无需焦炭的非高炉炼铁技术
2019-03-07 09:03:45
珀斯──澳大利亚西澳州首府,从前被称为“国际上最孤单的城市”。但是,这些年来,我国客人却对这“最孤单的城市”情有独钟,一再到访。2007年9月4日,领导在相关人员的陪同下,观赏了澳大利亚力拓矿业集团的直接熔融复原炼铁工厂。炼铁车间观看了复原铁的冶炼进程,并就环保、出产成本、工艺先进性,以及非高炉炼铁技能在我国使用的远景等具体询问了技能人员。此前,我国人大常委会委员长,以及我国多家大型钢铁厂商的管理者都观赏过这个炼铁项目。“熔融复原”炼铁技能有何奇特之处,引得许多政界商界要人的垂青? 资源压力下的新路当今国际的干流高炉炼铁技能仍然是自古就有的竖炉炼铁,这种办法炼制的铁占国际铁产值的95%以上。
我国钢研科技集团公司先进钢程及材料国家重点实验室郭培民教授介绍,通过数百年开展,现代高炉炼铁工艺现已适当老练,但流程杂乱、能耗高、环境污染严峻和出资巨大这些高炉炼铁与生俱来的问题仍未处理。更要害的是,高炉炼铁对冶金焦炭依赖性太强,从现在已探明国际煤炭储量中,焦煤仅占5%,且散布很不均匀,正是这个资源约束,催生了无高炉炼铁技能。北京科技大学冶金与生态工程学院副院长张建良教授介绍说,现在的无高炉炼铁首要有两种办法,即直接复原法和熔融复原法,国际上现已根本老练的三大非高炉炼铁技能,别离是奥钢联的COREX、韩国浦项的INEX、力拓矿业的HIsmelt,都选用熔融复原法。真实完成了商业化出产的非高炉炼铁技能的只要一家,即奥钢联的COREX技能。它是在奥地利和德国政府的财务支持下,于20世纪70年代开端研制,1989年完成商业出产。榜首代完成商业化出产的非高炉炼铁COREX-1000工厂年产能40万吨,1989年在南非完工。1995年至1999年间,国际上又先后建成四座年产能60万~80万吨的第二代COREX-2000出产厂,别离坐落韩国的浦项、南非的撒丹那(Saldanha)和印度的两个城市。全球专一在建的第三代COREX工厂是我国宝钢年产能150万吨的COREX-3000工程,该工厂方案2007年下半年开端商业化出产。
非高炉炼铁技能间的竞赛奥钢联的COREX尽管先行一步,却也存在先天缺点:国际上大部分铁矿资源是粉矿,并且粉矿比块矿报价低,奥钢联开发的COREX技能却只能炼块矿。可以炼粉矿的熔融复原技能随即应运而生,韩国浦项制铁研制的“FINEX”和力拓矿业的“HIsmelt”就是在这样的布景下诞生的。韩国浦项制铁公司于1992年和奥钢联签署协议,引进COREX-2000技能,并在此基础上研制出以粉矿为复原目标的FINEX技能。2007年5月30日,FINEX商业化项目正式开工。这个历时15年之久的项目共花费7亿美元研制经费,取得300多项专利。澳大利亚力拓矿业集团亚洲及我国区总裁路久成介绍,力拓矿业集团从上世纪80年代初开端研制HIsmelt技能,历经20余年,累计出资已超越10亿美元。现在实验性的HIsmelt工厂发展程度“已到达试营产值的80%,估计到2008年到达年产80万吨的设计能力,并进行商业化运营”。 我国的非高炉炼铁远景1996年我国钢铁产值初次超越1亿吨大关,跃居国际榜首位后,现已接连10年保持着国际榜首,一起,我国仍是专一钢铁总产值超越2亿吨的最大钢铁出产国、最大钢铁消费国、最大钢铁净进口国和最大铁矿石进口国。拿到这些“桂冠”的一起,我国也顶着一顶“钢铁能耗全球榜首”的帽子,在首要炼钢国中,我国吨钢能耗排在首位,是日本的3倍,美国的1.7倍。而非高炉炼铁技能的首要优势就是节能环保。力拓矿业集团亚洲及我国区总裁路久成说,力拓的HIsmelt技能,不只比奥钢联的COREX技能能耗低,也比国际上绝大多数传统高炉炼铁技能能耗低20%左右,废气排放更是远远低于高炉炼铁。
高炉炼铁
2019-03-06 10:10:51
现代炼铁的首要办法,钢铁出产中的重要环节。这种办法是由古代竖炉炼铁开展、改善而成的。虽然国际各国研讨开展了许多新的炼铁法,但由于高炉炼铁技能经济目标杰出,工艺简略,出产值大,劳动出产率高,能耗低,这种办法出产的铁仍占国际铁总产值的95%以上。
高炉出产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从坐落炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅佐燃料)中的碳同鼓入空气中的氧焚烧生成的和,在炉内上升过程中除掉铁矿石中的氧,然后复原得到铁。炼出的铁水从铁口放出。铁矿石中不复原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。发生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。前期高炉运用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改凉风为热风(见冶金史)。20世纪初高炉运用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速开展。20世纪初美国的大型高炉日发生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197米3高炉,日发生铁超越1万吨,燃料比低于500公斤/吨生铁。我国在清朝末年开端开展现代钢铁工业。1890年开端筹建汉阳铁厂,1号高炉(248米3,日产铁100吨)于1894年5月投产。1908年组成包含大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,我国高炉总容积约8万米3,其间1000米3以上的26座。1980年全国产铁3802万吨,居国际第四位。
70年代末全国际2000米3以上高炉已超越120座,其间日本占1/3,我国有四座。全国际4000米3以上高炉已超越20座,其间日本15座,我国有1座在建设中。
50年代以来,我国钢铁工业开展较快,高炉炼铁技能也有很大开展,首要表现在:①归纳选用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅佐燃料(煤粉和重油等)等强化冶炼和节省能耗新技能,特别在喷吹煤粉上有独到之处。1980年我国重点厂商高炉均匀使用系数为1.56吨/(米3·日),焦比为539公斤/吨生铁;②归纳使用含钒钛的铁矿石取得了突破性发展,含稀土的铁矿石的使用也取得了较大的发展。
高炉冶炼首要技能经济目标 分述如下:
高炉使用系数每立方米高炉有用容积一昼夜出发生铁的吨数,是衡量高炉出产功率的目标。比方1000米3高炉,日产2000吨生铁,则使用系数为 2吨/(米3·日)。
焦比 每炼一吨生铁所耗费的焦炭量,用公斤/吨生铁表明。高炉焦比在 80年代初一般为450~550公斤/吨生铁,先进的为380~400公斤/吨生铁。焦炭报价昂贵,下降焦比可下降生铁本钱。
燃料比高炉选用喷吹煤粉、重油或天然气后,折合每炼一吨生铁所耗费的燃料总量。每吨生铁的喷煤量和喷油量别离称为煤比和油比。此刻燃料比等于焦比加煤比加油比。依据喷吹的煤和油置换比的不同,别离折组成焦炭(公斤),再和焦比相加称为归纳焦比。燃料比和归纳焦比是判别冶炼一吨生铁总燃料耗费量的一个重要目标。
冶炼强度 每昼夜高炉焚烧的焦炭量与高炉容积的比值,是表明高炉强化程度的目标,单位为吨/(米3·日)。
休风率 休风时刻占全年日历时刻的百分数。下降休风率是高炉增产的重要途径。一般高炉休风率低于2%。
生铁合格率 化学成分符合规定要求的生铁量占悉数生铁产值的百分数,是点评高炉优质出产的首要目标。
生铁本钱 是从经济方面衡量高炉作业的目标。
高炉锰铁的生产---高炉锰铁冶炼原理
2019-01-25 15:49:34
高炉锰铁冶炼以炭作发热剂和还原剂,在高炉中将锰和铁的氧化物还原,生成锰铁合金及炉渣、煤气,是一系列复杂的物理化学过程。 1.锰在高炉内的还原过程 在高炉上部的较低温度区域,锰的高价氧化物易分解,逐级还原为MnO,但由于锰矿石中含有SiO2,MnO在未达到还原温度以前,即与脉石中(或燃料熔剂中)的SiO2结合生成硅酸锰进入渣中,锰的还原实际上是在液态炉渣中进行的。炉渣中的硅酸锰比自由状态的MnO更稳定,使锰的还原更加困难,需要的温度更高。 2.锰铁炉渣的形成及其对冶炼的影响 在冶炼锰铁高炉不同高度取样进行岩相分析,并测定炉渣粘度、温度,将测定结果编制锰铁高炉造渣过程示意图(图1)。图中表明,在温度600~700℃区间内,炉料以固相存在,这里MnO2还原为Mn3O4,吸附水和结晶水蒸发。到750~900℃区间锰矿石局部进入到塑性状态——矿石熔结,新的矿相如3CaO·SiO2,2CaO·SiO2及3CaO·2SiO2开始出现。800~1000℃温度范围内,除塑性体外还出现了液相。由于在该区域内存在着钙锰橄榄石(2CaO·SiO2,2MnO·SiO2)而生成液相,使得该区域透气性变差。在此温度区间矿石已经软化并转变成为塑性状态并生成含锰的液相初渣。当温度高于1100℃以后,除塑性体外主要的是液相,其成分基本上与上区域相似,大部分石灰仍为固相。在炉腹区域,由于大量锰从炉渣中由碳进行直接还原,渣中CaO含量急剧增加,MnO含量相应降低。在炉缸中,熔渣最终吸收焦炭中的灰分及熔剂中的CaO,MgO等,形成终渣。[next] 在高炉锰铁炉渣的形成过程中,炉渣中各组分对冶炼有不同程度的影响。表1 CaO含量与炉渣、铁水温度的关系CaO含量/%铁水温度/℃炉渣温度/℃281295135035144514803915151587
炉渣中的CaO可以改善硅酸锰的还原条件,将硅酸锰中的MnO置换出来,增加渣中自由MnO的浓度,利于MnO的还原。炉渣中CaO含量与MnO含量的关系见图2。炉渣中的CaO可以提高炉渣及铁水温度,对MnO还原有利。表1说明了CaO含量与炉渣、铁水温度的关系。在生产中,渣中CaO含量不应超过高炉工作条件允许范围,还和炉料中SiO2的含量有一定关系,n(CaO)/n(SiO2)之比为炉渣碱度,CaO含量过高使炉渣碱度过高,会使炉缸阻塞,炉况不顺。 炉渣中合适的MgO既可调节炉渣碱度,又可改善渣的流动性,为MnO的还原创造有利条件,从而促使高炉各项指标的改善。根据国内生产实践,n(CaO)/n(SiO2)=1.40~1.55时,渣中MgO含量增加1%,渣中MnO含量可降低0.5%~1%。 渣中的A12O3对MnO的还原也有影响,如图3所示。在相同碱度下,渣中MnO含量随其中Al2O3的增加而降低。这是因为A12O3含量的增加,提高了炉渣的熔点.初渣在高炉中形成的位置降低,炉料预热充分,带入炉缸的热量增加,MnO的还原速度加快创造了条件。但A12O3含量过高,会使炉渣粘度增高,反而恶化MnO的还原条件。高炉生产实践证明:炉渣中A12O3的含量应控制在10%~15%为宜,最高不要超过20%。[next] 3.煤气流在高炉内的形成及运动规律 高炉内煤气产生于风口区的焦炭燃烧(2C+O2===2CO).风口前生成的煤气分布称煤气初始分布。其分布情况决定于风口布置、风口个数、风口直径、风口角度及伸入炉内的长度、风量大小和风温高低。以上因素综合体现为鼓风功能。鼓风动能高,煤气流向中心集中,中心气流发展,反之边缘气流发展。 煤气的第二次分布发生在高炉中部的软融带。软融带的形状大体可分为V型、倒V型和W型。软融带形状与高炉上下部调节、炉内温度分布、炉料性质等有关。软融带形状不同,煤气通过后流向也不同。根据对炉喉CO2曲线的检测分析,高炉内煤气流的分布主要有四种类型。 (1)边缘发展型——煤气主要沿炉墙附近的边缘通过。 (2)双峰型——煤气主要由边缘与中心两条通路经过。 (3)中心发展型——也称双峰漏斗型、煤气主要由中心区通过。 (4)平坦型——煤气沿高炉截面均匀通过。 以上四种类型煤气分布对高炉冶炼过程影的响如表2.所示。 生产实践表明,锰铁高炉炉喉煤气CO2径向分布采用双峰漏斗型曲线控制较为理想,如图4所示。采用此种曲线操作,其软融带为倒V型,“气窗”面积大,煤气易于通过,使高炉操作顺行。
高炉锰铁的生产---高炉锰铁冶炼用原料
2019-01-25 15:49:34
高炉锰铁冶炼用原料主要有锰矿、焦炭和熔剂。 1.锰 矿 高炉冶炼用的锰矿有氧化矿、碳酸盐矿、焙烧矿和烧结矿。 矿石中的锰是高炉锰铁冶炼中的主要回收元素。锰矿石含锰量的高低直接影响锰铁冶炼技术经济指标。高炉生产实践表明,锰矿中含锰量波动1%,焦比波动50~80kg,产量波动3%~5%,因此对入炉矿中含锰量要求越高越好。 锰矿中SiO2的含量是影响渣量的主要因素。据分析,入炉锰矿中的m(SiO2)/m(Mn)波动10%,相当于含锰量波动1%,应当尽量选用m(SiO2)/m(Mn)低的矿石入炉。我国各厂家入炉混合矿的m(SiO )/m(Mn)一般控制在0.3~0.8。 锰矿中的m(Mn)/m(Fe)决定产品的含锰量,生产不同牌号的锰铁,需用不同m(Mn)/m(Fe)比值的锰矿。 锰矿中的磷是高炉锰铁生产中的控制元素,希望越低越好。磷在钢铁产品中大都属有害元素。磷在高炉冶炼中理论上百分之百还原。因此锰铁产品中的磷含量取决于矿石、焦炭中的含磷量。但在高炉冶炼中,Mn的回收率和锰矿石的品位会在较大范围内变化,因此产品中的含磷量也随之变化。 锰矿石中允许的含磷量按下式计算: w(P矿)={[P]/np-(w′pK+w″pФ+w″pD)}÷H 式中 w(P矿)——入炉锰矿石的含磷量,%; [P]——产品中允许含磷量上限,%; np——磷在高炉中的还原率(理论上100%,实际上80%左右); w′p,w″p,w″p——分别为焦炭,熔剂 和其他附加物的含磷量,%; H,K,Ф,D——分别为冶炼每吨锰铁所需矿石、焦炭、熔剂和其他附加物单耗,kg/t. 某厂高炉锰铁冶炼对入炉锰矿的m(Mn)/m(Fe)及m(P)/m(Mn)要求下见表。 各牌号高炉锰铁对锰矿m(Mn)/m(Fe)、m(P)/m(Mn)的要求牌号锰铁成分 (%)对入炉锰矿要求MnPm(Mn)m(P)/m(Mn)Ⅰ组Ⅱ组m(Fe)Ⅰ组Ⅱ组≥≤≥≤FeMn78780.330.56.220.003750.00493FeMn74740.380.54.680.003960.00521FeMn68680.40.63.590.004410.00662FeMn64640.40.62.90.004690.00703FeMn58580.50.62.380.006250.0075
锰矿中的铅在冶炼时易还原也易挥发,还原后沉积在炉底,严重时会破坏炉底,炉温高时易挥发,在高炉上部结瘤。一般为要求锰矿中Pb含量<0.1%。锰矿中的锌易挥发在高炉上部沉积,对炉墙砖衬和炉壳有破坏作用,也可能和炉衬混合形成炉瘤。通常要求锰矿中Zn含量<0.2%。 锰矿石入炉粒度一般为5~60mm,含粉率要求小于5%。 2.焦 炭 焦炭在高炉冶炼中不但是还原剂和发热剂,而且是整个高炉料柱的骨架。焦炭质量的好坏一方面要看其化学成分,另一方面要看其物理性能——粒度和强度。锰铁高炉冶炼用焦炭主要有冶金焦、气煤焦和土焦。不同焦炭质量差别较大,使用时应综合考虑。 对焦炭的基本技术要求: (l)高而稳定的固定碳含量。固定碳含量越高,作为还原剂和发热剂的能力越大,对降低焦比,改善技术经济指标有利。 (2)较低的灰分可以减少渣量及灰分带入的磷含量。 (3)较高的机械强度,可防止和减轻焦炭在炉内下降过程中产生粉末、恶化料柱透气性。挥发分低的焦炭机械强度比较好。 焦炭中的水分虽然对高炉冶炼过程无影响,但水分波动会影响配料的准确性。因此,希望焦炭水分稳定为好。焦炭入炉粒度一般为20~60mm。 3.熔 剂 高炉锰铁冶炼所用熔剂为石灰石、生石灰、白云石等。 对石灰石和生石灰要求CaO含量越高越好。CaO含量高,带入的渣量相对减少。使用白云石调节渣时,要求白云石的MgO含量尽量高。 熔剂入炉粒度要求:石灰石和白云石15~75mm,生石灰为20~l00mm,小高炉偏下限,中型高炉偏上限。
非高炉炼铁
2019-01-04 17:20:15
非高炉炼铁法是指除高炉炼铁以外的其它还原铁矿石的方法。当前非高炉炼铁法可归纳为两大类:直接还原法和熔融还原法.都是炼铁冶金技术中的新工艺。
直接还原法是指在铁矿石熔化温度下把铁矿石还原成海绵铁的炼铁生产过程,产品叫直接还原铁或海绵铁。由于低温还原,得到的直接还原铁未能充分渗碳,因而含碳较低(
熔融还原法是指一切不用高炉冶炼液态生铁的方法。它是不用焦炭在一个容器中完成高炉炼铁过程的,基本上不改变目前传统钢铁生产的基本原理。
近年来,非高炉炼铁法发展比较快,其原因是:
(1)不用焦炭炼铁。高炉冶炼需要高质量冶金焦,而焦煤从世界储量而言,只占煤总储量的5%,且日渐短缺,价格越来越高。非高炉炼铁可以使用非炼焦煤和其它能源作燃料与还原剂。近几十年来,大量开发了天然气、石油、水、电和原子能等新能源,为非高炉炼铁发展提供了条件。
(2)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好代用品。
(3)省去了炼焦设备,总的基建费用比高炉炼铁法少。虽然非高炉炼铁法的生产效率远赶不上高炉,但对于缺乏焦煤资源的国家和地区,用;r中小型企业生产,前途是光明的.
非高炉所得还原铁的用途可分为以下三类:
(1)炼钢原料.主要是代替电炉废钢,但也可以用于转炉。应以还原度高、杂质少的为佳.
(2)高炉原料。经过预还原的矿石可作为高炉炉料,以增加产量,降低焦比。
(3)铁粉。铁粉可用于粉末冶金或用作电焊条的原料等。
还原度越低,所得的还原铁越容易二次氧化,因此若要贮藏或远距离特别是海上运输,则必须进行钝化处理。常用的钝化处理方法有在控制气氛下形成氧化膜,用化学物质处理,或者进行压块。
非高炉炼铁的发展及特点
非高炉炼铁法在很早以前就为人们采用了。自20世纪初为了获得生产特殊钢的原料和充分利用当地资源而将非高炉炼铁法用于工业生产以来,特别是在瑞典,非高炉炼铁法得到了迅速的发展,诸如韦伯(Wiberg)法和霍冈勒斯(H6gan;s)法直至现在仍继续运用于生产中.二次大战前,大多数地方以煤和电为能源,战后改进的回转炉法及回转炉与电炉相结合的电炉炼铁法,开始投入实际工业生产。从1950—1960年,开始研制以天然气和石油作还原剂的直接炼铁法,到70年代,又进一步发展到工业规模上采用竖炉法和流比床法。 非高炉炼铁法,虽然很早就进行了研究,但工业化生产的规模很小。1972年世界粗钢产量为63000万吨,正在建造中的或者已签订合同的生产能力为年产1400万吨。若将计划中的生产能力也包括在内,可以预计,在不久的将来非高炉炼铁的生产能力将有相当大的增加。
非高炉炼铁与高炉炼铁相比,除了不用焦炭以外,工艺上的显著特点是温度和还原度的关系不同。
在高炉方式中,铁矿石A在高炉内升温、还原、熔化成为铁水B:因为铁水被过度地还原,含碳量达到饱和状态,所以必须在纯氧顶吹转炉内进行氧化、脱碳,使铁水中C变成处于状态E的钢液而出钢,最后经过脱氧去除多余的氧即成为成品钢液F。 在非高炉炼铁方式中,还原是按虚线所示的路线进行的。如在直接还原方式中,矿石A被升温、还原成海绵铁D。在此状态下,还原度和温度都较低,因此还须在电炉中熔化,还原其中未还原的部分,从而得到钢液E。
非高炉炼铁的方法及分类
非高炉炼铁法根据原料和产品用途分类的方法很多,已发表的方法就有百余种。各种分类方法是根据以下不同的观点来进行划分的:
(1)按还原装置进行分类:有固定床法、回转炉法、竖炉法和流化床法等。
(2)按还原剂进行分类:有固体还原剂法、气体还原剂法等。
(3)按生产方式进行分类:有预还原法、直接炼钢法、熔融还原法、原子能炼铁法等。
直接还原法
如前所述,直接还原法种类很多。其产品主要是固态的海绵铁、粒铁及液态生铁。图6—2概括了生产固态海绵铁的各种直接还原法的工艺原理。这种海绵铁在下一步生产工序中用电炉熔炼成钢。
使用固体还原剂法
使用固体还原剂进行直接还原的主要设备是回转窑,利用回转窑还原铁矿石的主要产品是海绵铁。其工作原理是:将固体还原剂(煤)、铁矿石和熔剂(石灰石或白云石)混匀后,由回转窑生产。
高炉锰铁标准
2019-01-04 17:20:15
高炉锰铁标准高炉锰铁(GB/T3975-1996)牌号化学成分(%)Mn其余元素,≤CSiPS一组二组Ⅰ级Ⅱ级FeMn7875.0~82.07.5120.30.50.03FeMn7470.0~77.00.4FeMn6865.0~72.07FeMn6466.0~67.02.50.50.6FeMn5855.0~62.0
高炉锰铁的生产---高炉锰铁冶炼操作
2019-01-25 15:49:34
锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点: ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。 ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。 ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。 ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。 ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。 以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。 1.高炉锰铁冶炼的装料制度 高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。 (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。 (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。 (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。 (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。 生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。 2.送风制度 锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。 在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。 在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。 3.热制度 高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。 炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。 焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。 在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。 4.造渣制度 高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。
高炉渣提钛技术
2019-01-04 17:20:18
过去,对于高炉流程而言,仅得到了大部分铁、钒的回收,而高炉渣中的钛,没有回收利用。因此,研究开发高炉渣中钛的回收技术,提高钛的回收利用率,具有十分重要的意义。
目前,从高炉渣中提取回收钛的技术大致可分为三种:一是传统的酸浸流程,为了降低处理成本,使用废酸或低浓度酸解技术,废酸液可循环使用,也可以作为钢铁厂内部循环水的处理剂使用。采用该工艺,一方面充分利用了生产过程中产生的废酸,另一方面节约了废酸和废水的处理费用,显着降低了生产成本。二是“高温炭化,低温氯化”处理工艺,以高钛型高炉渣为原料,采用火法冶金处理方法,在高温下首先进行高炉渣的炭化,将其中的TiO2转变为TiC和TiN,然后在较低温度下氯化,将TiC 和TiN 转变为TiCl4,通过进一步的精制,获得硫酸法钛白或氯化法钛白的优质原料。根据现有技术,高炉渣炭化率可达到90%以上,目前关键是如何降低生产能耗,使之具备经济优势,实现规模化生产。三是高炉渣“再冶再选”工艺技术,针对高炉渣中含钛物相多且分散、粒度细小的特点,通过冶金方法促进高炉渣中的钙钛矿长大,然后通过选矿方法选出其中的钛,达到钛富集的目的。 采用该方法处理,钙钛矿粒度可由原来的10μm长大到40μm左右,经选矿后,TiO2品位可由目前的22%提高到40%左右。但存在处理时间长、产品品位低等不足,尚需进一步研究解决。
高炉炼铁爆炸原因分析
2019-01-04 17:20:18
烧结工艺
■ 人员若未遵守安全操规程、煤气检修安全规程、未穿戴好劳保用品,可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。
■ 煤气管道、阀门、脱水器应每班检查、维护,若阀门故障或发生泄漏。可能导致煤气中毒、煤气爆炸事故。
■ 启动设备前必须确认烧结机内无人或其他杂物时,方可启动。否则可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。
■在燃烧器点火过程中,未进行爆破试验,因无快速切断阀、煤气压力低、泄漏煤气、煤气管道混有空气、点火前未对各阀门进行确认、现场无煤气泄漏监控系统或系统失效都有可能造成爆炸、火灾、中毒窒息。
■在生产过程中,因停水、停电,导致煤气水封水不能保证供应或煤气水封系统故障致使水封无水,煤气管道泄漏、煤气压力过大等原因、煤气放散口高度过低都会导致现场有煤气聚集,当遇高温、明火后也会发生爆炸、火灾,同时也会造成中毒、窒息。
■ 点火时要先送火种,后开煤气。否则可能导致煤气爆炸事故。
高炉炼铁工艺
炉顶设备系统
■ 休风检修完毕,未经休风负责人同意,送风,有发生中毒窒息,煤气爆炸危险。
■ 需要休风时,未先停止打水,并点燃炉顶煤气,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。
■ 炉顶压力不断增高又无法控制时,不及时减风,未打开炉顶放散阀,有发生爆炸危险。
■停炉前,高炉与煤气系统未可靠地分隔开;采用打水法停炉时,未取下炉顶放散阀或放散管上的锥形帽;采用回收煤气空料打水法时,未减轻炉顶放散阀的配重;均有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。
■冷风管未保持正压;除尘器、炉顶及煤气管道未通入蒸汽或氮气或未彻底驱除残余空气;送风后,高炉炉顶煤气压力低于标准,未作煤气爆发试验,确认不会产生爆炸,就接通煤气系统,都有发生煤气爆炸的危险。
■ 长期休风(≥4小时)不进行炉顶点火、炉喉点火,有发生中毒窒息,煤气爆炸的危险。
■ 休风前及休风期间,如有损坏未及时更换或采取有效措施,有漏水入炉,有发生炉体爆炸危险。
高炉本体
■炉内各物料处于1150℃~1450℃的高温和还原性气氛中,在熔融的过程中进行还原反应。如操作不当、可能导致爆炸。高温熔体如遇炉套破裂漏水等情况,因剧烈汽化而可能发生爆炸。
■ 铁水混入水冲渣系统可能引发爆炸。
■ 在冶炼过程中,高炉长期使用,未及时检修,导致耐火层破坏,可能造成炉底烧穿铁水流出发生爆炸。
■ 冷却壁不能保证冷却水供应,可能使炉底烧穿铁水流出发生爆炸
■ 炉基、炉底、炉缸等部位水测试装置损坏,致使炉温测试不准,或炉温测试不及时,可能导致高炉烧穿铁水流出发生爆炸。
■ 炉体炉壳开裂由于热膨胀超出极限出现纵向或径向裂缝,导致煤气泄漏与空气混合形成爆炸性混合物,泄漏的高温煤气本身具备点火能量,可发生爆炸。
■ 炉基周围有积水,有发生铁水爆炸危险
■冷却件有渗漏现象,有发生铁水爆炸危险。
■大修高炉,放残铁之前,未设置作业平台,彻底清除炉基周围的积水,有发生残铁爆炸的危险。
■高炉突然断风,未按紧急休风程序休风,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。
■送水不分段、快速进行,可产生大量蒸汽而引起爆炸
■停水事故处理,进水阀门通水时过快,致使冷却设备急冷或猛然产生大量蒸汽而炸裂。
■高炉悬料时间长,炉内形成较大空间,且炉顶温度逐步升高超过规定,可能打水降温,而产生大量蒸汽。当料柱塌下时,炉顶瞬间产生负压,空气和混有煤气的冷料进入炉内,上密、下密不严,遇高温煤气后,可能发生炉顶爆炸。
热风炉除尘系统
■热风炉煤气总管未按GB6222的要求设可靠隔断装置。煤气支管未装煤气自动切断阀,当燃烧器风机停止运转,或助燃空气切断阀关闭,或煤气压力过低时,该切断阀不能自动切断煤气,不发出警报。煤气管道未设煤气流量检测及调节装置。管道最高处和燃烧阀与煤气切断阀之间未设煤气放散管,有发生燃烧爆炸、中毒窒息的危险。
■热风炉管道及各种阀门不严密。热风炉与鼓风机站之间、热风炉各部位之间,未设必要的安全联锁。突然停电时,阀门不向安全方向自动切换,有发生燃烧爆炸的危险。
■在热风炉混风调节阀之前未设切断阀,一旦高炉风压小于0.05 MPa,不关闭混风切断阀,有发生燃烧爆炸的危险。
■热风炉烧炉期间,火焰熄灭时,未及时关闭煤气闸板,重新点火,有爆炸危险。
■热风炉及供气管网高炉需要煤气为燃料在加热炉燃烧加热,则高炉煤气供气及燃烧系统发生操作不当或煤气泄漏,有可能发生爆炸。
■在生产及设备检修过程中,要按照有关安全操作要求执行,除尘器内的煤气可导致火灾、爆炸、中毒事故。
■煤气净化布袋除尘系统,高炉顶温异常上升,超过管道膨胀补偿能力,引起管道破裂,煤气泄漏,导致火灾、爆炸、中毒事故。
■高炉除尘系统维修需用氮气吹扫,若未设置氮气,吹扫不彻底可能导致中毒或火灾爆炸事故。
高炉煤气系统
■煤气管道出现负压、煤气管道进入空气有爆炸危险。
■煤气系统若未设置低压报警、快速切断、放散装置等安全装置,可能造成煤气泄漏,导致火灾爆炸或人员中毒窒息事故。
■除尘器未设带旋塞的蒸汽或氮气管头,或其蒸汽管或氮气管未与炉台蒸汽包相联接,或堵塞或冻结,有发生燃烧爆炸、中毒窒息的危险。
炉前出铁场和炉台构筑物
■开铁口、出铁、出渣、堵铁口过程中,因违规操作使用潮湿的工具,可能发生铁水爆炸。
■铁水沟或平台上积水,一旦铁水外溢可能发生铁水爆炸。
■撇渣器烧穿、损坏,铁口潮湿、渣中带铁等可能发生铁水爆炸。
渣、铁处理
铸铁机
■铸铁机地坑内不应有积水。否则可能造成铁水爆炸事故
什么是高炉工序能耗
2019-01-07 07:51:16
高炉工序能耗(吨铁平均能耗)
高炉每生产一吨合格生铁直接消耗的能源量,单位为kg标准煤/t铁,是衡量高炉生产水平高低的一个重要指标。
这里用的“标准煤”,是等效衡量能源热值的一个参考单位,简称标煤。
国家标准规定:低位发热量等于29.27MJ(7000kcal)的固体燃料,称1千克标准煤(kgce)。
由于中国的能源结构是以煤为基础的,因此需要按标准煤折算。
[参考:低位发热量等于41.82MJ(10000kcal)的液体燃料或气体燃料,称1千克标准油(kgoe)或1标准立方米标准气。
在计算综合能耗时,不论一次能源,还是二次能源和耗能工质,均应折算为标准煤。其折算的方法是:
标准煤量=能源(或耗能工质)实物量×折算系数
折算系数=每单位某种能源(耗能工质)的等价热量/29.27MJ(每千克标煤发热量)
注意:
“高炉工序能耗”的叫法,在新闻报道中常见,也可用于对比计算经济成本。但是在高炉工艺原理教科书中,并不把高炉工序能耗做为基本参数。因此,暂没有科学的公式可以表述高炉工序能耗。
宝钢股份的三座特大型高炉连续三年刷新了工序能耗历史纪录。2004年吨铁平均能耗达到384.8 kg标煤,其中宝钢二号高炉吨铁能耗仅为378.32kg标煤。这是世界冶金界高炉能耗的最好水平。
锰铁高炉的技术改造
2019-01-04 13:39:36
1 市场呼唤技术改造,回顾过去,我国锰铁高炉有其蓬勃发展的历史,审视当前,高陆锰铁行业似乎正在丧失其往日的风采。各高炉锰铁厂的市场竞争力强弱不等,但从整体上看是在弱化。出现这种现象的原因,一是锰市场的变化;二是技术落后,对市场的变化不够适应。 西方国家锰市场早已出现变化,其锰合金消耗与钢产量的变化可以看出:(1)钢的增长幅度大于锰的消耗量,吨钢耗锰量下降.70年代西方将平炉淘汰后,炼钢用锰单耗下降,1980年平均7.3kg/t,到80年代后期降到6.4kg/t左右,其后保持或略低于这个水平;(2)在锰单耗下降的情况下,以硅锰形式消耗的锰量稳步上升. 1999年起,我国也出现了炼钢增加MnSi耗量的趋势,究其原因,定性地分析有3点:①建筑用钢产量比重大,而建筑用钢允许有较高的硅残余量;②我国硅锰合金成本、价格较低。这是由于我国高SiO2锰矿资源多,而且用贫杂锰矿冶炼的富锰渣是生产硅锰合金的优质原料。从炼钢看,有些钢种使用复合脱氧剂锰硅合金比用锰铁加硅铁更经济; ③市场对低炭洁净钢的需求日益增长,从而使精炼锰铁和MnSi受益。
低硅高炉锰铁冶炼实践
2019-01-04 11:57:16
高炉冶炼低硅锰铁是高炉锰铁生产的一项重要技术进步。本文就这一技术,从理论和实践两方面进行了阐述。还原机理。据近年有关研究,高炉内硅的还原是按照SiO2→SiO→Si的顺序逐级进行的。高炉中硅还原进入生铁的过程主要是在滴落带进行,并以SiO气体为中介还原转入铁水中,风口前焦炭燃烧后释放出的灰分中的SiO2虽进入炉渣,但基本上呈自由状态,活度大,与焦炭接触良好,所以反应(容易进行,使(SiO2)极易转变为气态SiO。气态SiO在滴落带挥发上升过程中与下降的铁水接触,被铁水中的[C]还原而进入生铁。因此,在风口高温区和滴落带,热力学条件和动力学条件都是有利的,即在风口平面上是增硅的过程。风口平面以下的进行而使已还原进入生铁的[Si]发生再氧化而呈现降硅过程。这一系列还原过程已为国内外高炉解剖及生产实践所证实。
高炉冶炼主要工艺设备简介
2019-03-06 10:10:51
铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。
一般,辅佐体系的建造出资是高炉本体的4~5倍。出产中,各个体系互相配合、互相制约,构成一个接连的、大规模的高温出产过程。高炉开炉之后,整个体系有必要日以继夜地接连出产,除了方案检修和特殊事端暂时休风外,一般要到一代寿数终了时才停炉。
高炉炼铁体系(炉体体系、渣处理体系、上料体系、除尘体系、送风体系)首要设备扼要介绍一下。
1、高炉
高炉炉本体较为杂乱,本文在最终附有专门介绍。
横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹 、炉缸5部分。因为高炉炼铁技 术经济指标杰出,工艺 简略 ,出产量大,劳动出产效率高,能耗低一级长处,故这种办法出产的铁占国际铁总产量的绝大部分。高炉出产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从坐落炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅佐燃料)中的碳同鼓入空气中的氧焚烧生成的和,在炉内上升过程中除掉铁矿石中的氧,然后复原得到铁。炼出的铁水从铁口放出。铁矿石中未复原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。发生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的首要产品是生铁 ,还有副产高炉渣和高炉煤气。
2、高炉除尘器
用来搜集高炉煤气中所含尘埃的设备。高炉用除尘器有重力除尘器、离心除尘器、旋风除尘器、洗刷塔、文氏管、洗气机、电除尘器、布袋除尘器等。粗粒尘埃(>60~90um),可用重力除尘器、离心除尘器及旋风除尘器等除尘;细粒尘埃则需用洗气机、电除尘器等除尘设备。
3、高炉鼓风机
高炉最重要的动力设备。它不光直接供应高炉冶炼所需的氧气,并且供应战胜高炉料柱阻力所需的气体动力。现代大、中型高炉所用的鼓风机,大多用汽轮机驱动的离心式鼓风机和轴流式鼓风机。近年来运用大容量同步电动鼓风机。这种鼓风机耗电虽多,但发动便利,易于修理,出资较少。高炉冶炼要求鼓风机能供应必定量的空气,以确保焚烧必定的碳;其所需风量的巨细不只与炉容成正比,并且与高炉强化程度有关、一般按单位炉容2.1~2.5m3/min的风量装备。但实际上不少的高炉考虑到出产的开展,装备的风机才能都大于这一份额
4、高炉热风炉
热风炉是为高炉加热鼓风的设备,是现代高炉不行短少的重要组成部分。现代热风炉是一种蓄热式换热器。现在风温水平为1000℃~1200 ℃ ,高的为1250 ℃~1350 ℃ ,最高可达1450 ℃~1550 ℃。
进步风温能够经过进步煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改进热风炉操作等技术措施来完成。理论研究和出产实践标明,选用优化的热风炉结构、进步热风炉热效率、延伸热风炉寿数是进步风温的有效途径。
5、铁水罐车
铁水罐车用于运送铁水,完成铁水在脱硫跨与加料跨之间的搬运或放置在混铁炉下,用于高炉或混铁炉等出铁。
高炉炉渣中钛、镁、铝较优配比
2019-01-10 09:44:07
高炉炉渣性能对高炉生产和产品质量有重大影响,而炉渣性能与其化学成分紧密相关。钛、镁、铝是炉渣中常见元素,其质量分数变化对炉渣黏度、熔化性温度、脱硫等影响较大。近年来,国内外学者对炉渣性能的影响因素已有大量研究,而在CaO-Al2O3-SiO2-MgO-TiO2五元渣系中,钛、镁、铝对炉渣性能的影响以及较佳比例还没有明确结论。 华北理工大学的学者以承钢现场渣为基准,研究了钛、镁、铝对炉渣黏度、熔化性温度和脱硫的影响。研究结果表明:在CaO-Al2O3-SiO2-MgO-TiO2五元渣系中,钛、镁、铝对炉渣性能的影响较大。随着MgO质量分数增加,熔化性温度先降低后升高,黏度呈降低趋势,脱硫能力先升高后降低;随着Al2O3质量分数的增加,熔化性温度先降低后升高,黏度变化复杂,脱硫能力降低;随着TiO2质量分数的增加,熔化性温度和黏度呈升高趋势,而脱硫能力降低。当炉渣碱度为1.12时,炉渣适宜成分:MgO质量分数约为13.95%,Al2O3质量分数约为13.75%,TiO2质量分数控制在10.57%以下。合理控制炉渣中钛、镁、铝的配比,对改善炉渣性能和提高高炉生产有重要意义。
含钛物料可作为高炉护炉料
2019-01-04 17:20:18
钛渣及含钛原料钛渣及含钛原料叫做含钛物料,可作为高炉的护炉料、在高沪中加人适量的含钛物料,可使侵蚀严重的炉缸,炉底转危为安‘含钛物料主要有帆钛磁铁块矿、钒钛球团矿、钛精矿、钛渣、钒钛铁精矿粉等。
加入方法为: (1)当炉缸炉底侵蚀严重时,可以将钒钛块矿、钛渣从沪顶装入高炉〔也可以在烧结配料中加人铁精矿粉,得到帆钛烧结矿),(2)当对炉缸局部区城护炉时,可以从对应的风口喷入钒铁精矿粉。(3)当对铁口区域炉炉时.可以将钒钛精矿粉加入到笼泥中,打入到铁口,国内外生产实践表明,一般含钛物料的用量为TiO2 7一12kg/t含钛物料炉炉原理:在含钛物料中起炉炉作用的是炉料中的TiO2的还原生成物。含钛物料中的TiO2在高炉内的高温还原气氛下还原生成‘TiC、TiN及其连接固溶体Ti(C.N),这些钛的碳化物和氮化物在炉缸炉底生成和集结,与铁水和铁水中析出的石墨等极结在离冷却壁较近的被浸蚀严重的炉缸、炉底的砖缝和内衬表面.由于TiC、TiN的熔化温度很高,纯TiC为3150度,TIN为2950度 ,Ti (CN)是固溶体.熔点也很高,从而对炉缸,炉底内衬起到了保炉作用。
高炉高铝渣问题的探索与解决
2019-03-11 13:46:31
高炉出产实践标明,炉渣Al2O3含量超越16%就会对炉况的安稳顺行发生较大的不良影响,乃至引起高炉异常。例如,武钢7号高炉是3200m3大型高炉,配备水平先进,投产后,取得了很好的操作目标,但到2009年6月,因为质料成分大幅动摇,烧结质量变差,矿石Al2O3含量高,渣动性变差,渣铁不能及时排放,致使炉况顺行渐差,造成了炉况的异常,给高炉出产造成了巨大损失。为此,武钢尽力探究处理高炉高铝渣问题的有用办法。
依据出产实践经验,在Al2O3含量到达18%以上时,依托高MgO渣来下降炉渣黏度是不可行的,因为进步炉渣MgO含量要靠进步烧结矿中白云石等熔剂配比来完成,当烧结矿中MgO含量增加时,粘结相的流动性变差,如燃耗不增加则必定引起烧结矿强度下降。最近实验室研讨的结论是,烧结矿中MgO含量以2.5%为宜,超越此规模,烧结矿转鼓指数将趋于下降。因而,要应对质料来历失控引起的Al2O3含量过高的状况,需求研讨适合的高炉造渣准则。下降黏度的途径有2个,一是加锰矿(MnO);二是加萤石(CaF2)。因为加锰矿会影响生铁中Mn的含量,所以应研讨恰当参加萤石量的办法。 武钢7号高炉在2009年7月高炉渣中Al2O3含量全天均匀高达18.6%,最高时达22.81%,严峻影响了渣铁的流动性和渣铁的别离,直接导致了渣铁排放困难。尽管采取了许多办法,如加锰矿、热洗炉等办法,但因为炉缸堆积严峻,炉况长期不见好转,最终决议用萤石洗炉。从2009年7月24号到7月28号,8月3号至7号,参加萤石,萤石用完后再运用Mn矿。洗炉期间补加很多净焦,用于弥补炉缸热量。从运用效果来看,萤石对炉身粘结的洗刷、对炉缸堆积的处理效果较为显着。参加萤石今后,显着下降了炉渣的熔点,改进了炉渣的流动性,对炉前出铁排渣效果显着,这关于炉况的康复起到了非常重要的效果。 应该指出,尽管增加萤石有利于改进炉渣流动性,但萤石对炉腹炉缸的冷却壁有严峻的侵蚀效果,所以选用萤石洗炉要非常稳重。武钢在处理7号高炉2009年7月的炉缸堆积时,萤石是经过炉料均匀参加炉内的,萤石散布于整个料面,萤石大面积和炉腹、炉缸处冷却系统触摸,造成了很多风口损坏,延缓了康复时刻,今后在处理因炉渣中Al2O3偏高而引起的炉缸堆积时应加以改进。 实践标明,CaF2能下降高Al2O3炉渣黏度,但CaF2对高炉内的耐火材料也起损坏效果,因而CaF2的运用一般是在因Al2O3含量高,黏度大引起炉缸不活、炉缸堆积等状况下运用。在武钢炉渣中Al2O3含量日均匀小于18%的状况下,CaF2含量在2.0%左右就可以了。如果在正常出产中长期参加CaF2运用,则需求考虑高炉内耐火材料的承受能力等问题。
高炉富锰渣的冶炼工艺特点
2019-01-04 17:20:15
高炉富锰渣的冶炼工艺特点
高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点:
1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。
2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。
3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。
4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。
5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。
6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。
电炉富锰渣的生产
1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。
2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm
钒钛磁铁矿高炉冶炼的强化
2019-03-04 11:11:26
一、概述
用普通大型高炉冶炼钒钛磁铁矿,尤其是冶炼时炉渣中TO2>22%的高钛型钒钛磁铁矿,曩昔国内外都认为是不可能的。因为技能上的原因,用惯例办法冶炼将会呈现炉渣粘稠,渣铁不分,炉缸堆积等现象,使正常出产难以进行。
我国攀枝花区域蕴藏着丰厚的钒钛磁铁矿,是我国三大铁矿之一。与铁矿共生的钒、钛资源在全国和国际都占有重要位置。
通过60年代中期的大规划工业性科学实验,处理了根本工艺问题,创始了高炉冶炼钒钛矿技能,为攀枝花资源的开发利用奠定了根底。并因而曾获国家发明奖。但因为一些重要的技能难题未能处理,如泡沫渣、铁水粘罐、铁损高以及档次低、渣量大等问题长时间困扰出产,冶炼工艺及操作技能也尚不彻底 泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是老练,使攀钢高炉目标低下。自1970年投产后,历经10年,高炉利用系数才到达不高的规划目标(1-40t/m3·d ),尔后长时间徜徉在1.5~1.6t/m3·d的较低水平,且耗费高,焦比在620kg/t以上,经济效益差,比年亏本。
进入90年代中期,攀钢以钒钛磁铁矿高炉强化冶炼为中心,展开了体系的科技攻关,进行了系列的科学实验和理论研讨,成功地开发了钒钛磁铁矿高炉强化冶炼的新技能,获得严重的打破性发展。使各项目标大幅度进步,在入炉档次低的质料条件下,高炉利用系数到达国内外先进水平,自1998年下半年以来,利用系数(未经折算的实践值)一向保持在2.0t/m3·d以上,1999年一季度均匀利用系数为2.143t/m3·d,入炉焦比降到484kg/t,吨铁喷煤98.54Kg,获得巨大经济效益(表1)。
表1 攀钢炼铁厂1990~1998年度首要技能经济目标
Table1 Maintechnicaleconomicindexfrom21990to1998forIronmakingPlantofPangang二、首要技能难题的打破
泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是钒钛矿高炉冶炼实验中的重要技能难题,也是攀钢高炉投产后长时间困扰出产的首要问题。
(一)泡沫渣问题 冶炼钒钛矿的高炉渣流入渣罐后,发生很多气体,使炉渣成泡沫状欢腾上涨,溢出罐外。而涨落之后,罐内只要小半罐渣,渣罐容积不能充分利用,而高炉则因出不净渣铁,导致炉内压差升高,被逼减风,无法进步冶炼强度。
通过理论研讨和出产实验,弄清了泡沫渣构成机理并找到了消除办法。从热力学分析,渣中TiO2被TiC以及饱满碳和非晶太碳复原发生很多CO气体,是导致欢腾现象的原因(图1)
图1 有关TiC反响的△G与t的联系从动力学分析,当渣中发生的CO气泡的生成速率和气泡的稳定性到达必定程度时,泡沫渣就发生欢腾现象。
Vt≥15.56u-0.3016式中Vt-气泡发生速度
CTi(C,N)-Ti(C,N)在渣中的浓度
u-参数,取值1~8
△ G-形核的活化能
△ Gf-气、渣二相体积自由能改变
△ Gh-复原成CO的化学反响自由能改变。
根据对首要参数的分析,可得出泡沫渣构成的区间(图2)
图2 泡沫渣构成的条件(全钒钛高钛渣)通过调整炉渣成分,操控渣中TiO2在23%~24%,改变了钛渣结构,使渣中TiO2活度下降,并进步炉内高温区的氧势,然后按捺了TiO2的过复原,有用地消除了泡沫渣欢腾现象。
(二)铁水粘罐问题
铁水粘罐是钒钛矿冶炼的特有现象。普通矿冶炼时铁水罐尽管也有粘结的状况,但其粘结物的熔化温度低于出铁温度,下次出铁时可被熔化,罐衬越刷越薄,一般可用300~400次。而钒钛铁水的粘罐物中则因含有V、Ti的氧化物,熔点很高,高于出铁温度,在下次出铁时不能被熔化,越结越厚,铁水罐只能用几十次。严重影响了高炉正常出产。
在研讨弄清了粘罐的机理后,发明晰吹氧化罐和氧燃化罐技能熔化粘罐物,又采纳冷扣罐、喷涂和运用腊石砖砌罐帽,炉前选用焖砂口操作根绝高炉渣过渣进罐,铁水罐加蛭石保温等办法,彻度处理了铁水粘罐问题。
(三)消除粘渣和下降铁损
跟着高炉内复原进程的进行,炉渣中一部分TiO2被复原生成钛的碳、氮化合物。TiC的熔点为3140℃±90℃,TiN 熔点为2950℃±50℃,远高于炉内最高温度,它们通常以几微米但具有极大比表面积的固相质点弥散在炉渣中和包裹在铁珠周 围,使铁珠难以聚合,渣中带铁增多,粘度增大数十倍,构成粘渣和高铁损。因为构成“高温亲液胶体”和“类网状结构”,其粘度已不能用牛顿力学核算。实验标明,在1480℃变稠的炉渣粘度η=2.817e105.34φ,其间
高炉选用低硅、钛操作,操控炉热水平,以按捺TiO2过复原。又选用特殊办法,使变稠的炉渣消稠,并活泼炉缸。强化炉前操作,缩短渣铁在炉内停留时间以及选用合理炉料结构,操控TiO2在适宜规划,然后有用地消除了粘渣,下降了铁损。
(四) 钛渣脱硫才能的改进
因为TiO2在炉渣中呈弱酸性,所以高钛渣的脱硫才能远低于普通高炉渣,Ls仅为5~9,而一般炉渣Ls为20~30。
实验室研讨标明,钛渣的碱度R 可表达为系数α=0.7,β=0.15,γ=0.6。
通过科技攻关,采纳优选适宜的炉温、炉渣碱度,关在冶炼操作中削减其标准偏差,改进钛渣功能,添加流动性,强化冶炼,活泼炉缸以及改进入炉质料质量,进步风温,下降硫负荷,然后改进了钛渣脱硫才能,明显地进步了生铁质量,使铁水均匀含硫由0.075%降至0.054%。
三、优化炉料结构,进步钒钛烧结矿的强度
为改进质料质量,将烧结矿碱度由1.2进步到1.75,避开了钒钛烧结矿低强度区间,削减了粉末,又使高炉配猜中不再加石灰石,促进焦比下降。
为了施行精料政策,改变大渣量对强化冶炼构成的困难,近年来,将进步入炉矿石档次作为优化炉料结构的要点之一。通过适度进步钒钛铁精矿档次,添加烧结中富矿粉用量以及进步熔剂的有用CaO等办法,使入炉矿石档次由1995年的45.47%进步至1998年的46.57%,1999年1季度又进步至47.01%。不只入炉铁量添加,并且因为渣量削减,改进了炉内压差散布,下降了铁损和焦比,使攀钢高炉获得了进步1%档次,添加产值3%以上的效益。
高钛型钒钛磁铁精矿的特色是TiO2、Al2O3高, SiO2低,成球性差,液相量少,是一种特别难烧的矿石。针对上述特色,成功地开发了一系列技能办法,如高负压厚料层操作、配加生石灰和钢渣、富氧焚烧、添加复合粘结剂、选用ISF偏析布料技能、燃料二次分加、烧结矿喷洒卤化物等,使钒钛烧结矿的冷、热强度明显进步,质量改进,产值添加。
四、高炉操作的优化与冶炼的强化
在处理了钒钛矿冶炼的技能难题、出产步入正常的根底上,环绕高炉冶炼,不断优化工艺操作参数和操作准则,发明晰一套完善的工艺技能。包含钒钛矿冶炼合理的热准则与造渣准则,上部调剂的高压操作、无钟炉顶的多环布料与中心加焦技能,中部调剂操控适宜的暖流强度,下部调剂以120~150KJ/s的高鼓风动能以及防止钛渣变稠的特有办法来到达活泼炉缸,强化冶炼的意图。
喷吹煤粉关于冶炼高钛型钒钛矿的攀钢高炉,长时间以来一向是技能领域里的一个禁区。1967年在首钢老2号高炉进行钒钛矿冶炼模仿实验时,曾两次试喷煤粉均告失败。因为一部分未彻底焚烧的煤粉进入炉缸,与高温熔渣触摸,构成渣焦反响,碳与效果的成果,生成高溶点的钛的碳氮化合物。TiO2+3C=TiC+2CO2, △F0t=125500-80.29T;TiO2+3C+1/2N2=TiN+2CO2,△F0t=90100-61.24T。使炉渣变稠,渣铁难分,正常出产无法进行,被逼停喷。
从80年代开端,攀钢高炉再次实验喷吹煤粉。为了确保煤粉的快速彻底焚烧,防止炉渣变稠,研发发明晰氧煤喷。据查新,其时在国内外均属创始。1991年攀钢高炉氧煤混喷技能又列入国家“八五”要点科技攻关项目,进一步完善了喷吹体系,并进行了不同结构氧煤的出产实验(图3),获得较好效果,完成了用最少数氧到达最大喷煤量的意图。现在,喷煤量已到达均匀120kg/t的水平。
此外,攀钢高炉还开发了钒钛矿冶炼的富氧鼓风、炉前操作的强化技能与焖砂口的运用等。
图3 氧煤结构示意图 为了树立高炉冶炼钒钛矿的数学模型,以逐步完成冶炼进程的自动化操控,在攀钢4号高炉开发了核算机专家体系。用美国西屋公司WDPF核算机开发炉况判别和热状况判别两个子体系,热状况又以预告铁水钛含量作为高炉操作炉热水平操控的根据。[Ti]的预告选用自适应和人工神经网络归纳预告体系,当炉况正常时用自适应体系,炉况不顺时用人工神经网络体系预告,在差错±0.03%规划内命中率为86.8%,有必定参阅效果(图4、5、6。)
图4 攀钢4号高炉炉况断定及操作辅导专家体系结构图图5 铁水钛含量归纳预告体系结构图6 神经网络预告钛含量结构五、冶炼钒钛矿的高炉炉体解剖及护炉效果研讨
为了深化探究高炉冶炼钒钛矿的规则,在410厂0.8m3小高炉进行了解剖实验0。该高炉用攀枝花钒钛矿冶炼,炉渣TiO2为27%~28%。
通过解剖看出,整个微观状况仍然明显地存在自上而下的块状带、软熔带、滴落带和风口回旋区。炉内剖面如图7。
图7 0.8m3高炉冶炼钒钛磁铁矿的剖面状况通过解剖实验,了解了高炉内铁、钒、钛等元素的行为,炉内温度的散布状况以及Ti (C ,N)的生成状况(图8),对钒钛矿高炉冶炼的理论研讨和出产实践都有重要参阅效果。
图8 不同高度上t, RFe RTi,η的改变冶炼钒钛矿对高炉的炉缸、炉底有维护效果。这是在攀钢1、2、3号高炉大修停炉查询时观察到的。
冶炼钒钛矿的高炉在炉缸和炉底的砖衬上有一层结构细密的沉积物,经化学物相、岩相、X射线和扫描电镜分析,它是含有很多高熔点贱价钛化合物与特殊形状的金属铁和其它渣相矿藏的一种多相物质。沉积物的上部含有较多的黑钛石,下部含有较多的Ti(C,N)固溶体。因为熔点高,熔化终了温度达1500℃以上,在该区域的温度下不能熔化,然后维护了炉缸炉底的砖衬(图9)。
图9 攀钢2号高炉炉缸炉底腐蚀状况冶炼钒钛矿的高炉、炉缸、炉底腐蚀远较冶炼普通矿的高炉轻缓,用粘土砖砌筑炉底就可保10年以上寿数。在冶炼普通矿的高炉中配加少数含钛物料(TiO27~15Kg/t)也可起到护炉效果。1980年今后在国内高炉逐步推行,已有64座高炉运用攀枝花的钒钛矿护炉,对延伸高炉寿数起了很大效果。
六、体系理论的树立
通过很多的科学实验研讨和出产实践验证,树立了钒钛磁铁矿高炉冶炼的体系理论,归于国际创始。
这一理论包含高炉冶炼钒钛磁铁矿的根本原理,钒钛磁铁矿的复原进程,铁、钒、钛等元素在高炉内的行为,钒、钛氧化物复原反响的热力学和动力学以及高钛渣的各种特性及其机理,高炉冶炼钒钛磁铁矿的规则以及钒钛磁铁精矿的烧结特性等。
在正确理论的辅导下,攀钢高炉冶炼钒钛磁铁矿的出产技能得到迅速发展。
七、结语
攀钢高炉通过科学实验和技能攻关,成功地开发了钒钛磁铁矿强化冶炼的新技能,树立了善的理论与运用技能,使首要出产目标获得严重打破。在入炉矿石档次仅46%的条件下,运用难冶炼的钒钛矿,高炉利用系数到达2.0t/m3·d以上,居国内外同类型高炉前列。因为规划产值添加,耗费下降,质量改进以及钒制品收益添加,每年为攀钢添加经济效益达数亿元。此外,钒钛矿护炉效果在国内高炉推行运用,为延伸高炉寿数起了很大效果,社会效益也非常明显。
高炉冷却壁的损坏形式及原因探讨
2019-03-06 10:10:51
高炉炼铁技能不断进步,优质、高产、低耗、长命逐渐成为高炉出产的开展方向,高炉大型化、高效化敏捷进步。高炉长命技能是进步炼铁厂商效益的要害。从高炉结构上看,炉缸炉底及炉腹到炉身下部是高炉长命的两个要点区域,挑选适宜的耐火材料及冷却设备对延伸高炉寿数至关重要。
跟着高炉的利用系数和冶炼强度进步,高炉炉腹、炉腰和炉身下部的热负荷上升,炉缸侧壁温度升高级现象频频发作。一起,国内高炉原燃料质量安稳性较差,常引起炉况动摇,进而构成软熔带方位频频上下移动,加快炉腹到炉身下部区域耐材的腐蚀和冷却壁的损坏。跟着宝钢湛江等厂商大型高炉选用全铸铁冷却壁,炼铁厂商关于选用何种冷却壁呈现了较多不合,因而,有必要对不同冷却壁在运用进程中的问题进行讨论。
高炉冷却壁的损坏方式及原因
2000年以来铜冷却壁以其杰出的导热才能和构成渣皮才能在我国高炉上得到广泛的运用,现在全国约200座以上的高炉选用铜冷却壁,尤其是在炉腹、炉腰和炉身下部等热负荷较高的区域。高炉冷却壁首要包含铸铁和纯铜,别的还呈现过铸钢冷却壁。铸铁冷却壁抗热震功能差、导热系数低。别的,其冷却水管是铸入铸铁本体内的,因为原料和膨胀系数的不同,构成气隙层,而影响了传热。这些缺点约束了铸铁冷却壁的进一步开展。因而,从上世纪70年代欧洲开发和运用了铜冷却壁,得到较好的效果。
1铜冷却壁
高炉铜冷却壁热面大面积损坏具有以下特征:(1)严峻损坏部位会集在炉腰部位,具有显着的区域性;(2)损坏期间,高炉呈现冷却强度缺乏、冷却壁本体温度升高的现象。
(1)化学腐蚀
氧元素在铜中的固溶量很小,但易与铜反响生成Cu2O,生成的Cu2O散布在晶界或枝晶网络中。一方面铜冷却壁的纯度有限,一般含有少数的氧,另一方面,高温条件下,炉渣、煤气中的氧元素可向铜基体分散,构成冷却壁热面壁体氧含量升高。李峰光等选用纳克ON-3000氧氮分析仪测定冷却壁热面损坏严峻的“沟槽处”和完好部位的氧含量,成果分别为19ppm和15ppm,该氧含量可构成铜冷却壁发作晶界裂纹。
冷却壁热面处于复原气氛,高炉煤气中的CO和H2可以与冷却壁中的Cu2O发作复原反响。
反响发作高压的CO2和H2O气体,高压气体效果下铜冷却壁基体发作细小裂纹,反响(2)的灵敏度显着较高,因而这种现象往往称为“氢病”。“氢病”被认为是铜冷却壁破损的首要原因之一。“氢病”的发作首要受三个要素影响:氧含量、温度和渣皮掉落。氧含量越高,温度越高,越简单发作“氢病”,而渣皮掉落则是“氢病”发作的直接原因。
因为铜冷却壁导热才能强,导热系数到达380W/(m·K),正常炉况条件下,高炉渣粘附在冷却壁热面后,热量敏捷被冷却水带走,在冷却壁热面构成必定厚度的渣皮。渣皮阻止高炉煤气中H2和CO向冷却壁壁体的分散,然后避免了“氢病”现象的发作。当发作边际煤气流过剩等反常炉况时,渣皮不能安稳存在于冷却壁表面,构成冷却壁热面露出于煤气中,冷却壁表面不只要接受高温高速煤气的冲刷腐蚀和渣铁的化学腐蚀,“氢病”发作的状况也大幅进步,构成冷却壁寿数下降。
(2)磨损
与化学腐蚀类似,在炉况反常、渣皮频频掉落的状况下,冷却壁遭到大块高温物料的机械冲击和高温煤气流的冲刷。铜冷却壁标明呈现不同程度的破损,乃至呈现冷却水管道露出的现象。王宝海[9]选用金相显微镜调查破损严峻的铜冷却壁不同方位的试样,发现金相安排均为ɑ固溶体,且冷却壁热面未呈现晶粒长大现象,标明铜冷却壁破损的首要原因是机械磨损,而不是熔损。
铜冷却壁磨损一方面是因为铜的硬度较低,相对铸铁更简单被块状炉料磨损,另一方面,操作上长期保持中心气流过强,边际过重,软熔带根部过低,块状带大块物料,很简单磨损铜冷却壁。
(3)挠曲变形
铜冷却壁一般用于炉身下部、炉腰和炉腹等热负荷高的区域,渣皮频频掉落时,冷却壁热面露出在高温煤气中,遭到煤气、渣铁等的热辐射效果。一起,因为冷却水的冷却效果,构成冷却壁冷热面间呈现必定的温度梯度,然后发作热应力效果。热应力效果是铜冷却壁呈现挠曲变形的首要原因,且热负荷越大,挠曲变形越严峻。必定热负荷下,冷却壁高度越高,挠度越大。2铸铁冷却壁
铸铁冷却壁常用于炉身上部、炉喉及炉缸部位的冷却,除延伸率高、抗拉强度高级长处外,铸铁冷却壁还具有以下不利要素:(1)抗热震功能差,导热系数低,在高热负荷区域作业时,冷却壁冷热面温差较大,构成壁体内部热应力较大,简单构成壁体挠曲变形,乃至呈现裂纹。(2)因为制作工艺约束,铸铁冷却壁壁体与冷却水管之间存在气隙,大幅增加热阻,构成冷却壁传热功能较差,冷却才能缺乏。
炉腹、炉腰及炉身下部等高热负荷区域选用铸铁冷却壁时,因为铸铁冷却壁壁体导热系数较低,且壁体与冷却水管间存在气隙和陶瓷涂层,因而铸铁冷却壁的冷却才能远低于铜冷却壁,不利于快速构成安稳的渣皮。精料水平较低的状况下,一方面,冷却壁简单遭到块状带下降的大块物料的碰击、磨损,另一方面,冷却壁热面在渣铁腐蚀、煤气冲刷及高温热辐射等的归纳效果下,热面温度敏捷升高,并简单超越壁体本身能接受的温度上限,然后构成壁体熔损。宝钢3号高炉选用全铸铁冷却壁,一代炉役寿数长达19年,标明在宝钢原燃料条件下,选用全铸铁冷却壁,配以恰当的冷却系统和耐火材料可以完成高炉长命。但是在现在我国绝大多数高炉精料水平遍及偏低的环境下,选用全铸铁冷却壁能否保持高炉长命,尤其是炉腹、炉腰和炉身下部的长命,尚有待进一步的实践查验。
3 铜钢复合冷却壁
铜钢复合冷却壁以纯铜作为冷却壁热面传热层材料,发挥铜冷却壁的传热优势,一起以高强度钢板为冰脸被覆层材料,进步冷却壁的机械强度。选用爆破焊接工艺将铜板和钢板焊接成铜钢复合冷却壁,统筹了抗变形才能和传热功能。因为爆破焊接瞬时能量较大,使钢与铜之间完成高强度的冶金结合,界面无气隙和中间产品层。一起冷却壁被覆层选用钢质材料,使冷却水进出水管与冷却壁壁体焊接时,避免了异种材料焊接时预热难度大、易呈现焊接缺点的问题,进步了焊接质量。选用钢板代代替部分纯铜,制构本钱大幅度下降。
更重要的是,铜冷却壁相对铸铁冷却壁更简单发作挠曲变形,变形后冷却壁与耐火材料间的气隙是影响传热的重要要素。选用高强度钢反抗冷却壁的热震变形,对铜冷却壁保持杰出的作业状况十分重要。因而,可以预见,铜钢复合冷却壁或许成为新一代冷却壁而得到广泛推行。
渣皮对冷却壁寿数的影响
关于炉腹、炉腰及炉身下部等高热负荷区域,无论是铸铁冷却壁仍是铜冷却壁,渣皮的维护效果对冷却系统的长命至关重要。冷却壁热面存在安稳渣皮时,块状带物料、熔融渣铁及高温煤气等不能直触摸摸冷却壁壁体,然后削减磨损、渣铁腐蚀、“氢病”及有害元素等问题的发作,大幅进步冷却壁寿数。渣皮的构成进程受多方面要素影响。
渣皮的安稳生成首要受三方面要素影响:(1)冷却壁本身冷却才能。冷却壁冷却才能越强,熔融渣铁越简单在冷却壁热面凝结成渣皮并安稳存在;(2)渣动性。渣铁的流动性首要与化学成分及环境温度有关。边际气流过度开展,渣铁的流动性越强,在高温煤气冲刷效果及物料冲击效果下,越不简单在冷却壁表面构成渣皮。反之,边际过重,软熔带下移,渣铁在高热负荷区以固体方式存在,则不存在粘附冷却壁构成渣皮的条件;(3)高炉操作。高炉操刁难渣皮的影响是多方面且至关重要的,首要安稳的原燃料条件是渣皮安稳的根底。烧结矿碱度和粒度、焦炭灰分和粒度等的动摇易构成炉况动摇,煤气流异常,构成渣皮频频掉落。此外,布料准则选用过度压重边际,或中心和边际敞开,中间过重等布料形式时,往往构成炉墙结厚或边际气流过剩,渣皮不能安稳存在。
结语
渣皮频频掉落是构成炉身下部到炉腹段冷却壁损坏的首要原因。高炉强化冶炼要确保炉况顺行,应恰当开展边际气流,使高负荷区域可以构成熔融的、具有必定粘度的渣铁,触摸铜冷却壁后构成安稳的渣皮。
过度开展边际气流和边际过重均不利于渣皮安稳,边际过度开展,渣皮熔化,液态渣铁粘度下降,现已构成的渣皮简单掉落。边际过重,简单构成炉墙结厚,渣皮相同简单频频掉落。
(1)冷却壁制作方面:优化铜冷却壁原料,在确保高导热率的前提下,严格控制氢、氧元素含量;改善冷却结构,尽量削减冷却壁冷却死区的份额。
(2)原燃料质量方面:安稳烧结矿和焦炭质量,避免呈现烧结矿碱度、焦炭灰分等的大动摇,顶装焦换捣固焦,干熄焦换湿熄焦时应逐渐过渡,避免大份额调整。
(3)高炉操作方面:选用合理的操作炉型,挑选适宜的炉腰直径、炉腹角和炉身角;探究合理的布料准则,恰当开展边际气流,避免边际过重和过火开展,构成安稳的渣皮维护冷却壁。
(4)中修或大修进程中,依据本身原燃料条件及操作水平,挑选适宜的冷却壁原料。炉腹、炉腰和炉身下部宜选用铜冷却壁,进步冷却才能,为避免挠曲变形,可选用铜钢复合冷却壁,炉缸、炉喉及炉身上部等热负荷较低的区域宜选用铸铁冷却壁,下降出资本钱。
高碳锰铁的高炉法和电炉法生产
2019-01-04 11:57:12
高碳锰铁的生产方法有高炉法和电炉法两种。下面分别介绍这两种方法的特点。 (1)高炉法。高碳锰铁最早是采用高炉生产的,其产量高,成本低,目前国内外还在广泛采用.我国江西新余铁合金厂、山西阳泉铁合金厂为高炉生产高碳锰铁的定点厂家。 高炉法是把锰矿、焦炭和石灰等原料分别加人高炉内进行冶炼、得到含锰52%—-76写、含磷。.4%-0.6%的高炉锰铁。由于高炉与电炉冶炼高碳锰铁唯一的区别是热源不同,所以两者的炉体结构、几何形状及操作方法不一样,但两种炉子冶炼高碳锰铁的原理是相同的。 但是.两种炉子使用同一种锰矿冶炼时得到的产品磷含量不一样,高炉产品约高于电炉产品。.07%-0. 11%。这是由于高炉冶炼的炉料组成中的焦炭配量为电炉冶炼时的5-6倍,因而焦炭中有更多的磷转人合金内,而且高炉冶炼时的炉膛温度较低,因而冶炼过程中磷的挥发量较电炉低约10%, (2)电炉法。电炉法冶炼高碳锰铁有三种方法。 1)无熔剂法。对于含氧化锰较高的富锰矿,可以用无熔剂法冶炼锰铁、冶炼时炉料中不配加石灰,设备和操作类似硅铁,并且是在还原剂不足的条件下采用酸性渣操作。炉膛温度比熔剂法低约1320-1400 *C,用这种方法生产既要获得合格的高碳锰铁,又要得到含锰大于vG鉴供冶炼硅锰合金用的低磷、低铁富锰渣。此时锰的分配如下:入合金率为58%-60%,入渣率为30D%-’32D%D,挥发10YO。显然,用无熔剂法冶炼高碳锰铁必须使用含锰高的富锰矿,并且要求矿中有颇低的磷含量。该法虽然锰的回收率低,但用富锰渣冶炼硅锰合金时还可以回收绝大部分的锰,其锰的总回收率比熔剂法高。
无熔剂法冶炼高碳锰铁的过程是连续的,炉料随着熔化过程不断加入炉内,料批可由300kg锰矿、60 —- 70kg焦炭、1520kg钢屑组成。无熔剂法冶炼时,产品单位电耗很低,并且容易生产出低硅的高碳锰铁,这是因为大部分硅富集到渣中。
2)熔剂法.熔剂法是冶炼高碳锰铁普遍采用的一种方法。炉料组成中除锰矿、焦炭外,还有石灰。冶炼时采用高碱度渣操作碱度,B=1.3-1.4,使用足够的还原剂,以尽量降低废渣中锰含量,提高锰的回收率。这种方法用于以贫、富锰矿搭配冶炼高碳锰铁,以后还要详细讨论这种方法。
3)少熔剂法。这种方法是采用介于熔剂法和无熔剂法之间的所谓“弱酸性渣法”进行操作。该法是往炉料中配加适量的石灰或石灰石,把炉渣碱度m (CaO) /m (Siq)或m (CaO-}-M妇)/m (Siq)的比值控制在0.6—-0.8之间,借以既能提高锰的回收率,又能获得含锰25%-30%和适量含CaO的炉渣,把该渣配入冶炼硅锰合金的炉料中,既可节约石灰,又能减少因石灰潮解而增加的炉料粉尘量,从而改善炉料的透气性。 国外电炉冶炼高碳锰铁多采用无熔剂法和少熔剂法的酸性法。我国20世纪50年代也曾采用过无熔剂法冶炼,用含锰46%—-47%的富锰矿生产出含锰76%-80%碳锰铁,并同时获得含锰35%-40%的富锰渣。但因我国贫锰矿较多,所以目前多采用熔剂法或少量熔剂法。
高炉炼铁对碱性熔剂3个质量要求
2019-01-04 11:57:16
高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.
高炉冶炼锰铁提高锰回收率的措施
2019-01-21 18:04:49
高炉冶炼锰铁尽管与冶炼生铁有许多共同点.但更有其自身的特点。最大的不同点是锰比铁难还原。锰的回收率可以在60~90%的范围波动,而不象生铁冶炼时,铁几乎全部还原到产品中去。根据这一特点,决定了冶炼锰铁时提高锰的回收率对产量、质量、消耗和成本都有重要的多用。因此,提高锰的回收率是锰铁生产的一项重要的技术政策。
一、提高锰回收率的重要意义
(一)降低锰矿消耗
提高锰的回收率,可以大幅度地降低锰矿消耗,节约贵重的锰矿资源,这是高炉冶炼锰铁的一大特点。在不用金属附加物的情况下,高炉冶炼生铁的矿比取决于入炉锰矿的平均品位,而锰铁的矿比则取决于入炉的平均含锰量和锰的回收率。计算公式如下: (1)
式中Q矿-矿比,kg/t
650-标准锰铁的锰量,kg/t
Mn-炉矿平均含锰量,%
ηMn-锰的回收率,%
1990年新余钢铁厂入炉平均古锰26.92%.锰的回收率平均为85.53%.而60年代初平均回收率为65%。按(1)式计算,由于锰回收率的提高,单位产品可降低锰矿消耗892kg/t,相当于每提高锰回收率1%.可降低锰矿消耗44.6kg/t;按年产17万t产量计,则可节约锰矿15.16万t。
(二)降低焦比
提高锰的回收率,可以大幅度地降低入炉焦比,这是锰铁高炉区别于生铁高炉的又一特点。在不用金属附加物时,生铁焦比仅取决于焦炭负荷和矿石品位;而锰铁焦比则要取决于焦炭负荷、矿石品位和锰的回收率。其计算公式如下: (2)
式中k-入炉焦比,kg/t
Q-焦炭负荷,t/t
1990年新余钢厂高炉平均负荷为1.607t/t,其它条件同前,按(2)式计算.1990年入炉焦比为1758kg/t;如按60年代初平均锰回收率为65%计算,其焦比为2312kg/t,仅回收率提高一项就使焦比降低了554kg/t,相当于在现有原料条件下,每提高回收率1%.降低焦比27.7kg/t。
(三)提高产量
高炉产量的计算公式如下: (3)
将(2)式代入可得锰铁高炉产量计算式: (4)
式中Qy-年产量,t/y
365-日历作业天数,d/y
V-高炉有效容积,m3
I-冶炼强度,t/m3·d
η-休风率,%
1990年高炉休风率为1.72%.冶炼强度为1.085t/ m3·d其它条件同前,按(3)计算,由于回收率提高比60年代初增产41294t/d,增产率31.51%。相当于每提高回收率1%,高炉增产1. 57%。
(四)提高锰铁质量
提高锰的回收率,即在相同原料条件下,提高锰铁古锰量,降低音磷量,从而提高了锰铁质量。1990年本厂锰铁平均含[Mn]=67.28%,[P]=0.454%,如果以60年代初65%的回收率计算,锰铁成分将变为[Mn]=62.35%,[P]=0.570%。
(五)增加效益
按前所述计算结果,由于回收率提高,
1990年和60年代初比较,以年产17万t锰铁计,现行锰矿平均价格为421元/t(含进口锰矿),焦斑为244元/t。其效益为:
a 年节焦降低成本总额: 17×0.654×244=2298万元
b 年节约锰矿降低成本总辆: 15.16×421=6382万元
两项合计,降低消耗共计降低成本8682万元/a,相当于每提高1%的回收率,降低成本25.53元/t,由于回收率的提高,克服了原材料提价因素对企业经营效益的影响,使企业站稳了脚跟。
我国锰矿资源中,贫杂锰矿多,富矿少,随着钢铁工业的发展,锰矿供需矛盾突出,高炉用矿逐年贫化。提高锰的回收率,可以大幅度地节约锰矿消耗,可在一定程度上和锰矿供需矛盾。
二、提高锰回收率的主要措施
为了提高锰的回收率,必须弄清高炉冶炼锰铁时,锰在铁、渣和炉尘中的分配情况,查明锰在高炉生产过程中流失的去向,以便采取技术对策(表1)。
表1 1964年8月21-31日1#炉锰的平衡收入量铁中量渣中量炉顶损失其他合计化学损失机械损失823.115t593.691138.0966.39154.24830.689823.115100%72.12416.800.7766.593.71100
表l说明,以Mn形式流失于渣中的化学损失占入炉总锰量的16.80%,占流失总量的60.27%,其次为炉顶损失。这为制定提高锰回收率的措施指明了方向。
(一)降低渣中MnO
锰在渣中的化学损失可用下式计算: (5)
式中Mn失-锰在渣中的化学损失,kg/t
O渣-渣量,kg/t
55和71-分别为Mn和MnO的分子量
从上式可以看出,锰在渣中的化学损失与渣量和渣中MnO均成正比。矿石越贫、渣量越大,越要降低渣中MnO。主要措施:
1、改进选渣制度。目前本厂渣中MnO降到4~5%的水平,在国内外属领先地位。各个时期炉渣CaO/SiO2、MgO、MnO变化见表2。
表2 炉渣CaO/SiO2、MgO、MnO变化时 期CaO/SiO2MgO(%)MnO(%)1960-1969年1.18~1.341.91~5.4612.31~17.831969-1979年1.34~1.416.24~7.128.20~9.761980-1990年1.40~1.528.56~9.974.04~5.31
2、改进炉料结构。采用生石灰作溶剂(1973年起),生产高CaO/SiO2、高MgO锰烧结矿(1980年起)。
以上措施的主要作用在于改善炉况顺行和改善炉内成渣条件,以促进锰的还原。
3、提高炉缸温度。锰在高炉内全部靠直接还原,消耗热量大,需要维持充足的炉温和充沛的热量。
提高炉渣CaO/SiO2和MgO,可以提高炉渣溶化温度,有利于提高炉缸温度。
提高风温。60年代初厂风温为745~931℃,1965年起,风温提高到年平均1000℃。
采用富氧鼓风。富氧鼓风能有效地提高炉缸温度.降低炉顶温度,1982年起利用转炉余气补充少量富氧。
从整个措施来看,提高CaO/SiO2和MgO,需要增加一定的渣量,但降低渣中MnO又臧少渣量,同时,由于锰回收率的提高又可降低渣铁比。倒如1979年4季度开始采取低MnO操作,其入炉矿的含Mn量与1979年和1982年大致相当,其渣量比较如表3。
可见降低渣中MnO,起到了减步渣量和降低炉渣中含锰量的双重作用。目前,通过降低MnO,使锰在渣中的化学损失降低到了10%左右。
表3 不周氧化锰时的渣量比较年份矿石含Mn(%)CaO/SiO2MgO(%)MnO(%)渣铁比(Kg/t)197822.531.416.428.202389198225.901.489.414.651965
(二)降低炉顶损失
锰在炉顶的损失,主要表现为机械吹损。降低炉顶损失的措施主要是:
1、锰矿水洗过筛,减少入炉粉末;
2、锰烧结矿槽下过筛,减少入炉料的含粉率。
通过这些措施,1984年.炉尘灰出量降到150kg/t,使炉顶损失降到4%以下。
(三)减少渣中机械损失
渣中机械损失,是将已还原出来的锰与铁一起混夹在炉渣中的损失。减步这部分损失的主要措施如下:
1、在铁口渣沟中设回收坑,创造渣中锰铁的沉降条件;
2、在渣场设置回收坑,回收渣缸中的锰铁;
3、人工手检炉前干渣的锰铁。
通过这些措施,使渣中机械损失降到了0.4%的水平。
三、结束语
(一)提高锰的回收率,是高炉冶炼锰铁的核心问题。回收率每提高l%,可以降低焦比27.7kg/t,降低矿比44.6kg/t,增产1.57%,降低成本25.53元/t。并可提高产品质量。
(二)锰的损失主要是以MnO形式进入渣中的化学损失,其次是炉顶损失和渣中机械损失。
(三)降低渣中Mn0是提高回收率的主攻方向,采用高CaO/SiO2、MgO渣操作,是降低渣中Mn0的有效措施。新余钢厂渣中Mn0降至4~5%的水平,在国内外属领先地位。
(四)在锰矿贫化,渣量大的情况下,新余钢厂回收率达到85%,在国内领先。渣量越大,越要降低渣中Mn0。下一步的努力方向应将MnO控制在3.5~4.5%,使其平均值控制在4%左右,使该项损失控制在10%以内。
我国硼铁矿高炉分离新技术获得突破
2019-02-18 10:47:01
2004年2月初,“十五”国家科技攻关课题“硼铁矿高炉别离新技能研讨”通过检验。硼铁矿高炉别离工艺技能的研讨成功,为硼铁矿资源的合理使用供给了新的技能途径,对复兴辽宁老工业基地,昌盛辽宁区域经济含义严重。 硼是重要的化工及合金质料。我国辽宁省具有丰厚的硼资源,全国硼化工所需原材料的90%是由辽宁直销。可是,通过多年开发,辽宁的硼镁矿(白矿)已面对干涸,而很多赋存的硼铁矿(黑矿)资源则因硼铁别离难度大,而一向未能经济有效地使用。近几年来,因为硼的市场需求快速增长,当地对硼铁资源乱采乱挖、取富弃贫的现象日益严重,构成资源的极大糟蹋。 该项目展开的硼铁矿28M3高炉铁硼别离实验,渣中氧化镁富集到40%左右,高炉能顺行、炉况安稳、渣铁畅流、铁硼别离杰出,这是高炉冶炼技能的严重突破。对低档次难选含铁的硼矿,在普通炼铁高炉进行铁硼别离,得到含硼生铁和富硼渣两种产品,富硼渣中B2O3≥12%,是出产、硼砂的优质质料;一起得到的含硼生铁可直接用作硼铁合金质料,简化了硼铁合金制备工艺,硼的使用率前进25%以上,是硼铁矿资源归纳使用技能的一项严重前进。该项效果为归纳开发硼铁矿资源供给了一条新的有效途径,可使多年的“呆矿”变成可用资源,然后极大地改进我国硼资源缺少的情况,推进我国硼工业及相关工业的开展。一起,该项效果也为在辽宁区域建立起以硼为主的冶金、化工、新材料出产基地,构成辽宁老工业基地新的经济增长点供给了技能根底。
高炉炉缸为何被烧穿?如何应对?
2019-01-04 17:20:18
近十几年来,高炉炉缸被烧穿事故较多,从高冶炼强度的小高炉到较低冶炼强度的大高炉,都有炉缸被烧穿的事例。即使高炉炉缸没有被烧穿,也普遍存在炉缸温度过高、炉缸寿命偏短的现象。往往高炉开炉才几个月或开炉3年左右,就出现炉缸被烧穿现象。一座3000m3级高炉炉缸被烧穿,直接损失费用约5000万元,还可能造成人身伤亡。因此,炉缸被烧穿是重大的事故。要真正防止炉缸被烧穿,须要全面、认真、实事求是地总结经验和教训。
炉缸被烧穿原因错综复杂
针对强化冶炼的高炉,炉缸被烧穿的原因归纳起来有以下几点:
第一大原因是受碳砖性能影响
目前常用的碳砖(包括微孔与超微孔)有几个致命缺点:一是抗铁水熔蚀性差,抗铁水熔蚀指数为15%~30%,远小于8%的理想指标。二是抗水蒸气氧化能力差,碳砖氧化后表面呈蜂窝状,严重降低了其导热性能,使得碳砖得不到冷却,加速了铁水对碳砖的熔蚀。三是抗锌能力差,抗锌试验后碳砖的强度几乎为零。四是强度低,抗热应力较差。
第二大原因是受施工因素影响
碳砖多采用树脂胶泥,常温下短时间不能凝固,如果施工速度太快,砖堆自重就容易挤压下部泥浆,造成泥浆流失或不饱满,因此,要控制好砌砖速度,严格控制碳砖砖缝。同时,由于泥浆常温下没有强度,在砌筑完炉壳灌浆时,灌浆压力高就容易冲刷泥浆。由于现在的施工工期比十多年前压缩很多,对炉缸炉底砌砖的质量控制不如过去严格,这应当引起注意。有的高炉被烧穿部位的碳砖砖缝有3mm~7mm的整块渗铁。
第三大原因是受开炉前的因素影响
寒冷地区在冬季施工时,有的高炉炉顶无料钟齿轮箱冷却水泵停运,造成齿轮箱水槽中的水结冰,水泵恢复运行时,回水就会溢出水槽进入炉缸。有的高炉因为炉顶无料钟齿轮箱冷却回水槽中的水位计失灵,进水量过大时回水,从回水槽中溢出进入炉缸。有的冷却壁安装前没有试压检漏,在碳砖砌筑完后通水才发现冷却壁漏水。由于冷却水进入炉缸没有及时排净和进一步慢速烘炉,碳砖在潮湿状态下工作,使得碳砖和胶泥被快速侵蚀。业内对高炉烘炉的重要性认识不足,高炉烘炉时间普遍压缩了近一半的时间,使泥浆的强度不足,加上普遍的高压压浆对碳砖砌体泥浆造成损害,使泥浆成了薄弱环节。
第四大原因是受生产因素影响
过去,高炉开炉后有1个月~6个月的慢速达产期,而近十多年来,高炉开炉后一周左右就快速达产,碳砖及泥浆在炉内的进一步焙烧时间大大缩短,碳砖与冷却壁之间的炭素捣打料或泥浆还没有干燥,其导热性能还较低,碳砖就要靠牺牲自身材料来工作,这对碳砖砌体是非常不利的。
第五大原因是受设计因素影响
铁口局部设计不合理,铁口区厚度不足或者伸入过长,容易引起铁口局部过快侵蚀。冷却壁设计不合理,水管布置太稀疏,水管直径小,冷却水量不足,不能有效传递热量。炉缸侧壁碳砖温度计插入太深,炉底碳砖温度计在陶瓷垫砖下方,一旦侵蚀到温度计位置后,铁水从温度计管流出,引起炉缸被烧穿。陶瓷杯结构形式和材料设计不合理,容易造成因陶瓷杯的膨胀过大而引起碳砖砌体的破坏,甚至使风口大套中套上顶,拉裂炉底板。
多措并举防止炉缸被烧穿
要延长高炉炉缸寿命,防止炉缸短期被烧穿,就应当针对上述问题采取有效措施。
第一,提高碳砖质量是重中之重
欲提高碳砖质量,一是要提高碳砖的抗水蒸气氧化能力,碳砖与冷却壁之间的填料(炭素捣打料或泥浆)也要有良好的抗水蒸气氧化能力和150℃左右时≥10W/(m·k)的导热能力。二是要提高碳砖抗铁水熔蚀能力,抗铁水熔蚀指数要
碳复合砖是一种更加适合高冶炼强度的高炉炉缸炉底安全生产的材料,抗铁、抗氧化、抗锌、抗热应力等关键指标更适应高炉实际工况。其特点如下:
微孔化率高。平均孔径
70%,透气度趋近于零,可以有效防止渣铁的渗透侵入损坏。
导热性好。导热系数达13W/(m·K)以上,与国外知名碳砖相当,但却不是随温度升高导热性提高,而是相反,正好满足了炉缸冷却传热的要求。在100℃的环境中,碳复合砖的导热系数为17W/(m·K),RB微孔碳砖只有8.6W/(m·K),MG热压小碳砖只有6.8W/(m·K)。
抗铁熔蚀性优越。碳复合砖具有与陶瓷杯同样好的抗铁熔蚀性,抗铁熔蚀性能
20%)的缺点,可以延长使用年限,让人们有更长的时间来发现炉缸局部被侵蚀的情况,防止无征兆烧穿事故的发生。
抗氧化性优越。氧化率为
抗热应力强度高。抗热应力强度达10.5MPa左右,与高炉炉缸底部边角实际热应力大于10MPa的工况相适应,可以大大延缓象脚侵蚀的进展,以免开炉2年左右就得开始持续的钛矿护炉,而钛矿护炉会带来高炉操作困难和炼铁成本增加。
抗碱性优越。碳复合砖抗碱后体积膨胀
抗锌侵蚀能力强。碳复合砖抗锌侵蚀后的强度下降约26%,但还有55MPa的强度,而微孔碳砖抗锌侵蚀后的强度几乎为零。
抗渣性好。抗渣性能
强度高。碳复合砖的耐压强度达到75MPa以上,知名碳砖只有30MPa~45MPa。这可以有效抵抗象脚部位强大的热应力损坏。
膨胀系数低。碳复合砖可以无需设置膨胀缝,与碳砖相互组合。碳复合砖膨胀系数约为(4.1~4.5)×10-6(1/℃),碳砖为(2.5~3.5)×10-6(1/℃),刚玉莫来石系列砖为(6~8)×10-6(1/℃)。
用磷酸盐结合泥浆,常温下有一定的强度,可以防止泥浆挤压流失和灌浆冲损。
第二,提高铁口局部设计质量不可忽视
铁口砖衬厚度(铁口前段泥套后的铁口中心线斜长)设计时应当控制在炉缸直径的22.5%左右,凸出炉内侧铁口砖的宽度宜在夹角45°逐渐过渡,在铁口中心线以上的高度也要随高炉容积增加而增加。铁口砖衬厚度过小,容易造成铁口局部侵蚀过快,炮泥消耗量加大。铁口砖衬凸出内型线长度不宜超过800mm,过分凸出也容易造成铁口两边转折处的碳砖侵蚀加剧。铁口局部以外的铁口中心线位置(非铁口区)砖衬厚度不能过薄。
设计时要控制死铁层深度,死铁层深度一般应当控制在炉缸直径的17%~20%。
另外,炉缸侧壁碳砖温度计插入深度不要超过200mm,炉底温度计不要设在陶瓷垫下方,要设在陶瓷垫下方一层或两层碳砖的底部。容易侵蚀的部位插入较深的温度计不能采用套管,应当采用铠装热电偶直接埋设。
在冷却壁设计上,冷却壁内水管外表面的面积与冷却壁面积之比达到0.9以上,水速≥1.6m/s。炉缸冷却壁的设计热负荷也要适应高产的需要,风口至铁口上方的冷却壁设计热负荷为10000kcal/(m2·h),铁口及死铁层区的冷却壁设计热负荷为15000kcal/(m2·h),底部冷却壁设计热负荷为6000kcal/(m2·h)。炉缸最好采用横型冷却壁,便于对每段冷却壁的冷却情况进行检测。炉缸区域不适宜采用焊接进出水管的铜冷却壁,如果要采用这种形式的铜冷却壁,则必须对焊接后的水管进行拔出试验,以确保焊接工艺和质量的可靠性。铸造铜冷却壁没有焊接水管,用于炉缸区域将更安全。
适当增加容易产生象脚侵蚀的碳砖的温度检测点,铁口下方区域每点温度计的检测范围为1.6m2~2m2,其余非铁口区域部位每点温度计的检测范围为2.5m2~3m2。
陶瓷杯的结构设计要防止陶瓷杯材料的膨胀对碳砖和风口大中套的不利影响,纵向与径向上的膨胀缝设计要合理。陶瓷垫材料要有高的微孔性和抗铁水性,陶瓷杯壁材料要有高的抗渣和抗铁水性,常规的复合棕刚玉不适合用作陶瓷杯壁材料。
第三,施工质量决不能打折扣
炉缸炉底的碳砖施工周期要合理,现场施工质量检查监督要严格,做到砖缝小、泥浆饱满、砌筑后砖体下部泥浆不流损。尽量避开冬季在低于5℃的天气下施工。
碳砖与冷却壁之间的填料要捣实,要在现场做捣实试验,取样检查捣实后的填料体积密度,必须满足要求。填料的体积密度与导热率密切相关,一般炭素捣料体积密度
建议碳砖用树脂泥浆砌筑的高炉不要在开炉前进行压力灌浆,在开炉后,当碳砖冷面温度到达100℃左右时再进行压力灌浆。过去,炉缸压力灌浆是在炉缸生产维护中使用,不是在建设时使用。在建设中,冷却壁与炉壳的间隙是用黏土火泥加上水泥稀泥浆,在冷却壁安装时从上部灌注进去的。这样就避免了从炉壳外面高压灌浆带来的不利影响,因此,最好沿用过去的施工方法。
第四,充分做好开炉前的工作
高炉炉缸内进水,主要有两个进水源。一是无料钟齿轮箱回水槽内水溢出,二是炉顶打水控制失误。开炉前,要做好定时定员检查确认。一旦炉缸进水,要及时排尽,并追加烘炉时间。在设计上,炉顶打水进水阀设置炉顶打水阀开启的声响报警装置,对炉顶齿轮箱回水槽溢水也设置声响报警装置。
高炉的烘炉时间要有保障,中小高炉应为15天左右,大高炉应为20天左右。现在高炉烘炉时间都很短,中小高炉只有7天左右,大高炉也只有10天左右。烘炉的目的一方面是排出水分,另一方面是让泥浆有较高的强度,以提高投产后泥浆抗渣铁侵蚀的能力。
烘炉时要减少冷却壁水量,或充入一定量的蒸汽,使炉缸冷却壁出水温度在50℃以上。烘炉时,压浆短管上的冒口要尽量打开,以利于水蒸气排出,待开炉时再拧紧其冒口。
第五,必须考虑适当延长高炉达产时间
小高炉炉缸炉底砖衬厚度较小,达产时间宜控制在15天以上。大高炉炉缸炉底砖衬厚度较大,达产时间宜控制在30天以上。快速达产使得炉缸炉底耐材失去了“自适应”或者“磨合期”阶段,对砌体是严重的伤害,最终的结果是提前几周的达产换来5年以上的高炉寿命损失。因此,快速达产是得不偿失的。
第六,应充分考虑合理压浆
在生产维护中,炉缸压力灌浆的材质,应当选择碳质无水压入泥浆,不应采用高铝或黏土质压入泥浆,以防止在冷却壁热面形成一层隔热材料。
压浆的压力必须控制适当,在炉壳上的压浆短管上的压力一般不宜超过1.5MPa(压浆机出口压力控制在2.0MPa以下)。有的高炉在炉缸侧壁温度过高、内衬很薄的情况下,采用4MPa~10MPa的压力灌浆,造成内衬破损而被迫停炉大修。
含钛高炉渣的化学物相分析
2019-01-04 11:57:10
高炉炼铁渣中钛化学物的形态同钛精矿氮化焙烧产品类似,只是炉渣尚有一定量的含钛硅酸盐。含钛高炉渣需要测定Ti2+与Ti3+,有关测定方法在近十年中发表较多,可查阅相关资料。低价钛氧化物及硅酸盐中钛的测定期 称取试样置于塑料杯中,加50mL HF(1+2),于50℃水浴上浸取20min。过滤,以少量水(约15mL)将沉淀洗入烧杯中,加30mL HCl(1+1),加热微沸30min,在原滤纸上过滤,用热的2%HCl洗涤。两次滤液合并测定钛。碳化钛的测定 在上述残渣中,加50mL HCl(1+1)和1gKClO3,置于沸水浴上浸取5min,过滤,用2%HCl洗涤,滤液测定钛。氮化钛的测定 在分离碳化钛后的残渣中,加50mL HNO3(1+1)和10mL H2O2,煮沸30min,过滤,用5%H2SO4洗涤,滤液测定钛。残渣弃去。
非高炉炼铁技术低温快速还原新工艺
2019-03-06 10:10:51
钢铁产品是人类社会最首要的结构材料,也是产值最大、覆盖面最广的功用材料。在可预见的未来,钢铁产品仍将是一种非常重要且不行替代的材料。近年来,跟着我国经济的快速稳定增长,钢铁工业得到了史无前例的开展,2005年我国粗钢产值已打破3亿吨,其间绝大部分来自高炉—转炉流程。高炉炼铁工艺历经数百年的开展,工艺已日趋老练。即使如此,高炉工艺也存在一些问题:工艺流程杂乱、能耗高、环境污染严峻与出资巨大等。别的高炉工艺对冶金焦有很强的依靠性,可是从已探明的国际煤炭储量来看,焦煤仅占总储煤量的5%,并且散布很不均匀,因而高炉炼铁的开展面对着焦煤缺少的困难。为处理这一困难,很多的非高炉炼铁技能就应运而生了,并且得到了较快的开展。非高炉炼铁技能依据其工艺特征、产品类型及用处不同可以分为熔融复原和直接复原两大类。熔融复原法是以非焦煤为动力,在高温熔态下进行铁氧化物复原,渣铁能彻底别离,得到相似高炉的含碳铁水。直接复原规律是以气体燃料、液体燃料或非焦煤为动力,在铁矿石(或含铁团块)软化温度以下进行复原得到金属铁的办法。其产品呈多孔低密度海绵状结构,被称为直接复原铁(DRI)或海绵铁。熔融复原熔融复原法是20世纪20年代开端提出的。50年代研讨开发的熔融复原法大多设想在一个反响器内完结悉数熔炼进程,称一步法。可是因为复原反响发生的CO的焚烧热不能敏捷传递到吸热的复原反响区,迫使熔炼间断而告失利。70年代以来遍及选用了两步法的准则:行将整个熔炼进程分红固态预复原和熔态终复原两步,分别在两个反响器内完结。其间最具重要意义的COREX法是由KORF和VOEST-ALPINE在奥地利和德国政府的财务支撑下联合开发的,现在现已进入工业化运用阶段。还有其它处于研讨阶段的熔融复原流程,比方:HISMELT、FINEX、DIOS、AISI、COIN等。下面将遭到广泛重视的几种工艺进行扼要的介绍。
1 COREX 多年来,COREX流程是仅有工业化的熔融复原流程,现在稀有套COREX设备在运转中,我国上海宝钢引进了一套COREX-3000正在建设中。COREX法工艺流程为,矿石的复原和熔融分别在两个炉子中进行,选用预复原竖炉及熔融气化炉分别对铁矿石进行复原和熔化。COREX法预复原竖炉选用高架式结构,熔融气化炉发生的高温复原气被送入预复原竖炉,逆流穿过下降的矿石层。从复原竖炉扫除的预复原矿石的复原率约为95%,料温为800~900℃。熔融气化炉的使命是熔化预复原矿石及出产复原煤气。COREX法的长处是:以非焦煤为动力,摆脱了高炉炼铁对优质冶金焦的依靠;对原、燃料习惯性较强,出产的铁水可用于氧气转炉炼钢;出产灵敏,必要时可出产高热值煤气以处理钢铁厂商的煤气平衡问题;直接运用煤和氧,不需求焦炉及热风炉等设备,削减污染,下降基建出资,出产费用比高炉削减30%以上。可是COREX也存在一些缺乏,对矿石的质量要求较为严厉,有必要运用球团矿、天然块矿和烧结矿等中等均匀粒度的块状质料,不能运用磷含量高的矿石。别的COREX要求运用块煤也是一个潜在问题。
因为当今采煤多已机械化,原煤中含粉率较高,且块煤在储运进程中,发生粉末是不行避免的。因而,COREX需求处理粉煤的运用问题。COREX煤的消耗量(吨铁约1000kg)远高于高炉流程,其终究能耗及操作本钱很大程度上依靠于尾气的归纳运用。
2 FINEX
因为COREX运用的矿石粒度为8~30mm的块矿,很多廉价的粉矿不能直接运用,因而浦项钢铁公司和奥钢联共同开发了FINEX流程,用于粒度1~10mm的粉矿。FINEX的特征是选用多级流化床反响器替代COREX的竖炉对铁矿进行复原。在流化床反响器中运用熔融气化炉供给的热复原气体对合作增加剂的铁粉矿进行复原。选用恰当的气流速度,使炉料在流态化状况下进行复原。因而不存在炉料的透气性问题,可悉数运用铁粉矿为质料。现在韩国浦项钢铁公司的FINEX演示设备已于2003年5月底投入出产,有望在近期内投入工业化出产。
FINEX工艺是两种老练工艺的组合,即流化床工艺和COREX的熔融气化炉工艺。其特征是:①不需求炼焦厂和烧结厂,然后节约设备出资和削减环境污染;②可运用粉状铁矿石和普通煤作为炼铁质料。从出产本钱上看,粉矿的报价要比块矿低20%左右,普通煤比炼焦煤报价低约25%,因而其质料本钱比较低价。一起FINEX工艺也存在一些缺乏。FINEX计划固定出资较高,比高炉计划总出资约高20%。其燃料及动力费用也高于高炉,若要下降FINEX的本钱,有必要进一步下降吨铁的耗煤量。FINEX可以处理的矿粉是有选择性的,要求矿粉粒度1~10mm。因为FINEX选用了流化床工艺,将会出现粉料的粘结问题,致使其作业率
3 HISMELT
HISMELT(HighIntensitySmelting)技能是德国Klockner和CRA公司联合开发的。该流程可直接运用粉矿和煤粉冶炼。可向铁浴炉熔池中喷入煤粉,在其顶部吹入1200℃富氧热风,使炉内发生的煤气进行二次焚烧,发生热量满意熔池反响需求,终复原炉发生的复原性气体作为复原剂进入预复原体系。HISMELT流程可直接将铁矿粉吹入熔融复原炉中,现在已完结中试,正向工业化跨进。2003年2月首钢参加出资的HISMELT工厂(年产80万t)在澳大利亚Kwinana开端筹建,已于2005年5月基本完结调试作业。
HISMLET工艺可直接运用粉矿和煤粉,其熔融复原炉中发生激烈的拌和并且温度很高,所以铁矿粉的复原速度很快,HISMELT的另一个特征可处理廉价的高磷铁矿粉。因为熔融复原炉中选用较高的二次焚烧率,致使高温尾气的运用价值很低,只能用于预热粉矿。为了使尾气得到归纳运用,HISMELT拟采纳增加天然气的办法,这样可使尾气用于发电,或用于预复原铁矿粉(复原率30%以下)。因为熔融复原炉内选用二次焚烧办法,致使炉内出现氧化性气氛,严峻腐蚀炉衬。炉子压力小于1kg,使煤气不能有用运用。别的,HISMELT选用虹吸式出铁,不能确保铁水的温度。
直接复原
依据复原剂的不同可以分为气基和煤基直接复原工艺,气基直接复原仍然主导着直接复原程,2004年气基DRI产值占总DRI产值的88%。MIDREX和HYL-III是最首要的气基直接复原工艺,它们将天然气转化成所需的复原剂,然后在竖炉中复原块矿或球团矿。其它首要的直接复原工艺还有FIOR(FINMET)、ITMK3、FASTMET等。
1 气基直接复原工艺
选用气体作为复原剂的直接复原工艺开展较快的有MIDREX和HYL-Ⅲ工艺以及选用流化床作为反响器的FINMET和Circored工艺。MIDREX直接复原工艺是Midrex公司开发成功的。它归于气基直接复原法,以天然气经催化裂解后得到的气体(首要成分H2、CO)为复原剂,在800~900℃复原铁矿得到海绵铁。MIDREX法具有工艺老练、操作简略、出产率高、热耗低、产品质量高级长处,因而在直接复原工艺中占控制位置。可是MIDREX也存在必定的局限性,首先是它要求有丰厚的天然气资源作保证;其次MIDREX的反响温度低,反响速度较慢,炉料在复原带大约逗留6h,在整个炉内逗留时间在10h左右。别的MIDREX工艺要求铁矿石粒度适合且均匀,粒度过大会影响CO和H2的分散使反响速度下降;粒度过小,透气性差,复原气散布不均匀,一般小于5mm粉末的含量不能大于5%。一起关于铁矿石的档次要求也高,这是直接复原出产海绵铁的通病,关于矿石中的S和Ti的含量要求很严。
因为运用块矿或球团,出产能力相对较低,为了进步气基竖炉流程的出产能力,MIDREX最近在竖炉中吹入少数氧气来进步复原气体及炉料的温度,研讨标明:将料温从789℃进步到898℃,竖炉的出产能力进步了50%。运用流化床作为反响器的FIOR(FINMET)工艺开展较快,别的运用循环流化床的Circored工艺也得到了广泛的重视。在1976年,FIOR工艺被提出,它是运用流化床复原铁矿粉出产热压块铁的办法。运用该工艺在委内瑞拉缔造的工业设备现已运转了25年,总产值超过了600万t。在1991年,FIOR工艺得到了进一步的开展,VAI和Exxon公司在FIOR的基础上联合开发了一种新的炼铁工艺流程FINMET。该工艺运用的矿石粒度小于12mm。选用的仍为四级流化床反响器(榜首级流化床温度为500℃,压力为1.1MPa;最终一级流化床温度为800℃,压力为1.4MPa)。热直接复原铁粉运用气流传输到热压体系直接得到热压块铁。复原所用的气体是由新出产的气体与循环气体组成。循环气体经过除尘后与新气体混合,再经过去除CO2,被预热到850℃后通入反响器中。FINMET是现在仅有投入出产的粉矿直接复原技能。可是FINMET工艺还存在一些缺陷,它的复原剂一般都选用天然气(每吨HBI耗天然气约15GJ),因而只要在天然气报价低价的区域才或许推行。一起它对矿石的要求也比较高,无法处理很多低档次的铁矿。FINMET选用普通的流化床工艺(FB),气体流速较慢,出产能力较低(1.5~2t/(m3·d)),并且还容易发生粘结现象,别的运用高压操刁难设备及操作要求极高,这些都影响该工艺的进一步推行。
Circored流程在循环流化床(CFB)中运用纯复原粒度小于1mm的铁矿粉,研讨标明,在650℃,铁矿粉逗留15min的复原率可达70%,为了进步整个流程的出产功率,还需求将CFB出来的铁矿粉进一步在FB中运用复原4h到达95%的金属化率。可是它有必要处理廉价的来历问题,并且它仍然选用了普通流化床,随之而来的就是粉料的粘结问题。
2 煤基直接复原工艺
煤基直接复原工艺的研讨热门是转底炉流程,其特征是在高温状况下在转底炉中完结铁矿的固态复原,现在现已发生一些变种流程,如FASTMET和ITMK3流程等。ITMK3流程在美国动力部的支撑下(200万美元),已完结前期实验,这种流程可得到珠铁,它的吨铁归纳能耗为615kg标煤(其间煤12GJ,燃气6GJ)。转底炉的长处是可以处理低强度的含碳球团,但高温尾气带走很多热量导致能耗过高。因为经过气体热辐射传热,转底炉内只能铺2~3层球团,导致设备运用率低下(~100kg/(m2·h))。
由以上比照可知,气基复原工艺具有冶炼温度低、能耗下降、产品质量好的长处,可是受我国资源特征的约束,难以在我国得到开展。转底炉的特征是可运用低强度的含碳球团,可是其能耗高、出产能力低、产品质量较差。低温快速复原炼铁新技能依据对炼铁工艺的深入研讨和我国详细国情的分析,钢铁研讨总院提出了低温快速复原炼铁新流程,即首先在高效球磨机中对铁矿粉进行细化和活化,然后在低温复原设备中进行快速复原。经过近几年的研讨,开发了超细粉体催化低温冶金新技能,此技能充沛结合了超细粉体和催化剂改进动力学条件的优势,因而可以更大起伏下降反响活化能、下降复原反响温度(降至700℃左右),完结低温快速反响,是一种能耗低、污染少、资源运用率高的新式绿色冶金工艺流程。新流程可经过煤气化技能发生复原性气体,也可运用国内日益过剩的焦化煤气,不用像FINMET和Circored流程依靠天然气资源,契合我国的动力结构。新流程还可直接运用我国的铁精矿粉,省去造球工艺及相应的能耗。钢铁研讨总院发明晰多级循环流化床反响器,不只处理了普通流化床容易发生粘结现象,并且也大大进步了设备的运用率(可达50t/(m3·d)),除此之外,新式反响器还能进步复原气体的运用率、下降进程能耗和固定出资等。新流程与其它炼程的比较见表1,从表1可见,新流程的能耗远低于其它炼程,CO2等废气排放量也将远低于其它流程。
表1 各种炼程的数据比较流程动力构成吨铁净能耗/GJ电耗/KWh低温快速复原煤9.3200高温转底炉煤+天然气20.54 高炉炼程焦炭和煤23 COREX流程煤+少数焦炭26.2 Finmet天然气15175Hismelt煤粉+天然气22.6(其间天然气2.2) 现在,低温快速复原新工艺得到国家支撑,基本上完结了基础理论研讨作业,正进行反响器研制及工艺研讨,有望成为新一代炼铁新流程。当今冶金界较为重视的非高炉炼铁工艺中COREX、FINEX和HISMELT流程都可以不运用焦煤,然后避免了炼焦工艺引发的环境污染。COREX选用竖炉-熔融气化炉冶炼流程,FINEX选用流化床—熔融气化炉冶炼流程,而HISMELT选用铁浴复原,因而就决议了这些流程的特征和习惯规模:COREX有必要运用块矿,HISMELT和FINEX则可用粉矿;老练的竖炉气基复原工艺是COREX流程工业化的重要保证,粉体流化床因为粘结等问题没有彻底处理、铁浴炉二次焚烧和炉衬腐蚀之间的固有对立注定了FINEX和HISMELT完结的难度远高于COREX流程。COREX和FINEX流程发生很多高热值的复原性尾气,尾气运用的途径将决议工艺的经济性,而HISMELT高温低热值尾气却成为工艺的“鸡肋”。各种气基复原工艺都能在较低温度下出产海绵铁或热压块,竖炉流程(MIDREX,HYL-III)比流化床流程(FINMET)老练,因而竖炉流程仍然操纵着气基复原工艺,气基复原流程现在都要运用天然气资源,很难在我国得到开展。转底炉流程可运用低强度的含碳球团,给煤基直接复原流程注入新的生机,但其能耗高、出产功率低、产品质量差将会限制它的开展。现在,国际各国都在进行实验研讨,把非高炉炼铁工艺作为钢铁工业技能的办法,尽力寻求新的打破。为了跟上国际钢铁工艺技能的脚步,我国亦有必要加强这方面的研讨开发作业。根据这种状况,钢铁研讨总院提出了新式低温快速复原新工艺,完结低温快速反响。该工艺可运用国内日益过剩的焦化煤气或煤气化得到复原性气体,不用依靠天然气资源;还可直接运用我国的铁精矿粉,省去造球工艺及相应的能耗。故此是一种能耗低、污染少、资源运用率高的新式绿色冶金工艺流程,现在处于研讨开发阶段,具有很好的开展前景。
铁合金产品产量统计---高炉铁合金产量
2019-01-25 15:50:16
铁合金产品产量一律按各该品种主要元素的标准量计算,无标准成分的品种按实物量计算。铁合金产品标准成分表见表1。
用某种铁合金进一步冶炼为另一种铁合金时(如用锰硅合金冶炼中低碳锰铁),允许重复计算产量。但不允许重复计算产值。
不合格铁合金回炉重炼时,产量和产值都不允许重复计算。
表1 各种铁合金产品标准成分表产品名称元素标准成分(%)75%硅铁Si7565%硅铁Si6545%硅铁Si45锰硅合金Mn+Si82高碳锰铁Mn65中低碳锰铁Mn78高碳铬铁Cr50中低碳铬铁Cr50微碳铬铁Cr50硅铬合金Si+Cr75钨铁W70钼铁Mo55钒铁V40钛铁Ti25硼铁B10
注:除上表所列铁合金外,凡有标准成分的按标准成分折算,无标准成分的按实物量计算。
(一)实物产量
实物产量是指在特定时期内高炉生产的锰铁经检验合格后检斤的实际重量,应按各种不同牌号分类计入。
不符合国家标准、部颁标准或特定供货标准的锰铁,称“出格锰铁”。出格锰铁不计入产量,但其实际重量及生产炉数应单独统计,如果出格锰铁回炉再冶炼,这部分数量不能在出格锰铁总量中扣除,而应在后面加列:“折合回炉吨数”、“实物回炉吨数”,以便掌握出格锰铁的实有数量。
(二)标准量
标准量是指以含锰65%为标准折合计算的产量,应按各种不同牌号分别列出,各牌号产量之和等于总产量。企业对高炉锰铁一律按标准产量考核。其计算公式为:
标准吨= 合格锰铁含锰总量(吨)
65%
计算说明:合格锰铁含锰总量是各炉次生产的合格锰铁实际重量分别乘各该炉次的锰铁含锰成分之和。
非高炉炼铁工艺—Hlsmelt熔融还原炼铁工艺
2019-03-07 11:06:31
由澳大利亚的力拓矿业集团开发的HIsmelt熔融复原炼铁工艺,选用了铁矿粉及钢厂废料和非炼焦煤直接熔融的复原技能出产高质量的铁产品,可直接用于炼钢或铸成生铁。还能够循环运用热能,以到达下降本钱和削减污染的意图。从不断优化高炉炼铁和开发新式非高炉炼铁工艺考虑,可对炼铁出产完结节能减排和保护环境起到活跃的效果。HIsmelt熔融复原炼铁工艺作为习惯钢铁工业开展的需求而开发的熔融复原炼铁的出产工艺,可为炼铁出产供给了一种新的挑选。钢铁出产工艺包含传统的高炉—氧气顶吹转炉的长流程和依据电弧炉的短流程。近年来,受环保等方面要素的影响,短流程工艺遭到越来越多的重视。1996年以来,国际规划内有很多短流程优质扁平材出产厂投产。这些短流程钢厂仅承当较低的折旧费用,还能运用废钢来削减出产本钱。因而,短流程钢厂的热轧出产本钱要比钢铁联合厂商的低。推进这种趋势开展的首要原因有以下几个方面:高炉出产对质料的规格要求较严厉,质料预加工(焦化、球团和烧结厂)使高炉出产成为环境污染的首要排放源,新建或改造高炉的出资额巨大,国际规划内的焦炉遍及呈老化状况,也需求很多出资。正常状况下,为了取得规划经济效益,钢铁联合厂商的缔造规划都很大,因而,温室气体排放和环境污染的问题比较严重。电炉炼钢厂的状况则有所不同,与钢铁联合厂商比较,其竞争力相对较强。关于电炉炼钢厂来说,优质、安稳的铁直销可显着进步电炉炼钢的出产率,下降出产本钱。因而,在炉猜中调配铁水就具有较高的运用价值。在此条件下,开发具有动力运用率高、质料及炉料习惯性强、出资本钱低、操作灵敏等特色的炼铁工艺,已成为钢铁联合厂商重视的课题之一。
首要,HIsmelt工艺将金属熔池作为根本的反响前言,炉料直接注入到金属中,熔炼进程首要经过熔解碳进行。而其他熔融复原炼铁的出产工艺一般都选用顶装矿石和煤炭工艺,经过渣层中的碳化物(及少数金属)进行熔炼。与渣中的碳比较,金属中的熔解碳作为复原剂的反响功率更高,其原因首要是因为渣中的碳需求转换为气相复原介质。也就是说,HIsmelt工艺是经过运用更具活性的碳(溶解碳)取得了更快的熔炼速率。其次,HIsmelt工艺中熔体的混合度与其他工艺不同。在HIsmelt工艺中,将炉料直接注人到金属中,发生很多的“深层”气体,这会构成一个微弱的上浮气流,导致熔液快速翻转。核算标明,翻转的流量到达每秒数吨的等级。在这种条件下,在液相中构成实质性温度梯度(大于20~30℃)的可能性很小,体系实质上以等温熔体的方式作业。此外,熔体的快速翻转促进了从炉顶空间到熔池的热传递,一起杜绝了单一液滴显着过热的现象。这关于渣区的炉膛耐火材料的保护含义严重,因为熔体的杰出混合可使耐火砖仅露出于低FeO含量及温度较低的介质中。
在熔炼中,经过运用大规划的煤种、矿石和典型的钢厂废料(回炉料),HIsmelt工艺的适用性得到了充沛证明。试用煤种的规划广泛,使其对工艺性能的影响能够被量化。因为汽化和蒸发割裂解效果导致的热能丢失,高蒸发分(最高达38%)煤对HIsmelt炼铁工艺具有负面影响。煤中氧、水分和灰分的含量对出产也有潜在影响。实验标明,该工艺中间实验用的一切煤种均可用于实践出产,在煤种的挑选上,仅需从经济方面的考虑。对选用各种矿石炉料复原水平的产能进行评价,包含赤铁矿、赤铁矿/针铁矿、针铁矿和直接复原铁。对矿粉/直接复原铁混合料进行了预复原的中间实验。此外,运用热风氧富集(最高含氧量达30%)成功地进步了熔炉的作业功率。收回料包含高炉和氧气转炉的粉尘、泥渣、铁鳞等。因为收回猜中的碳得到充沛的运用,可使全体煤耗量大幅下降。此外,因为炉猜中铁的预复原水平较高,出产功率得到进步。与铁矿石冶炼比较,收回料无须额定进行处理和加工。表1示出了对高炉和HIsmelt炼铁体系的出资进行比照的研究结果。从表1可看出,HIsmelt工艺的吨钢出产本钱为180~310美元,而钢铁联合厂商的典型吨钢出产本钱为320~450美元。此外,HIsmelt工艺还具有以下特色:质料要求的预处理量很小,熔炼前无须选矿;具有较高灵敏性,能够依据钢厂的出产进行大幅度的调整;可出产质量优异且安稳的铁水;炉料的反响时刻以毫秒核算,温度操控优于高炉;具有高度集成的在线工艺操控体系,设备运转和操作简略,全体设备保护量小;具有显着的环保优势。与高炉炼铁工艺比较,一座装备了矿石加热体系的HIsmelt炼铁厂有望将每吨铁水的二氧化碳排放量削减约20%,并能够有用地操控二口恶英的生成。因为在HIsmelt工艺中能够撤销焦化和烧结工序,因而较为环保。此外,很多运用钢厂废料的潜力可进一步稳固HIsmelt工艺的环保优势。 表1典型的Hismelt和高炉工艺的出资和出产本钱项目产值,万吨出产本钱,美元/吨出资,百万美元高炉1109326355高炉2236373880高炉3109356388高炉42434481088Hlsmelt 1(冷矿)50310155Hlsmelt 2(冷矿及废料)58259150Hlsmelt 3(预加热)63286180Hlsmelt 4(预复原)150191286Hlsmelt 5(预加热)110181200表2 不同工艺出产铁水的化学成分比较表项目高炉HIsmeltCorexC, %4.54.3±0.24.5~4.7Si, %0.5±0.300.6±0.2P, %0.09±0.020.0±0.0<0.10S, %0.04±0.020.1±0.10.01±0.02温度,℃1430~15001480±151490~15203 Hlsmelt工艺的铁水质量除出产本钱外,对不同工艺出产铁水的化学成分进行了比较。表2列出了高炉、HIsmelt以及Corex工艺出产铁水的化学成分。各种铁水的化学成分首要存在3方面差异。(1)硅(Si)含量。炼钢厂能够运用HIsmelt出产的铁水不含硅这一特色进行低硅铁水操作,可削减造渣量,并下降造渣剂的消耗量。事实上,为了进步氧气转炉的出产率,下些钢厂一般需求对高炉出产的铁水进行脱硅处理。(2)磷(P)含量。在HIsmelt工艺中,能够运用高磷铁矿粉(磷含量0.12%)进行出产。铁矿中的磷大部分被氧化转变成炉渣,使铁水中的磷含量低于0.04%。与此构成鲜明比照的是,高炉和Corex工艺中,铁矿石中的磷含量均彻底进入到铁水中,给后续的炼钢出产带来不必要的费事。因而,高磷矿一般不适用于高炉和Corex工艺。(3)硫(S)含量。HIsmelt工艺出产铁水的硫含量高于高炉和Corex工艺。但现有的铁水脱硫技能能有用地处理HIsmelt工艺出产的铁水,且不会发生剩余的费用。4 Hlsmelt工艺的含义 1)关于短流程钢厂的含义。电炉炼钢厂运用的炉猜中可增加30%~50%的铁水。HIsmelt工艺出产的铁水能够作为生铁、直接复原铁和高档次废钢的优质替代品,在炉猜中供给很高的运用价值。其长处首要包含:进步出产率,缩短炼钢周期,削减吨钢能耗;下降制品钢中的剩余搀杂含量,产品质量愈加安稳;有用削减造渣剂的消耗量和吨钢耐火材料的消耗量。此外,HIsmelt工艺的开炉、停炉、停产等操作均十分简略易行,这关于电炉炼钢厂来说是至关重要的。HIsmelt工艺能够使炼铁和炼钢工序有用地结合起来,无须为保存和处理剩余铁水而额定建造贵重、且运用率较低的配套设备。(2)关于钢铁联合厂商的含义。关于钢铁联合厂商来说,HIsmelt工艺的首要价值在于不需求焦化厂和烧结厂所带来的流程缩短。HIsmelt工艺能运用低档次铁矿粉,无须预处理,大大增加了钢厂质料直销的灵敏性,使钢铁产品的本钱更具竞争力。别的,与运用优质炼焦煤比较,运用气煤也能大幅下降出产本钱。Hismelt炼铁厂的设备大多与高炉相同,因而,HIsmelt工艺的设备也极易融人到钢铁联合厂商的全体布局中。HIsmelt工艺可随时调整操作参数(如热风速率及氧富集水相等)和质料挑选,能够高效地习惯后续炼钢工艺改变带来的灵敏性要求。此外,HIsmelt工艺可轻易地开炉、停炉或停产,为钢铁联合厂商的出产操作供给了极大的挑选空间。即便产能较低的HIsmelt设备也可发生经济效益,因而钢角联合厂商可选用多座HIsmelt炉。这样做能够大幅下降停产检修或出产调整所带来的负面影响。此外,HIsmelt工艺出产的铁水可直接与高炉铁水混合运用,为氧气转炉供给精确硅含量的铁水。在日本,“无渣炼钢”工艺被广泛选用。高炉铁水在进入氧气转炉之前必须先进行脱硅、脱磷和脱硫处理,而运用Hismelt工艺出产的铁水能够革除脱硅处理,有用下降了处理本钱。Hismelt工艺还具有以下特色:削减复吹,削减造渣剂的消耗量,削减耐火材料的消耗量;削减铁合金的消耗量,进步铁水收率;吹炼时刻削减,出产率进步,可出产优质的高档(低磷)钢号,也可出产超洁净钢。
相关链接:
★1982~1984年期间: (1)HIsmelt工艺最早能够追溯到开端由德国KlocknerWerke公司在其Maxhütte工厂开发的底吹氧气转炉工艺(OBM)和随后不断开展的顶底复合吹炼工艺。 (2)1981年,CRA公司(现为力拓集团,RioTinto)认识到,Klöckner的转炉技能能够用于冶炼铁矿石,而不仅仅是废钢。因而,CRA公司与KlöcknerWerke公司组建了合资公司,一起开发炼钢和熔融复原技能。运用60吨的OBM转炉进行的测验证明了熔融复原工艺根本原理的合理性和可行性。
★1984~1990年期间: (1)熔融复原工艺概念测验成功后,在KlöcknerWerke公司的Maxhütte钢厂建造了一座小型实验工厂(SSPP)。该厂规划能力年产1.2万吨,选用卧式可旋转的复原炉方式(SRV)。煤、溶剂和铁矿石均经过炉底喷喷入炉内。(2)SSPP工厂的实验出产从1984年持续到1990年,期间证明了该技能的工艺可行性。但出产规划问题依然没有得到解决。(3)在此期间,协作出资方发生了改变。1987年,Klöckner公司撤出了该项目,两年后CRA公司与Midrex公司按照50:50的份额组成了合资公司,持续一起开发该技能。(4)实验工厂取得成功后,协作两边认为有必要在更大的出产规划上对该工艺进行测验。(5)两边经洽谈后决议,在西澳大利亚奎那那区域建造HIsmelt工艺研制的工厂设备(HRDF)。
★1991年期间: (1)年产能10万吨的HIsmelt研制工厂设备在奎那那建成。(2)建造HRDF研制工厂设备的意图是进一步证明规划扩展后该工艺的可行性,一起为终究的商业化出产供给操作数据。(3)奎那那工厂最早规划的复原炉方式是直接把SSPP小型实验厂的炉型扩展,即按照可按90度角旋转的卧式炉炉型进行建造。
★1993~1996年期间: (1)奎那那工厂卧式炉的出产从1993年10月持续到1996年8月。(2)尽管工艺规划的扩展得到了成功验证,可是卧式炉规划杂乱, 对进一步商业化造成了困难。为战胜卧式炉的缺乏,合资公司开发出了水冷管结构的立式炉。(3)立式熔融复原炉(SRV)的工程规划于1996年完结。首要的改善包含固定的立式炉体,设置在上部的炉料喷,简略的热风喷,用于接连出铁的外置出铁炉,以及用以战胜耐材腐蚀的水冷管结构。(4)1994年,Midrex公司撤出合资项目,CRA公司进入单独开发阶段。
★1997~1999年期间:(1)1997年上半年对HRDF立式炉进行了调试,随后的出产一向持续到1999年5月份。与卧式炉比较,立式炉在耐材损耗、可靠性、作业率、产值和规划简化等方面都有很大的改善。(2)HRDF立式炉的出产指标成功证明了熔融复原炼铁技能的可行性、工程概念的合理性以及工厂技能的简化。(3)立式炉出产状况证明,该工艺能够进一步扩展规划,建成商业化工厂。
★2002年期间:(1)2002年,由力拓集团(出资份额60%)、纽柯公司(出资份额25%)、三菱公司(出资份额10%)和首钢集团(出资份额5%)一起出资,成立了不合法人性质的合营公司——HIsmelt公司。其意图是建造并实验年产能80万吨的HIsmelt工厂。该工厂坐落西澳大利亚的奎那那工业区,出发生铁的设备是一座炉缸内径为6米的熔融复原炉。
★2003~2004年期间: (1)HIsmelt工厂于2003年1月开端建造,并于2004年下半年开端调试。
★2005~2006年期间: (1)HIsmelt奎那那工厂的铁水热调试作业于2005年第二季度开端。(2)榜首船由HIsmelt奎那那合资工厂出产的生铁产品(约4万吨)于2006年6月外运。(3)HIsmelt公司仍在持续优化该技能,以期为商场供给产能更大、灵敏性更强且出产功率更高的HIsmelt工艺技能。
从高炉瓦斯灰回收铁的试验研究
2019-01-21 18:04:49
现代钢铁生产过程产生了大量尘泥,对生产现场及周边环境有较大危害,必须进行无害处理。这些尘泥中,有价元素Fe和有害杂质S,P,K等往往并存,故一般统称为含铁尘泥,它包括高炉瓦斯灰(泥)、转炉红尘、电(转)炉除尘灰、冷(热)轧污泥、轧钢氧化铁鳞、烧结尘泥、出铁场集尘、含油铁屑等等。随着国家对资源和环境问题的日益重视,开展含铁尘泥无公害综合利用的研究,将产生很好的经济效益和社会效益。
作为含铁尘泥的主要品种,高炉瓦斯灰(泥)来自炼铁过程中随高炉煤气一起排出的烟尘。它与天然矿石的性质有着明显的差别,细粒矿物在高温作用下熔融在一起,极易包裹脉石矿物,其成分更为复杂,有价元素的回收率较低,目前,国内外处理高炉瓦斯灰的方法大致有3种:①直接外排堆存,易造成环境污染,大型钢铁企业已基本淘汰该方法;②直接利用,返回烧结或球团配料,被国内许多钢铁企业采用,但瓦斯灰有害杂质如K,Na,Zn,S,P等一般较高,配人烧结或球团矿,降低高炉利用系数,从而影响炼铁的经济技术指标;③综合回收,提取有价元素。目前,从瓦斯灰提取铁及碳等有价元素是重要的发展方向。
在自然界,存在一大类弱磁性矿物,如赤铁矿、褐铁矿、钛铁矿,难以通过普通磁选分离,对这类矿物,一般采用强磁选、浮选、磁化焙烧-弱磁选等工艺技术提取铁精矿。瓦斯灰中含有相当的弱磁性赤铁矿和焦炭,因此可以直接进行磁化焙烧,回收铁精矿,这方面有关的报道还很少。本试验研究分析了包钢瓦斯灰的工艺矿物学特征,据此开展了多种磁选工艺回收铁的试验研究,摸索了相应的工艺参数,对工艺流程进行了比较。
一、瓦斯灰工艺矿物学特性
(一)瓦斯灰化学组成和铁物相分析
瓦斯灰原料取自包钢炼铁厂,瓦斯灰多元素化学分析结果见表1,XRD衍射分析结果见图1。
表1 瓦斯灰多元素化学分析结果 %图1 瓦斯灰的XRD衍射图
▲-Fe2O3;●-Fe3O4;■-C
从表1可见,TFe 31. 00%,含碳33. 60%,SiO2 .87%,CaO 4.35%,有害元素S,Zn,Pb等含量也较高。从图1可见,主要物相为赤铁矿、磁铁矿和C。
(二)瓦斯灰粒度筛析
瓦斯灰外形呈灰黑色粉未状,粒度大小不均,大颗粒成蜂窝状,块状,片状等,表面有空隙。瓦斯灰铁矿物粒度筛析结果见表2。
表2 瓦斯灰粒度筛析结果从表2可见,大部分铁分布在-50 +200目和-325目,分布率占总量的86. 86%。其中- 50+200日中金属铁分布率达到52. 18%,另外- 325目中金属铁分布率达到了34. 68%,因此这两个粒级中的铁矿物是重要回收对象。
二、选矿试验方案
(一)试验设备
试验设备采用的有φXPZ - 175型圆盘破碎机,乌鲁木齐市金祥瑞矿山设备有限公司;QM-SB行星式球磨机,南京大学仪器厂;φXCGS - 50型磁选管,唐山宏达矿山机械设备研究所;高梯度磁选机;XTLZ型多用真空过滤机,四川省地矿局102厂;KTF -1700型真空管式电阻炉,宜兴前锦炉业设备有限公司;DY - 20型台式电动压片机,天津市科器高新技术公司。
(二)试验流程
弱磁选-强磁选和磁化焙烧-弱磁选试验流程见图2和图3。图2 磨矿-弱磁选-强磁选试验流程图3 磁化焙烧-弱磁选试验流程
三、试验结果及分析
(一)弱磁选-高梯度强磁选试验
1、磁感应强度对弱磁选的影响
磁选管磁感应强度对弱磁选的影响见图4。图4 磁感应强度对弱磁选的影响
●-品位;▲-回收率
从图4可见,随着磁感应强度升高,铁精矿的品位略有降低,而回收率迅速提高。在磁感应强度0.10T和0.12T时,铁精矿品位没有变化,都是58. 70%,而回收率由50.47%提高到了56.12%;当磁感应强度达到0. 14 T时,铁精矿的品位降低了0.8个百分点,回收率达到了58.10%。通过弱磁选主要是回收大颗粒磁性矿物,-325目的微细粒磁性矿物及弱磁性铁矿物并没有有效地回收。因此回收率不够高,说明相当多的弱磁性和微细粒磁性矿物进入尾矿,所以必须对弱磁选的尾矿进行高梯度强磁选。
2、磁感应强度对强磁选的影响
试验条件:矿浆流速4.2cm/s,矿浆浓度10%,磁介质填充率8%。磁感应强度对强磁选影响的试验结果见图5。图5 磁感应强度对强磁选的影响
●-品位;▲-回收率
从图5可见,随着磁感应强度的增大,铁精矿的回收率升高,品位则下降。当磁感应强度由0.4T上升到0.5 T时,回收率提高5个百分点,达到了29%以上,而品位为44. 47%,下降不大。继续升高磁感应强度,回收率提高并不明显,但品位急剧下降。因为,磁感应强度比较强时,磁性吸附力也较大,导致许多弱磁性连生矿物及脉石等进入强磁选精矿。
3、矿浆浓度对强磁选的影响
矿浆浓度对强磁选精矿影响的试验结果见图6。试验条件:瓦斯灰- 200目占70%,矿浆流速4.2 cm/s,磁介质填充率8%,强磁选磁感应强度0.5T。图6 矿浆浓度对强磁选的影响
●-品位;▲-回收率
从图6可见,当矿浆浓度由10%变化到15%时,铁精矿的品位没有多大变化,而回收率却有了较大的提高,从76.79%提高到了82.83%:当矿浆浓度达到20%时,精矿回收率虽然达到了90%以上,但品位下降到47. 53%。这是因为,入料矿浆浓度高使分选矿物的粘度增大,机械夹杂现象严重,易造成脉石矿物夹于磁性产品中,也就降低了磁选机净化的效果,使精矿品位降低;而矿浆浓度过小又会造成水资源的浪费,生产设备处理能力相对降低。
4、矿浆流速对强磁选的影响
试验条件:矿浆粒度-200目占70%,矿浆浓度15%,磁介质填充率8%,强磁选磁感应强度0.5T。矿浆流速对强磁选精矿影响的试验结果见图7。图7 矿浆流速对强磁选的影响
●-品位;▲-回收率
从图7可见,随着矿浆流速的增大,品位逐渐提高,回收率随之下降。当体积流速为4.2cm/s时,品位上升到52. 87%,原因是体积流速越大,矿料混合液在磁选机内的滞留时问短,一些弱磁性的物质被冲刷出去,因而回收率低,品位升高。
通过以上试验,得出最佳工艺条件是弱磁选磁感应强度0.12T,强磁选磁感应强度0.5T,矿浆流速4.2 cm/s,矿浆浓度15%,磨矿细度-200目占70%。磁选指标如表3所示。
表3 弱磁选-强磁磁选试验结果 %从表3可见,铁的回收率达到79.48%,品位提高到了55. 42%,可在高炉炼铁中做配料使用。另外经检测尾矿中碳、锌、镁元素元素含量相对提高,为回收这些物质奠定了基础。由于高梯度磁选机磁选过程中,很容易出现机械夹杂和磁团聚现象,使一些杂质也进入精矿里面,影响了精矿品位。因此经过磨矿、弱磁选-强磁选工艺所得到的精矿必须通过其他选矿方法如重选、浮选等处理才有可能获得合格的铁精矿。
(二)磁化焙烧-弱磁选试验
1、焙烧温度对磁化焙烧还原度的影响
瓦斯灰中含有相当的赤铁矿,为此研究了焙烧温度对瓦斯灰还原度的影响。在瓦斯灰粒度-200目占40%、还原剂为瓦斯灰本身带有含碳物质的条件下,其试验结果见图8。图8 焙烧温度对还原度的影响
根据定义,还原度=FeO含量/TFe含量×100%,在理想焙烧情况下,Fe2O3全部还原成Fe3O4时理论上焙烧矿的还原度为42.8%。从图8可看出,当温度在700~850℃之间时,随着磁化焙烧温度的升高,铁矿物的还原度也随着提高。焙烧温度在700~750℃,瓦斯灰的铁矿物还原度提高得不多,还原度分别为39.1%和40.2%。还原度在800℃时接近42. 8%。当温度达到850℃时,出现了过还原现象,该试验800℃是该磁化焙烧反应的最佳温度。
2、焙烧温度对弱磁选的影响
试验条件:焙烧时间60 min,矿样粒度- 200目占70%,磁选管磁感应强度0.12 T,瓦斯灰粒度- 200目占40%。图9给出了不同焙烧温度获得的磁化焙烧矿的磁选结果。图9 焙烧温度对磁选效果的影响
●-品位;▲-回收率
从图9可看出,随着焙烧温度的升高,铁精矿品位逐渐升高,而回收率下降。700,750℃时铁精矿的品位分别为58. 20%,58. 80%,变化并不大,回收率由700℃的78. 80%下降到了750℃时的73. 53%;当温度到达800,850℃,铁精矿的品位分别提高到了60. 80%,61. 90%,800℃时铁精矿的回收率仍在70%以上,而850℃的回收率仅为40.09%;这主要因为在高温,还原剂过多的条件下,产生了过还原现象,生成了弱磁性富氏体或弱磁性的硅酸铁。
3、焙烧时间对弱磁选的影响
试验条件:焙烧温度800℃,矿样粒度- 200目占70%,磁感应强度0.12 T,瓦斯灰粒度- 200目占40%。图10给出了不同焙烧时间获得的磁化焙烧矿的磁选结果。图10 焙烧时间对磁选效果的影响
●-品位;▲-回收率
从图9可见,随着磁化焙烧时间的增加,所得铁精矿的品位并没有多大变化,都保持在60. 70%以上,而铁回收率在焙烧30 min到60 min时,有明显的增加,从焙烧30 min时的64. 22010迅速提高到了60 min时的70. 61%。当焙烧时间提高到90 min时,精矿的回收率为71. 99%,仅提高了1.31个百分点。这说明在焙烧30 min时,瓦斯灰中的弱磁性铁矿物还没有充分还原成强磁性的矿物,焙烧时间增加到60 min以后,弱磁性矿物基本都被还原成强磁性铁矿物。
4、磨矿细度对弱磁选的影响
试验条件为焙烧温度800℃,焙烧时间60 min,磁感应强度0.12 T。磨矿细度对弱磁选效果的影响见图11。图11 磨矿细度对磁选效果的影响
●-品位;▲-回收率
从图11可看出,随着磨矿细度变细,铁精矿品位略有提高,而回收率迅速下降。- 200目占50%,70%,90%的焙烧矿,其磁选铁精矿品位分别为59. 90%,60.80%,61.10%,回收率分别为75.72%,70. 61%,62. 23%。因为,随着矿样磨得越细,磁性矿物粒度减小,所受磁力会下降。此外,矿样磨细后,矿浆容易因团聚而夹杂,这些都影响铁回收率。较好的磨矿细度为- 200目占700/0。
通过上述试验,确定了瓦斯灰磁化焙烧-弱磁选的最优工艺条件:焙烧温度800℃,焙烧时间60mm,矿样磨矿细度- 200目占70%,还原剂瓦斯灰粒度- 200目占40%,弱磁选磁感应强度0.12 T。在此条件下,可获得品位大于60. 70%,回收率大于70%的铁精矿,其中硫、磷含量分别只有0.17%,0. 021%,基本达到高炉炼铁水平的要求。
四、结论
(一)通过对包钢瓦斯灰中化学成分、主要矿物组成、铁矿物的嵌布粒度等工艺矿物学研究,确定瓦斯灰中铁矿物以赤铁矿和磁铁矿为主,大部分铁矿物都在在- 50 +200目和- 325目中,全铁分布率占总量的86. 86%,其中- 325目中铁的金属分布率达到了34. 68%。由于包钢瓦斯灰受到白云鄂博矿石的影响,使回收有价元素更加困难。
(二)弱磁选-强磁选工艺试验表明,磁感应强度、矿浆浓度、矿浆流速等对试验都有影响,在弱磁选0.12 T,强磁选0.5 T,磨矿细度- 200目占70%,矿浆浓度15%,矿浆流速4.2 cm/s,磁介质填充率为8%的条件下,获得了品位55. 42%,回收率79.48%的混合铁精矿。
(三)磁化焙烧-弱磁选工艺试验表明,焙烧温度、焙烧时间、磁感应强度、磨矿细度等对试验都有影响,在焙烧温度800℃,焙烧时间60 min,磨矿细度- 200目占70%,还原剂瓦斯灰粒度- 200目占40%,弱磁选磁感应强度0.12 T的条件下,获得了品位60. 70%,回收率70%以上的铁精矿。
钒钛磁铁矿高炉冶炼的主要难度在哪?
2019-01-04 17:20:18
1、原料方面,钒钛烧结矿的强度一般比普通烧结矿强度低,其转鼓指数一般为81~82%,而普通烧结矿转鼓指数可达83~85%。钒钛烧结矿冷却后的转鼓指数比冷却前提高6~7%,说明钒钛烧结矿在热状态下脆性大,强度不如普通烧结矿好。同时,钒钛烧结矿的低温还原粉化率比普通烧结矿高得多,一般大于60%,高的达80~85%。
2、炉渣特点,高炉冶炼的炉渣,主要成分来源于原燃料所带入的脉石成分。冶炼普通矿形成四元(CaO-MgO-SiO2-Al2O3)渣系;而冶炼钒钛矿则为五元(CaO-MgO-SiO2-Al2O3-TiO2)渣系。五元渣系炉渣相对于四元渣系炉渣最大的特点在于:炉渣熔化温度升高、泡沫渣的形成、炉渣变稠、炉渣脱S能力低,其中,低钛炉渣的熔化温度与普通四元渣系相近,泡沫渣的形成在高钛型炉渣的冶炼中较为明显。炉渣变稠是随着高炉内还原过程的进行,炉渣中一部分TiO2被还原生成钛的碳、氮化合物。TiC的熔点为3140±90℃,TiN的熔点为2950±50℃,远高于炉内最高温度所致。而高钛渣的脱硫能力远低于普通高炉渣,Ls仅为5~9。
3、铁水方面,钒钛铁水的粘罐物中则因含有钒、钛的氧化物,熔点很高,高于出铁温度,在下次出铁时不能被熔化,越结越厚,造成铁水罐容积迅速减小,铁水罐只能用几十次,严重影响铁水罐的正常使用与周转,并给高炉正常出铁的计划安排带来困难。