蚀严重,炉衬寿命较短。 (3)少熔剂法 采用介乎熔剂法和无熔剂法之间的“偏酸性渣法”。该法是配料中加入少量石灰或白云石,将炉渣大碱度控制在0.6~0.8之间,在弱碳的条件下冶炼。生产出合格的高碳锰铁和含锰25%~40%及适量CaO低磷、低铁锰渣。此渣用于生产硅锰合金时既可减少石灰加入量又可减少因石灰潮解而增加的粉尘量,因而可改善炉料的透气性。 采用何种方法与入炉矿的品位有关。入炉矿石的品位较低一般采用熔剂法,入炉矿石的品位高(高品位进口矿)则用无熔剂法或少熔剂法生产高碳锰铁。 2.冶炼工艺操作 电炉高碳锰铁的生产操作过程主要有配料、加料、炉况维护及出铁浇铸等。 (1)配料及加料 根据配料计算得出配料比后,按锰矿石、焦碳、石灰(白云石)的顺序进行称量配料,然后通过运输系统将配好的料送到炉顶料仓或加料平台。根据炉内需要分批加入炉内。 (2)炉况维护 在电炉冶炼过程中,由于原料的波动、电气及机械设备等因素的影响,炉况难以长期保持稳定状态,总是在波动变化。因此要对炉况随时、监测,并根据其变化作出准确判断,及时采取措施调整和处理,使炉况恢复到正常状态。 (3)炉况判断及处理 炉况正常的标志是: ①操作电流稳定,电极插入深度合适,电极电压正常。 ②料面高度合适,冒火均匀,炉料化料均匀,电极周围刺火及塌炎现象少。 ③封闭炉内炉气压力、成分、温度正常。 ④炉渣成分稳定,产量稳定,各项技术经济指标良好。 ⑤合金成分稳定,产量稳定,各项技术经济指标良好。 炉况的变坏不多是由于还原剂配入过多或不足以及炉渣碱度过高或过低造成的。 还原剂过多时,由于炉料电阻率减小,电流增大,电极上抬,炉内化料速度减慢,电极周围刺火严重,炉气压力与温度上升,锰的挥发损失增大,炉底温度下降,出炉困难,产品含硅量增高。此时应向电极周围适量减碳,并调整料批中焦炭的配入量。 还原剂不足时,电极下插过深,电极消耗增大,负荷上不去,电流不稳定;炉口翻渣;炉渣中含锰量升高,产品中硅低磷高,渣多铁少。此时可向电极周围附加适量焦炭,并在料批中提高焦炭配比。 炉渣碱度过高时,在炉内表现为电极上抬;料面刺火,翻渣;炉渣流动性差,出铁量少,炉渣发暗百粗糙,断面孔,冷却后很快粉化。炉渣碱度过低时,电极插入深,炉渣稀,流动性好,渣表面皱纹少,渣中跑锰多。针对上述情况,应及时调整石灰配入量将渣碱度调整到正常范围。 (4)出铁及浇铸 正常生产电炉要按一定时间间隔定时出铁,出铁次数根据电炉大小容量而定。一般大电炉每班出铁4~5次,中小型电炉每班2~3次。根据一些厂的生产经验,在炉内冶炼状况正常的情况下,适当延长出铁间隔单间,对提高产品质量,降低焦比、电耗有较好作用。[next] 五、配料计算 在铁合金生产中因为生产中的诸多因素不可能精确测算。因此要做到精确的配料计算是不容易的。而且在实际中意义也不大。通常以原料成分、生产中的控制参数及经验数据为依据,进行初步测算,投入生产后再根据其炉内情况进行调整。计算条件如下: 冶炼合金成分为:Mn66%,SiO22%,C6.8%,P0.3%,Fe23%,其他0.9%。 原料成分为: 锰矿:(综合矿)Mn34%,Fe10%,P0.12%,SiO29%,CaO1.5% 焦矿:C80% 石灰:CaO80% 炉渣碱度:n(CaO)/n(SiO2)=1.4 各元素在冶炼产物中的分配如表3所示。焦炭利用率为90%。表3 锰矿中元素分配(%)元素入合金入渣挥发MN781012Fe955/P751015
以100kg锰矿为计算基础计算。 (1)焦炭用量计算 焦炭用量为锰、铁、硅还原用碳量及合金渗碳量之和: ①100kg锰矿还原得合金部量 锰、铁、磷总量为: 100×34%×78%+100×10%×95%+100×0.12%×75%=36.11kg 锰、铁、磷所占合金比例为: 100%-C含量-Si含量-其他=100%-6.8%-2%-0.9%=90.3% 100kg锰矿得合金总量为: 36.11kg÷90.3%=40.12kg 合金中的硅含量为: 40.12kg×2%≈0.824kg ②合金渗碳量 40.12kg×6.8%=2.728kg ③锰、铁、硅还原用碳量 还原MnO,用碳量为:MnO+C===Mn+CO 还原FeO用碳量为:FeO+C===Fe+CO 焦炭总用量(干基)为: (2.72+6.672+2.036+0.686)÷90%÷80%=16.83kg (2)石灰用量 渣中的SiO2含量为 石灰用量为:(6.22×1.4)÷80%=10.89kg (3)原料配比为:锰矿100kg;焦碳16.8kg;石灰10.89kg.
电炉高碳锰铁的生产(一)
2019-01-25 15:49:34
一、电炉高碳锰铁的牌号及用途 电炉高碳锰铁是含有少量硅、磷、硫杂质的Mn-Fe-C三元合金,锰铁中锰与铁之和为92%左右,含 碳6%~7%。锰、铁、碳在合金中通常以Mn3C,FeC的形式存在。高碳锰铁的溶点为1220~1270℃,密度为7.1~7.4g/cm3,抗压强度为70~90MPa.合金中锰与铁能以任意比例互溶,但锰含量超过82%时,易受空气中水分的侵蚀而消散成粉末;因此当含锰量超过82%的产品在运输中应注意防潮。 电炉高碳锰铁主要用于炼钢作脱氧剂、脱硫剂及合金添加剂。作为合金添加剂加入钢中能改善钢的力学性能,增加钢的强度、延展性、韧性及耐磨能力。随着中、低碳锰铁生产工艺的进步,高碳锰铁还可以用于生产低碳锰铁。 电炉高碳锰铁牌号及其化学成分如表1所示。表1 电炉高碳锰铁牌号及化学成分类别牌号化学成分(%)MnCSiPSⅠⅡⅠⅡ≤电炉高碳锰铁FeMn78C8.075.0~82.07.51.52.50.20.380.03FeMn74C7.570.0~77.07230.250.380.03FeMn68C7.065.0~72.072.54.50.250.40.03
二、电炉法高碳锰铁的冶炼原理 电炉法生产高碳锰铁是以电能为热源,焦炭为还原剂,在炉身较矮的还原电炉中生产高碳锰铁的一种方法。 冶炼原理:高碳锰铁冶炼主要是锰的高价氧化物受热分解为低价氧化物的低价氧化物进一步还原成锰金属的过程。 MnO2受热后极易分解。当温度高于753K时MnO2分解变成Mn2O3。 在正常生产过程 中锰的高价氧化物也可以被炉内反应生成的CO还原成低价氧化物,其反应式如下: MnO比较稳定,一般条件下不易分解(与氧接触在一定条件下易被重新氧化)。 在冶炼温度下,MnO不可能被CO还原。这样进入炉内高温区的锰氧化物均以MnO形式存在,只能通过碳直接接触MnO使其还原成锰。 碳还原MnO的反应式如下: 由以上反应式可以看出:碳还原MnO生成Mn3C所需的温度比生成锰所需的温度低,因而用碳作还原剂生产锰铁时,得到的不是单质锰而是锰的碳化物(Mn3C);合金中含碳量通常6%~7%。[next] MnO为金属氧化物,易与炉料中的SiO2结合生成硅酸盐: MnO+SiO2===MnO·SiO2 2MnO+SiO2===2MnO·SiO2 这些反应降低了渣中自由MnO的浓度,使得充分还原MnO变得困难。 为减少MnO在炉渣中的排弃损失,提高锰的回收率,可在炉料中配入碱性大于MnO的金属氧化物,比如石灰、白云石等,让石灰中的CaO与SiO2结合,生成相应的硅酸盐把MnO置换出来即: MnO·SiO2+CaO===CaSiO2+MnO 2MnO·SiO2+2CaO===2CaSiO2+2MnO 置换了来的MnO呈自由状态,易被碳直接还原。 冶炼用的锰矿石,通常都伴生有铁、硅、钙、镁、铝、磷等元素的氧化物,在加热还原锰氧化物的过程中,炉料带入的铁、磷、硅的氧化物也被碳还原: FeO+C===Fe+CO 还原出来的Fe与Mn组成锰铁的二元碳化物[(MnFe)3C],从而大大改善了MnO的还原条件;在有铁存在的条件下,当温度接近1100℃时,MnO的还原即可进行。 炉料中磷氧化物(P2O5)可以被碳和锰充分还原: 被还原出来的磷约75%进入合金,5%残留渣中,其余挥发。 炉料中带入的SiO2比MnO稳定,只有在较高温度下才能被碳还原。 控制高碳锰铁冶炼温度不超过1550℃,就可以有效地抑制SiO2的还原,使大部分SiO2进入炉渣。 炉料中的其他氧化物,如CaO,Al2O3,MgO等,则较MnO更稳定,在高碳锰铁冶炼条件下不可能被碳还原,几乎全部进入炉渣。 炉料中的硫主要来自焦炭。有机硫在高温下挥发。硫酸盐中的硫一般以MnS或CaS的形式熔于渣中。通常炉料中的硫只有1%左右熔于合金。
电炉熔炼技术操作条件电极
2019-03-06 09:01:40
大型电炉一般选用自焙电极,低于500kVA小型电炉也能够选用炭素电极或石墨电极。
一、电极壳
自焙电极的外壳用薄钢板焊接或轧制件铆接而成,外壳上钻有直径3~5mm的小孔以扫除壳内蒸发物(如用标准电极糊,可设必定数量排气孔;用密闭糊,则可不用开孔)。内设筋片若干片。
自焙电极壳的有关尺度见表1。
自焙电极的筋片方法见图1。
表1 自焙电极壳尺度,mm电极直径钢板厚度筋片个数筋片高度三角形尺度200~3000.6~0.92~3个45~6035×35×50300~6000.9~1.34~5个60~15080×80×100600~9001.3~1.45~7个150~200130×130×150900~12001.5~2.07~9个200~300170×170×200图1 自焙电极的筋片方法图
云冶电极壳规格为:
(一)材料规格
钢板类型:P-3F普通钢板
化学成分,%:C-0.18;Si-0.2;Mn-0.41;P-0.025;S-0.033。
物理规格:2000×1000×1.5mm (二)电极壳制造规格(mm)炉号直径长度筋片高筋片个数三角形筋片规格三角形个数1号110010002608个150×2003个2号120010003008个170×1703个
为加强电极的抗拉强度,在电极壳中心焊接两根直径18的螺纹钢。
自焙电机外壳用钢的耗量,一般为电极糊耗量的5%。
二、电极糊
电极糊用无烟煤、焦炭、和沥青制成。块状电极糊每块重约25~30kg,经破碎后装入电极壳内。其块度以能在相邻两筋片间自在落下为准,一般为20~40mm。国外有的工厂选用颚式破碎机破碎电极糊。
出产操作时,电极糊面高度即铜瓦上电极糊装料高度一般为0.5~1.5m。
电极糊要坚持清洁,避免泥沙等杂物混入。不同厂的电极糊要别离堆存。
现在国内几家工厂产电极糊物理化学性质列于表2。
表2 国产电极糊物理化学性质数据表(一)产地固定炭,%蒸发分,%水分,%灰分,%灰分成分,%SiO2FeAl2O3MgOCaO吉林69~70190.451036.0321.320.243.771.8贵阳76.2522.380.8214.3538.8320.1820.564.174.17上海79.2911.990.58.7229.0133.3816.628.923.12昆明71.6417.340.7210.3449.3713.3618.991.63.42
续表2 国产电极糊物理化学性质数据表(二)产地堆积密度,t/m3密度,t/m3软化点,℃烧结后气孔率,%物理规格,kg/块电阻率Ω,mm2/m抗压强度,MPa附注吉林1.511.88822012~1514925.49云冶运用贵阳1.611.93862524818.14上海1.571.81722430926.48昆明1.711.917516183 在作业进程中,电极上部焙烧的部分逐步下降,当挨近高温带时,逐步烧结。图2为前苏联北方镍公司矿热电炉的电极内电极糊在不同高度下的温度改变。图2 自焙电极糊沿电极高度的温度改变
在区间Ⅰ内,温度为50~70℃,电极糊软化并与原先参加的电极糊表面牢固地粘结起来;
在区间Ⅱ内,即在铜瓦区,电极糊的温度从70℃升到300℃,电极糊粘结剂中的蒸发物开端蒸发;
在区间Ⅲ内,电极烧结,很多蒸发物在400~540℃时蒸发出来。在730℃时,电极糊内的蒸发物悉数蒸发,烧结进程结束;
在区间Ⅳ内,电极以完结了进入作业状况的预备,其温度超越900℃。
不同温度下自焙电极,电极糊的物理性质列于表3。
表3 不同温度下自焙电极、电极糊的物理性质温 度 ℃电阻率 Ω·mm2/m极限抗压强度 MPa物理状况259000块状10016400流体20014800可塑性流体30010000流体400600011.7焦化进程500225029.42焦化进程600125042.17焦化进程70050053.94焦化基本完结80035053.94焦化基本完结90082.353.94焦化完结100064.753.94焦化完结120055.1焦化完结
三、电极钢带
云冶选用UR―63型炭素冷轧钢带和20号钢带。
其规格如下:
(一)元素含量,按部颁标准(%): C-0.2~0.3;Si-0.17~ 0.37;P-0.04 ;S-0.04;Cr-0.25;Ni-0.25。
(二)抗拉强度:20号钢带为550~800MPa,伸长率小于2%。
(三)物理规格:3000×300×1.5mm。
四、电极的升降
中小型电炉电极升降选用卷扬驱动,大型电炉电极升降选用液压设备。一般直径为1100~1200mm的自焙电极分量达18~20t,需用35t卷扬机。电极升降速度可按表4选取。
表4 自焙电极的升降速度自焙电极
mm5007009001100升降速度
m/min0.7~0.90.6~0.80.5~0.70.4~0.6
电极下降速度一般比提高速度慢20~25%,避免电极下降时电流发作过大的动摇。假如发作毛病时能较快的提高电极。
大型电炉每次下放电极的长度不超越150~200mm,下放相隔时刻一般不少于炉子全负荷作业6h,故每天的下放长度一般不超越400~600mm。下放操作时带电进行的,但一般要下降负荷40~60%,避免烧坏电极壳。下放结束后10~30min内逐步康复正常负荷。云冶每次下放不大于150mm,接连下放不超越400mm,下放时,每相电流不超越50A,下降负荷为本来的50%。
五、电极密封
电炉电炉熔炼时很多冷空气电极四周空地漏入炉内,致使烟气量增大,烟气中S02浓度下降。现在熔矿电炉电极密封方法较多,常用的有:
(一)选用接近炉子侧壁的循环气体密电极。该法系使用从炉子排出的气体经过支管将气体通入电极周围的喷嘴,把溢出的气体压人炉中。图3为循环气体密封示意图。图3 循环气体密封示意图
(二)折叠式密封设备 该设备由三个直径递加的钢制上、中、下部密封圈组成,其相对空隙为30~50mm。每段密封圈高度为350mm左右,三段总长为1050mm,略大于或等于电极行程。整个密封圈用三根吊链沿周边成120°角固定于夹紧圆环上,它随电极上升而上升,随电极摇摆而摇摆。始终将电极与炉顶触摸处的空隙密封。折叠式电极密封设备见图4。图4 折叠式电极密封设备结构示意图
1-下吊环;2-下密封圈;3-中密封圈;4-上密封圈;5-上部吊环;
6-密封填料;7-吊链;8-炉顶;9-电极;10-夹紧圆环;
11-电极夹持器
(三)选用在电极周围用填料圈密封,或选用水冷密封圈密封电极孔。图5为固定式水套密封设备结构图。经过绷簧和油缸的效果使锥形环上升时,锥形环的斜面就对颚板发生满足的压力以坚持与电极严密触摸。在锥形环上部用法兰和螺丝将密封材料(耐火砖)和玻璃丝布压紧,而密封水套和密封圈则固定在电炉炉顶上。当电极上下动作时,靠密封材料与密封水套及密封圈内表面的冲突而坚持杰出密封。为了避免发生涡流而添加电能的丢失,悉数密封件都用不锈钢制造。图5 固定式水套冷却电极密封设备
1-电极;2-导电颚板;3-压紧颚板的锥形环;4-密封材料;5-玻璃丝布;
6-密封水套;7-密封圈
废钢铁回收利用
2019-01-30 10:26:27
废钢铁是指生产领域和消费领域产生的废钢铁的总称。
生产领域产生的废钢主要是指钢铁、机械、铁路、建筑、通讯、油田、电力、水利等生产领域产生的钢渣、废钢坯、废次材、边角料、各种报废设备或器材、1995年仅重点钢铁企业就回收废钢铁1320万吨。消费领域产生的废钢铁主要是指城乡居民、企事业单位在消费过程中阁下的各种废钢铁及其制品,包括铁锅、废冰箱、废洗衣机、废自行车、废镰刀、报废的小型农具等。
回收的废钢铁,一是回炉炼钢,废钢铁是电炉钢的重要原料,每利用一吨废钢铁,可炼钢850千克,相对于用铁矿石炼钢可节约铁矿石20吨,节能1.2吨标准煤。二是深加工生产小型农具和小五金制品。
废钢轨基础知识
2018-12-18 10:15:46
废钢轨 轨道废钢,因为中国海关限制废钢长度需在1.2m以内, 否则以正品方式征收关税(6%)。而事实上废钢轨进口基本上不用作电炉回炉使用, 而是锻造成农用工具, 如榔头,锄头等,所以进口价格比正常熔融用废钢高出很多。.
废钢铁的种类
2018-12-14 15:07:41
按未报废时的成分和性质,废钢也可分为两大类型:碳素废钢和合金废钢。 (1) 碳素废钢 亦称为碳钢,依其碳含量的不同又分为低碳钢、中碳钢、高碳钢。 低碳钢( C%
中碳钢( C%=0.25~0.6% ),主要用于强度要求较高的结构件。 高碳钢( C%>0.6 ),主要用于制造弹簧和耐磨损构件。 碳素工具钢是典型的高碳钢,其热处理后可以具有高硬度和高耐磨性,被用来制造各种刃具、模具、量具等。 按硫、磷等杂质含量,碳素钢可以分为普通碳素钢、优质碳素钢和高级优质钢。 ( 2 ) 合金废钢 经常含有 A1 、 B 、 Co 、 Cr 、 Mn 、 Mo 、 Ni 、 Si 、 Ti 、 V 、 W 、稀土等合金元素。按合金钢中碳含量来区分,可以分为两大类,一类是含有较多碳的合金钢;另一类是含有微量碳的合金钢。.
美国废钢铁
2019-03-19 09:03:26
一般标准 A.清洁.所有等级废钢都必须无污垢,不含有色金属或任何异物,不能有 过多的铁锈和腐蚀,然而,"无污垢,无有色金属或任何异物"的措辞并不意味着 不得含偶然混入极少量的夹杂物.因为在正常加工和搬运特定品种废钢中,显然, 有极少量的夹杂物是不可避免的. B.等外物料.在交货的特定品种的废钢铁中含有极少量的尺寸略微超过规 定范围以及在质量和种类方面略微不能满足规定的要求的物料时,如果能证明在 正常加工和搬运中这种品种废钢铁中含这种等外物料是不可避免的话,则不应该 改变交货废钢铁的分类等级. C.残余合金元素.在本标准分类中,只要用"无金属元素术语之处,系特钢 中所含的残余合金元素,并非为炼合金钢而加入的元素.当残余金属元素不超过 以下百分比时,可以认为是无合金元素废钢: 镍:0.45% 钼:0.10% 铬:0.20% 锰:1.65% 除锰外的所有残余元素的总量不得超过0.60%. D.偏差.与废钢铁一般分类标准中的任何偏差,由买卖双方协商解决,ISRI 代号NO.: 200 1号熔炼用重废钢.废锻钢或废钢,厚度≥1/4英寸,单块尺寸不得超 过60×24英寸(装料箱尺寸),需加工成能确保压实装料作业. 201 1号熔炼用重废钢,3英尺×18英寸,废锻铁或废钢,厚度≥1/4英寸, 单块尺寸不得超过36×18英寸,(装料箱尺寸),需加工成能够保证压实装料 作业. 202 1号熔炼用重废钢,5英尺×18英寸.废锻铁或废钢,厚度≥1/4英寸, 单块尺寸不得超过60×18英寸(装料箱尺寸),需加工成能确保压实装料作业. 203 2号熔炼用重废钢,废锻铁和/或废钢,无涂层的和镀锌的,厚度≥1/8 英寸,装料规格包括不适合作1号熔炼用重废钢的物料,需加工成能确保压实装 料作业. 204 2号熔炼用重废钢.废锻铁或废钢,无涂层的和镀锌的,最大尺寸为36 ×18英寸,可包括所有经适当加工的汽车废钢.
当前国内废钢应用特点
2019-01-30 10:26:27
面对废钢吨钢消耗逐年下降、铁矿石消耗大幅增长的局面,中国废钢铁应用协会断言,未来电炉炼钢将逐步替换转炉炼钢的上风,废钢炉料亦将逐步替换铁矿石的主导地位,随着中国铁矿石资源短缺且世界铁矿石资源有限,钢铁增长过程中应:少吃矿石、多吃废钢。
进入21世纪以来,中国废钢铁应用呈现以下特点:
1、粗钢产量大幅增加,6年增长2.9亿吨,增幅225.9%,均匀每年递增4800万吨,进进钢铁产量的高增长期。
2、废钢消耗总量大幅增加,6年增长3800万吨,增长幅130.14%,均匀每年递增633万吨,但低于粗钢增长速度,显示废钢资源供给不足。
3、废钢吨钢消耗逐年下降,6年下降67kg吨钢,降幅29.52%。而铁矿石消耗出现大幅增长,且远大于废钢消耗的增长率,意味着以铁矿石的高消耗,弥补废钢资源偏紧的资源配置倾向,发展令人担忧。
对此,中国废钢铁应用协会直指,“少吃矿石,多吃废钢”是历史发展的必然。而在阐述上述观点时该协会夸大,《钢铁产业发展政策》明确指出要“逐步减少铁矿石比例和增加废钢比重”。减少原生资源的开采,增加循环资源的利用,实现资源公道配置,为实现钢铁产业可持续发展的重大战略决策。该协会进一步解释表示,据大陆钢协近期公布的资料显示,到2001年全球探明可开采铁矿石资源储量1400亿吨,蕴藏量基础3100亿吨。而近10年来,全球铁矿石产量每年在10亿吨以上,2005年全球粗钢产量11.29亿吨,消耗铁矿超过13亿吨,可供开采约100~200年。
到2004年大陆铁矿资源基础储量为219.7亿吨,可开采保有储量118亿吨。大陆铁矿石每年开采量将超过6亿吨,照此计算,在现行开采技术条件下,中国的铁矿石开采期只有20~40年,形势相当严重。
铁矿石为原生资源,原生资源是有限的,不可再生的,终有枯竭的时候,而资源危机已成定势,如何节制开采、科学调整资源配置势在必行。废钢铁为钢铁生产中唯一能替换铁矿石的原料,最大限度地开发、应用废钢铁资源,成为缓解铁矿石资源危机的重要途径。随着全球经济发展,以未来的钢铁产业格式而言,电炉炼钢将会逐步替换转炉炼钢的上风,废钢炉料亦将逐步替换铁矿石的主导地位,预料在本世纪内,废钢铁将成为钢铁产业的重要支撑产业,而少量的对铁矿石的开采和应用将作为资源自然消耗的补充。
中国废钢铁应用协会表示,中国要加快产业化进程,世界要加快全球经济的发展,钢铁产业将保持持续增长,资源消耗的增加是必然的。但大陆铁矿石资源短缺,世界铁矿石资源有限,若沿袭传统的发展模式,以大量原生资源的消耗来实现产业化是难以为继的,为减少钢铁增长对铁矿石的依靠,就必须大力发展回圈经济—少吃矿石、多吃废钢,以促进资源的高效利用、全球的生态平衡。
电炉熔炼车间配置参考图
2019-01-07 07:51:26
电炉车间配置图实例见图1。图1 3000kVA电炉车间配置图实例
1-圆盘给料机;2-刮板加料机;3-电炉;4-电极卷扬机;5-转炉渣返回溜槽;6-桥式起重机;7-桥式单梁起重机;8-铜锍放出溜槽;9-炉渣放出溜槽;10-变压器;11-桥式抓斗起重机
废钢铁的回收利用
2019-01-30 10:26:34
废钢铁是钢铁生产中重要的炉料资源,尤其是电炉炼钢,要配用80%的废钢。用废钢代替生铁炼钢,由于其硫、磷等有害元素含量低,还可以缩短冶炼时间。lt废钢可炼出好钢800Kg左右,约等于lt生铁投炉炼钢的产量。用lt废钢,就可少用铁矿石3~5t,焦炭500Kg左右,石灰石300Kg左右,可少采矿石15~20t,减少运输30~40t,降低能耗80%,节约工业用水40%左右。随着合金钢生产的不断发展,废合金钢资源日益增多。工矿企业中报废的工具、刃具、模具中都含有较高的合金元素。如lt废高速钢中就含有钨180Kg、铬40Kg、钒10Kg。
废钢铁的来源有以下几方面:
(1)生产自身返回的。即钢铁冶炼过程中产生的炉底、桶底、汤道、废锭、废模和渣钢,以及初轧的切头、切尾等。
(2)加工工业中产生的。如各种车屑、切屑、料头,以及冲压成型的各种边角料等。
(3)生产和生活中废弃的机器和工具、用品。如报废的机械设备、工具、零部件,废弃的刀剪犁锄等。
废钢铁的种类(3)
2018-12-17 09:52:31
按未报废时的成分和性质,废钢也可分为两大类型:碳素废钢和合金废钢。 (1) 碳素废钢 亦称为碳钢,依其碳含量的不同又分为低碳钢、中碳钢、高碳钢。 低碳钢( C%
中碳钢( C%=0.25~0.6% ),主要用于强度要求较高的结构件。 高碳钢( C%>0.6 ),主要用于制造弹簧和耐磨损构件。 碳素工具钢是典型的高碳钢,其热处理后可以具有高硬度和高耐磨性,被用来制造各种刃具、模具、量具等。 按硫、磷等杂质含量,碳素钢可以分为普通碳素钢、优质碳素钢和高级优质钢。 ( 2 ) 合金废钢 经常含有 A1 、 B 、 Co 、 Cr 、 Mn 、 Mo 、 Ni 、 Si 、 Ti 、 V 、 W 、稀土等合金元素。按合金钢中碳含量来区分,可以分为两大类,一类是含有较多碳的合金钢;另一类是含有微量碳的合金钢。.
俄罗斯及欧洲废钢标准
2018-12-12 09:37:20
1. GOST分类 1.1 次铁金属分为:a) 含碳一分为两个等级;废铜和废钢。 b) 含有合金元素一分为两类;A-碳,B-处理过的合金。 c) 质量分类-28种类型。 d) 含有合金元素-67组。 1.2 通过等级、种类、类型以及相应的名称和代码来描述次铁金属如表1.2。 等级 种类 类型 代码 代称 废钢 A 1号废钢 1 1A A,B 2号废钢 2 2A,2B A,B 3号废钢 3 3A,3B A,B 4号废钢 4 4A,4B A,B 超标废钢 5 5A,5B 2. 技术要求 2.1 送入炉内的次铁金属要按种类、组别或等级以及相应的标准要求进行分门别类,这些金属要使机器能够正常运作。 2.2含碳废钢(包括含锰和硅的低合金废钢,但不包括在此标准中处理过的合金废钢类型里),要与处理过的合金废钢、废铁,有色金属及合金分开。合金化的废钢与含碳废钢,有色金属及合金分开。 2.3 因其化学成份不同的合金化废钢要与不合规格的废钢区分开来。 2.4 不允许将标准尺寸与超标准尺寸的混合物出售给买主。可熔的各种次铁金属及各种熔化设备一览化。 2.5 次铁金属5 次铁金属安全运输、处理、熔炼、不含易燃及放射性物质。从化工生产线上拆下的废料需不含化学物质。 2.6 如果最终买方有更高的标准要求,与已确立的技术标准文件一致的次铁金属的供给将受到影响。 2.7 有关次铁金属的组成、等级、大小和重量的分类应与表4指定的要求一致。 3. 标志 包装 运输 存储 3.1 每批次铁金属都应有相应文件证明其与所需废钢标准相符。 a) 船运公司的说明。 b) 种类、型号、组别或等级,所给每批废钢的总量和金属的重量。 c) 装运日期。 d) 船箱的数量。 e) 通过实际分析得出合金元素的组成及含量(对合金化合金而言),对重工业纯铁来讲,还要有碳、磷的含量及镍和铜的最大含量分析。 船运证明应包括此条目:对合金化的废钢而言,"合金化的废钢可再熔化"或"合金化的废钢可再处理";对含碳废钢而言,"含碳废钢可再熔"或"含碳废钢可再处理"。 1号=废钢级别08KP,08,05KP,08YU,08PS和08FKP 含铬不超过0.1%;不同其他的含碳废钢。 2号=应最终买方的要求,废钢中硫和磷的含量各自不超过0.05%。 3号=含杂质不超过5%的废钢在装运时不得与其他的废钢混合装运。 4号=要适合吸尘炉的大小,提高的废钢大小至少为30×30×30毫米。 5号=含杂质不超过5%的废钢在装运时不得与其他废钢混合装运,提供含杂质超过5%的废钢要经双方的同意才行。 组成 等级 大小和重量 便于熔炼的块状废钢。 金属丝和金属物除外。 1号废钢 不含有色金属。含碳废钢不可与合金化废钢混在一起。 金属不可有严重的烧过酸化过或腐蚀过的痕迹。(但允许有一层薄锈)。含有的无害不纯的杂质不超过2% 块的大小应不超过300×200×150毫米,每块重至少0.5千克,但不超过40千克。 块状废钢,便于熔炼的重工业纯铁。 金属丝和金属物除外。 2号废钢 不含有色金属。合金化的废钢不可与含碳废钢混合,而且必须是一组或一等级的合金钢。金属不可有严重的烧过酸化过或腐蚀过的痕迹。(但允许有一层薄锈)。含有的无害不纯的杂质不超过2%块的大小应不超过600×350×250毫米,如双方同意,废弃的重型工业纯铁和合金化重铁可至少为8mm。直块长不超过100毫米,管状外直径不超过150毫米,壁厚至少为8毫米。管状直径较大的应用生产线轧平或切断,块重至少为2千克。 便于熔炼的块状废钢及碎钢。 金属丝和金属物除外。 3号废钢 不含有色金属。合金化的废钢不可与含碳的废钢混合,而且必须是一组或一等级的合金钢。金属不可有严重的烧过酸化过或腐蚀过的痕迹。(但允许有一层薄锈)。含有的无害不纯的杂质不超过1.5%块的大小应不超过800×500×500毫米,如双方同意,金属片最大不超过1000毫米,厚度至少为6毫米,壁厚大于4毫米小于6毫米弯管和棒状的废钢数量不超过整批的20%,管的外直径不超过150毫米,壁厚至少为6毫米。管的最大直径应用生产线轧平或切断,直块长不超过100毫米,弯块偏差不超过250毫米,块重至少为1千克。 便于熔炼的小块的废金属及其他生产线上的碎金属(长钉,螺钉,螺母等)。 金属丝和金属物除外。 4号废钢 不含有色金属。合金化的废钢不可与含碳的废钢混合,而且必须是一组或一等级的合金钢。金属不可有严重的烧过酸化过或腐蚀过的痕迹。(但允许有一层薄锈)。含有的无害不纯的杂质不超过0.5%块的大小不超过200×150×100毫米,厚度至少为6毫米,块重至少为0.025千克,但不超过20千克 便于熔炼的块状废钢及碎钢。 金属丝和金属物除外。 超长超重废钢 不含有色金属。合金化的废钢不可与含碳的废钢混合,而且必须是一组或一等级的合金钢。金属不可有严重的烧过酸化过或腐蚀过的痕迹。(一层薄锈可接受)。含有的无害不纯的杂质不超过3%
电炉熔炼技术操作条件作业制度
2019-01-07 07:51:21
作业制度主要包括:加料制度、电力制度(功率和二次电压)、熔池深度控制。
一、加料制度
矿热电炉熔炼的加料方法应保证:
(一)获得最大的熔炼量,熔池表面应完全被炉料覆盖,尽可能减少热损失和金属在废渣中的损失。
(二)操作安全。
(三)料坡保护炉墙不受渣侵蚀,延长炉寿命。
(四)实现机械化和自动化进料以减轻劳动强度。
由于80%~90%电能在距电极中心1.5~2倍电极直径的区域内转化成热能,因此,70%~80%的炉料应直接加加在靠近电极的料坡上,其余20%~30%的炉料加在靠近炉墙处以保护炉墙。干燥-焙烧设施应尽可能靠近电炉,以缩短炉料输送距离。
加料管的设置 电炉加料管数量及其布置视炉子大小而异。大型电炉一般沿炉子纵向设置四排或二排。图1为加料孔布置示意图。图1 加料孔布置示意图
1-加料孔;2-烟道孔;3-电极孔;
加料漏斗和加料管的直径按炉料最大块度选择,加料管尺寸以及炉料块度与加料管尺寸对照表见表1。
表1 炉料块度与加料管尺寸对照表,mm炉料块度(最大的)加料管尺寸20φ30040φ35080φ400100φ450150500×750300750×1000下料管倾斜角一般不小于50°~65°。
10~15mm块料占80%以上,含水达3%时,渣面以上料坡高度为700~1200mm;用粉料时,渣面以上的料坡高度为300~500mm,粉料含水分高时,料坡易被破坏和翻倒。渣面以上料坡高度与渣面以下炉料陷人深度之比为1~1.5。粉料的比值接近1,块料的比值接近1.5。熔炼粉矿必须采用低料坡,不超过500mm。
二、电气制度
电气制度主要由运行功率、电压、电流等参数表示。熔炼每吨物料所消耗的电能最小而炉子生产能力最高的电气制度就是最佳的电气制度。
新建厂的电气制度参数一般要参照同类型电炉生产实践的电气制度选取。电气制度最重要的参数是电压。
(一)功率 供给炉子的电能按下式转化为热能:
Q= VIt式中Q-热能,J;
V-电压,V;
I-电流,A;
t-时间,s。
此公式表明,在电压一定时,为了提高炉子功率,必须增加电极插入深度以增加电流;为了降低功率,必须减少电极插入深度以减少电流。
电炉的操作功率须与加入物料量相适应,否则会造成熔池熔体过冷或过热。
(二)二次电压供给炉子的电能在熔池内的分配,即电极一炉渣接触处和渣层内放出热量的分配比例,直接影响到冶炼过程的正常进行和各项技术经济指标。
当熔炼粉料及堆积密度小(1.3~1.4t/m3)的球粒和烧结块时,料坡沉人渣池的深度较小,炉料主要在渣层上部,一般不超过500~700mm。在这种情况下,为了保证大的熔化量,熔炼作业主要在料坡沉入的深度区内进行。电极-炉渣接触处的放热量占总功率的70%~80%,以保证生成炉渣和铜锍所需的热。20%~30%的热量是在熔池的下层放出,用于进一步提高熔炼产物的温度和补偿炉子底部的散热。
当熔炼堆积密度较大(达3t/m3)的块料时,在熔池表面有圆锥形料坡形成,且料坡沉入渣池达1100~1300mm。在这种情况下,为了强化炉料的熔化,熔炼作业采用的电气制度必须保证将必要的热量传至沉入渣池深部的料坡,约占30%~50%的热量用于熔化渣层中的炉料,以造成炉渣的适当过热及铜锍与炉渣分离良好的条件,而电极与炉渣接触处的放热量占50%~70%。
如果功率分配失调,将导致炉顶温度过高而铜锍层温度不够(上部放热量太多),或者炉料熔化量降低,而铜锍层强烈过热(下部放热量太多),熔炼过程不正常。
决定电能分配的主要因素是电极在渣层中插入的深度,电极插入渣层深度与功率分配的关系见图2。图2 电极插入渣层中深度与功率分配的关系
在功率相同时,炉渣导电率(取决于炉渣成分和温度)、料坡高度、渣层厚度、电极距离、电极直径和电极工作端的形状等都影响电极插入深度,但是起决定作用的仍是工作电压(即二次电压)。电极插入深度与工作电压及功率分配的关系见图3。图3 电极插入深度与炉子工作电压及功率分配的关系
1-渣层厚度103cm; 2-铜锍层厚度;3-炉底
云冶当渣含SiO235%~38%,FeO30%~32%,SiO2/FeO1.15~1.20时,选择的二次电压为490~520V,此时电极插人深度约占渣层厚度的40%~60%
三、熔池深度
熔池深度对电炉熔炼制度的影响很大,最佳熔池深度应是:
(一)炉子热稳定性大,运行平稳。
(二)熔炼过程的电气制度比较稳定,减少电极接触铜锍造成短路的可能性。
(三)返回转炉渣时对渣成分影响小。
(四)炉渣中金属分离良好,以尽量减少金属在废渣中的损失。
(五)铜锍过热现象少,使热利用率提高、熔化量增加和电耗降低。
熔池深度高于最佳深度时引起炉渣底层和铜锍冷却,造成炉底结瘤及产生横膈膜现象,恶化铜锍颗粒额沉降条件,增加金属损失。
通常设计电炉时,一般铜锍层厚度为700~800mm,渣层厚度为1000~1500mm,故熔池深度为1700~2300mm。熔池深度实例见表2。
表2 熔池深度实例,mm厂别铜锍层厚度渣层厚度熔池深度云冶650~11001150~11001800~2200苏力切尔玛300~500500~1000800~1500依玛特拉180~430290~500590~790罗斯卡300~400800~10001100~1400今贾480~510600~7501100~1250茵斯皮雷森76015402300皮尔多普70010001700
废钢铁的辨识
2019-03-13 10:03:59
常用的辨别办法有火花辨别法、点试辨别法、听音辨别法、磁性辨别法、断口辨别法等。 1. 火花辨别法经过钢铁材料砂轮上研磨进程中所发作的火花特征来判别其化学成分的办法,可用于现场快递辨认材料之用。但用这种办法一般只能得到主要成分的定性估量,欲知其含量有必要具有极其丰富的经历。 (1) 火花发作的根本原理 钢铁材料在砂轮上研磨时,因为砂轮转速很快,发作高热,使材料研磨出的颗粒到达熔融状况,这些高温、熔融的细颗粒被砂轮的离心效果抛射在空气中发作亮光,其表面层与空气中的氧发作氧化效果,构成一层氧化铁薄膜。此外,钢中的碳化物( Fe3C )在高温下分化,分出碳原子,反应式为: Fe3C --- 3Fe+C 碳原子和表面层氧化亚铁发作复原效果,构成,反应式为: FeO+C--- Fe+CO 氧化亚铁被复原后,与空气中的氧复兴氧化效果,在瞬时氧化复原的循环效果下颗粒的温度越升越高,内部的积累也越来越多,因为内部胀大,发作爆裂,就构成火花。钢铁材料中的碳元素是发作火花的根本元素,而当钢中含有猛、硅、钨、钼、铬等元素时,它们的氧化物将影响火花的一致线条、色彩和形状,由此能够判别钢的化学万分。 ( 2 )火花的特性 以火束、流线、芒线分叉、爆花等的形状、色彩加以描绘。其间,火束是指钢铁在研磨时所发作的悉数火花,如图 1-1 所示;流线是指火热粉末在空气中飞过韶光亮线条的运动轨道,如图 1-2 所示;芒线是火花爆裂时所射出的线条,含碳量纷歧起其分叉状况纷歧,如图 1-3 所示;爆花是指由芒线及其节点所组成的火花形状,如图 1-4 所示。涣散在爆花之间的亮堂小点,称为花粉;在流线的尾部的爆花,称为尾花,如图 1-5 所示。 ( 3 )碳素钢火花特征的规则跟着含碳量的添加,流线逐步增多,火束长度逐步缩短,粗流线变细,芒线逐步细而短,由一次爆花转向屡次爆花,花的数量和花粉逐步增多。当 C
0.35% 时,则有逐步增多的三次火花。光亮度跟着含碳量的升高而添加。砂轮研磨时,手感觉钢件由软逐渐变硬。不同碳含量碳素钢的火花特征如表 1-1 所列。 钢铁中含合金元素量不同,火花特征也不同,有的元素能增强火花,有的则按捺火花。如表 1-2所示。.