您所在的位置: 上海有色 > 有色金属产品库 > 氧气铁粉价格

氧气铁粉价格

抱歉!您想要的信息未找到。

氧气铁粉价格专区

更多
抱歉!您想要的信息未找到。

氧气铁粉价格百科

更多

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

氧气顶吹自热熔炼

2019-03-04 16:12:50

该工艺至今有两家工厂选用,一是俄罗斯北镍公司的17.8m2炉子用以处理镍铜矿块矿。另一台是我国金川有色金属公司熔炼二次铜精矿的2.8m2炉子。如下图所示。  氧气顶吹自热熔炼炉示意图(俄、中)     氧气顶吹自热熔炼与顶吹淹没熔炼的底子差异在于运用工业氧气,此考虑是根据要处理的炉料的自热程度不行。运用工业氧气,能够在不加燃料或少加燃料条件下,顺畅地对低铁、硫物料(如二次铜精矿)进行熔炼。由此,导致了不能运用简略的用工艺气体冷却的埋入式喷,有必要有水冷却,故而成悬空喷吹;工业纯氧的运用减小了废热锅炉、烟气处理设备,还能出产“生铜”。这些终究导致粗铜出产成本下降。     氧气天然熔炼的操作目标见下表: 氧气顶吹天然炉的操作目标一览表序号项 目数 量序 号项 目数 量1 2       3  单位出产能力/t·(m2·d)-1   铜精矿成分Cu/%   Fe/%   S/%   水分/%   产出粗铜含量/% 48  68.5  4.0  21.5  8~10  91~924 5 6 7 8 9  渣含铜/%   烟尘率/%   烟气量(标态)/m3·h-1   烟气中二氧化硫质量分数/%   氧气单耗/kg·t-1(料)   煤单耗/kg·t-1(料) (未贫化)11.24  3.5  5000~7000  25~35  126.5  30

INCO氧气闪速熔炼

2019-01-07 07:51:19

氧气闪速熔炼炉构造示于图1。含水0.1%的干燥精矿和含氧95%的工业氧气从设于炉子两端的精矿喷嘴水平喷于炉内。精矿喷嘴为内衬陶瓷的水冷不锈钢管。生成的铜锍和炉渣在熔池分离。烟气自设于炉子中部的上升烟道排出并直接送烟气收尘系统。           图1  INCO氧气闪速炉及烧嘴简图     技术特点:     1、采用氧气鼓风、烟气量小、烟气处理设备小,建设投资低。     2、烟气含SO270%~80%,可以生产液体SO2元素硫或硫酸。     3、过程自热,熔炼的氧气消耗每吨铜800~1000m3,相当于0.15~0.18t标准煤/t铜。     4、炉渣含铜较低,弃去前可以不作处理。     INCO氧气闪速炉由于使用工业氧气,仅始于电价低廉的地区使用。同时其液体二氧化硫等产品要考虑销路问题。因此它的推广受到限制。至1991年,世界上仅有三个工厂采用氧气闪速炉;铜崖厂(加拿大,1952年投产)、赫尔利厂(美国,1984年投产)和海登厂(美国,1983年投产)。     INCO氧气闪速熔炼主要工艺指标实例列于表1。 表1  INCO氧气闪速熔炼工厂主要工艺指标实例项目单位铜崖厂海登厂赫尔利厂产铜能力Kt/a100~15017580~90精矿处理能力t/d1100~160023601300精矿成分:Cu%2926~2820S%3437Fe%3237炉子尺寸(内部)m5.5×22×55.5×22×55.5×22×5上升烟道宽度m2.533.5沉淀池以上高度m61010渣层厚度m0.60.4铜锍层厚度m0.60.8渣口数个111铜锍口数个242铜锍品位%45~485545~55铜锍量t/d900~1200800渣量t/d260~3601000渣Fe/SiO20.880.83渣含铜%0.630.50.7渣处理方法不处理电炉贫化不处理氧气用量t/d300380烟气量m3/h1300017000烟气SO2含量%70~8070

氧气顶吹熔融还原炼铁试验

2019-03-07 10:03:00

氧气顶吹熔融复原炼铁实验:介绍了氧气顶吹熔融复原技能的工艺、设备和氧在反响中最佳喷溅作用的模仿;此工艺选用浸入式水冷喷把富氧空气直接喷吹到渣层中来加强对熔池的拌和,强化传热传质.经过用昆钢供给的质料开始实验,得到了与传统高炉质量适当的优质铁水.该工艺能够运用传统高炉无法运用的高磷铁矿石作为炼铁质料,且能冶炼出含磷下降的铁水,脱磷也是这种工艺的特色之一。

氧气瓶用无缝钢管

2019-03-19 09:03:26

1 氧气瓶用无缝钢管范围 本标准规定了氧气瓶用无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 2 氧气瓶用无缝钢管规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 228 金属材料 室温拉伸试验方法 GB/T 229 金属夏比缺口冲击试验方法 GB/T 4336 碳素钢和中低合金钢的光电发射光谱分析方法 GB/T 5777 无缝钢管超声波探伤检验方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管 3 氧气瓶用无缝钢管尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。 4 氧气瓶用无缝钢管技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1牌 号化    学    成    分      %CSiMnPSMoCrV其他37Mn0.34~0.400.10~0.301.35~1.65 ≤0.025 ≤0.020———Ni: ≤0.30 Cu≤0.2030CrMo0.26~0.340.17~0.370.40~0.70≤0.025≤0.0200.15~0.250.80~1.10—35CrMo0.32~0.400.17~0.370.40~0.70≤0.025≤0.0200.15~0.250.80~1.10—34Mn2V0.30~0.370.17~0.371.40~1.75≤0.025≤0.020——0.07~0.1234CrMo40.30~0.370.15~0.350.50~0.80≤0.025≤0.0200.15~0.250.90~1.20—4.2 冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。 4.3 交货状态 钢管以热轧状态交货。 4.4 力学性能 4.4.1 钢管热处理毛坯制成的试样纵向力学性能应符合表2的规定。 4.4.2 力学性能试样推荐热处理制度按表3规定。 表2牌  号试样力学性能抗拉强度 Rm ,MPa 下屈服强度 ReL ,MPa 断后伸长率 A ,%冲击功 AkU2,J37Mn≥750≥630≥16≥5530CrMo≥930≥785≥12≥6335CrMo≥980≥835≥12≥6334Mn2V≥745≥530≥16≥5534CrMo4≥980≥835≥12≥63表3牌 号热  处  理  制  度种类淬火(正火)温度℃冷却方式回火温度 ℃冷却方式37Mn调质840±10油冷600±10空冷30CrMo 调质880±10油冷550±10油冷35CrMo 调质850±10油冷580±10油冷34Mn2V 正火870±10空冷(风吹)——34CrMo4 调质850±10油冷580±10油冷4.5 密实性 钢管应按GB/T 7735中A级逐根进行涡流探伤检验,以检验钢管的密实性。 4.6 无损检验 钢管应按GB/T 5777的规定逐根进行超声波探伤检验,指标由供需双方协商。 4.7 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。 5 氧气瓶用无缝钢管检验与试验 5.1 钢管的尺寸应用合适的量具逐根进行测量。 5.2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 5.3 无缝钢管的的检验项目、取样数量及试验方法应符合表4的规定。 表4序号检验项目试验方法取样数量1化学成分GB/T 222,GB/T 4336每炉一个试样2拉伸试验GB/T 228每批一个试样3冲击试验GB/T 229每批在一根钢管上取三个试样4涡流探伤GB/T 7735逐根5超声波探伤GB/T 5777逐根5.4 组批规则 5.4.1 钢管按批进行检查、检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一批。 5.4.2 钢管每批为200根,剩余钢管的根数不小于100根时,单独为一批;小于100根时,应并入相邻的一批中。 5.5 复验与判定原则 对于拉伸和冲击试验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将该根钢管剔除,并从同一批钢管中重新取2根钢管复验不合格的项目,复验结果即使有一个指标不合格,则整批钢管不予验收。 6 包装、标志及质量证明书 钢管的包装、标志和质量证明书应符合GB/T 2102规定。

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

镍锍旋转转炉氧气顶吹吹炼

2019-03-04 16:12:50

往旋转转炉顶部鼓入工业氧气将镍锍或粗镍的镍锍吹炼办法。    氧气顶吹旋转转炉开端用于炼钢,1973年加拿大世界镍公司的铜崖冶炼厂用它将镍锍吹炼成含硫0.2%~4%的粗镍铜合金,作为法的质料。印度尼西亚的梭罗阿科冶炼厂又用于把低镍锍吹炼成高镍锍。    将镍锍吹炼成高镍的关键是要到达1455℃以上的高温文避免生成氧化镍。因为熔体中的硫在吹炼过程中不断氧化,因而要求进步熔体温度并使熔体中各成分混合均匀,避免呈现硫的部分贫化,避免液态金属镍从头氧化成氧化镍。选用旋转转炉氧气顶吹吹炼时,液相中各成分混合杰出,传质敏捷,有利于Ni3S2的分散。使用化学反响放出的很多热或向炉内补热以保持操作所要求的高温。镍锍氧气吹炼成粗镍的首要化学反响为:                               2FeS+3O2=2FeO+2SO2                               3FeS+5O2=Fe3O4+3SO2                               2FeO+SiO2=2FeO.SiO2                               Ni3S2+2O2=3Ni+2SO2                               2Ni3S2+7O2=6NiO+4SO2                               Ni3S2+4NiO=7Ni+2SO2    氧气顶吹旋转炉炉体为圆形钢壳,内衬镁砖或铬镁砖,炉子能够绕短轴歪斜180°,绕长轴接连旋转。炉子由支承轴支撑,作业时和水平面成必定的歪斜角。用水冷却的氧由炉口刺进炉内,供应吹炼所需的氧气。固定在移动小车上的水冷烟罩一端和烟道相通。另一端紧罩炉口,避免烟气外逸。炉子结构如图1。    吹炼开端开端时先将熔体锍倒入炉内,然后使炉子旋转,将氧进炉内送氧吹炼。在吹炼过程中,镍锍中的硫化亚铁氧化亚铁氧化成氧化铁各二氧化硫,氧化来铁和二氧化硅生成炉渣。炉渣造好后,抽去氧,移开烟罩,炉子绕短轴旋转,将炉渣倒入渣包,再参加新的镍锍,持续吹炼,直到炉内的高镍锍体积到达要求停止。如呆制取粗镍,则在吹成高镍锍后持续送氧吹炼,使Ni3S2转变成金属镍。加拿大世界镍公司的铜崖冶炼厂氧气顶吹旋转转炉的才能为每炉为50t,入炉镍锍成分(%)为:Ni 62,Cu 14,Fe 2,S 20;产出的粗镍铜合金成分(%)为:Ni65~70,Cu15,Fe1,S4~5。印尼的梭罗阿科冶炼厂的氧气顶吹旋转转炉才能为每炉150t,入炉镍锍成分(%)为:Ni 32,Fe 57,S 10;炉渣成分(%)为:Ni 2~3,Fe 50~56,SiO2 24;高镍锍成分(%)为:Ni79,Cu0.5,S19.5。用旋转转炉氧气顶吹吹炼镍锍时,炉子不断旋转,熔体受炉子滚动和氧气流搅动的效果,各组分间混合条件好,熔体内传质和传热效果均佳,反响速度快,出产效率高。但炉衬饱尝高温效果和熔体的剧烈冲刷,简略损坏,炉衬寿数较短。因而,在出产中要以常栓查炉衬的磨蚀情况,发防发作事端和断定合理的修炉时刻。用激光仪测定炉衬厚度,能够得到实践的炉衬磨损情况图形,对操控出产非常便利。    镍锍旋转转炉氧气顶工、吹炼的出产过程简略。劳动条件好工艺参数操控比较灵敏,对质料的适应性强,特别适于中、小型出产。选用纯氧吹炼,烟气带走的热量小,能充分使用炉内熔体的反尖热,热使用率比较高,能耗也较低。烟量少,烟气净化设备的出资也相应较低。但镍锍旋转炉顶吹为间歇性作业,烟气量波分理处大,不利于烟气余热和二氧化硫的收回使用。

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

含铁粉矿球团化制备工艺研究

2019-01-24 09:36:35

近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。 在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。 本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。 一、试验条件与方法 (一)原材料 1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。 2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程 每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。 (三)抗压力测试 试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。 (四)所用仪器与设备 加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析 (一)加热固化制度对球团抗压力的影响 所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。 试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。 从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。 (二)粘结剂加入量对抗压力的影响 在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。 (三)不同粉矿条件下的抗压力 为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。 按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。 通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。 三、结论 (一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。 (二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。 (三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。 参考文献 [1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64. [2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36. [3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98. [4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50. [5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20. [6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.

有色冶金中氧气底吹技术的研发

2019-12-12 11:13:19

氧气底吹技能开始使用于炼钢范畴。上世纪30年代起,相关研制作业相继展开,终究在60—70年代完结了工业使用。氧气底吹技能具有高效、节能、环保等显着优势,随制氧技能的前进,在国际钢铁范畴得到广泛使用,大幅提升了钢铁冶炼的全体技能水平。将氧气底吹技能使用于有色冶炼范畴的主意也随之发生。可是,氧气底吹技能在钢铁冶炼范畴的使用与在有色金属冶炼范畴的使用有很大差异:氧气底吹技能炼钢,意图在于脱除铁水中的硫、磷、硅等杂质,操控碳含量,能够一起参加废钢,熔化调质加工各种牌号的碳钢,亦可在钢水中参加其他金属或合金,加工各种牌号的合金钢。冶炼进程是接连作业,炉内气氛在氧化和复原之间周期性改变,冶炼渣率和烟尘率很低,产出物中,成品率超越95%。氧气底吹冶炼有色金属,进程多为接连作业。炉内气氛或为氧化或为复原,对安稳有较高要求。冶炼产品首要是炉渣,主金属产品难以超越50%,烟尘率视不同质料有所动摇。此外,有色金属质料常为多金属共生矿,难以完全分选,冶炼技术需考虑多金属归纳收回使用,所以相对于钢铁冶炼,有色冶炼的反响机理较为杂乱。也正因为此,氧气底吹炼钢的老练技能并不能简略移植到有色金属范畴,需求针对不同金属种类的不同特色进行逐个开发。1973年,2位美国教授提出将氧气底吹技能使用于铜冶炼范畴的想象,称之为“SL炼铜法”,进行小试后,申请了专利,但中试未获成功。1974年,德国鲁奇公司在SL炼铜法的启发下,申请了QSL氧气底吹一步炼铅专利,并于1984年进行了工业化演示实验。在我国,上世纪80年代,为筛选环境污染严峻的烧结—鼓风炉传统炼铅技术,职业对清洁技术的需求十分火急。当时,各国都在展开新的炼铅技术研讨,但其间多为一步或一炉炼铅,引入到国内会带来一些工程问题,且本钱相对较高。以进步我国有色冶炼技能自主立异性和技能适用性为任务,我国恩菲工程技能有限公司(以下简称“我国恩菲”)前身——北京有色冶金规划研讨总院提出了研制“氧气底吹冶炼—电热复原炼铅”新技术的想象。1983年,经国家科委同意,该课题被列入国家“六五”科技攻关方案,由我国恩菲和水口山矿务局(现湖南水口山有色金属集团有限公司前身,以下简称“水口山”)牵头、北京矿冶研讨总院、北京钢铁研讨总院、中南工业大学、中科院化冶所、西北矿冶研讨院等职业厂家院所参加,组成公关小组一起展开研讨,并于1985年末在水口山建成年产3000吨粗铅的底吹冶炼—电热复原炼铅成套半工业实验设备。至1987年末,先后进行17批次实验,共冶炼近900吨铅精矿,产出340多吨粗铅。实验标明,氧气底吹冶炼炉除了存在氧抢寿命短这一杰出问题,其他目标均较为抱负;电热复原体系受资金约束,所建造备粗陋,复原剂粉煤供应为暂时办法,难以满意实验要求,无法产出合格弃渣。1987年11月,实验告一段落。随后,为赶快处理铅冶炼的严峻污染问题,我国引入了德国鲁奇公司QSL一步炼铅技术,并在甘肃白银有色公司(现白银有色集团前身)建造了国际首个氧气底吹炼有色金属项目,并于1994年建成试产。可是,因部分技能不老练,加上经济原因,项目投产后不久即封闭至今。事实上,到上世纪末,无论是自主研制仍是引入消化,氧气底吹技能在我国有色冶炼范畴的使用均未取得成功,这无疑进一步证明,该技能在有色范畴的工业化使用具有适当难度。可是,恩菲人的攻关仍在继续。在对水口山氧气底吹实验及白银公司引入QSL氧气底吹一步炼铅的失利进行分析时,我国恩菲的专家团队发现,问题的要点在于复原阶段。烧结—鼓风炉炼铅技术的污染点首要在于,烧结进程中,二氧化硫的逸散与烧结块返粉破碎构成粉尘飞扬。而假如选用氧气底吹冶炼技能代替铅精矿烧结,将冶炼渣铸锭送鼓风炉复原,不光能有用处理炼铅环保问题、液态高铅渣复原两道技能难题,还能在改造项目中,保存铅厂原有鼓风炉复原设备并继续加以使用,然后大幅下降改造费用。这无疑为研制供给了新的思路。1997年,我国恩菲提出了氧气底吹冶炼-鼓风炉复原炼铅新技术。由我国恩菲牵头,安排河南豫光金铅冶炼厂、安徽池州冶炼厂、浙江温州冶炼厂等3家单位一起出资,使用水口山原有氧气底吹实验设备与1.5平方米小型鼓风炉,进行氧气底吹冶炼-鼓风炉复原炼铅新技术半工业实验,要点在于处理鼓风炉复原高铅渣铸块存在鼓风炉渣含铅高的问题,并一举成功。在此基础上,我国恩菲于2002年分别在安徽池州冶炼厂和河南豫光金铅冶炼厂建成年产3万吨和5万吨粗铅的演示加工线。然后,2条加工线操作安稳,产能很快就提升到年产5万吨和8万吨粗铅的水平。粗铅加工单位能耗比传统烧结—鼓风炉技术下降50%,硫收回率进步到96%以上,硫捕集率超越99%,革除了返粉破碎,有用处理了传统技术构成的二氧化硫低空污染及含铅粉尘飞扬问题。氧气底吹冶炼—鼓风炉复原炼铅新技术有用改进了铅冶炼的加工环境,进步了银的收回率,下降了出资本钱,遭到加工厂家的高度好评。该技术于2003年获我国有色金属工业科技前进一等奖,2004年获国家科技前进二等奖。在推行使用的进程中,被国家九部委发文指定为我国首选炼铅技术。恩菲人的脚步从未中止。在推行使用氧气底吹冶炼—鼓风炉复原炼铅新技术的进程中,新的需求又呈现了:将该技术使用在旧厂改造项目中,能够继续使用原有鼓风炉体系,所以节约出资本钱的优点比较显着。而在新建项目中,使用该技能不光会糟蹋熔体的物理热量,还会添加铸锭工序,加大厂区占地面积和出资额,并不是最优挑选。为此,恩菲人继续研制,推出氧气底吹冶炼—热渣直接复原技术,下降了能耗,省去了铸锭工序,还可选用更廉价的复原剂替代鼓风炉用的焦炭,大幅下降了加工本钱。2005年,我国恩菲申报高铅液态渣直接复原的研制课题并获科技部支撑,被列为国家严峻工业技能开发项目。现在,我国恩菲已研制3种技术,分别为侧吹炉供焦炉煤气加粒煤复原、底吹炉供天然气加粒煤或碎焦复原和竖炉电热焦炭复原。前二种已取得成功,并在济源金利建成投产20万吨/年国内最大氧气底吹冶炼—侧吹复原炼铅加工线,在河南岷山建成投产10万吨/年双底吹炼铅加工线。氧气底吹热渣直接复原炼铅构成的第二代炼铅新技术,与第一代氧气底吹冶炼—鼓风炉炼铅技术比较,能耗再降30%,吨铅本钱削减100多元。第二代炼铅新技术出资更省,还具有能耗低、环保好、操作便利灵敏、质料适应性强、加工本钱低一级许多优势,首要目标均到达国际领先水平。整体来看,氧气底吹炼铅技能已经在国内取得了广泛使用和推行。到2014年,包含老厂改造或新建项目在内,全国已有42条加工线选用氧气底吹炼铅技能。从氧气底吹炼铅技能的立项研制,到第一条加工线的成功工业化,这个进程耗费了19年时刻。而在这以后的12年里,技能得到继续推行和广泛使用,总产能到达400万吨/年,占全国铅冶炼总产能的87%,并已出口国外建厂成功投产。一项技能能如此迅速地推行使用,国际冶金史上都属稀有。以300万吨矿铅量计算,与传统流程比,氧气底吹炼铅技术可每年节约标煤近150万吨,年减排二氧化硫近20万吨,年增效约4亿元。氧气底吹技能在铅冶炼的开发使用,完全改变了我国铅冶炼的落后面貌,现在我国已占国际矿铅总产量的2/3,职业竞争力跃居国际第一。我国恩菲又在技能使用进程中,与加工厂家一起开发了许多具有职业开创性的使用技能:在河南万洋项目中,打破惯例,撤销复原炉后的电热前床,开发三连炉接连炼铅,使炼铅技术更简练、能耗更低、劳作加工率更高;在河南豫光金铅项目中,铅精矿调配处理铅蓄电池膏泥,不光节能作用更好,硫酸铅中的硫也得到愈加合理有用的收回,为二次铅的收回拓荒了新途径;在河南岷山项目中,铅精矿调配处理高炉炼铁及电炉炼钢含铅锌的烟尘,将含锌高达20%的复原炉渣送烟化炉再度收回锌,使资源得到充沛归纳使用,取得杰出经济效益;在山东恒邦项目中,铅精矿调配处理含金黄铁矿收回贵金属,大幅下降了炼金本钱,为黄金冶炼开辟了新途径。将氧气底吹技能使用于铜冶炼范畴的探究,始自1990年。当时,我国恩菲和水口山联合,使用水口山氧气底吹炼铅实验设备进行炼铜实验,以铜精矿调配处理水口山康家湾高砷含金黄铁矿,称之为“造锍捕金”。实验接连进行217天,发展十分顺畅,并于1991年正式完结,取得了抱负成果。1992年,我国恩菲取得“底吹熔池炼铜法及其设备”专利授权。1993年,“水口山炼铜法”获部级科技前进一等奖。随后,国内3家厂家要求选用此技术建厂。可是,因为实验的粗铜规划缺乏3千吨/年,我国也已明文规定,制止新建规划小于年产5万吨/年的铜冶炼厂——3千吨/年一步扩至5万吨/年,扩大比远超10:1的惯例答应值。一时,国内失去了该技术工业化使用的可能性。也正为此,越南生权大龙1万吨/年电铜冶炼厂成为国际首个氧气底吹炼铜工业加工项目。项目于2007年末顺畅投产,为国内后续建造5万吨/年以上规划的氧气底吹炼铜工厂供给了牢靠根据。从2007年至今,8年时刻里,国内先后10个氧气底吹铜冶炼项目投产运转。其间最大的,单系列处理精矿量达150万吨/年,适当于年产40万吨粗铜,是国际单系列最大的铜冶炼厂之一(图5),项目已于2015年12月中旬达产对标。正在规划和建造的氧气底吹炼铜项目还有多家,我国恩菲还为许多国外厂家进行了可行性或预可行性研讨规划。氧气底吹冶炼取得成功后,在吹炼工段,传统转炉技能的局限性便突显出来。转炉吹炼为接连作业,存在三大缺陷:(1)用包 ,子将铜锍倒运入转炉时存在严峻的二氧化硫低空污染问题;(2)转炉接连作业致使烟气量与烟气中的二氧化硫量动摇较大,不利于后续制酸;(3)接连作业炉衬热震频频、炉寿短。为处理上述问题,我国恩菲于2009年向科技部申报“氧气底吹接连炼铜清洁加工技术关键技能及配备研讨”,获准并被列为国家863研制课题。为此,团队与中南大学、北京科技大学、东北大学等高校,就氧抢结构、氧抢布局、吹炼渣型、反响机理、炉渣贫化等课题,环绕计算机模仿、水模型与基础理论有关的小型实验等方面,展开了很多厚实研讨作业。在此基础上,恩菲团队于2012年在豫光金铅完结了铜锍底吹接连吹炼冷态半工业实验,在山东东营方圆完结铜锍底吹热态接连吹炼工业实验,顺畅完结国家863方案课题,为技能的后续工业化使用打下了坚实基础。2014年,国际首条氧气底吹接连炼铜工业化演示加工线全线拉通,产出第一批合格阳极板。音讯传出,职业再度颤动。氧气底吹接连炼铜工业化演示加工线选用氧气底吹冶炼—铜锍底吹接连吹炼技术。氧气底吹冶炼产出的高品位铜锍热态流入氧气底吹接连吹炼炉,富氧空气从炉底的氧抢鼓入,使铜锍中的铁氧化造渣,炉内熔体构成粗铜层、白铜锍层和渣层,打眼放粗铜,溢放逐渣,吹炼的送风进程完结接连化,吹炼烟气接连化。总算,我国恩菲2006年申报专利中提出的技能想象得以完结。而愈加重要的是,在氧气底吹炼铜技能继续晋级的进程中,我国也已成为国际范围内炼铜、炼铅技术技能最全、规划能力最强、运营效益最高、环保作用最佳的国家,真实完结了从追赶到引领的严峻跨过。