还原铁粉让普通铁精粉身价倍增
2018-12-13 10:31:09
日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )
北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。 据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网
铝及铝合金一次浸锌工艺的研究
2019-03-11 11:09:41
1 前语
铝及铝合金件具有比重小、强度高的材料学特性,特别是近年来发现铝锂、铝镁合金具有优异的超塑性,使得铝合金件,特别是铝合金压铸件的数量敏捷添加-。这为电镀工作者提出了新的课题。众所周知,铝件镀前处理一般有以下几种办法:浸锌法、浸锡法、改进浸锌合金法、阳极氧化后直接电镀法、化学镀镍法、在闪镀镍槽中先氧化再闪镀镍法、条件化处理后直接电镀,以及我国最近呈现的直接电镀前处理法等,
1927年Hewitson取得了世界上第一个选用碱性溶液进行镀前处理的浸锌配方的专利,这标志着传统的浸锌法的诞生,在尔后的10年左右,该工艺取得了非常大的前进。该办法的原理是:经过浸锌或锌合金来下降铝表面的活性,避免在操作进程中或在电镀液中铝被氧化,一起避免铝件在电镀液中与被镀金属离子发作置换反响。
浸锌进程实际上是使铝件浸在含有Zn(OH)2+4的溶液中,使坐落铝表面的金属铝与溶液所含的络合物集团Zn(OH)~中的锌离子发作置换反响。构成高度弥散在铝表面的锌晶粒,因为在强碱性溶液中铝的表面处于活性状况,并且铝在溶解进程中放出电子,使得铝表面的电位进一步负移,然后具有更高的电化学活性,因而铝在浸锌溶液中的表面应选用均匀下降表面能的保护措施。此外,在浸锌进程的初期,有必定量的从铝表面分出,对铝件也起着必定的避免氧化的效果。因为铝的溶解速度受溶液的组成、pH值、处理液温度的影响,因而这种锌与铝的置换反响的速度在必定程度上是可控的。
可是,为了得到好的结合力,要求选用二次浸锌的操作,因为在第一次浸锌的进程中,所生成的锌晶粒的尺度不同过大,散布不均匀,镀层的结合力得不到确保。因而一次浸锌后,必须在浓硝酸溶液中进行部分溶解处理,浓硝酸处理的效果是使铝表面生成一层很薄的氧化物,这层氧化物使铝件表面的能量状况均匀,一起将那些与铝基体结合欠好的锌晶粒溶解,将结晶过于粗大的晶粒的尺度变小。在此基础上再进行第2次浸锌,便能得到晶粒度较小并且细密接连的置换锌薄层,可是因为该进程的操作过于杂乱,且存在酸雾对环境的污染以及强酸对工件的腐蚀,所以人们一向不断地对这种办法进行改进。
尔后呈现的浸锌合金的办法,也称改进浸锌法,是在传统的浸锌溶液中参加三价铁的酒石酸络合物、二价镍或二价铜的化络合物。关于铸铝件,有的还加人了或。改进的浸锌法能够经过一步浸锌而得到结合力杰出的镀层,可是.因为以及多元重金属离子的加人,不只操作上要求严厉,并且增大了废水处理的难度。
相继又呈现了浸锡法、直接化学镀镍法、直接镀锌法以及先阳极氧化再使被镀金属经过等,可是因为本钱与功能的联系,现在广泛运用的仍是浸锌工艺。
针对上述情况,本文开发出了一种新式的,适合于铝合金LY—l2、煅铝LD一31、高硅含铜铝铸件的HG镀前浸锌合金工艺,获得了一次浸锌合金便能在铝件上堆积出结合力优异的电镀镍层。
2 试验部分
2.1所用化学药品与试片
所用化学药品均为化学纯级药品,所用试片的品种与尺度如表1所示:123后一页
直接还原铁技术
2019-03-08 11:19:22
直接复原铁是铁矿在固态条件下直接复原为铁,能够用来作为冶炼优质钢、特殊钢的纯洁质料,也可作为铸造、铁合金、粉末冶金等工艺的含铁质料。这种工艺是不必焦碳炼铁,质料也是运用冷压球团不必烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全国际钢铁冶金的前沿技能之一。
直接复原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反响罐法、罐式炉法和流化床法等。现在,国际上90%以上的直接复原铁产值是用气基法出产出来的。可是天然气资源有限、价高,使出产值添加不快。用煤作复原剂在技能上也已过关,能够用块矿,球团矿或粉矿作铁质料(如竖炉、流化床、转底炉和回转窑等)。可是,由于要求原燃料条件高(矿石档次要大于66%,含SiO2+Al2O3杂质要小于3%,煤中灰分要低一级),规划小,设备寿数低,出产本钱高和某些技能问题等原因,致使直接复原铁出产在全国际没有得到迅速开展。因而,高炉炼铁出产工艺将在较长时刻内仍将占有主导地位。
1. 直接复原铁的质量要求
直接复原铁是电炉冶炼优质钢种的好质料,所以要求的质量要高(包含化学成份和物理功能),且期望其产品质量要均匀、安稳。
1.1 化学成份
直接复原铁的含铁量应大于90%,金属化率要>90%。含SiO2每升高1%,要多加2%的石灰,渣量添加30Kg/t,电炉多耗电18.5kwh。所以,要求直接复原铁所用质料含铁档次要高:赤铁矿应>66.5%,磁铁矿>67.5%,脉石(SiO2+Al2O3)量
1.2 物理功能
回转窑、竖炉、旋转床等工艺出产的直接复原铁是以球团矿为质料,要求粒度在5~30mm。隧道窑工艺出产的复原铁大大都是瓦片状或棒状,长度为250~380mm,堆密度在1.7~2.0t/m³。
出产进程中发生的3~5mm磁性粉料,有必要进行压块,才干用于炼钢。强度:取决于出产工艺办法、质料功能和复原温度。改进质料功能和进步温度有利于进步产品强度。产品强度一般>500N/cm²。
2. 直接复原铁发生工艺技能介绍
2.1 竖炉法
气基竖炉法MIDREX、HYL法直接复原铁发生中占有绝对优势,该工艺技能老练、设备牢靠,单位出资少,出产率高(容积运用系数可达8~12t/m³·d),单炉产值大(最高达180万t/年)等长处。通过不断改进,其出产技能不断完善,完结规划化出产。
(1)MIDREX技能
Midrex法标准流程由复原气制备和复原竖炉两部分组成。
复原气制备:将净化后含CO与H2约70%的炉顶气加压送入混合室,与当量天然气混合送入换热器预热,后进入1100℃左右有镍基催化剂的反响管进行催化裂化反响,转化成CO24%~36%、H260%~70%、CH43%~6%和870℃的复原气。后从风口区吹入竖炉。
竖炉断面呈圆形,分为预热段、复原段和冷却段。选用块矿和球团矿质料,从炉顶加料管装入,被上升的热复原气枯燥、预热、复原。跟着温度升高,复原反映加快,炉料在800℃以上的复原段逗留4~6小时。新海绵铁进入冷却段完结终复原和渗碳反响,一起被自下而上通入的冷却气冷却至
工艺多用球团和块矿混合炉料。球团粒度9-16mm占95%,球团冷压强度>2450N/球,块矿粒度10~35mm占85%;要有高软化温度和中等复原性;化学成分铁量要高,酸性脉石低(≯3%-5%),CaO
如今Midrex法作业目标为:产品金属化率86%~96%,有用容积运用系数10t/m³·d,能耗10.47GJ/t,电114kWh/t,水1.64m³/t。
Arex法是Midrex法的新改进,天然气被氧气(或空气)部分氧化后送入竖炉,运用新生热海绵铁催化裂化,省去了复原气重整炉。改进后吨铁电耗可下降50Kwh。
(2) HYL(罐式)法与HYL-Ⅲ(竖炉)法。
HYL法由4座罐式反响炉和1座复原气重整炉构成。该工艺作业安稳、设备牢靠。产品含碳2%左右,不易再氧化,不发生炉料粘结;只因复原气要重复冷却、加热,体系热功率低,能耗偏高,气体耗费为20.93GJ/t;1975年后再没建新厂。
对HYL罐式法作出变革,保存原复原制备工艺,但将复原气重整转化与气体加热合一;4个罐式反响炉改为接连式竖炉,称HYL-Ⅲ竖炉法。
该工艺选用高氢复原气,高复原温度(900-960℃)和0.4-0.6MPa高压作业。改进复原动力学,加快复原发应;含硫气不通过重整炉,延长了催化剂和催化管运用寿数;复原和冷却作业别离操控,能对产品金属化率和含碳量进行大范围调理,产品均匀金属化率90.9%、操控碳量1.5%-3.0%,质量安稳;装备CO2吸收塔,挑选性地脱除复原气中H2O和CO2,进步复原气运用率;重整炉发生高压蒸汽发电。最低出产能耗为10.43-11.2GJ/t,电耗90kWh/t。HYL(罐式)法已逐步被HYL-Ⅲ(竖炉)法替代,算计产值占国际总产值的25%左右。
该法的新改进是天然气进入反响器直接裂解,出产高碳(3.8%)DRI产品。最近又推出HYL-Hytemp出产体系。将热复原铁(650℃)力量输送到电炉车间,喷入电炉。冶炼时刻缩短,电极和耐火材料耗费下降,金属收率进步。吨钢电耗下降112kW·h,电极耗费下降0.55kg,冶炼时刻缩短16min,产率进步16%,吨钢本钱可下降4.6美元。
2.2 气基流化工艺
(1)F1NMEF工艺
该工艺运用
(1) Circored和Circofer工艺
两种工艺中心设备都包含一座循环液化床和一座普通流休床。Circored是用天然气为动力,Circofer以煤为动力。铁精矿粉是通过预热后(约900℃)进入循环流化床参加反响,使动力学条件得到改进,在4个大气压条件下,铁矿与氢在630℃时可被复原(在气体环路中参加部分氢)。
2.3 转底炉法
将铁矿粉、钢铁厂含铁粉尘、煤粉和粘结剂按必定份额混合,压制成含碳球团矿,送入烘干机内进行烘干,脱除水份。将枯燥的含碳球团均匀地铺在转底炉上(只铺一层),在高温1200~1400℃下球团矿内氧化铁与碳反响,放出CO,在炉膛内焚烧成CO2,并构成高温废气(在1000℃以上)。一般反响只需20分钟左右。
将废气收引出预热煤气(400℃)和助燃空气(900℃),低温废气从蓄热室和换热器引出,再去烘干生球团。这时废气温度在100℃左右。从节能视点看,动力运用功率较高。转底炉的高温气体由焚烧器来供给(运用煤气加热)。转底炉能够处理含Zn、Pb高粉尘,能够防止配入烧结矿中后,在高炉冶炼进程中Zn、Pb的富集形成的负面影响。现在的山西翼城,河南巩义已有外径为16.3米的转底炉,年产值在7万吨,金属化率达85%,每吨铁出资为182元。
2.4开发运用焦炉煤气,对含碳球团在竖炉内进行直接复原。焦炉煤气含55%左右的氢。在化学反响中,氢对氧化铁的复原率是最高的。现在,首钢预备展开这方面的作业。焦炉煤气要进行裂解,进步H2的含量,并要预热到930~950℃,在参加复原反响,反响后气体要脱除CO2,再循环运用。
用氢作复原剂存在的首要技能问题:
▪ H2复原铁的其它氧化物都是吸热反响,需求足够的热。在满意复原和供热的煤气的最佳H2含量为32.05%。
▪ 富氢预复原会导致物料的粉结。采纳分段直销富氢和非富氢供气准则。
3.直接复原铁开展现状
3.1全国际直接复原铁开展比较快,2003年产值为4960万吨,2004年为5460万吨,2005年约为6000万吨。年添加率在10%以上。在直接复原铁出产工艺中,气基直接复原占92%。
3.2 我国状况
2005年我国出产直接复原铁为约50吨,而出产能为比产值要高出20%。首要是技能、质料、本钱等要素影响。
全国现有30多个直接复原铁厂商,其总出产才能约60万吨。总体上讲,规划小,出产本钱高,短少高品质的质料。大都厂商用隧道窑反响罐法,出产工艺落后,能耗高,环境污染严峻。
(1) 天津直按复原铁厂出产实践
2004年产直接复原铁33.2万吨,2005年约产34万吨,设备作业率在98%以上。
该厂是选用DRC法煤基直接复原出产工艺:两条φ5X80m回转窑----冷却筒----产品分选----制品。运用巴西球团矿(含铁档次68%,SiO2+Al2O3约为2%)适合配入煤和石灰石,进行混均,从回转窑给料端参加。窑体是歪斜装置,慢速旋转,使炉料朝卸料端运动,一起,矿石被加热和复原(留意温度操控在不要使脉石熔融,避免结圈)。煤作为热源和复原剂,一部分随铁矿石一起参加,另一部分从窑的卸料端喷入窑内。供煤所焚烧的空气,通过沿窑长度方向装置在窑壳上不同方位的风机由轴向吹入窑内。热的复原产品通过冷却筒冷却,然后筛分、磁选及风选,别离出非磁性物,得到制品。来自窑内的烟气经余热锅炉收回余热(发生蒸汽),废气经布袋除尘,用废气风机送入烟囱。
操作的技能要害:
▪ 确保窑内复原气氛,操控好风量
▪ 操控好窑体内各部分的适合温度,不让脉石熔融
▪ 窑的卸料端坚持微正压,20~30Pa
操控直接复原铁金属化率在91.1%~94.6%,质量合格率在94%,是最经济的目标。金属化率高和低,均会形成回转窑和电炉炼钢目标的恶化。(炼钢进程参加直接复原铁份额最好操控在15%~35%,并要操控好料流参加速度32~34Kg/兆瓦▪分,避免呈现钢水的欢腾现象以及喷溅)。
影响产品金属化率的要素是:频频停窑、非正常条件下出产(难以调控),窑和冷却筒密封性不良、煤的成份动摇和质量操控点挑选不妥。
(2)首钢密云冶金矿山公司煤基链篦机─ 回转窑 ─ 一步法
该公司直按复原铁年出产才能6.20万吨,
▪ 出产工艺:配料 ─ 造球 ─ 枯燥(链篦机)─ 回转窑(复原)─ 冷却 ─ 制品。
▪ 铁精矿水份严厉操控在5.5%~6.5%。
▪ 造球配皂土(粘结剂)0.8%~1.0%,台时产值20±2吨。
▪ 链篦机带速为0.5m/min,布料厚度100~120mm。
生球抗压强度≧1.2Kg/个,落下强度≧5次/0.5m,水份操控在7.5%左右,粒度6~16mm占85%以上。
▪ 回转窑及热工体系操作
窑头喷煤总量在7.0±0.5吨/小时,精煤压力操控在60KPa,细煤压力操控10~14KPa。
窑尾加煤操控在800±50Kg/h,禁止窑尾煤量过值。
窑温操控:窑头箱
回转窑电机转速操控在400~440转/分,主风机的回热风阀门开度45%~50%,转速800~850转/分,回热风机进口负压780±20KPa,温度310~350℃。枯燥风机阀门开度65%~70%,转速800~850转/分。产品质量标准的厂标是:铁档次≧88%,S≦0.04%,金属化率>90%。
(3)山东莱芜鲁中冶金矿山公司直接复原铁厂用冷固球团----回转窑工艺出产直接复原铁,年出产才能5万吨。后改为块矿回转窑法。
▪ 福建大田海绵铁公司用sic反响罐----隧道窑法出产直才能5万吨/年。
▪ 喀左海绵铁厂、哈尔滨市海绵铁厂、吉林复森海绵铁公司、吉林桦甸海绵铁厂等也具有了年出产才能2.5万吨。
氧化铁皮的综合利用:可用于制取还原铁粉等
2019-02-26 11:04:26
轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。
(1)用于出产海绵铁或制取复原铁粉。
海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。
氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C
氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。
(2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。
氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。
别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。
(3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。
钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。
电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。
中品位锡精矿-炼前精选-电炉一次炼流程
2019-01-25 15:50:18
广州冶炼石目前采用炼前精选-电炉熔炼流程(见下图)。图中 广州冶炼厂电炉炼锡流程
广州冶炼厂于1962年建成,是国最先采用电炉炼锡的工厂,该厂锡砂来自广东、湖南、江西等省70多个矿区和群采部分,矿源分散,质量不一,杂质多变。进厂锡砂以锡为主,大部分呈单体锡石状态,其化学成分(%)为:44-46Sn,0.001-8Bi,0.1-23WO3,0.02-7.0Pb,0.02-1.6Cu,1.0-21Fe,0.02-13As,0.05-8S,2-25SiO2,0.5-5Al2O3,0.5-6CaO。按杂质含量,锡砂大致分为三类,一般成分见表1,典型矿样成分见表1-2-6。见相关资料中流程所示,高钨与高铅、铋、砷、硫的锡砂,经过炼前处理后入炉,其中高铅、铋的锡砂(见表2)在浮选过程中产出的锡中矿(图中未示出)含砷、硫、铁、铅、铋均高,经焙烧-酸浸后入炉。
表1 广州冶炼厂入厂的各类锡砂成分/ %
锡砂类别SnPbBiAsSFeWO3直接入炉的锡砂>60<0.8<0.4<0.5<1.0<7<3高钨的锡砂44-550.5-50.1-60.5-70.5-38-163-23高铅、铅、砷、硫的锡砂41-661-70.5-82-131-8
表2 广州冶炼厂入厂的典型矿样成分/ %
锡砂矿样类别SnFeSAsPbBiWO3高砷、硫的锡砂50-604-161-52-100.1-30.03-0.31-3高铅、铋的锡砂1号45-606-104-50.7-31-33-4.53-72号41-456-102-43-51.5-4 高铅的锡砂1号50-624-121-100.5-23.1-5.8<0.1 2号64-664-60.20.3-0.52-4<0.1 高钨的锡砂高白钨41-471-1.50.2-0.60.3-0.750.05-0.30.06-0.22.5-5高黑钨44-503-40.4-1.00.3-0.51.6-3.20.1-0.316-21
煤基还原铁生产法
2019-01-04 11:57:16
近年世界钢产量随着亚洲特别是中国经济的快速发展而持续增长,现在的生铁主要靠高炉生产,而高炉生产效率的提高主要靠大型化,但伴随着增大的烧结设备和焦炉,也增加了对生态环境的污染。和高炉法类似的还原法生产中,典型如MIDREX法属于气基还原法,由于受天然气资源的限制难以在全球普遍推广,据此,神户制钢和美国Midrex公司共同开发成功煤基还原的FASTMET法、FASTMELT法和ITmk3法则具有以下优点:
(1)有利于节能和降低对生态环境污染;(2)投资和运行成本低;(3)对原料和能源的适应性广。以下对其系统介绍,以供参考选用。煤基还原铁生产法(1)煤基还原铁生产法的地位。从目前世界上的还原铁生产量来看,气基用块矿的MIDREX法和HYI法居首位,以粉矿为原料的CIRCOREO法、FIOR法和FINMET法等次之;而煤基用粉矿为原料的FASTMET法,FASTMELT法和ITmk3法则居第三位,以块矿为原料的SL/RL法和COREX法则居第四位,并已呈现出后来居上的趋势。
(2)其工艺流程如下:将矿粉和煤粉混合后用造球机制成球状团块,经干燥后加入环形炉内加热并还原。团块在炉内铺成1-2层,FASTMET和FASTMELT法为加热到1250-1350℃还原为还原铁后排出炉外;ITmk3法则在加热到1450℃并还原、熔融为粒铁后排除炉外。FASTMET法将高温还原铁冷却后制成低温原铁的DRI成品,或者趁热将高温还原铁压成更大团块的HBI成品,以便对外出口海运途中不至于因氧化而发热,从而有利于扩大直接还原铁的市场。FASTMELT法则将是将从环形炉出炉的高温还原铁趁热装入熔化炉制成铁水。ITmk3法则将在环形炉和渣分离的粒铁与渣一块出炉后,再经过磁选机将粒铁选出为成品。
(3)煤基还原铁生产法的反应过程。首先以FASTMET法为例对团块在环形炉的反应简介如下:含碳团块在炉内加热至700-1400℃,氧化铁被所含碳还原而产生CO在炉内燃烧并成为主要热源,同时并加入15-20%的辅助燃料,采用LNG、LPG、COG和重油均可。主要的还原反应式为:Fe3O4+4C=3Fe+4CO,Fe3O4+4CO=3Fe+4CO2,Fe2O3+3C=2Fe+3CO,Fe2O3+3CO=2Fe+3CO2,C+CO2=2CO。由上可以看出,由含碳团块产生的CO可充分燃烧使碳的使用率增高,从而可降低能耗和CO2的发生量。且还原过程仅6-12分钟,还原结束后即冷却至1000-1200℃出炉。由于反映过程非常短,故开炉、停炉及调整产量均较为方便。而FASTMELT法则将出炉的高温还原铁直接加入熔化炉化为铁水,为降低熔化过程的负荷,应按固体还原的最大限度适当延长在环形炉的还原时间,ITmk3法除在环形炉内加热到1450℃外,从时间上务必保证渣铁分离。经试验炉分段取样观察,固块入环形炉3分钟后,固块部分被还原但中心尚未还原,5分钟后一部分开始熔融,6分钟后基本熔融,9分钟后熔融的铁和渣完全分离。
锌铝压铸件上的铜镍镀层如何一次退除?
2019-02-28 10:19:46
郑瑞庭先生提出了下述几种办法:
电解办法:磷酸(密度=1.7g/cm3)3000mL水1500mL,硫酸1000mL,在室温条件,被退件作阳极,电流密度3~5A/dm2,电解退除。此法退净后易发生置换铜,应在退完镍层后再在稀中退铜。
也可采用化学退除办法:
办法一焦磷酸钾150g/L,室温下浸泡。
办法二:750~810g/L,室温下浸泡。
碘化铝一次电池和染料敏化太阳能电池研制成功
2019-01-16 11:51:35
较近,中国科学院物理研究所纳米物理与器件实验室的孟庆波研究员、李泓副研究员与复旦大学傅正文教授合作,将碘化铝电解质应用于一次电池和染料敏化太阳能电池,取得了良好效果。他们发现,铝碘接触可以形成一种新型的原电池—铝碘电池。采用他们研究的单碘离子固体电解质证明,这种铝碘电池的工作原理基于碘离子传导。通常的Al基电池以及Li/I2电池均是基于阳离子的输运,这是靠前次单纯基于阴离子输运的电池体系被发现。Al基电池由于Al离子在表面膜的扩散较慢存在Al电极活性较低的缺点,传统的锂碘电池放电电流较小。新的基于碘离子固体电解质的铝碘电池放电速率高,而且具有成本低廉、环境友好的优点。该研究对于开发其它的基于阴离子传导的电池体系具有较好的启示作用。染料敏化太阳能电池中的电解质一般使用LiI等对水敏感的物质,因此无水条件的要求增加了电池制造的成本。另外,电解质中采用的腈类有机溶剂为有毒溶剂。如果长期使用,这些溶剂对环境和人类的健康都会产生不良影响,不利于这种太阳能电池的推广应用。在他们原有工作的基础上,以乙醇为溶剂,在大气环境下,通过在溶液中加入铝和碘原位反应制备了碘化铝电解质,将其直接应用于染料敏化太阳能电池,取得了5.9%的高光电转化效率。这种新型的碘化铝电解质具有成本低廉、制备容易、性能优良、环境友好等四大优点,为染料敏化太阳能电池电解质的研究开辟了新的途径。 电化学能量存储与转化器件的研究与开发,包括一次电池、二次电池、超级电容器、染料敏化太阳能电池、及燃料电池等,对缓解能源与环境危机、提高人类生活水平有着重要影响。环境友好、成本低廉、安全高效的电解质对电化学能量存储与能量转化器件的实际应用起着重要的推进作用。上述结果已申请三项国家发明专利,相关文章发表在较近出版的J. Am. Chem. Soc. (128, 8720-8721, 2006)期刊上。该项工作得到了“863”计划和中科院“百人计划”的支持。
炼钢炉尘提取还原用铁粉重选技改实践
2019-01-21 18:04:35
一、前言
炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。
由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。
二、原因分析
(一)原料分析
铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。
炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。
另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。
(二)原工艺流程及存在的缺陷
1、原工艺流程
原工艺流程如图1所示。2、原工艺存在的缺陷
(1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。
(2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。
(3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。
(4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。
三、解决措施
针对现有生产工艺存在的问题,对现有工艺进行了优化。
(一)新工艺流程
经改造后的新工艺流程(略)
(二)改造措施
1、将一段摇床改为螺旋溜槽。
2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。
3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。
4、在新增球磨机后增加一台磁选机。
四、改进效果
经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。
五、结论
(一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。
(二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。
热还原法炼镁(一)
2019-01-08 09:52:37
热还原炼镁有半连续法和皮江法两种。 (一)半连续法(Magnethem Process) 该方法以白云石为原料,经过煅烧得到锻白(CaO·MgO),然后在电热真空炉内熔融状态下以硅铁为还原剂制取金属镁。半连续法炼镁工艺流程见图1。白云石是碳酸镁与碳酸钙的复盐,化学式CaCO3·MgCO3。天然白云石含有杂质。半连续法炼镁用的白云石成分要求为MgO≥20 %,CaO 30 %-33%,SiO2≤1%,Fe2O3≤0.5,A12O3不限,Na2O+K2O≤0.1%,ZnO
[next]
出窑煅白趁热装入密闭料斗。还原剂硅铁成分要求为含Si≥75 %,粒度20mm以下。为了降低炉渣熔点,需要添加铝土矿。铝土矿成分要求为含A12O3≥65%。铝土矿破碎成3-30mm,用回转窑在1280℃温度下煅烧,除去挥发分。出窑铝土矿趁热装入密闭料斗。 装有煅白、硅铁和铝土矿三种炉料的密闭料斗运至还原炉炉顶处,分别连接各自的加料机,向还原炉加料。还原炉结构见图2。还原炉呈圆筒形,内径约3m,高约4m,非导磁钢外壳,内衬耐火砖和炭砖,一根电极从炉顶插入,电极头为石墨块,导电杆为水冷铜管;另一电极位于炉底。炉顶有3个加料口和1个抽真空管口。靠近炉底处侧壁上有1个排渣口。冷凝器连接在抽真空系统上,冷凝器内有盛镁的坩埚。还原炉功率4500kW,用1台8400kW单相变压器供电。用计算机控制加料,加料方式:煅白,1min加料1次,1h加入2.8t;铝土矿,2min加料1次,1h加入450kg;硅铁连续加入,1h加入430kg。还原炉通电加热,温度达1600℃;用真空泵抽真空,使炉内压力达到4655Pa;炉料在熔融状态下进行还原反应,还原反应式如下: 2(CaO·MgO)+(XFe)Si+nA12O3====2CaO·SiO2·nA12O3+XFe+2Mg
[next]
还原出的镁蒸气从炉内抽出,进入冷凝器冷凝成液态流入铸钢坩埚。随着料的加入,炉渣越来越多,加料10h左右时,打开渣口排出熔渣。还原周期结束,取下盛镁坩埚,装上空坩埚,开始下一个还原周期。一个还原周期24h,产镁7t,排渣2次。1台炉年产镁2500 t。还原出1t镁,需白云石13-14.5t,铝土矿1-1.1t,硅铁1.1-1.2t,电11500kW·h。 在镁蒸气从炉内被抽入冷凝器坩埚的过程中,一些物料粉尘也被抽入坩埚,混在镁中。为了去除这些杂质,必须将还原出的镁精炼。盛镁坩埚运至精炼车间,放入精炼炉。精炼炉用气体燃料加热,使坩埚中镁熔化并升温。同时加入氯盐熔剂,熔剂成分为MgCl2 40 %、NaCl 27、KCl 27%。当镁全部熔化、温度达到670-700℃时,用气动搅拌器搅拌,使杂质随熔剂沉降到坩埚底。精炼后,用气动泵抽取液体镁注入铸锭机铸成镁锭。 半连续法炼镁,原料白云石来源广泛,生产过程中无有害物排出,还原炉产能大,自动化程度高,但镁中含Si较高。
还原铅价格
2017-06-06 17:49:54
最近上海有色网发现有很多用户提出了一个问题,那就是还原铅价格与什么有关?针对用户提出的此问题,上海有色网天南地北地搜索各方面关于还原铅价格方面的信息,为您解决心中的疑问。简单来说,还原铅价格主要是政策上和技术上的作用,主要是出口退税率的提高,拉动了还原铅出口,造成国内资源紧缺,促使还原铅价格走高。国际市场转暖与国内扩大内需,推动还原铅消费。今年国际铅消费市场增势平稳,国内铅出口量一直较大,耗铅量占60%。以上的铅酸蓄电池出口量大幅增加。据统计,今年前9个月,我国铅酸蓄电池净出口量达1289.47万只,同比提高49.39%。另外,我国电动自行车今年预计销售将突破10万辆,电动自行车蓄电池耗铅量增加,也促使国内一些大的氧化铅企业纷纷采用还原铅作为原料。据预测,2010年还原铅价格不会再明显上涨,可能出现一定的回落,但回落幅度不会太大。利用废铅再生而成的还原铅,自今年下半年以来,价格一路攀高,由年初的平均每吨3500元飙升至目前的平均每吨3750元。因国际精铅市场价格走势平稳,国内还原铅价格达到目前水准后,其价格上升空间已经很小。
铁粉分类及应用
2019-01-03 09:36:51
铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉
纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。
铁粉的应用
粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。
铁氧化物的分解、还原与再氧化(一)
2019-02-14 10:39:59
氧化物的分化、复原及再氧化反响是烧结进程中化学反响中一个重要部分,它影响烧结矿的矿藏组成及液相的构成,然后影响烧结矿的质最。例如恰当操控烧结气氛以削减铁氧化物的复原进程,促进Fe2O3生成而削减FeO的构成,这有利于烧结矿复原性的进步。 (一)铁氧化物的分化 烧结猜中有许多氧化物,在铁猜中主要是铁或锰氧化物,在熔剂中有钙镁氧化物,这些氧化物在烧结进程中是否发作分化反响决定于它们的化学反响式的平衡常数(Kp)及等压位的改变(ΔZ)一般金属氧化物的分化可按下式表明: 2MeO=2Me+O2 如MeO及Me是以固相存在而不相互熔解,则上式的反响平衡常数即等于分化压力: Kp=Po2 分化压力与反响的标准等压位的关系为: ΔZo=-KTlnPo2 当气相中氧的分压为P′o2时,则 当Po2>P′o2时,ΔZ<0氧化物分化, 当Po2<P′o2时,ΔZ>0反响向生成氧化物的方向进行; 当Po2=P′o2时,ΔZ=0反响趋于平衡状况。 在大气中P′o2=0.21而大多数金属氧化物的分化压力比0.21气压小得多,所以大多数金属氧化物在大气中是比较安稳的。
[next]
MnO2,Mn2O3,Fe2O3的分化压力比较大,MnO2在460℃的分压为0.21,550℃的分压为1.0大气压(98066.5帕),Mn2O3到达相应分压的温度为927℃及1100℃因而铁锰的高档氧化物(即氧化程度高的氧化物)在烧结进程中枯燥带或预热带就开端分化乃至已很剧烈,而Fe2O3在1383℃分化压力为0.21,在1452℃分化压力为1.0,要比锰的高档氧化物分化困难一些。在烧结条件下,烧结冷却带的气体的实践压力为0.9大气压(0.9×98066.5帕),所以氧的分压为0.18~0.气压(0.9×98066.5帕);预热带废气含氧8~10%,氧的分压在0.072~0.09大气压(×98066.5帕),在焚烧带烧结温度可达1350~1450℃,氧的分压接近碳粒处则比预热带的更低,因而Fe2O3发作分化或剧烈分化。磁铁矿Fe3O4在1500℃只要10-7.5气压(×98066.5帕),所以在烧结条件下分化是不可能的。但在有SiO2存在的条件下,温度高于1300~1350℃,它可按下式进行分化: 2Fe3O4+3SiO2=3(FeO)2·SiO2+O2 浮士体(FexO)的热分化在烧结条件下是不可能的,由于它的分化压力在同一温度下比Fe3O4还低。 可以用下式核算FeO的分化温度: 因而在烧结条件下FeO不可能分化。烧结猜中还有许多氧化物,其分化压力比FeO还要小,因而要求分化温度更高。但凡ΔZ°负值愈大,金属与氧亲和力越大,即该金属氧化物愈不易分化,从图中看到钙、镁氧化物,其ΔZ°最小,因而在烧结的温度及气氛下不发作任何分化。 (二)铁氧化物的复原 在烧结进程中,接近燃料颗粒处存在着复原性气体CO以及赤热燃料粒,所以有很强的复原性气氛,因而烧结猜中铁、锰等氧化物及液相中的铁、锰氧化物将遭到复原。 即A,B,C,D分别为Fe2O3、Fe3O4、FeO及Fe的安稳区,见图2当有过剩的固定碳存在时,铁的各级氧化物的复原反响产品决定于气化反响的平衡曲线CO2+C=2CO,见图3.
金属镁还原炉———传统还原炉
2019-01-07 07:51:16
金属镁还原炉是镁生产的核心设备,国内外普遍采用的是外加热卧式还原罐还原炉。目前,国内应用的金属镁还原炉的炉型较多,根据所用燃料的不同,大体上可分为两类:用煤气或重油加热的还原炉与以煤为燃料的还原炉。
用煤气或者重油为燃料的还原炉用煤气或者重油作为燃料的还原炉,通常是16个横罐的还原炉,其规格为10.54×3.59×2.94(m)。这种还原炉为矩形炉膛,还原罐间中心距约为600mm,罐呈单面单排排列,炉子背面一般分布有多支低压烧嘴。火焰从燃烧室进入炉膛空间,绕过还原罐周边,靠烟囱抽力将燃烧后的烟气抽入炉底部支烟道,经烟道与烟道闸门后进入烟囱。二次风由二次风管再通过炉底第二层二次风道送入炉内。
还原炉底部两个还原罐中间设有燃烧室或烟室。还原炉既是一个倒焰炉又是一个贮热炉。炉膛内一般装有16支镍铬合金钢制的还原罐。16个还原罐分成四组,即4个还原罐组成一组,与一个真空机组相连接(真空机组由滑阀泵和罗茨泵组成),每台还原炉还设有一个备用真空机组,因此一台还原炉一般有5个真空机组,每台还原炉设有一个水环泵作为预抽泵。
以煤为燃料的还原炉在我国,金属镁还原炉以燃煤为主,随着镁冶炼工艺的不断发展与进步,出现过多种燃煤还原炉,典型的有下面几种。
1.单火室单面单排罐还原炉该炉型与燃煤气、重油还原炉炉型相似,单面单排布置还原罐。燃烧室设置在后面,炉内装有14~16支还原罐,在两支还原罐中间设置一过火孔。该炉型由于只有单排罐,又是单面布置,故操作十分方便,车间布置便于机械化,但其产量和热效率都低。该炉型属于矩形倒焰窑,火焰从燃烧室通过挡火板反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经过火孔,支烟道至主烟道排出。
2.双火室双面双排还原罐该炉型也是矩形倒焰窑,装有10支还原罐,在长度方向分两端各装5支上、下排列。炉型设置了四个对称分布在两侧面的燃烧室(每面两个),燃烧室内有倾斜15°的梁式炉栅,火焰从窑两侧燃烧室翻过挡火墙,流向炉膛中心窑顶,然后火焰倒流向炉底吸火孔、支烟道再由一端的主烟道排入烟囱。该炉的优点是炉子结构简单,罐子排列较紧凑,炉膛空间利用率较高,其缺点在于炉子四面均为操作面,加煤烧火与还原出镁、扒渣、装料互有干扰,操作条件差,车间布置困难。该炉型也有炉膛空间扩大而布置14~22支罐的。
3.单火室双面双排罐还原炉该炉型是两端面双排布罐,单火室烧火的还原炉。在两个端面各分上、下排装6支罐,共布罐12支,在一个侧面设多个燃烧室,这样燃煤操作比较方便,空间利用率也较高,但还原罐数量有限,产量小。
4.国内应用最为广泛的单火室单面双排罐还原炉该炉型也属于外加热火焰反射炉(俗称倒焰炉)。炉内还原罐上下错开上牌布置,空间利用率较高;炉长方向没有限制,故可以布置较多的还原罐,一般有30~40支;还原罐单面开口,与真空机组的连接较方便;燃烧室设置在炉膛后面,由挡火墙隔开,火焰从燃烧室通过挡火墙反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经炉底过火孔、支烟道至主烟道排出。相对于上述其他炉型,该炉型产量大、空间利用率较高、能源消耗较低、经济性好,因此在国内得到了广泛的应用。
还原铅价
2017-06-06 17:49:51
经了解,山东地区还原铅价近日上涨较快,有厂家表示昨天14400的成交价,今日已经14550成交了,几乎每天都有150-200元的涨幅,而且现在市场成交情况也很好,很多临沂地区的小厂每天都是全负荷生产,不过这有可能是安徽地区多数厂家停产整改,而增加了山东还原铅厂家的客户群;今日安徽地区还原铅市场交易情况有所好转,因界首停产导致当地还原铅产量有所削弱,另外受废电瓶的高价推动,还原铅厂家报价都比较坚持。此外还原铅的生产企业以中小型企业居多,还原铅价格较低企业亏损时,更多是惜售保价,避免亏损,除非企业面临非常大的资金压力,否则很难让其赔本销售,这种心理在一定程度上维持还原铅价格不跌反涨。 还原铅价由于受到经济危机的影响,汽车、电动自行车蓄电池更换的频率下降,也导致了还原铅的原料废电瓶供应减少,广东、广西地区海关在09年开始严格检查,国外进口的废电瓶数量大幅下降,尽管目前有很多私人手中仍存有大量的高价废电瓶(相关调查数据见表-2),但以目前价格其很难进入市场流通环节,所以废电瓶的价格出现上涨,原料价的格高启使得还原铅生产成本也居高不下。
硫酸法钛白粉的生产--酸解、浸取、还原(一)
2019-01-25 13:37:06
一、酸解方法 根据参与反应的硫酸浓度和最终反应产物的状态,钛铁矿酸解的方法有液相法、两相法和固相法三种。 1.液相法 采用55%-65%的硫酸,酸解反应在液相进行,反应温度为130℃-140℃,反应时间为12-16h,为了防止早期水解,酸比值(F)控制在3-3.2,直接得到硫酸钛溶液。 2.两相法 采用65%-80%的硫酸,反应温度为150-200℃,反应时间为6-8h,F值控制在1.8-2. 2,加热至有沉淀析出为止,所得产物呈糊状,加水浸取后,生成悬浮溶液,反应率达85%一90%。 3.固相法 采用80%以上的硫酸,反应剧烈迅速,在5-30min内完成,反应最高温度达250℃,由于硫酸的沸点为338℃,所以能够适应这一要求。所得产物为固相物,然后加水浸取为溶液,控制F值在1. 6-2. 0,最高酸解率可达97%。 二、固相法酸解的优点 液相法和两相法酸解的反应时间长,耗用硫酸多,钛铁矿的分解率低。与这两种方法比较,固相法具有下列优点: ①耗用硫酸量最少; ②反应最迅速,可减少加温时间,缩短生产周期,提高设备利用率和产量,节约燃料; ③酸解率最高; ④溶液F值比较低,有利于后期水解的进行; ⑤设备强度大,生产能力高。 正是由于固相法酸解的优点多,所以工业生产一般都采用固相法。 三、酸解发生的化学反应 钛铁矿的化学组成是偏钛酸亚铁(FeTi03),它是一种弱酸弱碱盐,能与强酸反应,并能进行得比较完全。硫酸分解铁铁矿的反应一般认为是按下列反应式进行:
[next]
酸解后生成的硫酸钛和硫酸氧钛之间的比例,由酸解条件而定,从反应式(1)、反应式(2)可以看出,每生成lmol的硫酸钛,需要2mo1的硫酸,而每生成lmol的硫酸氧钛,只需要1 mol的硫酸。由此可见,硫酸过量得越多,越有利于反应的进行,且生成硫酸钛。 四、有效酸 在酸解产物浸取所得的钛液中,硫酸主要以三种形式存在:①与钛结合的硫酸;②与其他金属(主要是铁)结合的硫酸;③未被结合,过剩的游离酸。由于无法单独测定与钛结合的酸和游离酸,只能测定这二者的总和,因此就把这两者的总和称为有效酸。 有效酸=与铁结合的酸+游离酸 同样的钛液,如果经过浓缩或稀释,其浓度变化了,但其性质仍没有变化。 五、酸比值及其影响因素,酸比值的高低将产生的影响 钛液中有效酸与总钛含量之比值称为酸比值,酸比值又称酸度系数,通常用F来表示: 从公式看,游离酸、与钛结合酸和总TiO2含量等三个因素会影响F值。但是F值只是一个酸比值,它在很多情况下,并不能说明一些本质的问题。例如,钛液经过浓缩或稀释后,其总TiO2浓度和有效酸浓度变化了,但其性质和F值是保持不变的,溶液中硫酸氧钛与硫酸钛的比值改变时,游离酸也随之而变,但是其F值却不会改变;有效酸的测定由于终点不够明显,也容易出现误差,因此F值只能作为生产参考,对其数值要结合工艺过程进行具体分析。 F值的高低,除了能显示钛液中钛的组成、能评价酸的效果与质量外,还会影响水解速率、水解率和水解产物偏钛酸的结构。 六、固相法酸解所得钛液可用硫酸氧钛表达
[next]
中,既有硫酸钛,也有硫酸氧钛。可以认为,如果全部是硫酸钛,则其F值应为2. 45,再加上铁液中尚有一定量的游离酸,那么,其F值更应该大于2. 45。但是固相法浸取所得的钛液的F值,一般只有1.6-2.0,其F值远远没有达到2. 45,更没有超过2.45,因此铁液中硫酸钛的含量不会很多,而铁液的F值<2. 45时,都说明其含量是以硫酸氧钛为主。固相法钛液的F值只有1.6-2.0,就可以用硫酸氧钛表达。在酸解反应的200℃以上,反应物水和反应生成的水都已蒸发了,具备生成Ti(S04)2的条件,但是用酸矿比为(1. 45-1. 55):1,不足以将钛变成Ti (S04)2,所以在固相物中还存在TiOS04。Ti (S04)2只存在于固相物,一旦浸取遇水即水解生成TiOS04,因此钛液的钛均以TiOS04的形式存在。 七、与钛结合酸和游离酸的计算 固相法酸解得的钛液,一般F值在1.6-2. 0之间,则FOA值就在30. 45%-63. 07%之间。F值每相差0.1,则FOA值相差8.15%,使用FOA值来表示,更易于控制。
钽铌二次资源回收
2019-02-27 08:59:29
钽资源少,报价昂贵,二次资源运用具有特殊含义。铌钽二次资源包含两部分:一部分是钽铌冶炼和加工过程中发作的废料,另一部分是钽铌和铌制品在运用过程中作废的元器件。现在从二次资源收回的钽,约占钽原料量的15%~20%。按废料形状分,钽铌废料首要有纯金属、化合物和合类。纯金属废料一般经化学清洗后选用真空熔炼、电子束熔炼和氢化制粉等火灶台冶炼办法收回。化合物和合金等废料品种多、成分杂乱,为此开发了各种收回工艺。以下为较有代表性的湿法工艺。一、硬质合金是以碳化钨为根本的复合碳化物(WC-TiC-TaC-NbC)和钛钴一同组成的合金,成分杂乱,钽铌含量较低,一般仅作为富集物收回。 (一)锌处理法该法工艺流程见图1。烧结碳化物先在800℃下用液态锌进行分化处理使碳化物粒子与金属钛钴间的结合键开裂。分化物再用真空蒸馏别离锌,并循环运用。脱锌后的产品经细磨并氧化,然后进行碱处理和水浸,钨以NaWO3方式进入浸出液(从中制取仲钨酸铵),脱钨渣再用硫酸浸出钴和钛(再从硫酸液中进一步别离和收回钴和钛),浸出渣即为钽铌富集物。图1 硬质合金废料收回钽铌 (二)熔融富集法硬质合金废料先在700~800℃下和一同进行熔融处理,使硬质合金碳化物发作分化和氧化,首要反响和25.3.1节所触及的反响相同。所得熔融物先用水浸出钨(随后提取钨),过滤后的渣用浸出钴(随后收回钴),钽和铌最终富集在浸出渣中。所得富集物含Ta2O530.4%,WO31.26%,TiO238.6%。二、钽电容器废料处理废钽电容器收回比较杂乱,特别是金属包壳的液体型钽电容器须先用化学法(电解法、酸洗等)或机械化办法除掉外壳,然后用钠还原法或碳还原法脱氧,再进行电子束熔炼得到钽锭。树脂包壳固体型钽电容器先用硫酸处理去除塑料外壳;对片型电容器则破坏后用磁选方未予拣出导线,用重选办法别离掉塑料,剩余的阳极块用浸出锡,用硝酸溶解银,用浸出锰,用钠还原法脱氧,然后用电子束炉熔炼得到钽锭。工艺简图见图2。图2 固体电容器收回钽工艺简图 三、废钽酸锂、铌酸锂单晶收回开发了多种收回办法火法首要有铝热还原法,即用铝作还原剂,将单晶粉体还原成铌铁或金属钽或铌,再用电子束炉熔炼得到纯钽或铌。湿法首要有碱处理法,工艺流程见图3。废钽酸锂单晶破坏后在700~800℃下和熔融,熔合反响为:2LiTaO3+10NaOH=2Na2TaO5+Li2O+5H2O 熔体进行水解处理,使Na2TaO5转化为Na2O·Ta2O5水合物:6Na5TaO5+36H2O=4Na2O·3Ta2O5·25H2O+22NaOH沉淀物用6mol/L的处理,使钽水合物转化为Ta2O5·xH2O,锂生成LiCl而与钽别离。 废钽酸锂收回工艺简图4Na2O·3Ta2O5+8HCl+(x-7)H2O=3Ta2O5·xH2O+8NaCl 最终得到纯度为98%的Ta2O5。该办法可一起收回氢氧化锂。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.
矿热炉碳热还原一步法冶炼稀土硅化物合金
2019-02-20 09:02:00
矿热炉冶炼稀土中间合金工艺中,炉料的质量包含其化学成分、物理和力学功能、粒度组成等。它们对炉况顺行、电能耗费和产质量量有着重要作用。炉料的破碎和恰当的造块是强化熔炼进程的有用途径之一,因为材料的涣散提高了它的表面能,增加了化学活性;粉料的充沛混合则显着提高了复原反响的速度和完全程度。但在工业实践中仍是选用破碎和挑选块状物料,只要粉状的稀土精矿和稀土化合物才进行造块。
碳热复原一步法冶炼稀土硅化物合金新工艺和在4150kVA矿藏热中选用该工艺工业出产稀土硅化物合金的工艺进程
质料
(1)稀土质料 该工艺选用的稀土质料,为四川冕宁氟碳铈型稀土精矿,其主要化学组成为:REO>55%,BaO<8%。该稀土精矿中稀土元素的配分值列于表2中。由表1可以看出,冕宁矿不同矿点稀土配分值的改变比较大。 表1 稀土硅铁合金化学成分要求(GB4137-84)牌 号化学成分/%RESiMnCaTiFe不 大 于FeSiRE21
FeSiRE24
FeSiRE27
FeSiRE30
FeSiRE33-A
FeSiRE33-B
FeSiRE36-A
FeSiRE36-B
FeSiRE39
FeSiRE42
FeSiRE4520.0~<23.0
23.0~<26.0
26.0~<29.0
29.0~<32.0
32.0~<35.0
32.0~<35.0
35.0~<38.0
35.0~<38.0
38.0~<41.0
41.0~<44.0
44.0~<47.040.0
45.0
43.0
40.0
40.0
40.0
39.0
39.0
39.0
37.0
35.04.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.05.0
5.0
5.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.03.5
3.5
3.5
3.5
3.5
1.0
3.0
1.0
3.0
3.0
3.0余量
余量
余量
余量
余量
余量
余量
余量
余量
余量
余量
表2 冕宁氟碳铈矿稀土配分组分ΣREOLa2O3CeO2Pr6O11Nd2O3Sm2O3Eu2O3Gd2O31
265.46
51.1627.5
49.9238.75
46.384.5
4.0014.0
10.221.25
0.490.25
<0.100.58
0.16组分Tb2O3Dy2O3Ho2O3Er2O3Tm2O3Yb2O3Lu2O3Y2O31
20.042
0.100.11
<0.010.058
<0.010.072
<0.01
<0.010.032
<0.01
<0.010.76
<0.01
稀土精矿的粒度,重选矿一般小于0.5mm,浮选矿的粒度为-200目。从球团的功能来看,浮选矿更好一些。表3为一重选矿粒度散布的实测值。
扮演3 重选氟碳铈精矿粒度散布①筛网+20~-20~+40-40~+50-50~+70-70~+100-100~+140-140粒径/mm
质量/g
散布/%0.8
0.35
0.35<0.8
6.05
6.04<0.4~0.3
7.05
7.04<0.3~0.2
42.40
42.34<0.2~0.15
2.45
2.45<0.15~0.1
14.70
14.68<0.01
27.70
27.66
①称量总质量100.15g,分样合重100.20g,差错0.05%。
(2)硅石 原则上讲,冶炼硅铁合金所运用的硅石,均可用作本工艺所用的含硅质料,其化学成分应契合ZBD53001-90GS-98标准,SiO2≥98%,Al2O3<0.5,P2O5<0.02%。硅石的块度为25~80mm。
要求硅石具有比较好的抗爆裂功能,依照吉林铁合金厂Q/JJ-研02-86标准,抗爆率大于80%
(3)碳质复原剂 各类焦炭(冶金焦、煤气焦、石油焦等)、木炭、木块等均可用作本工艺的碳质复原剂。考虑到冶炼工艺进程的需求,要运用那些反响活性好、比电阻大的碳质复原剂,一起又要考虑出产成本。实践出产中,往往调配运用。
①焦炭 冶金焦固定碳含量高,焦块强度大,蒸发分低,但反响活性不如煤气焦,比电阻比较低。本工艺优先选用冶金焦筛下焦粒,粒度为0~25mm,其间3~8mm占一半以上。固定碳含量大于80%。
②木炭和木块 木炭的运用,主要是为调整炉料的透气性。运用硬木类木炭,块度3~50mm,小于10mm的数量不大于20%。
木块选用木材加工厂的下脚料,或干树枝,最好是硬木类。块度20~60mm,固定碳含量一般≥26%。
工艺进程
碳热复原氟碳铈矿一步法出产稀土硅化物合金新工艺的工艺进程如图1所示。
氟碳铈精矿(REO>55%) ↓ 焦碳粉 焙 烧 硅石焦炭木炭 ↓ ↘↓↙ 木炭粉→混 合 →矿热炉冶炼
↓ ↓ 黏结剂 制 团 ↓ ↓ ↓ 合 金 烟 气 干 燥 ↓ ↓ ↓ 合金包 净 化 稀土精矿球团 ↓ ↓ 浇 铸 排空 ↓ 精 整 ↓ 稀土硅化物合金制品 图1 碳热复原氟碳铈矿制取稀土硅化物合金新工艺流程
在4150kVA矿热炉中冶炼稀土物合物合金的工业实验
4150kVA矿热炉为山东淄博有机化工厂的炉,经改造后进行冶炼稀土硅化物合金的工业实验[27]。[next]
(1)质料
①硅石 选用临沂硅石,其主要化学成分SiO298.63%,Al2O30.25%,CaO0.63%,Fe2O30.40%。块度25~80mm,其间40~50mm块度大于50%,抗爆率86%。
②焦炭 济宁冶金焦末和枣庄冶金焦粒。其主要化学组成见表9-16。济宁冶金焦末粒度为0~15mm,枣庄冶金焦粒为3~15mm。
③木炭 河南产,固定碳77.24%,蒸发分11.76%,灰分10.32%。
④稀土精矿 四川冕宁氟碳铈精矿,为浮选矿,REO60%。
(2)冶炼设备 4150kWA矿热炉基本参数如下。
①炉体
外径×炉高=φ5000×3000mm
内径×炉深=φ3880×1500mm
炉缸直径×高=φ3580×700mm
表4 焦炭化学组成 单位:%产地种 类固定碳C固蒸发分灰分灰分组成SiO2CaOMgOAl2O3+Fe2O3枣庄冶金焦粒83.330.8615.81 济宁冶金焦末81.271.4616.8913.510.780.141.38
②变压器参数
类型BHST1800/10×2。经强制水冷却,实践运转容量4150kWA。
一次侧电压10kW
二次侧电压可调85V,90V,95V,100V
二次侧电流≤25300A
③电极
自焙电极直径φ650mm
电极中心距1516mm
极心圆直径φ1750mm
电极距离876mm (3)稀土球团的设备 前已述及,稀土精矿需求经焙烧,分化排出二氧化碳,然后再进行配料、混合、制团、稀土团块枯燥后堆积,预备入炉。
①稀土精矿焙烧 稀土精矿焙烧是在地道窑中进行。该地道窑用硅碳棒加热,窑内设置氧化铝陶瓷地道,物料装入用钢板焊接的料盘中,料盘置放于铸铁底板上,用机械推杆守时推进,使物料经预热带、加热带、冷却带后出炉。在加热区停留时刻1h。该地道窑长度为10400mm,其间国热带长度4300mm,预热带长度3050mm,冷却带长度3050mm。功率85kVA,运用温度在850℃以下可调。机械推杆推进,类型为DT300500I型,行程300mm,推力500kg。
②稀土精矿球团制备
配料 经焙烧合格的稀土精矿,入炉前要进行制团。依据在矿热中稀土化合物的物理化学反响进程,制团时要配入必定份额的碳质复原剂和黏结剂。制团的意图,其一可以避免和削减粉状稀土物料的飞扬丢失,改进炉料的透气性;其二是可以强化稀土与碳的化合反响,优先生成碳化物。
配料时,碳质复原剂选用焦炭粉和木炭粉,其粒度控制在0.1mm以下。所参加的碳质复原剂的理论碳量按以下反响式进行核算:
RE2O3+7C→2REC2+3CO (1)
BaO+3C→BaC2+CO (2)
依据核算出的理论碳量,再依据木炭粉、焦炭粉的固定碳含量、水分含量,核算出实践应配入的木炭粉和焦炭粉量。
混合 将配好的物料参加混料机中,并参加总物料量10%左右的纸浆废液(相对密度大于1.14),经15min拌和,混合均匀。其温度按以下办法断定:抓起混合物于手中,攥紧,松开手掌,试样坚持外形,一起手掌不留下可见的湿气(黏结剂过剩有湿气)或许固体颗粒(黏结剂缺乏有颗粒)。
制团 用制团设备为煤球机,其压力大于17MPa。球团尺寸长轴35mm,短轴25mm,为椭球形。
烘干 所制湿球经天然枯燥或烘干。实验中选用焙烧窑烘干,湿度200℃,经30min,出炉,堆积后自硬。新压出的湿球不能堆积,堆积后会结块或破坏。
球团含水率在3%以下即为合格干球。成球质量检验,应到达2m高度自在落下到水泥
(4)冶炼工艺实践 冶炼工艺进程可概括为开炉、配料、转炼、浇铸和停炉几个部分。
①开炉 开新炉,首要冶炼硅铁,冶炼45﹟硅铁两昼夜,再冶炼75﹟硅铁三昼夜,使整个炉子受热平衡,使炉膛充沛预热。
冶炼硅铁的工艺进程,依照惯例的冶炼办法进行。需求引起留意的是,在开炉初期加料,要在炉缸周围沿碳砖炉墙参加不带焦炭和钢屑的物料,即只加硅石,使沿炉缸周围的炉墙部分构成150~200mm厚的硅石假炉衬,以堵截或削减冶炼进程中由电极经炉缸碳砖循环的旁路电流,使冶炼电流的绝大部分集中于电极-炉底和电极-三角区,使炉内能确保有用的高温度。
②配料核算 配料精确与否,决议整个冶炼进程的顺畅或不顺畅。配料核算时所所的要素不周全或不合理,会形成配料不合理,影响整个炉况。
依据方程式(3)进行理论配碳量核算,
RE2O3+21.5SiO2+46C====[2RE-21.5Ci]+46CO (3)
再依据球团中的含碳量、炉口碳的烧损以及工艺中的亏碳操作原理等要素,核算出实践配碳量。
③转炼 通过五昼夜的硅铁冶炼,炉子温度渐趋平衡,停加硅铁料,平整料面,出最终一炉硅铁,完全捣炉,再参加按配比配好的稀土硅化物合金炉料。稀土炉料在炉台上铺料应按必定次序,其顺行为硅石、焦炭、木炭,最上层为稀土球团。加料时选用平铺切取法参加炉中,加料要均匀,不得偏加料。
因为炉中存在硅铁质料,从转炼稀土硅化物合金开端到产出合金中稀土含量高于27%,所需时刻大约一昼夜。表5为转炼产出过渡合金的状况。
表5 4150kVA矿热炉转炼产出过渡合金状况 出炉时刻10:4512:4013:5014:3016:5018:0021:0023:003:204:506:107:20合金RE/%15.614.3614.1315.0318.6519.6923.9122.6321.8732.1631.6330.64
转炼过渡时刻的长短,与转炼开端之前硅铁炉料料面下降的状况有关。实践出产中,不期望料面降得太低,炉况简单把握。
正常冶炼进程中,炉料比较松懈,透气性好,下料、捣炉都比较简单进行。因为是亏碳操作,一氧化硅逸出量大,其烟尘量比冶炼硅铁好。
④出炉 每隔1.5~2.0h出一炉合金,合金放入经预热的中间包内,倒入用石墨涂覆的铸铁锭模中,浇铸时铸不宜过厚,避免偏析,一般浇铸8~10cm。合金呈赤色,即可脱模。
⑤停炉 正常停炉时,因为炉中全部是冶炼稀土硅化物合金的炉料,所以要先下降料面,然后向炉内参加冶炼硅铁的炉料。从这时开端,要每炉分析合金中稀土的含量,直到合金中稀土含量在5%以下时,再依照冶炼硅铁时的正常操作进行停炉。
(5)实验成果 在4150kVA矿热炉中,变压器二次电压85V,一次电流200A,选用硅石、稀土精矿球团、焦炭、木炭作为炉料冶炼稀土硅化物合金,连续出产5个月,炉况顺畅,炉底不上涨;参加炉中稀土进入合金的稀土收率高于95%;标准吨合金电耗低于9500kW·h;可以出产高品位的稀土合金,实验中合金的稀土含量最高到达42%。这些技能经济指标在世界上处于领先地位。参 考 文 献27、任存治,涂赣峰等,碳热复原法制取稀土硅铁合金,内部资料,1993
今日还原铅价
2017-06-06 17:49:51
今日还原铅价在电解铅价格持续调整的同时,还原铅价格却不受影响,反而逆市上涨,还原铅价格从6月中旬的11350涨至目前的11900元/吨,涨幅在5%左右,而同期铅价的跌幅是2%,为什么再生铅的价格和电解铅价格会有如此大的反差?我们需要深入分析。第一,从09年初开始,由于铅价较低,国内很多中小型的铅矿山纷纷停产、减产,导致铅精矿的供应紧张,但是大中型冶炼厂并没有因为原料紧张和下游蓄电池企业销售不好就压缩电解铅产量,而是积极拓宽原料的供应途径,很多冶炼厂纷纷采购还原铅作为原料来生产电解铅,因此还原铅的价格没有因为电解铅价格下跌而有所调整。 第二,由于经济危机的影响,汽车、电动自行车蓄电池更换的频率下降,也导致了还原铅的原料废电瓶供应减少,广东、广西地区海关在09年开始严格检查,国外进口的废电瓶数量大幅下降。第三,还原铅的生产企业以中小型企业居多,其在价格较低企业亏损时,更多是惜售保价,避免亏损,除非企业面临非常大的资金压力,否则很难让其赔本销售,这种心理在一定程度上维持还原铅价格不跌反涨。所以通过以上3点原因我们就知道为什么今日还原铅价在电解铅价持续调整的同时却不受到重大影响。更多关于今日还原铅价的信息您可以登录上海有色网进行查看。
一号铅价格
2017-06-06 17:49:54
一号铅价格受令人失望的美国经济数据以及疲软的股市影响,LME基本金属周二大多收跌,而场内铅微涨6美金,市场人士称,尽管数据表现糟糕,但基本金属仅温和下跌,因为延续了两周的涨势所建立起来的上行动能仍强劲,新资金正涌入金属期货市场。 昨日国内市场一号铅价格的成交价在16300附近,虽然市场售价涨幅较大,不过按需采购的客户还是拿了些货,但还有一些下游客户认为外盘在前天大涨过后出现了技术性的回调,所以他们觉得需要等价格稳定下来再采购,同时冶炼厂家的报价趋高,已超出市场实际可成交的价位,因此可售现货的紧缺现状仍将持续,预计今日市场成交价位在16300附近。震荡的一号铅价格也使我们发现广大采购者已经学会了理性的看待市场、分析市场,他们不在是见涨就买了,而是谨慎的观望。所以面对这样的市场,我们需要多一份理性、多一份耐心、多一份细心。
氧化铜还原
2017-06-06 17:50:01
氧化铜还原后就会变成金属铜,颜色也会发生变化,由原本的黑色变成红色。在氧化铜还原的反应中,氧化铜做氧化剂,同时我们需要加入一种还原剂,这样才能使氧化铜还原的反应得以进行。可以还原氧化铜的常见的还原剂有:氢气H2、一氧化碳CO、碳C等。氢气还原氧化铜:H2+CuO=Cu+H2O一氧化碳还原氧化铜:CO+CuO=Cu+CO2碳还原氧化铜:C+2CuO=2Cu+CO2氧化铜还原的实验现象,我们会看到氧化铜由原本的黑色变成红色,说明生成单质铜,将生成的气体通入澄清石灰水,会看到澄清石灰水变浑浊说明生成的气体是二氧化碳。氧化铜的稳定性好,所以氧化铜还原的反应需要在加热的条件下进行。
还原氧化铜
2017-06-06 17:50:01
还原氧化铜是指把具有还原性的化学物质与氧化铜一起反应,将氧化铜还原成单质铜。可以还原氧化铜的常见的还原剂有:氢气H2、一氧化碳CO、碳C等。氢气还原氧化铜:H2+CuO=Cu+H2O一氧化碳还原氧化铜:CO+CuO=Cu+CO2碳还原氧化铜:C+2CuO=2Cu+CO2还原氧化铜的实验现象,我们会看到氧化铜由原本的黑色变成红色,将生成的气体通入澄清石灰水,会看到澄清石灰水变浑浊说明生成的气体是二氧化碳。氧化铜的稳定性好,所以还原氧化铜的反应需要在加热的条件下进行。
利用磁选机提取河沙铁粉的工艺介绍
2019-01-16 17:42:18
由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。
中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。
首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。
另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。
磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。
什么是还原铅
2018-12-19 09:49:38
还原铅是以废铅做原料,重新回炉冶炼而得,Pb含量通常在96%-98%左右,也可做为生产电解铅的原料。
碳热还原法与硅热还原法的比较
2019-01-29 10:09:41
碳热还原法的主要优点是可以一步直接还原出金属,还原剂便宜,能源利用合理。可以大批量连续生产。
硅热还原法反应速度快,产品易于调整控制,适于多品种小批量生产。
碳热法达到无渣操作时,稀土回收率在90%以上。硅热法增加二次回收工艺,其回收率也才能达到80%。硅热法生产稀土中间合金,其原料和电能的消耗超过用碳热法相应消耗的30%。
什么是熔融还原炼铁
2019-03-07 09:03:45
COREX是现在仅有已投入实践运用的高炉以外的炼铁技能(南非伊斯科钢铁公司:日产1000t;韩国浦项钢铁公司和印度京德勒钢铁公司等,日产2000t),它运用的是普通煤。其工艺流程是先把普通煤装入熔融气化炉,然后吹入氧使煤焚烧、分化,将发作的煤气作为复原煤气导入复原竖炉,接着在复原竖炉内将块矿石和矿石颗粒复原到金消融率为95%左右。浦项公司在将日产从1000t进步到2000t的规划扩展阶段中,为安稳熔融气化炉的操作,除了运用粉煤外,还运用了大约10%的焦炭,别的为保证复原煤气量,发现煤的挥发份存在着最佳值等,它受煤档次的约束。现在因为对煤种的挑选和复原竖炉中金属化率的安稳化等采取了办法,焦炭的运用量能够削减到大约3%~5%。因为矿石几乎是在竖炉内完结复原,因而复原所需的煤气量大,熔融气化炉的煤单耗也高。成果用于体系外的能量也必定增大。印度京德勒钢铁公司Vijayanagar厂运用日产2000t的2座COREX设备发作的煤气来带动2台13MW的发电设备。
别的,在南非的Saldanha钢铁公司还一起设置了直接复原铁出产法(MIDREX),能日产大约2500t的直接复原铁(DRI)。为处理铁矿石粒度约束的问题,浦项公司开发了运用3段气泡流化床的FINEX来替代复原竖炉,现在日产2000t的COREX所发作的煤气以分流的方式用于日产150t规划实验流化床炉的实验。计划在2003年之前与COREX本体衔接,到达年产60万t规划,其后到2010年浦项公司的1号和2号高炉就要开端大修,到时除了将这两座高炉更换成FINEX外,还预备向海外推行这一技能。
我国钢铁工业的快速开展对焦炭需求日趋添加。我国焦炭资源有限,炼焦厂商出于环保要求又被约束开展,焦炭求过于供已成为必定趋势,非焦炼铁也将势在必行。熔融复原炼铁工艺是前沿炼铁技能,它运用非焦煤出产液态铁,流程短,本钱低,污染小,铁水质量好。熔融复原炼铁附产很多煤气,可运用化工进程将之转化为甲醇或清洁燃料。工艺概算标明,联合工艺可使动力运用功率进步一倍,产品能耗下降60%,吨钢本钱下降50%。关于传统的炼焦—钢铁联合厂商,运用很多剩下焦炉煤气作为质料出产化工产品亦是进步资源运用功率,减轻环境污染的可行途径。在新技能基础上构建新式钢铁—煤化工联合厂商或生态工业园区,对未来的冶金、化工环保和动力的开展具有重要意义。
钴渣的还原浸出
2019-01-24 09:37:04
镍电解系统净化产出的钴渣,主要元素组成列于表1。
表1 钴渣的主要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中主要以氧氧化物形式存在,在液固比为(3~4)∶1及机械或鼓风搅拌条件下,用硫酸调pH=1.5~1.7,通入SO2还原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,还原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气搅拌浸出时部分Fe氧化成三价。主要化学反应可表示为:在鼓空气搅拌情况下,可发生亚铁离子的部分氧化,如:还原浸出液的成分列于表2。
表2 钴渣还原浸出液主要成分
二次铝合金锭的用途
2018-12-28 15:58:41
世界最初采用废铝料为原料生产铝合金锭是在1904年美国U.S.Reduction Co.其后西欧及日本各国亦陆续兴起此项工业。当时之产设备只采用铁坩锅熔制,不但回收率低劣,亦无规格标准可供遵循,故品质参差极大,只限于家庭器具使用。直至1946年二次大战后,拜军需航器开发之赐,铝合金技术无论在熔炼炉之改进以及熔制技术产品质之提升上,均有长足之进步,二次铝合金锭也因此为业界广泛使用,举凡:汽机车、电器、电脑、机械、家庭五金 … 等,目前均大量使用二次铝合金锭来作为原材料。在此世界资源逐渐稀少,能 源日渐耗竭的时代,因铝有极容易的再生性,故使用二次铝合金锭,不仅节约 能源亦形成良好的资源再回收链,是既环保又经济的选择。