您所在的位置: 上海有色 > 有色金属产品库 > 钽铋矿价格 > 钽铋矿价格百科

钽铋矿价格百科

辉铋矿(Bismuthinite)

2019-01-21 11:55:10

Bi2S3 【化学组成】类质同像混入物主要有Pb、Cu、Sb和Se。 【晶体结构】斜方晶系;a0=1.113nm,b0=1.127nm,c0=0.397nm;Z=4。辉铋矿与辉锑矿等结构。 【形态】晶形常呈长柱状至针状,晶面大多具纵纹,集合体以致密粒状为常见(图L-15)。   图L-15辉铋矿集合体 【物理性质】微带铅灰的锡白色;表面常现黄色或斑状锖色;条痕铅灰色;金属光泽;不透明。解理平行{010}完全。硬度2~2.5。相对密度为6.8。 【成因及产状】主要见于钨锡高温热液矿床和接触交代矿床中。 【鉴定特征】与辉锑矿相似,唯颜色较辉锑矿浅,光泽较强,相对密度较大,解理面上无横纹,与KOH溶液不起反应。 【主要用途】为铋的重要矿石矿物。

辉铋矿的冶炼

2019-03-08 11:19:22

辉铋矿的冶炼分粗炼和精粹两步。        粗炼的办法因质料而异。以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法冶金精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其中所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。        精粹一般分为四个过程:氧化除砷、锑、碲等;加锌除银;氯化除铅锌;高温除氯。

铋矿浆电解原理

2019-01-31 11:06:04

一、阳极反响机理 王成彦、邱定蕃等对辉铋矿在矿浆电解进程的阳极反响进行了比较深化的研讨。经过很多的实验研讨,以为辉铋矿的阳极浸出进程是一个杂乱的反响进程,辉铋矿在酸性氯化钠介质中呈悬浮状所发作的阳极浸出进程,能够经过下列几种途径来完结: (1)石墨相当于一个导体,辉铋矿相当于一个可溶阳极,当辉铋矿和石墨阳极发作磕碰而触摸时,将经过下面的反响被氧化:(2)石墨电极上或许发作其他氧化反响,如发作Cl2、O2气体分出,这样一些气体再氧化辉铋矿。(3)有关实验标明,在浸出渡中参加铁离子,辉铋矿的浸出反响速率显着进步,槽电压显着下降,阐明铁离子也参加了辉铋矿的阳极浸出进程。 为查明辉铋矿在矿浆电解阳极浸出进程的反响机理,实验测定了溶液中有辉铋矿和无辉铋矿时的i-E曲线以及在上列溶渣中参加4g∕L的Fe2+后有和无辉铋矿存鄙人的i-E曲线,见图1。图1  不同条件下的i-E曲线 1-HCl 1mol∕L+NaCl 200g∕L; 2-HCl (1mol∕L)+NaCl (200g∕L)+辉铋矿(-0.074mm、L∶S=10∶1); 3-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L); 4-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L) +辉铋矿(-0.074mm、L∶S=10∶1)。 HCl-NaCl溶液中没有辉铋矿和铁离子存在的状况下,石墨阳极只或许存鄙人列反响:    (1) E333(1)=1.177-0.066pH+0.0165lgPO2                (2) E333(2)=1.306=0.066lg[Cl-]+0.0333lg[Cl2] 矿浆电解条件下,pH=0、pO2=0.2×105Pa、  [Cl-]=3mol∕L,  代入以上两个方程得E333(1)=1.248V,E333(2)=1.255+0.0333lg[Cl2],因为溶液中[Cl2]很小,因而,   E333(1)和E333(2)的不同不大,上述两种反响均有或许在阳极上发作。Arslan、Duby研讨了黄铁矿在溶液中的阳极氧化状况,在阳极电位1.4~1.5V(SCE),t=35~40℃下,阳极液中HClO的浓度可达0.15smol∕L,并以为HClO是由阳极上分出的Cl2发作的,阳极上水的氧化反响也一起发作并分管了部分电荷传输。Arslan在用石墨阳极研讨黄铁矿的阳极氧化时,发现阳极上有CO2生成并发作阳极蚀变现象。王成彦、邱定蕃在矿浆电解扩展实验中也发现石墨阳极存在蚀变现象。这些也能够证明,在矿浆电解进程中,当阳极电位较高时,阳极上能够发作Cl2和O2的一起分出。 关于反响考虑到铁离子在溶液中能够构成铁氯络合物,其实践电位会更低(如图2线23所示),因而,当件系中存在铁离子时,上述反响有或许是阳极的首要反响。图2  Bi2S3-Cl--H2O系E-lg[Cl-]图图1中,线1是无辉铋矿、无铁离子潜液中测得的i-E曲线,其电流只能是因为反响式(1)和式(2)发作,且电流巨细应标明该反响的速度。从图中看到,当阳极电位高于~1.10V(SCE)时,电流便急剧上升,而低于该电位时,阳极电流极低且动摇很小。因而能够以为在实验用溶液中,当阳极电位高于-1.10V(SCE),石器阳极上开端很多分出气体,此电位正处于和氧气的理论分出电位邻近。 线2是有辉铋矿、无铁离子溶被中测得的i-E曲线,此刻阳极上的电流应是辉铋矿直接与电极磕碰的氧化反响、和氧气分出反响一起发作的,比较线1和线2,在电位低于-1.10V(SCE)的规模之内,电流能够以为是因为辉铋矿在石墨阳极上直接电氧化发作的,这个电流较线1升高了许多,阐明辉铋矿的直接电氧化是能够发作的;电位大于-1.10V(SCE)二线根本重合,析氯析氧反响起了主导效果。 线3是无辉铋矿、有二价铁离子的溶液中测得的i-E曲线,从图中能够看到,当阳极电位高于0.5V(SCE),电流便显着增大,该电位正处于反响的标准电位邻近,因而能够以为此电流是因为二价铁离子的阳极氧化发作的。在固定电流密度小于300A∕m2的条件下,阳极不会发作析氯析氧反响,只要在电解后期,二价铁的氧化挨近结束,才或许发作析氯析氧反响,此刻槽电压将显着上升。 线4是在有辉铋矿、有二价铁离子的溶液中测得的i-E曲线,它较线3的电流大。此电流的发作能够以为是二价铁离子的阳极氧化和辉铋矿与阳极磕碰的触摸氧化一起发作的。但线4并不是线2和线3的简略加合,它仅仅略高于线3并类似于线3,因而能够以为此刻的首要反响仍旧足二价铁离子的阳极氧化反响、而辉铋矿的直接电氧化则是非必须的。因为有辉铋矿存在,在阳极上生成的三价铁将Bi2S3氧化后自身复原为二价,二价铁又在阳极氧化为三价。如此重复,直至辉铋矿的氧化浸出挨近彻底。 假如在固定电流密度200A/m2的条件下,由图1能够比较看出,线2和线4的阳极电位相差0.7V左右,也就是说,要取得相同的浸出反响速度,在有铁离子存存的溶液中,其阳极电位要比无铁离子溶液的阳极电位低0.7V,相应的槽电压也要下降0.7V左右,然后下降了电解进程的电耗。 图3是在固定电流密度200A∕m2、Fe2+为4.0g∕L、Cl-为150g∕L、H+为1.0g∕L、Bi3+为10g∕L、100g辉铋矿、粒度<0.038mm为96%、L∶S=3∶1的状况下测得的石墨阳极电位(SCE)和槽电压随时刻的改变曲线。图3  恒电位电解槽电压和阳极电位随时刻的改变 图3阐明,在辉铋矿的理论浸出电解时刻内,槽电压被迫在0.8~0.9V的规模之内,阳极电位动摇在-0.5~-0.6V(SCE)的规模之内,正处于二价铁离子的标准氧化电位邻近。能够以为,在此刻间内的阳极反响首要是二价铁离子的氧化反响,铋精矿的浸出首要是因为三价铁的氧化效果。 在铋的理论浸出电解时刻今后,槽电压和阳极电位都急剧上升,槽电压升至1.6~1.8V,阳极电位动摇在-1.2V(SCE)左右,此刻,辉铋矿的浸出巳挨近彻底,二价铁也简直悉数氧化为三价铁,阳极开端发作析氯反响,槽电压也跟着阳极电位的进步和阴极的极化而升高。 由以上的分析,能够得出以下的定论: (1)在实验选用的条件下,溶液中无铁离子存在时,在阳极电位为-0.2V到-1.0V的规模内,阳极反响首要是辉铋矿在石墨阳极上直接电氧化,当阳极电位大于-1.10V时,析氯析氧反响起主导效果。 (2)在有铁离子存在的状况下,阳极上发作的首要反响是二价铁离子的氧化反响,辉铋矿的氧化能够以为是由三价铁离子完结的,三价铁被坯原为二价,二价铁又在石墨阳极上氧化,如此重复循环。当然,在浸出进程中从头到尾也存在着辉铋矿与阳极的磕碰触摸氧化。 (3)在有铁离子存在的状况下,阳极电位可较无铁离子的阳极电位下降0.7V左右,过对下降电耗是有利的。 二、浸出反响机理 图3的热力学分析标明,辉铋矿的络合酸溶反响在实验条件下能够发作。实验标明,没有氧化剂存在时,反响速度较慢。 王成彦、邱定蕃等研讨了矿浆电解时辉铋矿的氧化浸出机理,以为辉铋矿的氧化能够经过下面几种不同的反响进程而得以完结。   (3)   (4)   (5) 反响式(3)是辉铋矿与阳极的直接受阻触摸氧化。反响式(4)是三价铁与辉铋矿的直触摸摸氧化。反响式(5)是辉铋矿首要经络合酸分化反响生成硫化氲,而氧化剂首要是和的氧化复原。式(4)和式(5)的差异就在于此。微观上,能够借助于对进程浸出渣样的物相结构的分析,来判明辉铋矿浸出反响的机理进程。 一般来讲,元素硫系硫化物在湿法冶金进程的相变产品。在低于硫的熔点(386K)浸出时,元素硫通常以三种方式嵌布(图4):(a)在硫化矿周围呈疏松多孔状;(b)呈细密细粒状吸附在硫化矿周围;(c)呈细粒单体散布在提出渣中,与硫化矿自身无关。前者为金属阳离子分散进溶液后而残留下来的结构;后两种是硫化矿首要经酸分化生成H2S今后被氧化的结构;究竟是(b)仍是(c),则取决于浸出进程的许多影响要素。浸出渣中元素硫的嵌布状况直接联系到对浸出进程的解说。图4  元素硫的几种嵌布形状 对辉铋矿浸出进程分阶段取样渣的显徽镜调查发现,浸出15min时,辉铋矿改变甚微,此刻渣中有很少数的细粒状单体元素硫生成,散布在浸出渣中。当浸出时刻到达30min时,部分辉铋矿鸿沟已呈现被腐蚀的痕迹;元素硫的生成数量较前者略有添加,根本上以细粒单体存在。浸出时刻到达60min,辉铋矿的溶蚀愈加显着,锯齿型鸿沟随时可见,元素硫大部分呈单体外,少数呈细粒状吸附在辉铋矿颗粒的鸿沟。90min时,辉铀矿颗粒鸿沟附着元素硫的状况愈加遍及,构成粒度显着增大,渣中已不易发现细粒的辉铋矿。浸出时刻达130min,辉铋矿周围的硫珠越来越多,简直连成一个硫珠环,一起渣中呈单体的硫珠也显着添加,残存的辉铋矿随浸出时刻的改变已不非常显着。 归纳以上的分析,能够以为,辉铋矿在实践的矿浆电解进程中的浸出反响,不是简略的硫化物金属阳离子的分散进程。从浸渣中存在着很多与硫化物无嵌布联系细粒细密的单体元素硫的状况看,它绝非是硫化物中金属离子分散进溶液后的残留物,而是一个从头构成的产品。也就是说,在辉铋矿的浸出进程中必定存在着一个成硫反响,也必定存在着辉铋矿的酸分化反响。依浸渣中的矿藏改变能够以为酸浸进程存在着如下反响跟着辉铋矿的不断分化,成硫反响也在不断进行;跟着H2S生成量的添加,部分H2S与溶液中的三价铁反响,产出元素硫嵌布在辉铋矿周围,部分H2S远离辉铋矿颗粒而与三价铁反响,构成单件的硫珠。 理论浸出电解时刻今后,辉铋矿浸出挨近彻底,二价铁也简直悉数转换为三价铁,析氯析氧反响开端发作。 由此能够得出如下的定论: (1)在阳极浸出进程中,辉铋矿首要进行的是酸分化反响(2)阳极生成的三价铁首要是与辉铋矿酸分化生成的H2S进行氧化复原反响,而与辉铋矿直触摸摸进行的氧化复原是非必须的。(3)对浸出渣的物相分析标明,元素硫的构成不是简略的金属阳离子分散进程产品,而是的氧化产品。因而在实践的酸浸进程中既存在着硫化矿的酸溶解反响,也存在着一个成硫反响;产出的硫大部分呈细粒单体,少数吸附在辉铋矿周围。 张英杰从电解质溶液中固液界面双电层结构与矿粒的机械运动动身,推导了必定超电位下(阳极析氯反响没有发作)影响阳极反响速率(电流密度)的要素,得出阳极电流密度(i)与矿浆浓度(Cs)、拌和转速的平方(NR2)呈线性联系,与矿粒粒度无关。进而核算出在任一会儿附着在1cm2阳极表面上的矿粒的总表面积为: S0=3Cs/ρ 式中S0-矿粒的总表面积;     ρ-矿粒密度,g∕cm3;     Cs-矿浆浓度,g∕mL。 据此核算,假如取Cs=0.lg/mL,ρ(辉铋矿)=6.4g∕cm3,则S0=0.046。这就是说当矿浆中一起含有Fe2+时,在1cm2阳极表面上只要0.046cm2的面积在进行矿藏与阳极的磕碰触摸氧化,其他的面积进行的是Fe2+的氧化。这就很好地解说了矿浆电解时,在有Fe2+存在时,辉铋矿与阳极的磕碰触摸氧化并不占主导地位的原因。 三、Fe2+的阳极氧化动力学 在矿浆电解进程中,溶液中的铁离子扮演了一个重要的人物,它直接参加了阳极的电极反响和辉铋矿的氧化浸出,起着电子的传递效果。因而对Fe2+的阳极氧化进程进行研讨很有必要。王成彦、邱定蕃等测定了Fe2+在石墨阳极上的极化曲线,阐明晰Fe2+阳极氧化的速率操控进程。 实验条件:333K、NH4Cl为200g∕L、H+为lg/L、拌和转速600r∕min、扫描速度1mV/s,测FeCl2浓度分别为0.01、0.02、0.03、0.04、0.05mol∕L下的阳极极化曲线,取相同η值下的电流密度i作η-lgi联系图,见图5。 从图5能够看出,η在60-10mV之间,曲线呈现显着的塔菲尔段,阐明在这一超电位规模内,Fe2+阳极氧化进程受电化学反响操控;当η在100~18mV之间,η与{lg(i∕i0)+lg[id/(id-i)]}呈线性联系,见图6,阐明在这一超电位规模内,Fe2+阳极氧化进程属混合反响操控;当η在160~220mV之间,η与lg[id/(id-i)]呈线性联系,见图7,阐明在这一超电位规模内,Fe2+阳极氧化进程受分散操控。图5  不同FeCl2浓度时的η-lgi联系图图6  η-lg(i∕i0)+lg[id/(id-i)]联系图图7  η-lg[id/(id-i)]联系图

氧化铋矿物的分离和自然铋与辉铋矿的分离

2019-02-27 11:14:28

铋在地壳中白勺均匀含量为2×10-5%,独自白勺铋矿床很少见到、铋矿藏一般与pb、cu、w、sn、ni、co等等元素白勺硫化物其生。具有工业价值白勺铋矿床大都为热液矿床,其间最重要为高温文辉铋矿型和中温热液多金属铋型。高温热液型中铋以天然铋和辉铋矿(bi2s3)状况存在于w、sn及as白勺矿石中,与之共生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以其生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以辉铋矿为主,此外还有天然铋及铋白勺硫代酸盐类,与cu和ni、co以及as白勺硫化物共生,铋作为铜矿石及其他矿石白勺副产物。在矿床白勺氧化带,原生铋矿藏可风化构成铋华(bi2o3)和碳酸铋矿藏[如泡铋矿(bi2o3.co2.h2o)、基性泡铋矿(2bi2o3.co2.h2o)、含水泡铋矿(bi2o3.co2.nh2o)、球泡铋矿(bi2o3.h2o)]。现在已发现白勺含铋矿藏已有50余种,但只要上述数种矿藏具有工业价值。铋矿石化学物相分析[1,2],一般只测定氧化铋矿藏、辉铋矿和天然铋。下面介绍此三种矿藏白勺别离办法。 一、氧化铋矿藏白勺别离氧化铋矿藏系指铋华和铋碳酸盐矿藏。10%hcl可用于浸取氧化铋,天然铋和辉铋矿不溶解。但浸取过程中如有fe3+存在,则天然铋和辉铋矿白勺浸取率添加,为此,于hcl中参加sncl2。也有人以为参加抗坏血酸效果更好。羟胺也起相同白勺效果。hcl浓度和浸沉取温度都对浸取和别离效果有显着影响,故应严厉把握操作条件。文献中还引荐了其他一些别离氧化铋白勺办法,也各有特点。如用c(h2so4)=0.25mol/l-50g/l溶液,在氮气或流中浸取1h;用5%hcl-30g乙酸溶液,于80℃浸取10min。二、天然铋与辉铋矿白勺别离别离氧化铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋能从agno3溶液中置换出金属银,而自身进入溶液中。了避免bi3+水解,向agno3溶液中参加一定量酸一般用20%-20g/lagno3溶液或3-6%hno3-17g/lagno3溶液,作为天然铋白勺溶剂,在规则条件下,天然铋浸取率为99%左右,辉铋矿仅溶解1.5%。本法适用于天然铋含量高白勺试亲。(2)在加热白勺情况下,辉铋矿可溶于浓hcl,天然铋不溶。浸取时试亲中白勺氧化铁与hcl效果,所生成白勺fecl3对天然铋有氧化效果,故应参加还原剂(如羟胺)以消除fe3+白勺影响。本法更适合于以辉铋矿为主白勺试样

铋矿浆电解工厂实践

2019-01-24 17:45:50

湖南柿竹园有色金属矿铋冶炼广是我国最大的铋冶炼厂,建成于20世纪90年代初,采用传统的反射炉熔炼-火法精练流程。自投产以来,该厂工艺、设备及操作水平不断提高,形成了精铋300t∕a的生产能力,产品质量好。铋冶炼厂所用的原料主要来自柿竹园有色金属矿遗厂产出的铋精矿,这种精矿中含有少量的铍、氟,加上矿石中的硫在熔炼时不可避免地进入烟气,对周围环境存在污染,对工人的身心健康存在影响。此外,火法炼铋存在着铋回收率低、对铋精矿的品位要求高、杂质含量要求低、能耗高等不利因素,促使人们研究铋冶炼的新工艺。经过大量的实验室研究、扩大试验及工业试验,选择了铋矿浆电解取代反射炉。1997年在柿竹园铋冶炼厂建成并投产了世界上第一座矿浆电解工业生产厂,铋矿浆电解技术经济指标明显优于反射炉,对周围环境污染大大减轻,工艺畅通,设备运转良好,工厂的建成,为矿浆电解的应用奠定了坚实的基础。 一、工艺流程 柿竹园铋冶炼厂矿浆电解工艺流程如图1所示。铋精矿在浆化槽中浆化后流入矿浆电解槽阳极区搅拌浸出电解,矿浆从第一个矿浆电解槽溢流,流入第二个矿浆电解槽的阳极区,连续经过6个矿浆电解槽后,浸出渣中的铋含量降至1%左右,此时可以认为浸出结束。矿浆从第6个矿浆电解槽溢流进入矿浆中间槽,再通过矿浆泵将矿浆泵入厢式压滤机过滤洗涤,排出的浸出渣堆存,可作为硫精矿出售,也可考虑再选矿回收渣中的钼。过滤后的滤液返回浆化槽作为浆化液循环使用。溶液循环一段时间后,抽出部分溶液开路处理,以防止杂质在溶液中积累。原设计有一萃取除铁工序,抽出部分溶液经萃取后除去溶液中的铁,以保持整个体系铁的平衡,但实际操作中已省去萃取除铁工序。铋粉定时从阴极隔膜口袋中抽取,经板框压滤机压滤,滤液返回电解槽阳极区,电解液循环使阴极区补充了铋离子,防止阴极液贫化。海绵铋经洗涤后压块脱水,再送还原熔炼。精炼工序采用原有的火法精炼设备和操作程序。图1  硫化物阳极反应E-[Cl-]关系 二、矿浆电解槽 矿浆电解作为一种新的冶金方法,其最关键的设备是矿浆电解槽。这种电解槽与传统的电解槽在功能上有很大的区别,它必须满足浸出、电积和部分净化所需要的条件,因而在结构上与一般电解槽完全不同,这也是国内外研究人员研究的重点。矿浆电解槽从实验室规模开始,经过1m3单槽扩大试验,最后在柿竹园铋冶炼厂建立了6个连续的矿浆电解槽,单槽容积为3m3,电解槽尺寸为1500mm×1450mm×1450mm。图2为铋工业生产槽照片。图2  工业用矿浆电解槽 电觯槽为方形结构,中间安置了机械搅拌装置。这种结构的电解槽很好地满足了工艺的要求。没有发现矿浆在电解槽底部沉结,矿浆从第1槽流至第6槽非常顺畅。在研制过程中对矿浆在槽中的流动及各种物料的排出进行了大量的研究,设计了一些特殊的结构以保证生产的连续化。对楷体、隔膜、电极等材料也进行了长期的研究,工厂投产后也证明了它们完全符合要求。 在生产连续运行中也证明了铋矿浆电解完全可以自热进行。矿浆没有经过加热,在冷态下进入第1个矿浆电解槽。依靠矿浆电解体系的自热,很好地维持在所需的温度下进行反应。这种结构的矿浆电解槽具有很好的放大性能,一般来说,可根据矿浆在电解槽中的停留时间选择电解槽的容积和数量。此外,特别值得提出的是矿浆电解槽造价便宜,制作简单。 三、对环境影响的评价 采用矿浆电解工艺处理铋精矿,它的一个显著优点是,和铋结合的硫大部分以元素硫的形态产出,并可进一步回收生产硫精矿或元素硫产品,同时整个系统的溶液可以基本实现闭路循环,大大减少了废水排放量。 化学定量分析表明,柿竹园铋精矿含Be为0.0032%,含F为0.99%.含As为0.049%,矿浆电解时,约有35%的Be、90%的F和20%的As被浸出进入溶液。随溶液循环次数的增加,Be、F和As将在溶液中积累,尤以F的积累最为严重。因此对少量外排的废电解液必须进行达标处理。 废电解液首先经铁粉置换回收Bi,再经石灰中和(调溶液pH值至11)处理后,溶液中的Be含量由0.99mg∕L降至0.0036mg∕L,F含量由0.58g/L降至0.5mg∕L,As含量由1.9mg∕L降至0.003mg∕L,符合地面水环境质量标准GB 3838-88的Ⅲ类标准。废水再排至污水站稀释,经再次处理后排放。 矿浆电解产出的含硫废渣,对环境无明显影响,可进一步浮选生产硫精矿或采用其他工艺回收生产元素硫,也可以直接排至尾矿坝堆存或填埋处理。 四、铋矿浆电解主要技术经济指标 柿竹园铋矿浆电解厂生产规模为铋金属量200t∕a,工业生产的主要技术经挤指标如下: 铋浸出率∕%                       98 铋全流程总回收率/%                % 吨铋总交流电耗∕kW·h            2500(其中电解电耗为1830) 吨铋碱耗/kg                      121 吨铋酸耗/kg(HCl为31%)        500 五、两种铋冶炼方法的比较 采用矿浆电解技术处理铋精矿,与现有火法冶炼流程的主要技术经济指标对比见下表。从下表可以看出,铋矿浆电解具有如下特点: (一)对环境污染轻,是一种环境友好的工艺。 (二)能耗明显下降,工艺总能耗仅为反射炉熔炼的一半。 (三)铋回收率高。 (四)对原料适应性广。 表  矿浆电解处理铋精矿与现有火法冶炼流程的比较①取自柿竹园铋冶炼厂原火法冶炼1996年指标。 六、矿浆电解工艺目前的局限性 矿浆电解技术毕竟是处于工业化初期,装备水平还比较落后,自动化程度很低,大部分是人工操作。在铋矿浆电解生产中,由于阴极产物是以粉状物产出(铋粉),需要靠人工抽取,操作工人的素质在很大程度上成了工艺指标的制约因素,人为因素对工艺指标的影响较大。由于操作不精心,电极的断裂、隔膜布的破损等比较严重,另外,由于目前矿浆电解槽的体积较小,对铋这类经济价值较高、物料处理量小的小金属无疑是适宜的,但对那些经济价值较低、需大规模处理的贱金属(如Pb),尚存在一定的距离。要想充分发挥矿浆电解新工艺在经济、社会和环境等方面的独特优势,进一步拓宽其应用领域并形成规模化,需要开展矿浆电解成套技术工程化及电解槽大型化的研究,包括工艺过程中各参数的测定和自动控制的研究、阴极区产物自动抽取的研究以及高强度、耐腐蚀电极材料的研制、大型矿浆电解槽(30m3)的设计等等。应用新技术,研制满足工艺要求,结构合理,造价低廉的抽粉和传动装置并实现抽粉过程的机械化和自动化,开发具有一定通用性的湿法冶金工艺流程监控软件平台及矿浆电解过程中先进的计算机监控系统等,将会促进矿浆电解技术的进一步发展。

辉铋矿选矿工艺

2019-01-18 11:39:40

辉铋矿选矿工艺有三种回收方案:自粗钨精矿中直接优先浮选;自硫化矿混合精矿中优先浮选;自硫化矿物混合精矿中浮去其他硫化矿而让辉铋矿作为尾矿产出,通常还含有较多的脉石和黑钨矿,需进一步用摇床选和磁选分别除去。分离顺序为:辉钼矿→辉铋矿、方铅矿→黄铜矿→闪锌矿→黄铁矿。辉铋矿同方铅矿可浮性非常相似,一般混出待冶炼再行分离。细粒采用浮选法,粗粒采用粒浮。

钽常识

2019-03-14 09:02:01

钽为黑灰色金属,密度16.6,熔点2996℃,沸点5425℃。具有比严重、熔点高、沸点高、强度高、抗疲劳、抗变形、抗腐蚀、导热、超导、单极导电及吸收气体等优秀特性。钽的化学性质特别安稳,常温下除外不受其它无机酸碱的腐蚀;高温下能溶于浓硫酸、浓磷酸和强碱溶液中;金属钽在氧气中灼烧可得五氧化二钽;常温下能与氟反响;高温下能与氯、硫、氮、碳等单质直接化合。  钽、铌共生亲近,它们的物理性质、化学性质、地球化学性质以及矿藏学性质等都有许多类似之处,因此常在同一矿藏中呈现。一切的铌矿藏中都含有钽,钽的矿藏中都含有铌,仅仅有主次之分。有的构成彻底的类质同象系列矿藏,如铌铁矿-钽铁矿系列矿藏:Ta2O5<15%称铌铁矿,Nb2O5<10%称钽铁矿,Nb2O5>Ta2O5称钽铌铁矿,Ta2O5>Nb2O5称铌钽铁矿,Fe/Mn<1时则称为铌锰矿-钽锰矿系列。  钽在地壳中均匀含量为2×10-6,铌为20×10-6,Nb/Ta值为10。铌、钽在首要岩浆岩和首要沉积岩都有不同程度的散布,其间在花岗岩中含量较高。现在,已发现的铌钽矿藏和含铌钽矿藏有130多种,其间较常见的有30多种。但作为铌钽工业矿藏质料的只要10种,即铌铁矿-钽铁矿系列矿藏(铌铁矿含Ta2O5<14.55%,Nb2O5>63.77%;钽铁矿含Ta2O5>72.18%,Nb2O5<10.33%)、褐钇铌矿(含Ta2O5为2.5%~11.09%,Nb2O5为33.64%~42.9%)、易解石(含Ta2O5为0.26%~3.3%,Nb2O5为21%~35%)、铌易解石(含Ta2O5为0.51%,Nb2O5为41.13%)、铌铁金红石(含Ta2O5为0.31%,Nb2O5为6.71~23.67%)、烧绿石(含Ta2O5为1.44%~6.65%,Nb2O5为56.01%~67.77%)、锰钽矿(含Ta2O5为70%~86%,Nb2O5为1.91%~10.33%)、重钽铁矿(含Ta2O5为73.98%~86.01%,Nb2O5为1.17%~1.37%)、黄钇钽矿(含Ta2O5为49.4%~55.5%,Nb2O5为9.15%)、细晶石(含Ta2O5为55%~77%,Nb2O5为0.4%~10.13%)。  钽矿藏质料首要是钽铁矿、细晶石等,钽冶炼的首要过程是分化精矿,净化和别离钽、铌,以制取钽、铌的纯化合物,最终制取钽金属。矿石分化可采用分化法、熔融法和氯化法等。钽铌别离可采用溶剂萃取法(常用的萃取剂为甲基异丁酮、磷酸三丁酯、仲辛醇和乙酰胺等)、分步结晶法和离子交换法。  钽具有耐腐蚀、冷加工性能好和氧化膜电性能好等长处,有许多重要用处。钽在酸性电解液中构成安稳的阳极氧化膜,用钽制成的电解电容器,具有容量大,体积小和可靠性好等长处。钽也是制造电子发射管、高功率电子管零件的材料。钽制的抗腐蚀设备可用于出产强酸、、等化学工业。金属钽可作发动机的燃烧室的结构材料。钽钨、钽钨铪、钽铪合金用作火箭、和喷气发动机的耐热高强材料及操控和调理配备的零件等。钽易加工成形,在高温真空炉中作支撑附件、热屏蔽、加热器和散热片等。钽可作骨科和外科手术材料。钽的硼化物、硅化物和氮化物及其合金用作原子能工业中的释热元件和液态金属包套材料。

钽知识

2019-03-08 09:05:26

钽为黑灰色金属,密度16.6,熔点2996℃,沸点5425℃。具有比严重、熔点高、沸点高、强度高、抗疲劳、抗变形、抗腐蚀、导热、超导、单极导电及吸收气体等优秀特性。钽的化学性质特别安稳,常温下除外不受其它无机酸碱的腐蚀;高温下能溶于浓硫酸、浓磷酸和强碱溶液中;金属钽在氧气中灼烧可得五氧化二钽;常温下能与氟反响;高温下能与氯、硫、氮、碳等单质直接化合。 钽、铌共生亲近,它们的物理性质、化学性质、地球化学性质以及矿藏学性质等都有许多类似之处,因此常在同一矿藏中呈现。一切的铌矿藏中都含有钽,钽的矿藏中都含有铌,仅仅有主次之分。有的构成彻底的类质同象系列矿藏,如铌铁矿-钽铁矿系列矿藏:Ta2O5 Ta2O5称钽铌铁矿,Ta2O5>Nb2O5称铌钽铁矿,Fe/Mn 钽在地壳中均匀含量为2×10-6,铌为20×10-6,Nb/Ta值为10。铌、钽在首要岩浆岩和首要沉积岩都有不同程度的散布,其间在花岗岩中含量较高。现在,已发现的铌钽矿藏和含铌钽矿藏有130多种,其间较常见的有30多种。但作为铌钽工业矿藏质料的只要10种,即铌铁矿-钽铁矿系列矿藏(铌铁矿含Ta2O5 63.77%;钽铁矿含Ta2O5>72.18%,Nb2O5 钽矿藏质料首要是钽铁矿、细晶石等,钽冶炼的首要过程是分化精矿,净化和别离钽、铌,以制取钽、铌的纯化合物,最终制取钽金属。矿石分化可采用分化法、熔融法和氯化法等。钽铌别离可采用溶剂萃取法(常用的萃取剂为甲基异丁酮、磷酸三丁酯、仲辛醇和乙酰胺等)、分步结晶法和离子交换法。 钽具有耐腐蚀、冷加工性能好和氧化膜电性能好等长处,有许多重要用处。钽在酸性电解液中构成安稳的阳极氧化膜,用钽制成的电解电容器,具有容量大,体积小和可靠性好等长处。钽也是制造电子发射管、高功率电子管零件的材料。钽制的抗腐蚀设备可用于出产强酸、、等化学工业。金属钽可作发动机的燃烧室的结构材料。钽钨、钽钨铪、钽铪合金用作火箭、和喷气发动机的耐热高强材料及操控和调理配备的零件等。钽易加工成形,在高温真空炉中作支撑附件、热屏蔽、加热器和散热片等。钽可作骨科和外科手术材料。钽的硼化物、硅化物和氮化物及其合金用作原子能工业中的释热元件和液态金属包套材料。

钽铌尾矿再选(宜春钽铌矿)

2019-01-21 18:04:39

宜春钽铌矿选矿尾矿经浮选回收锂云母,重选回收长石,成为我国最大的锂云母产地,其尾矿再选的产品产值已占生产总产值的52.4%,产出的锂云母供全国不少地方生产锂及其他锂产品,获得多种应用,长石也用于玻璃、陶瓷。

钽铌选矿

2019-02-25 15:59:39

钽铌矿选矿粗选一般选用重选法,精选则选用重选、浮选、电磁选或选冶联合工艺,处理粉矿或原生泥含量多的矿石,洗矿作业必不可少,一起选用高效磨矿分级设备,以下降钽铌矿藏的泥化。 钽铌浮选常用捕收剂有脂肪酸类、胂酸类、类、羟肟酸类、阳离子型捕收剂等,捕收剂的环境污染及药剂本钱问题至头重要。跟着化学工业的开展,质料来历广泛,组成工艺简略,易生物降解、选择性好、无毒无害、报价合理的药剂将不断出现,满意钽铌选矿厂的需求。 1、钽铌矿矿藏工艺学特性 铌铁矿-钽铁矿的化学通式为AB2O6,二者简称铌钽铁矿。A为铁、锰,B为铌、钽。从纯铌到钽的不同方式具有一系列同晶结构,其特点是铁和锰的份额不定。其间含Nb2O51.97~78.88%,Ta2O5 5.56~83.57%,MnO 1.26~16.25%,FeO1.89~16.25%。还有Ti、Zr、W、TR、U等类质同象混入物。组元中铌占多数,就称该矿藏为铌铁矿,假如钽占多数,则称为钽铁矿。矿藏的晶格为斜方结构,空间群记号为Pcan。结构由A和B八面体的层所组成。相同的八面体在层中以边连接成链,再同一起极点相连。一个A八面体层经过极点与邻连的B八面体层从两方面相连,构成BAB结构。 铌铁矿-钽铁矿许多矿藏的晶格参数与试样的成分有关,其动摇规模如下:a=0.5133~0.5054nm;b=1.445~1.405nm;c=0.5762~0.5683nm。铌钽锰矿中原子距离:Mn-O=2.12~2.14埃,Ta-O=1.86~2.12埃。矿藏的色彩有黑色、棕黑色和红褐色。莫氏硬度为:铌铁矿4.3~6.5;钽铁矿6.5~7.2。铌铁矿的显微硬度值为2400~8000MPa,钽铁矿为8000~10700Mpa。 铌铁矿-钽铁矿的磁化率为(22.1~37.2)×10-6。铌铁矿的介电系数为10~12,钽铁矿为7~8。矿藏的密度5.15~8.20(随钽的含量增高而增大)。 2、钽铌矿选矿技能 钽铌矿选矿一般选用重选先丢掉大部分脉石矿藏,取得低档次混合粗精矿,进入精选作业的粗精矿矿藏组成杂乱,一般含有多种有用矿藏,分选难度大,一般选用多种选矿办法如重选、浮选、电磁选或选冶联合工艺进行精选,然后到达多种有用矿藏的别离。 2.1 国外钽铌选矿 处理粉矿或原生泥含量多的矿石,洗矿作业必不可少。澳大利亚格林布斯矿风化伟晶岩冲积粘土粗选厂,设两个洗矿体系,原矿用直径1.5m,孔径10mm的圆筒筛两次洗矿后,筛下当选,筛上大块及粘土球进自磨机磨矿约4mm,再用孔径10mm的圆筒筛筛分,筛下物料当选,筛上物料丢掉或回来再磨。洗矿耗水5m3/t,圆筒筛处理量达350吨/小时·.........台。 国外钽铌选矿厂注重选用高效磨矿分级设备,以下降钽铌矿藏的泥化。格林布斯矿原生伟晶岩粗选厂用周边排矿棒磨机与振荡筛闭路取得较好成果。加拿大伯尼克湖钽矿经不断改进,现在选用的磨矿流程很有特征。该矿用一台Ф2.4m×3.6m马西型格子球磨机A-C水平振荡筛(直线筛)闭路,筛分粒度2.5mm,筛下用德瑞克筛按0.2mm分级,-2.5+0.2mm粒级用螺旋选矿机选别,其尾矿经弧形筛脱水后回来再磨。球磨机有两种产品构成循环,即选用一台磨机完成两段闭路磨矿。该磨矿回路经调整后循环负荷率一般为180%左右,循环负荷小易构成过破坏。 国外对钽铌铁矿矿石的粗选仍以重选为主,并多用高效的重选设备,流程简略。如格林布斯矿对-10mm原矿直接用跳汰机粗选。加拿大伯尼克湖钽矿80年代构成的重选-浮选-重选流程日趋完善,该流程仍以重选为主,浮选只用于处理细泥。重选设备体用了GEC螺旋选矿机、3层悬挂式戴斯特摇床、霍尔曼矿泥摇床、横流皮带选矿机。前苏联选用浮选对重选精矿中钽铁矿、细晶石与黄玉进行别离,捕收剂为异羟肟酸,调整剂为草酸,在介质中(pH2)浮选,当给矿含Ta2O52.52%时,精矿档次27%,收回率90%。 烧绿石矿的选矿办法首要选用浮选办法,为进步精矿质量和下降药剂耗费,近年来烧绿石选矿流程加强了脱泥、除铁,脱硫、磷、铅、等作业。尼奥贝克烧绿石矿-0.2mm当选原矿用旋流器脱除-10μm矿泥,并按泥砂别离选别。先用脂肪酸捕收剂浮选磷灰石和碳酸盐矿藏,然后进行磁选脱铁,再用胺类捕收剂浮选烧绿石,终究对烧绿石精矿进行黄铁矿浮选和浸出,以下降硫、磷和碳酸盐矿藏含量。当原矿含Nb2O50.6%~0.7%时,取得终究精矿档次58%~62%,收回率60%~65%。 2.2国内钽铌选矿 1. 钽铌矿粗选 国内钽铌矿原矿档次一般很低,其矿藏性脆、密度大。为了确保磨矿粒度,防止过破坏,一般选用阶段磨矿阶段选别流程。江西宜春钽铌选矿厂选用侧向弧形筛替代直线振荡筛进行筛分,现场探究实验成果表明:筛上夹细可下降14.70%,筛下夹粗可削减4.3%,筛分功率可进步17.72%。该设备的实验成功,为现场一段磨矿筛分改造供给了新途径。福建南平是一个大型花岗伟晶岩矿床,1998年咱们对该矿石进行选矿实验研讨,为建厂供给规划依据,依据钽铌和锡石矿藏粒度嵌布特征,提出选用阶段磨矿、阶段选别工艺。一段选用棒磨机,并与筛子构成闭路,以削减过破坏。二段磨矿选用球磨机,并与高频振荡细筛构成闭路,除能严格控制粒度外,还可添加处理才能,进步磨矿功率。该矿粗选选用单一重选流程。重选设备有GL螺旋选矿机、螺旋溜槽和摇床。该矿当选原矿含(TaNb)2O50.0499%,Sn 0.0598%,经粗选后取得的粗精矿产率为0.248%,含(TaNb)2O514.94%(其间Ta2O510.79%),对原矿收回率为74.30%(Ta2O5 收回率为74.96%);含Sn 15.71%,对原矿收回率为65.11%。 2. 钽铌矿精选 粗选工艺取得的粗精矿一般是混合粗精矿,需进一步精选别离出多种有用矿藏。粗精矿矿藏组成不同,选用的别离办法也不同,一般是多种办法联合运用。如福建南平钽铌精选选用磁-重-浮联合运用,先用6%的溶液清洗矿藏表面,再用弱磁选除掉强磁性矿藏及铁屑,烘干并筛分红+0.2、+0.1和-0.1mm三个等级,别离用干式强磁选机经一次粗选、一次扫选取得钽铌精矿,干式强磁选的非磁性部分用重选收回锡石并抛尾,重选的精矿进行浮选脱除硫化矿取得锡精矿。精选成果:钽铌精矿产率0.0764%,含(TaNb)2O545.64%(Ta2O5 32.57%),对原矿收回率69.92%(Ta2O5收回率69.071%),精选作业收回率94.11%;锡精矿产率为0.0581%,含Sn60.25%,对原矿收回率58.49%,精选作业收回率89.84%。

铌钽选矿

2019-01-30 10:26:21

由于钽铌矿成分复杂,通常需要经过粗选和精选两个阶段才能获得符合冶炼要求的钽铌精矿。由于钽铌矿物具有很高的密度,从4.5g/cm3到8.3g/cm3(见表1),因此钽铌矿物选矿主要采用重选法(筛选、摇床、螺旋分选机)。  表1  重要的钽铌矿物矿物名称晶系晶体化学式Ta2O5/%Nb2O5/%密度/(g·cm-3)磁性钽铁矿斜方(Mn,Fe)(Ta,Nb)2O641~842.0~40.06.25~8.3弱铌铁矿斜方(Mn,Fe)(Ta,Nb)2O61.0~40.023.5~775.2~6.25弱烧绿石等轴(Na,Ca,Ta)2(Nb,Ti)2O6(OH,F)0~5.8637.5~65.64.12~5.35非细晶石等轴(Na,Ca)2Ta2O6(OH,F)68.4~770~7.74.2~6.4非铌铁金红石四方(Ti,Nb,Fe)O20.2~14.70.9~42.74.3~5.6弱钛铌钙铈矿等轴(Na,Ca,Sr,Ta)O(Ta,Nb,Ti)O3~0.75~11.34.6~4.9极弱褐钇铌矿四方(Y,Dy,Yb)(Nb,Ta,Ti)O4~17.047.04.89~5.82弱钽锡矿单斜Sn(Ta,Nb)2O7~72.8-7.6~7.9非钽铝石六方AlTaO460.1~720.3~6.15.9~6.5非黑稀金矿斜方(Ca,Ta,Th)(Nb,Ti)2O60~47.33.8~47.44.5~5.9弱复稀金矿斜方(Y,Th,U)(Ti,Nb)2O60~23.17.5~20.34.7~5.4弱易解石斜方(Ce,Ca,Th,U)(Ti,Nb)2O60~6.923.8~32.54.9~5.4弱包头矿正方Ba4(Ti,Nb)8(Si4O12)CeO16011.3~11.54.5~5.6弱      一、粗选       主要采用成本较低的重选法,也有重选-浮选工艺,以有效地将钽铌矿物和较轻的脉石、长石、方解石等分开。重选主要有跳汰流程(以跳汰机为主,流程主要用于处理粗晶粒钽铌矿和钽矿砂矿)、摇床流程(以摇床为主体,多用于细晶粒的钽铌复合多金属矿)和螺旋机流程(以螺旋选矿机或螺旋溜槽为主体,结合摇床粗选,中国采用较多)。其中,重选-浮选工艺可回收微细粒钽铌矿物,粗选回收率达90%。       钽铌砂矿通常高密度矿含量不高,但矿物单体解离较好,一般采用重选法,少数采用磁选-浮选流程。       二、精选       粗选所得的粗精矿除含有钽铌矿物外,还有锡石、黑钨矿、锆英石、磷钇石、独居石等。根据矿物的组成和物理化学性质的差异,分别采用重选、浮选、电磁选和静电分选法。有时还采用化学处理。对于含有放射性元素的矿物则采用块状物料辐射分选机分选。

铋矿的粗炼和精炼

2019-02-22 15:05:31

铋的冶炼有必要阅历粗炼与精粹两个阶段.粗炼是将含铋质料经过火法或湿法的开始处理,产出中间产品粗;铋精粹是将粗铋进一步精粹,产出精铋.粗炼与精粹的办法许多,常依据质料不同而挑选不同的办法. 一、粗炼 1. 精矿的反射炉熔炼钮精矿与还原剂煤粉、置换剂铁屑、熔剂纯碱等配料混合后,参加反射炉混合熔炼,产出渣、冰铜与粗镶。 2.氧化渣的转炉熔炼将铅阳极泥还原熔炼产出的贵铅,装入分银炉吹炼,在氧化吹炼过程中产出的氧化钻渣,与黄铁矿配料,参加转炉熔炼,产出渣、冰铜与铅铭合金. 3.铅浮渣的碱性熔炼将火法精粹铅时产出的钙镁秘渣,与NaOH一道熔炼,产出铭铅合金. 4.浸出一沉积法将铜转炉烟尘氛化浸出,使韧进入溶液,随后可选用水解法或置换法,别离秘沉积,然后再熔铸成粗铋 二、精粹 1.火法精粹将粗w装入钢质精粹锅,经熔析精粹、氧化精粹、碱法精粹、加锌精粹、氛化精粹、终究精粹等工序,除掉其间的铜、砷、锑、锡、磅、银、铅、锌等杂质,产出精锡.   2.电解精粹粗韧经开始火法精粹后,铸成阳极板,选用氛盐溶液或盐溶液作电解液,产出电铃,再进一步火法精粹为精铋.

铋矿浆电解阳极反应机理

2019-01-31 11:06:04

王成彦、邱定蕃等对辉铋矿在矿浆电解进程的阳极反响进行了比较深化的研讨。经过很多的实验研讨,以为辉铋矿的阳极浸出进程是一个杂乱的反响进程,辉铋矿在酸性氯化钠介质中呈悬浮状所发作的阳极浸出进程,能够经过下列几种途径来完结: (1)石墨相当于一个导体,辉铋矿相当于一个可溶阳极,当辉铋矿和石墨阳极发作磕碰而触摸时,将经过下面的反响被氧化:(2)石墨电极上或许发作其他氧化反响,如发作Cl2、O2气体分出,这样一些气体再氧化辉铋矿。(3)有关实验标明,在浸出渡中参加铁离子,辉铋矿的浸出反响速率显着进步,槽电压显着下降,阐明铁离子也参加了辉铋矿的阳极浸出进程。 为查明辉铋矿在矿浆电解阳极浸出进程的反响机理,实验测定了溶液中有辉铋矿和无辉铋矿时的i-E曲线以及在上列溶渣中参加4g∕L的Fe2+后有和无辉铋矿存鄙人的i-E曲线,见图1。图1  不同条件下的i-E曲线 1-HCl 1mol∕L+NaCl 200g∕L; 2-HCl (1mol∕L)+NaCl (200g∕L)+辉铋矿(-0.074mm、L∶S=10∶1); 3-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L); 4-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L) +辉铋矿(-0.074mm、L∶S=10∶1)。 HCl-NaCl溶液中没有辉铋矿和铁离子存在的状况下,石墨阳极只或许存鄙人列反响:    (1) E333(1)=1.177-0.066pH+0.0165lgPO2                (2) E333(2)=1.306=0.066lg[Cl-]+0.0333lg[Cl2] 矿浆电解条件下,pH=0、pO2=0.2×105Pa、[Cl-]=3mol∕L,代入以上两个方程得E333(1)=1.248V,E333(2)=1.255+0.0333lg[Cl2],因为溶液中[Cl2]很小,因而,E333(1)和E333(2)的不同不大,上述两种反响均有或许在阳极上发作。Arslan、Duby研讨了黄铁矿在溶液中的阳极氧化状况,在阳极电位1.4~1.5V(SCE),t=35~40℃下,阳极液中HClO的浓度可达0.15smol∕L,并以为HClO是由阳极上分出的Cl2发作的,阳极上水的氧化反响也一起发作并分管了部分电荷传输。Arslan在用石墨阳极研讨黄铁矿的阳极氧化时,发现阳极上有CO2生成并发作阳极蚀变现象。王成彦、邱定蕃在矿浆电解扩展实验中也发现石墨阳极存在蚀变现象。这些也能够证明,在矿浆电解进程中,当阳极电位较高时,阳极上能够发作Cl2和O2的一起分出。 关于反响考虑到铁离子在溶液中能够构成铁氯络合物,其实践电位会更低(如图2线23所示),因而,当件系中存在铁离子时,上述反响有或许是阳极的首要反响。图2  Bi2S3-Cl--H2O系E-lg[Cl-]图图1中,线1是无辉铋矿、无铁离子潜液中测得的i-E曲线,其电流只能是因为反响式(1)和式(2)发作,且电流巨细应表明该反响的速度。从图中看到,当阳极电位高于~1.10V(SCE)时,电流便急剧上升,而低于该电位时,阳极电流极低且动摇很小。因而能够以为在实验用溶液中,当阳极电位高于-1.10V(SCE),石器阳极上开端很多分出气体,此电位正处于和氧气的理论分出电位邻近。 线2是有辉铋矿、无铁离子溶被中测得的i-E曲线,此刻阳极上的电流应是辉铋矿直接与电极磕碰的氧化反响、和氧气分出反响一起发作的,比较线1和线2,在电位低于-1.10V(SCE)的规模之内,电流能够以为是因为辉铋矿在石墨阳极上直接电氧化发作的,这个电流较线1升高了许多,阐明辉铋矿的直接电氧化是能够发作的;电位大于-1.10V(SCE)二线根本重合,析氯析氧反响起了主导作用。 线3是无辉铋矿、有二价铁离子的溶液中测得的i-E曲线,从图中能够看到,当阳极电位高于0.5V(SCE),电流便显着增大,该电位正处于反响的标准电位邻近,因而能够以为此电流是因为二价铁离子的阳极氧化发作的。在固定电流密度小于300A∕m2的条件下,阳极不会发作析氯析氧反响,只要在电解后期,二价铁的氧化挨近结束,才或许发作析氯析氧反响,此刻槽电压将显着上升。 线4是在有辉铋矿、有二价铁离子的溶液中测得的i-E曲线,它较线3的电流大。此电流的发作能够以为是二价铁离子的阳极氧化和辉铋矿与阳极磕碰的触摸氧化一起发作的。但线4并不是线2和线3的简略加合,它仅仅略高于线3并类似于线3,因而能够以为此刻的首要反响仍旧足二价铁离子的阳极氧化反响、而辉铋矿的直接电氧化则是非必须的。因为有辉铋矿存在,在阳极上生成的三价铁将Bi2S3氧化后自身还原为二价,二价铁又在阳极氧化为三价。如此重复,直至辉铋矿的氧化浸出挨近彻底。 如果在固定电流密度200A/m2的条件下,由图1能够比较看出,线2和线4的阳极电位相差0.7V左右,也就是说,要取得相同的浸出反响速度,在有铁离子存存的溶液中,其阳极电位要比无铁离子溶液的阳极电位低0.7V,相应的槽电压也要下降0.7V左右,然后下降了电解进程的电耗。 图3是在固定电流密度200A∕m2、Fe2+为4.0g∕L、Cl-为150g∕L、H+为1.0g∕L、Bi3+为10g∕L、100g辉铋矿、粒度<0.038mm为96%、L∶S=3∶1的状况下测得的石墨阳极电位(SCE)和槽电压随时刻的改变曲线。图3  恒电位电解槽电压和阳极电位随时刻的改变 图3阐明,在辉铋矿的理论浸出电解时刻内,槽电压被迫在0.8~0.9V的规模之内,阳极电位动摇在-0.5~-0.6V(SCE)的规模之内,正处于二价铁离子的标准氧化电位邻近。能够以为,在此刻间内的阳极反响首要是二价铁离子的氧化反响,铋精矿的浸出首要是因为三价铁的氧化作用。 在铋的理论浸出电解时刻今后,槽电压和阳极电位都急剧上升,槽电压升至1.6~1.8V,阳极电位动摇在-1.2V(SCE)左右,此刻,辉铋矿的浸出巳挨近彻底,二价铁也简直悉数氧化为三价铁,阳极开端发作析氯反响,槽电压也跟着阳极电位的进步和阴极的极化而升高。 由以上的分析,能够得出以下的定论: (1)在实验选用的条件下,溶液中无铁离子存在时,在阳极电位为-0.2V到-1.0V的规模内,阳极反响首要是辉铋矿在石墨阳极上直接电氧化,当阳极电位大于-1.10V时,析氯析氧反响起主导作用。 (2)在有铁离子存在的状况下,阳极上发作的首要反响是二价铁离子的氧化反响,辉铋矿的氧化能够以为是由三价铁离子完结的,三价铁被坯原为二价,二价铁又在石墨阳极上氧化,如此重复循环。当然,在浸出进程中从头到尾也存在着辉铋矿与阳极的磕碰触摸氧化。 (3)在有铁离子存在的状况下,阳极电位可较无铁离子的阳极电位下降0.7V左右,过对下降电耗是有利的。

铋矿浆电解浸出反应机理

2019-01-31 11:06:04

图1的热力学分析标明,辉铋矿的络合酸溶反响在实验条件下能够发作。实验标明,没有氧化剂存在时,反响速度较慢。图1  恒电位电解槽电压和阳极电位随时刻的改变 王成彦、邱定蕃等研讨了矿浆电解时辉铋矿的氧化浸出机理,以为辉铋矿的氧化能够经过下面几种不同的反响进程而得以完成。   (1)   (2)   (3) 反响式(1)是辉铋矿与阳极的直接受阻触摸氧化。反响式(2)是三价铁与辉铋矿的直触摸摸氧化。反响式(3)是辉铋矿首要经络合酸分化反响生成硫化氲,而氧化剂主要是和的氧化复原。式(2)和式(3)的差异就在于此。微观上,能够借助于对进程浸出渣样的物相结构的分析,来判明辉铋矿浸出反响的机理进程。 一般来讲,元素硫系硫化物在湿法冶金进程的相变产品。在低于硫的熔点(386K)浸出时,元素硫通常以三种方式嵌布(图2):(a)在硫化矿周围呈疏松多孔状;(b)呈细密细粒状吸附在硫化矿周围;(c)呈细粒单体散布在提出渣中,与硫化矿自身无关。前者为金属阳离子分散进溶液后而残留下来的结构;后两种是硫化矿首要经酸分化生成H2S今后被氧化的结构;究竟是(b)仍是(c),则取决于浸出进程的许多影响要素。浸出渣中元素硫的嵌布状况直接联系到对浸出进程的解说。图2  元素硫的几种嵌布形状 对辉铋矿浸出进程分阶段取样渣的显徽镜调查发现,浸出15min时,辉铋矿改变甚微,此刻渣中有很少数的细粒状单体元素硫生成,散布在浸出渣中。当浸出时刻到达30min时,部分辉铋矿鸿沟已出现被腐蚀的痕迹;元素硫的生成数量较前者略有添加,基本上以细粒单体存在。浸出时刻到达60min,辉铋矿的溶蚀愈加显着,锯齿型鸿沟随时可见,元素硫大部分呈单体外,少数呈细粒状吸附在辉铋矿颗粒的鸿沟。90min时,辉铀矿颗粒鸿沟附着元素硫的状况愈加遍及,构成粒度显着增大,渣中已不易发现细粒的辉铋矿。浸出时刻达130min,辉铋矿周围的硫珠越来越多,简直连成一个硫珠环,一起渣中呈单体的硫珠也显着添加,残存的辉铋矿随浸出时刻的改变已不非常显着。 归纳以上的分析,能够以为,辉铋矿在实践的矿浆电解进程中的浸出反响,不是简略的硫化物金属阳离子的分散进程。从浸渣中存在着很多与硫化物无嵌布联系细粒细密的单体元素硫的状况看,它绝非是硫化物中金属离子分散进溶液后的残留物,而是一个从头构成的产品。也就是说,在辉铋矿的浸出进程中必定存在着一个成硫反响,也必定存在着辉铋矿的酸分化反响。依浸渣中的矿藏改变能够以为酸浸进程存在着如下反响跟着辉铋矿的不断分化,成硫反响也在不断进行;跟着H2S生成量的添加,部分H2S与溶液中的三价铁反响,产出元素硫嵌布在辉铋矿周围,部分H2S远离辉铋矿颗粒而与三价铁反响,构成单件的硫珠。 理论浸出电解时刻今后,辉铋矿浸出挨近彻底,二价铁也简直悉数转换为三价铁,析氯析氧反响开端发作。 由此能够得出如下的定论: (1)在阳极浸出进程中,辉铋矿首要进行的是酸分化反响(2)阳极生成的三价铁主要是与辉铋矿酸分化生成的H2S进行氧化复原反响,而与辉铋矿直触摸摸进行的氧化复原是非必须的。(3)对浸出渣的物相分析标明,元素硫的构成不是简略的金属阳离子分散进程产品,而是的氧化产品。因此在实践的酸浸进程中既存在着硫化矿的酸溶解反响,也存在着一个成硫反响;产出的硫大部分呈细粒单体,少数吸附在辉铋矿周围。 张英杰从电解质溶液中固液界面双电层结构与矿粒的机械运动动身,推导了必定超电位下(阳极析氯反响没有发作)影响阳极反响速率(电流密度)的要素,得出阳极电流密度(i)与矿浆浓度(Cs)、拌和转速的平方(NR2)呈线性联系,与矿粒粒度无关。进而核算出在任一会儿附着在1cm2阳极表面上的矿粒的总表面积为: S0=3Cs/ρ 式中S0-矿粒的总表面积;     ρ-矿粒密度,g∕cm3;     Cs-矿浆浓度,g∕mL。 据此核算,假如取Cs=0.lg/mL,ρ(辉铋矿)=6.4g∕cm3,则S0=0.046。这就是说当矿浆中一起含有Fe2+时,在1cm2阳极表面上只要0.046cm2的面积在进行矿藏与阳极的磕碰触摸氧化,其他的面积进行的是Fe2+的氧化。这就很好地解说了矿浆电解时,在有Fe2+存在时,辉铋矿与阳极的磕碰触摸氧化并不占主导地位的原因。

铋矿矿浆电解工业试验研究简介

2019-01-18 11:39:40

铋矿矿浆电解工业试验研究 成果内容简介:矿浆电解是一新冶金方法,将矿石加入矿浆电解槽阳极区浸出,同时在阴极区产出金属,为金属的一步提取。其特点是流程短、能耗低、环保好、回收率高等。   工业试验规模200t/a铋,其技术经济指标:铋总回收率96.4%,较原火法流程提高10个百分点,电耗2500kwh/tBi,加工成本较火法节省3115元/tBi。200t/a实现利税658万元,目前已建成年产800t精铋的矿浆电解厂,年利税2633万元。消除了Be、F、SO2的大气污染。该方法适用于火法难以处理的低品位、多金属、含有害元素的复杂矿石。2000年在云南建设投产了年处理3000t复杂金精矿的工厂。具有广阔的推广前景。

钽铌矿石选矿

2019-01-18 11:39:34

钽铌矿石选矿(processing of tantalum and niobium ores)从含钽铌矿石中分离与富集钽铌矿物的过程。选矿产品为钽铌精矿。 矿物与资源自然界含钽铌的矿物约有130种,其中钽、铌矿物约有80种。重要的具有工业价值的钽铌矿物列于表中。此外,部分钽铌以杂质形式存在于钛铁矿、钙钛矿、金红石、锡石、黑钨矿及榍石中。钽铌矿床分为岩浆矿床、伟晶岩矿床、气成热液矿床、接触自变质矿床和外生矿床五类。钽铌矿石类型可分为钽铁矿一铌铁矿石、黄绿石矿石以及其他含钽铌矿石三大类。 钽铌矿床分布较为广泛,巴西、前苏联、中国、加拿大、美国、尼日利亚、澳大利亚、扎伊尔、肯尼亚、坦桑尼亚、乌干达、马来西亚、泰国等均有分布。钽、铌精矿的主要生产国有加拿大、巴西、澳大利亚、扎伊尔、前苏联、泰国。美国和日本是钽铌主要消费国。 工艺流程 钽铌矿石的矿物组分复杂,成分不稳定,有价成分含量低,因而其选矿工艺流程较为复杂。通常钽铌矿的选矿工艺流程由粗选及精选两部分组成。不同矿床类型的矿石所含钽铌矿物种类不同,故其选矿工艺流程亦有所区别。 原生钽铌铁矿及细晶石选矿流程 此类矿石中的钽铁矿、铌铁矿多与绿柱石、锂辉石、锡石共生。粗选主要采用多段磨矿的多段重选流程。对某些矿石粗选还采用重选一浮选一重选或重选一浮选。精选多采用联合流程,根据钽铌矿物与伴生矿物种类常采用磁选、重选、浮选、浮选一重选、电选、化学选矿等方法相组合的联合工艺流程。如矿石中含泥多,应预先脱泥。富含钽的细晶石因其嵌布粒度(见矿物粒度)细,多用浮选工艺进行分选。 钽铁矿一铌铁矿砂矿选矿工艺流程 此类矿石中各矿物已基本单体解离,有用矿物密度大于4,某些矿物有磁性。粗选时采用重选工艺流程。所得粗精矿的精选主要采用磁选一重选、磁选一电选以及浮选联合工艺流程。 黄绿石选矿工艺流程 黄绿石有碳酸岩和伟晶岩两种主要类型。碳酸岩黄绿石矿床规模大,铌含量高,是重要的矿床类型。因矿石中矿物种类与含量不同,采用重选,磁选一浮选及焙烧磁选两种流程。伟晶岩黄绿石粗选采用多段碎矿、分级重选工艺流程。精选工艺流程多用磁选排除尾矿,浮选得黄绿石精矿。有时还采用电选或浮选除去粗精矿中的锆英石。典型选矿厂 宜春钽铌矿选矿厂位于中国江西宜春市。所用矿石属花岗岩多金属矿床;原矿含(Ta,Nb)2O50.03%(Ta:Nb=1.8:1)。选矿厂规模为1500t/d;选矿工艺流程为洗矿、破碎、筛分、磨矿、分级、磁选一重选联合流程和重选流程;矿石棒磨至-0.5mm后采用磁选一重选联合流程,得部分钽铌精矿;尾矿再磨至-0.2mm采用重选流程,得细粒钽铌精矿。钽铌精矿含(Ta,Nb)2O544.91%,回收率45.6%。 栗木锡矿选矿厂 位于中国广西壮族自治区境内。生产规模1000t/d。所用矿石属锡一钽铌一钨多金属花岗岩矿床。原矿含(Ta,Nb)2O5,0.0229%。选矿工艺流程包括多段破碎、预先筛分,矿泥集中处理,分级重选得混合粗精矿。再用重选一强磁选联合工艺流程精选。钽铌精矿含(Ta,Nb)2O52.515%,回收率40%。磁选尾矿再用火法冶炼处理。 泰美钽铌矿选矿厂 位于中国广东省境内,所用矿石属花岗岩风化壳铌铁矿床。原矿含(Ta,Nb)2O50.029%。粗选采用重选一磁选重选联合工艺流程。精选采用重选磁选-电选-浮选联合工艺流程。铌铁矿含Nb2O560%,回收率42.51%。 尼奥贝克(Niobec)黄绿石选矿厂位于加拿大魁北克省。所用矿石属碳酸岩铌矿床。生产规模2085t/d。原矿含Nb2O50.58%~0.66%。采用两段磨矿浮选-磁选联合工艺流程,包括磨矿、脱泥、碳酸盐矿物浮选,再脱泥、磁选、黄绿石浮选、黄铁矿浮选。黄绿石精矿浸出脱磷,浸出渣浮硫。黄绿石最终精矿含Nb2O560%~62%。

钽铌冶金简史

2019-10-29 15:04:26

(1) 1801年英国化学家哈特契特发现元素铌; 1802年瑞典化学家安德斯•古斯塔夫•埃克伯格发现了元素钽。(2) 1865年瑞士化学家马利尼亚克发明晰钽铌别离的分步结晶法。(3) 1866年,在高温下用氢还原五 氯 化铌首要得到了金属铌。(4) 1903年,用钠还原钽氟络盐制备了可锻金属钽。(5) 1922年,熔盐电解生产钽粉成功,使钽的生产达到工业规模。(6) 1944年发明晰铌的碳还原法,奠定了铌的工业生产根基

铋矿的特征及找矿标志

2019-01-24 17:45:50

一、铋矿物特征 铋素有“绿色金属”之称,广泛应用于医药、化妆品、工业颜料、催化剂、阻燃剂、电子陶瓷与晶体、半导体致冷器件、冶金添加剂、易熔合金、铋基合金、超导、铋电池和核子反应堆等领域。 铋为稀有金属元素,在地壳中平均含量为0.17ppm, 接近于银,为钨丰度的13%。 自然界中,铋以单质和化合物两种状态存在,但自然铋罕见。绝大部分铋呈硫化物、碲化物、硫盐矿物和铜、铂族等金属互化物等矿物产出。主要矿物有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3·mCO2·H2O)、铜铋矿(3Cu2S·4Bi2S3)、方铅铋矿(2PbS·Bi2S)。 自然铋,Bismuth,罕见于自然界,一般见于硫浓度不大的高温热液矿床中,与银、钴、镍、铅和锑矿物相伴共生,少数在伟晶花岗岩内产出。自然铋的新鲜断面呈微带浅黄的银白色,在空气中暴露过久则出现浅红的锖色。晶体罕见,常以树枝状、片状、粒状或块状集合体出现。闪亮银白色条痕、低硬度(2~2.5)、高比重(9.7~9.8)、一组完全解理为其鉴定特征。自然铋具脆性,延性及展性均不良,具导电性和逆磁性。吹管分析具Bi的被膜反应。主要产于高温热液钨锡矿床中,部分产于伟晶花岗岩内,常与锡石(Cassiterite)、辉钼矿(Molybdenite)、辉铋矿(Bismuthinite)、黑钨矿(Wolframite)等矿物共生。 辉铋矿,Bismuthinite,Bi2S3;Bi 81.3%,S 18.7%。与Pb、Cu、Fe常发生类质同像替换;在Pb2+代替Bi3+的同时,Cu相应地进入晶格,使电价得以补偿。也可与Sb、Se、Te发生类质同像替换,Sb不完全代替Bi可达8.12%,其变种称锑辉铋矿。Se不完全代替S可达9.0%,称硒辉铋矿;Se含量最高达26%,称硒铋矿Bi2(Se,S)3。Te则可能形成Bi的碲化物和碲硫化物,以机械混入物形式存在。有时也含As、Au、Ag等混入物。辉铋矿晶体为斜方双锥晶类,晶体沿c轴呈长柱状或针状,柱面具纵条纹,依(110)成双晶。集合体为放射柱状、致密粒状、柱状和针状。锡白色(带铅灰色),表面常有黄色锖色。条痕灰黑或铅灰色。金属光泽较辉锑矿更强。不透明。解理{010}完全。硬度2~2.5,比重6.4~6.8,微具挠性。主要产于高温热液型W、Sn、Bi矿床中,常呈充填脉状,与黑钨矿、锡石、辉钼矿、黄玉、绿柱石、毒砂、黄铁矿等共生。在表生条件下,辉铋矿易风化成铋的氧化物或碳酸盐,如铋华Bi2O3、泡铋矿Bi2CO3O2。其鉴定特征与辉锑矿相似,为锡白色,光泽较强,解理面上无横纹;鉴定与和它相似的辉锑矿的区别是辉铋矿具有更强的光泽,更大的比重,并且二者与KOH之反应不同。辉铋矿分布虽然非常广,但有开采价值的矿床却非常少,一般都作为其他金属矿床的伴生组分。 铬铋矿,见于陕西省洛南县驾鹿金矿。呈规则状微细晶微集合体,柱状小晶体大小在0.005mm×0.002mm~0.05mm×0.025mm之间,集合体大小约0.01~0.5mm。呈桔黄色或黄棕色,性脆,半透明,条痕棕黄色,金刚光泽,具不完全解理;一轴晶,正光性,比重9.8。 泡铋矿,bismutite,是碱式碳酸铋,比较常见的铋矿物蚀变产物。一般为黄色玻璃状晶体或土状、壳状。 铋华,Bismite,Be2O3,α-BiO2;Bi 89.68%,O 10.32%。晶体少见,通常呈块状、粉末状、土状或叶片状集合体。硬度4.5,比重9.41,土状集合体的硬度和比重都降低(硬度1~2,比重4.36),解理无,断口不平坦状,贝壳状或土状断口。浅黄~黄,浅绿~橄榄绿或黄绿~绿黄色,条痕浅黄~黄,浅绿~橄榄绿或黄绿~绿黄色,不透明至微透明,细薄碎片透明,半金刚光泽、暗淡光泽或土状光泽。常含有铁、砷等杂质,大部分含有铋的碳酸盐或是铋的氧化物和碳酸盐的混合物。以其形状及颜色作为鉴定特征;产于含铋矿床氧化带,主要是辉铋矿、自然铋及少量针硫铋铅矿次生变化的产物;与泡铋矿、氯铋矿(BiOCl)、钒铋矿等紧密共生。 其他含铋矿物有:黑铋金矿Maldonite,Au2Bi;六方铋钯矿Sobolevskite,PdBi;软铋铅钯矿(六方铅铋钯)Urvantsevite,Pd(Bi,Pd)2;斜铋钯矿Froodite,PdBi2;铋砷钯矿Palladobismutharsenide,Pd2(As2,Bi);等轴铋铂矿Insizwaite,Pt(Bi,Sb)2等。 二、铋矿资源特征 铋是典型的稀有分散金属元素。虽然铋的独立矿物常见,但极少富集为独立工业矿床。除玻利维亚和广东省怀集县外,几乎没有单独的铋矿床产出。铋主要以伴生元素存在于钨锡矿山中, 次为铅锌矿、铜矿、钼矿和金矿。即使是伴生矿,因含量及产量的原因,铋在这些矿山中,也不是主要产品而是副产品。 伴生铋矿床主要以气成矿床、高温交代矿床、热液矿床为主,与铅、锌、铜、钨、钼、锡、金、铁、银等矿伴生。 共伴生铋矿床的类型有:蚀变花岗岩型、云英岩型、石英脉型、磁铁矿-矽卡岩型、硫化物-矽卡岩型和斑岩型。 按矿物组成可分为:辉铋矿-长石型、辉铋矿-石英型和辉铋矿-矽卡岩型。 据《矿产工业要求参考手册》(修订版, 1987),铋的独立矿床的最低工业品位为0.5%。 何周虎等(2004)对比钨、锡和银的工业指标,建议将铋矿床的工业指标修正为:Bi的边界品位0.05~0.10%,最低工业品位0.10~0.20%, 矿床平均品位0.30~0.40%, 矿床综合利用品位0.045~0.050%(关于铋矿床工业指标的讨论,华南地质与矿产,2004,第2期)。 广东省英德长岗岭石英脉型铋矿床:Bi的边界品位0.2%, 块段最低平均品位0.4%;广东省棉土窝钨铋矿床: 边界品位(W + Bi)为0.13%,块段最低平均品位(W + Bi) 0.2%。 湖南郴州苏仙区水湖里磁铁矿—矽卡岩型铋锡矿床,边界品位为,TFe≥20%;Sn 0.2%;Bi ≥0.06%;最低工业品位为,Sn 0.23%;Bi≥0.12%。苏仙区金船塘磁铁矿—矽卡岩型铋锡矿床,Bi的边界品位 0.10%;最低工业品位0.20%。 截止2008年,全球探明的铋储量约40万吨,储量基础约70万吨。主要分布在中国、美国、澳大利亚、日本、玻利维亚、墨西哥、加拿大、秘鲁、韩国等。日本曾因有伴生大量铋矿物的生野和明延山铅锌矿和黑矿矿床,据1989年报道,铋储量为5.8万吨。但1991年日本所组织的地质调查重新估计, 其铋储量实际为8745吨。 中国铋资源储量居世界首位,主要分布在湖南、江西、广东、云南和内蒙,尤以湖南郴州和赣南地区最为丰富。2000年湖南省国土资源资料表明,保有铋储量32.26万吨,其中柿竹园区铋储量就达21.33万吨(平均品位0.17%)。近年,柿竹园附近的金船塘~玛瑙山矿区,铋资源总量虽不及柿竹园矿区,但它矿点多,品位高,可选性好。铋精矿总产量大大超过柿竹园,精矿铋金属含量年产规模在2000 吨以上。 除中国外,全球主要生产国有18个, 主要的铋生产国有美国、独联体、墨西哥、秘鲁、加拿大和澳大利亚。他们均从铅、铜及铅银精矿中以副产品回收铋金属,韩国则产自钨精矿,仅玻利维亚开采铋矿床。此外,铋的回收主要从阳极泥和冶炼烟尘中提取。 1987年,世界精铋产量约4400吨, 1991年已降至4000吨以下。日本原是铋产品的出口国,1987年日本铋产品进口首次超过出口, 此后继续这一趋势,由出口国转变为大进口国。2000年全球铋产量为4500吨~5000吨,2003年铋的产量8000吨~8500吨,2004年和2005年分别达9000吨和10000吨。 中国既是世界上最大的铋生产国,又是世界上最大的铋原料出口国。2000年铋产量约3500吨,2003年达7000吨,2005年达8000~8500吨,占世界铋产量的近80%。据不完全统计,2003年国内铋的消费约1000吨,2005年消费1500吨~1800吨,其余80%的产品出口国际市场。2005年全球铋金属矿交易量1万吨,我国出口8000吨,其中郴州出口约6000吨。 纯铋(99.99%)的价格波动较大,铋锭最高价曾达33万∕吨,最低价4万多元∕吨。 1991年初6.45美元∕公斤; 1991年底7.01美元∕公斤; 2006年为4.6~4.8美元∕磅;5万元∕吨; 2007年1月8.083~8.508美元∕磅; 2007年6月17.389~18.833美元∕磅; 2008年1月11.489~12.456美元∕磅;14.8~15万元∕吨; 2008年4月15.606~16.628美元∕磅; 2008年9月9.4~10.75美元∕磅;14万~14.5万元∕吨; 2009年8月26日5.9~7.7美元∕磅;8.5万∕吨; 2009年9月9日8~9.25美元∕磅;12万元∕吨。 三、找矿标志 (一)钨矿床。钨矿石含铋平均在0.01~0.3%之间。特别以石英大脉型和石英脉带型黑钨矿床共、伴生铋的品位最高,为0.03~0.3%;而以含白钨矿为主的钨矿床及黑、白钨混合钨矿床,含铋则较低,平均品位一般0.01~0.07%。脉钨矿床以独立铋矿物相存在,主要为铅铋硫盐系列矿物,其次是碲铋矿和自然铋。各类铋矿物含量在不同矿区有所差异。一般自然铋含量<10%,但江西大龙山、樟斗钨矿等可高达30%~40%。氧化后的次生铋矿物有泡铋矿、铋华等。 (二)锡矿床。锡矿石含铋平均在0.01~0.1%之间,如云南个旧锡矿和广东黄家山锡矿。 (三)钼矿床。钼矿石含铋平均在0.01~0.24%之间,如江西萌掌山钼铋矿和安徽青阳铜钼矿。 (四)铜矿床。铜矿石含铋平均在0.01%,如甘肃白银厂、湖南宝山、福建边城铜矿。 (五)铅锌矿。铋大都呈类质同象分散在方铅矿中, 仅能在铅精矿冶炼时综合回收。铅锌矿床勘探阶段对伴生铋的查定和研究工作较少。 (六)金矿床。Au和Bi的地球化学性质有一定的相似性,可互为找矿标志。金矿床中富含铋矿物的地段,往往富含金。自然铋的出现可作为含钾石英脉富金矿地段的重要标志。

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

氯气选择性浸出硫化铋矿

2019-01-31 11:06:04

此法选用操控电位的方法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。避免了很多的铁离子在流程中的循环和三价铁的再生问题,提高了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反应为:选择性浸出,铋的选择性较高,但消耗量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。 选择性浸出的工艺流程见图1。图1  选择性浸出铋准则工艺流程图

利用钽铌可浮性 将钽铌快速分离

2019-02-26 09:00:22

含钽铌的矿藏主要是钽铁和烧绿石。钽铌铁矿中含钽多的叫做钽铁矿,含铌多的叫铌铁矿。 钽铌铁矿和烧绿石可用阳离子捕收剂捕收,也可用阴离子捕收剂。用络合捕收剂(如羟肟酸钠)浮选作用较好。 用油酸作捕收剂,在pH值为6-8时,钽铌矿的浮游性最好,在酸性介质中钽铁矿和铌铁矿都被按捺,而石英、长石和白云石在任何pH值下浮游性都不好。因此在pH=6~8时,用油酸作捕收剂,很简单将钽锭矿与石英等脉石别离。 用10%的酸(硫酸)处理钽铌矿后,它变得简单浮游。随酸的用量增大,钽铌矿的可浮性增大,用硫酸作用比用作用好。用1%的处理,活化程度与硫酸类似。用油酸作捕收剂,的浓度为10-20毫克/升时,就能按捺钽锭矿及部分脉石。用阳离子捕收剂时,开始活化钽铌矿等一些矿藏,但随着其用量的添加,钽铌矿的回收率下降。用油酸捕收钽铌矿时,少数的钠能使悉数矿藏按捺。

铌钽萃取法分离

2019-02-22 12:01:55

铌钽萃取法别离(separation of niobium and tantalum by solvent extraction)用溶剂革取法从铌钽化合物中提取单一高纯铌、钽中间产品的进程。这是国际范围内遍及选用的一种铌钽别离办法。萃取系统一个萃取系统由水相和有机相组成。铌和钽的萃取别离的水相主要有含铌钽的氟氢酸料液水相、硫酸料液水相、草酸料液水相。铌和钽只要在氟氢酸中才有足够大的溶解度。例如当[HF]=418g/L时,溶液含Nb2O5775g/L;[HF]=302g/L时,溶液含Ta2O51282g/L。在氟氢酸溶液中,铌主要以H2NbOF5,HNbF6、H2NbF7,钽主要以H2TaOF5、HTaF6、H2TaF5等配位离子形状存在。钽的金属性比铌强,更易生成安稳的H2TaF7,铌易生成H2NbOF5形状,这种差别是铌和钽别离的根底。用氟氢酸分化钽铌精矿时,参加硫酸能够进步精矿的分化率,又能进步铌钽的萃取率和别离功率,故工业上遍及选用HF+H2SO4的混合酸水相料液。水相料液中除铌钽外,还有杂质H2Ti0F4、H2TiF6、H2SiF6、Ti(S04)2等合作物。溶剂萃取的有机相一般由革取剂和稀释剂组成。工业上铌钽别离常用的萃取剂有甲基异丁基酮(MIBK)、磷酸三丁酯(TBP)、环已酮、乙酰胺(全名为N—N二混合烷基乙酰胺)、仲辛醇。这些萃取剂各具优缺陷,如MIBK的萃取挑选性好,对钽铌的萃取容量大,密度轻,粘度小,操作安稳,易于控制,可用纯水反萃取钽,是国际上较遍及运用的萃取剂。它的水溶性大(298K时到达18.2g/t,),闪点低(296.7K),挥发性大,是其缺陷。仲辛醇和乙酰胺是我国开发和选用的萃取剂。前者的萃取挑选性好,水溶性小(0.08%),报价低,但粘度大,反萃取时简略呈现乳化现象。后者适于处理高铌钽比(Nb2O5:Ta2O5=7)、高钛(TiO2%)、高钨(>10%)和含磷钽铌精矿的分化产品。TBP的萃取挑选性好,国际上规模最大的铌萃取工厂——巴西矿业冶金公司(CiaBrasiloira de metallurgia e Mineracao)就选用这种萃取剂。萃取机理在HF-H2SO4混合酸水相料液中,铌和钽的萃取归于离子型合作物萃取,如TBP萃取时生成物为HTaF6•xTBP和HNbF6•xTBP(x=1~4)。仲辛醇萃取时生成三种萃合物,主要是纯仲辛醇(ROH)萃取铌和钽的反响:式中Me代表Nb或Ta。 工业上用的仲辛醇,实际上是仲辛醇和甲庚酮混合物(含甲庚酮10%~15%),在萃取别离铌、钽时存在协同萃取反响:萃取工艺依据原猜中铌钽含量比,选用别离萃取别离或一起萃取后反萃别离两种方法。铌和钽含量相差较大时,大多选用别离萃取方法。图1所示为MIBK萃取铌和钽的曲线。由图看出,选用别离萃取时,在低酸度下先萃取铌,再在高酸度下萃取钽。一起萃取是将铌钽一起萃取到有机相,再从铌钽的负载有机相中别离反萃取铌和钽,即高酸度反萃取铌,低酸度反萃取钽。一起萃取方法的设备简略,便于操作,为国际上的铌钽工厂广泛选用。铌钽一起萃取到有机相后,洗刷负载有机相和反萃取别离铌钽便成为关键环节。应依据所选用的萃取剂和水相料液而选用适宜的洗刷剂和反萃取剂。如仲辛醇-HF-H2SO4萃取系统,一般用硫酸溶液洗刷负载有机相,用含H2SO41mol/L的溶液反萃取铌,用纯水反萃取钽。添加有机相和水相料液的体积比,可进步铌钽的萃取率,选用多级萃取能完全萃取铌钽。水相料液中以氟合作物形状被萃取的其他金属离子有Sn2+、Sn4+、RE3+等,可部分萃取的有As3+、As5+、Mo5+、Se4+、Fe3+、W6+、V3+、V5+、Sb5+等。水相料液酸度的挑选是以有机相中铌钽到达饱满浓度为最佳,此刻萃取入有机相中的杂质可减到最小。进入有机相的杂质,用硫酸溶液或硫酸和硫酸铵的混合液洗去。为铌钽饱满的仲辛醇用含H2SO44mol/L溶液洗刷作用最好。萃取设备工业上选用于铌钽别离的革取设备为多级箱式混合澄清器或萃取塔(填料塔、筛板塔等)。因为HF—H2SO4混合酸液腐蚀性强,遍及运用由低压聚乙烯板、聚板焊接或内衬聚四氟乙烯材料制造的多级箱式混合澄清器。矿浆萃取铌钽精矿经HF-H2SO4浸出后,残留的固体物较少,不过滤别离残渣固体,直接作为萃取料液的萃取,称为矿浆革取。我国广泛选用铌钽矿浆萃取法。与清液萃取比较,矿浆萃取可省去分化残渣的过滤和洗刷,缩短出产周期,减轻劳动强度,改进劳动条件,并有利于进程的密闭和接连化。此外,还可削减过滤的附属设备,进步分化槽的出产能力和铌钽的回收率。清液萃取时,因过滤残渣中含浸出液,残留的铌和钽[(Ta+Nb)2O5]达1%~5%;矿浆萃取的残液仅含(Ta+Nb)2O50.1g/L,,丢失在渣中的铌钽很少。矿浆萃取既合适铌钽含量比改变大的质料,也适用于低档次铌钽精矿的分化产品。矿浆萃取用箱式混合澄清器的澄清室底部有矿浆沉降区,常常受混合相排出物冲击,使残渣在萃取器内不易堆积。澄清室底部向混合室歪斜约15。,以利残渣流向混合室。仲辛醇矿浆萃取工艺流程如图2。  展望含铌钽的氟氢酸水相料液萃取别离的作用好,工艺日趋老练,工业上仍将广泛选用。但这种水相料液污染问题较严峻,且不易完全管理。为此,需求开发安全性和不污染或少污染环境的其他水相料液,如硫酸水相料液、草酸水相料液等,以及开发新的高效萃取剂。

钽铌精矿分解

2019-03-05 12:01:05

钽铌矿藏很难将其分化。一般依据精矿中的矿藏结构及其化学成分和需求取得什知类型的中间化合物和纯度要求来挑选分化办法。工业上钽铌精矿分化办法首要有三种:碱分化法、酸分化法和氯化分化法。此外还有氟化分化、电解分化法;分析化学中还选用KHSO4、K2S2O7、KHF2分化样品。其间,碱熔分化法是最最选用的工业办法,后续首要接分步结晶法别离钽和铌,也可进行酸转化接溶剂萃取法;氯化分化法一般后续精馏法别离钽和铌;酸分化法首要接溶剂萃取法或离子交换法别离钽和铌。       一、碱分化法       碱法分化钽铌精矿首要选用NaOH和KOH试剂,为了下降熔融物的熔点和黏度,常选用NOH+Na2CO3或KOH+K2CO3混合试剂。碱分化按设备和工艺分有坩埚碱熔分化和高压釜碱液分化两种办法。图1为碱熔融处理钽(铌)铁精矿的准则流程图。从中可看出NaOH和KOH熔融的不同之处。   图1  碱分化流程简图       (一)钽铌碱金属化合物的一般性质       和本家中的磷相似,钽、铌和碱金属氧化物能生成偏钽(铌)酸盐(MTaO3、MnbO3)(M为钾钠等碱金属,下同)、焦钽(铌)酸盐(M4Ta2O7、M4Nb2O7)和原钽(铌)酸盐(M2TaO4、M3NbO4)等多种盐类,一般将它们表明为:M2O·nTa2O5、M2O·nNb2O5,式中n值改变很大,常在10以上。实际上它们归于一种多聚体,其原子比一般为M∶Ta(Nb)=16∶14;14∶12;12∶10;16∶12∶;10∶8;7∶5;8∶6;6∶4,化合物中的结晶水分子数改变也很大,从1到40或更多。       钽铌碱金属化合物有如下性质:       1、当用碱金属的氧化物或碳酸盐与钽(铌)氧化物熔融时,因组分不同能够得到不同成分的钽铌酸盐,当M2O∶(Ta,Nb)2O5=1∶1时生成偏钽(铌)酸盐;当碱过量时生成原钽(铌)酸盐见图2、图3、图4。     2、钾和钠的偏钽(铌)酸盐少溶于水,不发作水解,也不为所分化。并且偏钽(铌)酸盐较易被氢复原成贱价氧化物:   2MnbO3+H2=M2O+2NbO2+H2O       复原温度>400℃   2MtaO3+H2=M2O+2TaO2+H2O       复原温度600~700℃     图2  K2O(K2CO3)-Nb2O5系熔度图    图3  K2O(K2CO3)-Ta2O5    图4  Na2O(Na2CO3)-Nb2O5系熔度图       3、各种温度下偏钽(铌)酸盐在水中的溶解度见表1,溶度积见表2,一些热力学数据见表3。   表1  碱金属偏钽(铌)酸盐在水中的溶解度    (mol/L)化合物0℃25℃50℃75℃100℃NaNbO34.3×10-45.9×10-41.6×10-33.7×10-37.4×10-3KnbO37.4×10-48.7×10-44.4×10-39.5×10-31.3×10-2NaTaO34.69×10-55.46×10-51.10×10-43.19×10-42.39×10-4KtaO34.34×10-54.87×10-51.22×10-42.88×10-44.89×10-4   表2  25℃下碱金属偏钽(铌)酸盐的溶度积化合物溶度积化合物溶度积NaNbO33.23×10-7NaTaO32.99×10-9KnbO37.48×10-7KTaO32.37×10-9       表3  偏钽(铌)酸盐的一些热力学数据,温度20℃化合物溶解度/ (mol·L-1)自由能△F/ (kJ·mol-1)溶解热/ (J·mol-1)晶格能/ (J·mol-1)NaNbO34.803×10-436.819260.2496886.59KNbO36.726×10-435.145678.6952785.76NaTaO34.679×10-548.534444.7688960.65KTaO33.959×10-549.371259.8312843.49       4、与偏钽铌酸盐不同,原钽铌酸盐简单水解并构成一系列的多钽(铌)酸盐,如M8(Ta,Nb)5O16·nH2O,M7(Ta,Nb)5O16·nH2O,M14(Ta,Nb)12O37·NH2O等,又如水解反响:   6Na3TaO4+21H2O=Na8Ta6O19·16H2O+10NaOH       铌也有相似反响。并且两者的高碱酸盐(K5NbO5)都存在这样的水解次序:      5、当Na+离子过量时,多钽(铌)酸钠很少溶解,如90℃时Na7Nb12O37·23H2O在水和1%NaOH溶解中的溶解度分别为26g/L和1.1g/L。可是多钽(铌)酸钾则有很高的溶解度,乃至钾离子很多过剩时也溶解度很大。例如中,25℃时六铌酸钾K8Nb6O19·16H2O在水中的溶解度到达111.8g/L,生成的六钽(铌)酸钾盐可溶于水而不分化,并且可用真空蒸腾浓缩使以晶体方式分出。       (二)碱熔融分化钽(铌)铁矿精矿       1、碱熔分化工艺进程       国内外碱溶分化钽铌精矿的工业施行办法根本相似。一般将精矿与放内钢质坩埚中,在煤气敞式炉或竖式电炉中进行熔炼。大致的碱:精矿(分量比)=3∶1(碱耗约为反响理论需求量的6~8倍)。为了下降熔融体的温度和黏度,往往选用90%的NaOH加10%的Na2CO3混合试剂。       操作时先将混合试剂在400~500℃下熔融,然后边拌和边参加磨至0.1mm的精矿(精矿过细会形成较高的漂尘丢失,参加量过大或过快会引起剧烈反响,导致熔体喷溅)。随精矿持续批量参加,将温度升至800℃,保温20~30min,然后将熔体倒入水中(水淬),或薄层倒入铁盘中。熔炼工艺也选用相似的办法。       2、熔炼反响       首要的熔炼反响如下:       Fe[(Ta,Nb)O3]2+6MOH=2M3(Ta,Nb)O4+FeO+3H2O       Mn[(Ta,Nb)O3]2+6MOH=2M3(Ta,Nb)O4+MnO+3H2O       FeWO4+2MOH=M2WO4+FeO+H2O      MnWO4+2MOH=M2WO4+MnO+H2O       FeTiO3+2MOH=M2TiO3+FeO+H2O       Al2O3+2MOH=2MAlO2+H2O       SiO2+2MOH=M2SiO2+H2O       SnO2+2MOH=M2SnO2+H2O       熔融时参加氧或硝石等氧化剂,使铁锰氧化。       NaOH和KOH分化的不同在于:NaOH分化时多钽酸钠和多铌酸钠与氧化铁、氧化锰均转入沉积中,而大部分硅、锡、钨、铝则以硅酸盐等方式转入溶液中。然后加热用处理沉积物浸洗掉铁和锰,最终获工业纯钽铌混合氧化物。而用KOH分化时,用水浸熔体可使大部分钽和铌以可溶性多钽(铌)酸钾的方式进入溶液,氧化铁、氧化锰和钛酸钾则留在水浸渣中。水浸液中再参加氯化钠,使钽铌以难溶的多钽(铌)酸钠方式悉数沉积出来。再用处理沉积物即可获钽和铌的混合氧化物。       KOH分化所得钽铌混合氧化物的纯度较NaOH分化混合氧化物高,缺陷是钽铌的直收率偏低(仅80%)。       (三)碱溶液高压釜分化       碱熔分化的缺陷在于碱耗过高(每1kg精矿耗碱3kg)。选用碱溶液高压釜分化可使碱耗降至0.5kg(为碱熔法的1/6)。分化时选用30%~40%NaOH和KOH,温度在150~200℃,时刻约2~3h,分化时先生成多钽(铌)酸,然后转化成偏钽(铌)酸,反响为:   3Fe[(Ta,Nb)O3]2+8NaOH+(n-1)H2O→Na8(Ta,Nb)6O19·nH2O+3Fe(OH)2   Na8(Ta,Nb)6O19·nH2O→6Na(Ta,Nb)O3+2NaOH+(n-1)H2O       分化后弄清或过滤,滤液初充碱后返回心压釜再用。沉积物则用15%HCl浸洗(固∶液=1∶1,80~90℃,30min)。过滤所得偏钽铌酸盐在20℃下即可为15%~20%HF所溶解。       用KOH分化时(33%~37%KOH,200℃),为进步生成多钽(铌)酸的速度,还向高压釜参加氧化剂(氧压0.4~0.5MPa),所生成的K8(Ta,Nb)6O19·Nh2O虽难溶于KOH溶液,但易溶于水,为此在高压釜分化后沉积物先水浸[固液比1∶(4~5)],将钽铌转入溶液,将溶液蒸腾浓缩后再加KOH使从头沉积出六钽(铌)酸盐,经分化即可得到适当纯的钽铌混合氧化物。       二、酸分化       钽铌的高度耐蚀性的长处,关于冶金更成了缺陷:很难用廉价的工业无机酸作为他们的冶金根底。除了腐蚀性最强的HF酸外,钽铌很难为其他无机酸所溶解,并且溶解度很小。从溶解度表4可看出,能用于分化精矿的只能是HF酸,其次是硫酸。因此有分化和硫酸分化两种办法,其间法用于高档次精矿,硫酸法用于低档次质料。   表4  钽铌在无机酸中的溶解度(20℃)酸名酸浓度/ (g·L-1)Na2O5溶解度/ (g·L-1)酸浓度/ (g·L-1)Ta2O5溶解度/ (g·L-1)HCl660.072360.2314514.8362923.48H2SO4680.047490.2059007.67841.8HF4187753021282       (一)分化法       和其他分化办法不同,分化一起也是浸出进程。分化一般在内衬铅、钼镍合金或镶砌石墨板的反响器中进行,拌和哭喊用蒙耐尔合金(含铜27%~29%铜镍合金)制造。       浸出液中钽铌以络合酸的方式存在,其组分与HF酸的浓度有关。对铌而言随HF酸浓度的添加,会呈现由氟氧铌酸络合物型向氟铌酸络合物型的过滤:H2NbOF5→H2NbF7→HNbF6,对金属性较铌强的钽则由:H2TaF7→HTaF6。浸出反响为:       Nb2O5+10HF=2H2NbOF5+3H2O(低酸度HF<20%)       Nb2O5+14HF=2H2NbF7+5H2O(高酸度 HF浓度为20%~40%)       Nb2O5+12HF=2HNbF6+5H2O(高酸度 HF浓度为20%~40%)       Ta2O5+14HF=2H2TaF7+5H2O(高酸度 HF浓度为20%~40%)       Ta2O5+12HF=2HTaF6+5H2O(高酸度 HF浓度为20%~40%)       即便在高酸度下,除了占主导地位的一种络合物外,实际上是多种络合酸并存。图5和图6分别为NbF5-HF-H2O和TaF5-HF-H2O在20℃时的等温溶解度图。  图5  NbF-HF-H2O系溶解度图(20℃)    图6  TaF5-HF-H2O系溶解度(温度20℃)       关于精矿,因为存在多种杂质,反响要杂乱得多,例如铁锰等也会以络合物方式如HFeF3,HMnF3等存在浸出液中。以钽(铌)铁矿为例,分化浸出反响还有:   Fe(Ta,Nb)2O6+17HF=2H2(Ta,Nb)F7+HFeF3+6H2O   Mn(Ta,Nb)2O6+17HF=2H2(Ta,Nb)F7+HMnF3+6H2O       除了钽、铌、铁、锰之外,在伴生矿藏中所含的其他元素如锡、钛、硅、钨也以络合酸H2SnF6、H2SiF6、H2WF8的方式进入溶液。而稀土、铀、钍、钙等则以沉积物方式REF3、UF4、ThF4、CaF2残留在浸出渣中。     为了加速反响速度和进步钽铌的分化率,分化时还参加硫酸。硫酸的参加还有利于后认取工序进步杂质的别离效果。一般选用60%~70%浓度的,分化温度为90~100℃,耗酸量按化学反响计量的理论用,并超越5%~10%。分化时,将磨至粒度<0.074mm的精矿边拌和边参加反响器中,操控温度小于50℃,因分化为放热反响,加料过快,反响过于剧烈,易形成HF酸蒸发丢失。矿粉加完后,通蒸气或用石墨电阻发热体持续加热至90~100℃,拌和保温4h,冷却后过滤或直接送萃取工序。一般钽铌分化率达98%以上。分化残渣中的钽铌含量低于1%。       (二)硫酸分化法       钽铌能和硫酸效果生成多种硫酸盐,并且在硫酸介质中钽和铌表现出较大的不同。例如铌更易被复原成贱价和更易发作水解,在硫酸介质中铌很简单被锌齐、金属镁和碱金属复原到+3价。钽很难复原,并且只能到达+4价。钽铌硫酸化合物都易和碱金属和铵生成复盐,并且这些复盐都简单水解。随硫酸浓度添加,反响如下:   Nb2O5+H2SO4=Nb2O4SO4+H2O   Nb2O5+2H2SO4=Nb2O3(SO4)2+2H2O   Nb2O5+3H2SO4=Nb2O2(SO4)3+3H2O(中)   Nb2O5+4H2SO4=Nb2O2(SO4)4+4H2O(中)       钽的金属性较强,除上述反响外,还有反响:   Ta2O5+5H2SO4=Ta2(SO4)5+5H2O       图7为Nb2O5-SO3-H2O的等温溶解度图。硫酸分化后一般再用水浸熔料使钽铌水解沉积,一起别离掉大部分铁、锰等可溶性硫酸盐杂质。但也有从硫酸溶液中直接萃取别离钽和铌。    图7  20℃下Nb2O5-SO3-H2O系溶解度图

钽铌矿简介

2019-02-22 09:16:34

钽(Ta)铌(Nb)都归于高熔点(钽 2996℃、铌2468℃)、高沸点(钽5427℃、铌5127℃)稀有金属,外观似钢,灰白色光泽,粉末呈深灰色,具有吸气、耐腐蚀、超导性、单极导电性和在高温下强度高级特性。 因而,当时钽铌新材料使用的相关高技能工业范畴包含电子、精细陶瓷和精细玻璃工业;电声光器材;硬质合金,宇航及电子能工业;生物医学工程;超导工业;特种钢等工业。 钽和铌在电子工业、化学工业、特种合金以及真空技能、 尖端技能方面都具有非常重要的位置。在电子工业中使用钽金属制造的电解电容器具有电容量大、漏电流小、安稳性好、可靠性高、耐压功能好、寿命长、体积小等杰出特色。 很多用于国防、航空、航天、电子核算机、高档次的民用电器及各类电子外表的电子线路中。     在冶金工业中,钽铌首要用作出产高强度合金钢、改进各种合金功能和制造超硬东西的添加剂。     近期,全国际范围内工业化的进程与美元的价值降低加快了金属、非金属等资源报价的大幅上涨,稀有金属商场需求进一步加大。钽、铌、等高新技能产品的研制和出产进入了一个新的增加时期。在国内同职业中第一个被“国际钽铌研讨中心(TIC)”接收为成员,国家科技部确定的国家级要点高新技能厂商的宁夏东方有色金属集团,在其34个系列产品中,占有23个种类属新材料范畴的高新技能产品,钽粉、钽丝别离占国际20%和45%的商场份额,一起也是我国国防、核能、宇航、电子、冶金和化工等高新技能范畴极为重要的新材料直销基地,代表着我国稀有金属工业正在走向一个新的转折点。     钽铌商场回暖 使用增加     近年来,跟着核算机、数码相机、手机、车载电子体系需求转旺的拉动,钽的需求在逐步走出低谷。钽精矿报价也回到正常水平。国际近年对钽的总需求在2000吨左右,而对铌的需求是20000余吨;钽的首要用途是电容器用钽粉及其钽丝,其用量占总消费量的一半以上;铌的首要用途是作钢铁的添加剂,其用量占总消费量的近九成;2000年是钽消费的顶峰之年,钽的总用量到达创记录的2235吨,2001年则敏捷下掉到1562吨,至2004年其产值稳步进步挨近2000吨;铌的需求则一向较为平稳。     我国的资源优势显着     我国一些特大或大型钽铌矿状况:     特色:钽矿床规划小,矿石档次低,嵌布粒度细而涣散,多金属伴生,形成难采、难分、难选,回收率低;赋存状况差,大规划露采的矿山较少。我国没有独立的铌矿山,铌往往与稀土、钽伴生。     储量:我国所规则的钽铌矿床储量核算的最低工业档次目标为:(Ta、Nb)205 0.016-0.028%,从我国大部分钽铌矿床档次都挨近或略高于最低工业档次目标。Ta205档次超越0.02%的几乎没有,而Nb205档次超越0.1%的也只要几个碳酸岩类型的矿床,其它类型矿床Nb205档次均在0.02%左右。     钽铌储量数据显现,我国钽(Ta205)储量和根底储量在数量上仍是很大的,但我国钽资源Ta205档次几乎没有一个超越0.02%,明显以这样低的档次套改出的“储量”与国外高档次核算出的储量难有可比性。铌亦是如此。     钽铌冶炼、加工工艺不断创新     湿法冶金     矿浆萃取;火法分化、低酸萃取;离线分析、在线分析及微机监控;冷结晶;接连喷发沉积出产低氟Ta205、Nb205的工艺;过氧化沉积出产高纯Ta205、Nb205;大流通量混合—弄清萃取槽和组合式萃取设备;选用国际先进的真空旋转烘干设备和远红外接连烘干设备。     火法冶金     钽粉:高比容钽粉的脱氧办法、控氧办法、掺磷掺氮技能和造粒热团化技能,研讨出了J、P、D、DP、W等多种钽粉出产工艺,开发出了10000-30000-50000-70000-80000μFv/g系列出口高比容钽粉,研讨水平超越100000μFv/g,高压高比容钽粉逐成系列,研讨了氧化钽复原的新办法。     铌粉:用铝热复原—水平EB炉精粹新工艺出产和提纯金属铌,出产铌粉和其它金属铌及其合金产品。电容器级铌粉研讨水平已达比容100000-120000μFv/g。        金属加工     钽丝:选用了全新的等静压成型、垂熔烧结、型轧开坯、多模接连拉拔、特殊表面处理、接连退火和接连清洗等工艺进程,开发出了Φ0.25-0.20-0.17mm系列出口细径钽丝,研讨水平达Φ0.065mm,钽丝抗拉强度能够按客户要求控制在32-168Kgf/mm2的广泛范围内,并可依据用客户要求进步产品的抗脆功能、抗高温曲折功能、抗引拔功能。     锭、棒、板、管、片:精练的技能才能增强,有100、200、600KW电子束炉和1吨电弧炉,能够出产多种规格的钽铌金属及其合金锭,用其作质料,能够出产各种 规格的管、棒、板、片、箔材。     钽铌使用及新技能、新材料的研讨开发热门     钽铌卤化物及醇盐的研讨开发     150000μFv/g以上超高比容钽粉研讨开发     Φ0.065mm以下细径钽丝研讨开发     电容器级铌粉研讨开发     钽合金、铌合金及加工材研讨开发     大直径钽铌酸盐晶体研讨开发     钽铌氧化物和金属靶材的研讨开发、真空级铌铁研讨开发     钽工业出资热度不减     因为我国钽铌业的不断进步,从90年代下半期以来,我国钽铌业的出资热不断升温。除宁夏有色金属冶炼厂、株洲硬质合金有限公司、九江有色金属冶炼厂、广西栗木有色金属工业公司和广东从化钽铌冶炼厂这5家老钽铌骨干厂商不断出资改造晋级外,广东多罗山兰宝石、广东佛岗佳特、衡阳金新莱孚等厂商乘势而起,成为钽铌业的后起之秀。即使阅历了2000-2001年的钽商场风云,广东、江西等省仍有10来家厂商加入到钽铌的职业之中,还有些出资者预备进入钽铌业。2005年全国钽铌出产供应商已逾40家。     初略预算,现在我国钽制品产值折成金属钽约800吨,占国际总产值的三分之一强,K2TaF7的产能逾2000吨,占国际总需求的50%以上,能够说我国已成为国际钽工业大国。     我国钽铌工业几点考虑     钽冶炼加工业的开展首要受钽资源使用和钽制品使用两大要素的限制,现在钽资源的现状和钽制品的广泛使用使钽冶炼加工业的开展处于一种供需矛盾之中。20世纪90年代以来,钽质料总是处于求过于供状况,国际钽精矿70%用于该范畴仍显缺乏,致使钽矿藏提价600%。我国钽矿床散布较广,但大多数钽铌矿档次偏低、使用率低。进入20世纪90年代,我国钽工业开展速度反常迅猛,质料直销缺乏的问题逐步露出出来。        现在,我国钽铌联合体是厂商间自发安排的保护职业全体利益的民间安排,在保护职业全体利益上起着活跃的效果。在我国钽铌业蓬勃开展的今日,适时地树立钽铌协会,对内和谐厂商间的联系,对外保护职业全体利益,帮忙政府拟定职业开展规划,是很有必要的。     鼓舞厂商间的协作。尤其是通过2000年-2001年的商场动摇后,应鼓舞质料厂商与冶炼厂商间树立长时间互利的供求联系,荣辱与共,同舟共济,增强全体的抗危险才能。     鼓舞厂商走出国门,与国外厂商树立长时间安稳的供求联系,活跃保险地开发国外的钽铌资源。     主张国家有关部门拟定政策,加大对钽铌业新技能、新产品开发的支撑力度,支撑钽铌高新技能产品的出口,树立产学研结合的钽铌新产品开发基地和出口基地。   宜春钽铌矿矿区坐落袁州区南东新坊乡境内,距宜春市区25公里,交通非常便当。该矿是一个含钽、铌、锂、铍、、多种稀有金属超大型矿床,也是我国重要的稀有稀土涣散元素矿产资源基地。     1、矿床特征: 矿体赋存于雅山花岗岩体中,呈似层状面型散布 ,产状安稳而陡峭(倾向40°--50°,倾角10°--28°),面积约2.8平方公里。工业矿体长1700米,东西宽644米,面积约1.5平方公里,均匀厚度60米。其间富矿体长1300米,宽55米,厚31.5米(最大42 米)。     2、矿石矿藏特征 矿石矿藏有细晶石 ,富锰铌钽铁矿 ,含钽锡石,伴生矿藏有锂云母、锆石 、黄玉、绿基石 、含锡钽铁金红石 、黑钨矿、独居石、磷钇矿等。     3、矿石组份     五氧二钽0.0101%、五氧化二铌0.0084%、0.028%、 氧化二锂0.426%、氧化二0.2218%、氧化二0.0308%、一起档次在富矿岩体中具有上富下贫、中心富边际贫的改变规则。     4、储量 累计探明储量:五氧二钽19533吨、五氧二铌15600吨、49492吨、氧化二锂752207吨、氧化二401746吨、氧化二54337吨。钽保有资源储量16048吨,别离占全国(8.42万吨)和国际(12.92万吨)的19.06%和12.43%。一起矿山尾砂仍是玻璃工业抱负质料,此矿已由国家挖掘。

钽真空电弧熔炼

2019-01-07 17:38:27

钽坯料在真空电弧炉中熔炼成延性良好的致密金属锭或结构特殊的异形构件的过程。这是金属钽精炼的成熟工业方法,具有成形和提纯两种作用。 原理 有自耗电极法和非自耗电极法两种。自耗电极法是工业上采用的主要方法,其阴极坯料为真空烧结法制取的钽条,钽条在电弧高温作用下逐步熔化,滴落到水冷铜坩埚中凝固结晶成形。非自耗电极法的阴极一般采用钨钍或石墨,阴极只起维持电弧作用,本身不消耗,钽坯料在电弧加热的高温熔池中熔化,然后冷却结晶成形。非自耗电极法仅用于熔炼实验室的小型钽坯料。无论是自耗电极法或非自耗电极法,钽坯料在熔化过程中因气体和易挥发杂质的逸出,或不稳定化合物的分解,被真空泵抽走而得到提纯。 自耗电极法也可在惰性气氛中借助惰性气体的压力熔铸含有易蒸发组分的各种合金锭料。熔池可通过外加磁场搅拌使钽和钽合金组分均匀。熔炼钽坯料金属不被污染,并可制取多种形状的铸件,尤其适合于制取大型钽锭和净返形的各种坯料如管坯、异形零件等。目前自耗电极真空电弧熔炼法主要用于二次熔铸金属锭,制取大型圆锭、扁锭或异形铸件。 自耗电极真空电弧熔炼炉 基本结构如图,主要由炉壳、电极柱、附于炉壳底部的水冷铜坩埚、带有支架和传动升降装置的电极以及真空系统所组成。熔炼炉结构材料为钢、不锈钢和水冷铜坩埚。自耗电极真空电弧熔炼炉的电极升降装置为手动或自动控制。  工艺过程 先将钽条接到阴极夹头上后,往水冷铜坩埚底部放置少量起弧用的钽材料,并抽真空到规定的13.3~133mPa真空度。接通电源起弧,下降电极直到与底部钽材料接触,然后逐步提起电极,产生电弧。起弧后,通过调整电源功率和电弧长度使钽条阴极熔化。钽条阴极熔化行将结束时,逐渐减少电源功率,最后停止熔化,保持真空降温。为使炉况顺行和制得优质钽锭,必须选择适宜的电弧长度、电流强度和电压。电弧过长会产生附带电弧,附带电弧射向水冷铜坩埚壁,可将水冷铜坩埚烧穿。所产生的附带电弧还会使熔炼炉的热效率下降。电弧过短则容易引起电极与熔体间的短路,产生炉瘤,并导致钽锭成分不均匀。可用灵敏的电极升降装置来控制电弧长度。电流强度对电弧稳定性影响很大。电流强度增大,电弧稳定性增加,但熔池温度随之提高,金属蒸发量增大,离子化蒸气浓度增大,达到峰值时发生放电,反过来破坏电弧的稳定性。适宜的电流的计算式为: I=W/V 式中W为熔炼炉功率,V为电压。熔炼炉功率可根据钽坯料的熔点和直径从有关表中查到,熔炼炉的电源电压通常采用30~40V。 金属的提纯效果主要取决于熔炼室的真空度、熔炼速度和金属保持熔融状态的时间。因为熔炼过程中的各种杂质是通过蒸发、分解形成低价化合物而除去的。为此保持适宜的炉内真空度、较低的电极熔化速度和较长的金属熔炼时间,能得到更好的提纯效果。自耗电极真空熔炼法的提纯效果不如钽电子束熔炼法,但优于固相精炼法。其提纯效果举例于表。发展趋势 由于自耗电极真空电弧熔炼法的熔炼速度快、真空度较低,因此,所产钽锭纯度相对较低。另外,由于冷却条件不同和温度梯度不均匀,导致所产钽锭结构不一,在加工中易产生缺陷,加工前需进行变性处理以获得均匀的细晶粒结构。目前纯钽主要用于无线电电子工业和化学工业,对钽的纯度要求高,为此在生产上第一次熔炼采用电子束熔炼提纯,再用电弧熔炼获得大直径的钽锭。

钽的资源储量

2019-10-29 15:15:04

钽是稀有金属,在地壳中的含量为0.0002%,在自然界中常与铌共存。含钽的矿藏有许多,但作为钽矿藏(Ta/Nb≥ 1)的却不多,其中具有工业价值的钽的主要矿藏有:钽铁矿[(Fe,Mn)(Ta,Nb)2O6]、重钽铁矿(FeTa2O6)、细晶石[(Na,Ca)Ta2O6(O,OH,F)]和黑稀金矿[(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6]等。世界上第一和第二大的钽矿分别是Wodgina和Greenbushes,均散布在澳大利亚。我国最著名的钽铌矿为江西宜春钽矿,氧化钽储量1.8万吨,氧化铌储量1.5万吨。我国的钽矿主要以低档次的硬岩矿为主,档次在万分之一左右,与澳大利亚万分之三左右的钽矿档次相比,挖掘成本较高。不过,2015年,江西有色地质勘查局矿勘院详查的横峰县葛源矿区铌钽矿床,经疆土部专家确定,达特大型。其中主矿藏钽经详查探明储量近3万吨,远景储量可翻一番。2014年1月16日,陕西省地质查询院称首次在陕西东南部发现特大型铌钽矿,其中铌钽资源量超越30万吨,为我国钽矿资源储量开发提供了更多资源保障。钽主要存在于钽铁矿、铌铁矿和钶钽铁矿中,可是除了这些来源外,锡石中以类质同象状态存在的钽,也是重要的钽资源。因为选矿办法很难将钽从锡石中分离出来,在炼锡时他们进入冶金渣。随着钽的矿藏资源日益减少和贫化,这种锡渣钽资源逐步成了钽原料的重要来历,20世纪70~80年代增占钽原料总供给量的70%~80%,90年代仍占50%左右。从中国西南部的广西、云南省经缅甸、印尼、泰国到马来西亚的锡矿带含钽最为丰富,泰国和马来西亚成为钽原料重要的供给国。锡矿中富含钽铌和产含钽锡渣的国家还有澳大利亚、巴西、尼日利亚、玻利维亚等国。随着钽矿藏资源的日益减少,钽原料供给的日趋短缺,二次钽资源的使用越来越受到重视。现在二次钽资源的使用数量约占钽原材料总供给量的10%~20%。

铋矿三氯化铁浸出-水解沉铋法

2019-01-31 11:06:04

此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉淀物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般控制在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋回收率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋回收率为60%~70%。

钽铌矿选矿技能

2019-02-22 16:55:15

钽铌矿选矿技术钽铌矿选矿相同往常接收重选先扔掉大部分脉石矿藏,得到低档次殽杂粗精矿,进入精选作业的粗精矿矿藏组成巨大,相同往常含有多种有用矿藏,分选难度大,一般接收多种选矿方法如重选、浮选、电磁选或选冶联合工艺举办精选,然后抵达多种有用矿藏的分散。 国外钽铌选矿处理惩办粉矿或原生泥含量多的矿石,洗矿作业必不可少。澳大利亚格林布斯矿风化伟晶岩冲积粘土粗选厂,设两个洗矿系统,原矿用直径1.5m,孔径10mm的圆筒筛两次洗矿后,筛下当选,筛上大块及粘土球进自磨机磨矿约4mm,再用孔径10mm的圆筒筛筛分,筛下物料当选,筛上物料扔掉或回来再磨。洗矿耗水5m3/t,圆筒筛处理惩办量达350吨/小时•台。 国外钽铌选矿厂珍爱接收高效磨矿分级装备,以消沉钽铌矿藏的泥化。格林布斯矿原生伟晶岩粗选厂用周边排矿棒磨机与振动筛闭路获得较好成果。加拿大伯尼克湖钽矿经不断改造,今世接收的磨矿流程很有特征。该矿用一台Ф2.4m×3.6m马西型格子球磨机A-C水平振动筛(直线筛)闭路,筛分粒度2.5mm,筛下用德瑞克筛按0.2mm分级,-2.5+0.2mm粒级用螺旋选矿机选别,其尾矿经弧形筛脱水后回来再磨。球磨机有两种产品构成循环,即接收一台磨机完成两段闭路磨矿。该磨矿回路经调停后循环负荷率一般为180%上下,循环负荷小易构成过损坏。 国外对钽铌铁矿矿石的粗选仍以重选为主,并多用高效的重选装备,流程简略。如格林布斯矿对-10mm原矿直接用跳汰机粗选。加拿大伯尼克湖钽矿80年代构成的重选-浮选-重选流程日趋完善,该流程仍以重选为主,浮选只用于处理惩办细泥。重选装备体用了GEC螺旋选矿机、3层悬挂式戴斯特摇床、霍尔曼矿泥摇床、横流皮带选矿机。前苏联接收浮选对重选精矿中钽铁矿、细晶石与黄玉举办分散,捕收剂为异羟肟酸,调停剂为草酸,在介质中(pH2)浮选,当给矿含Ta2O52.52%时,精矿档次27%,采纳率90%。

钽的应用领域

2019-10-29 14:58:33

钽具有熔点高、蒸汽压低、冷加工功能好、化学稳定性高、抗液态金属腐蚀能力强、外表氧化膜介电常数大等一系列优异功能。因而,钽在电子、冶金、钢铁、化工、硬质合金、原子能、超导技术、轿车电子、航空航天、医疗卫生和科学研究等高新技术领域有重要应用。世界上50%-70%的钽以电容器级钽粉和钽丝的方式用于制造钽电容器。因为钽的外表能形成致密稳定、介电强度高的无定形氧化膜,易于精确方便地操控电容器的阳极氧化工艺,同时钽粉烧结块可以在很小的体积内获得很大的外表积,因而钽电容器具有电容量高、漏电流小、等效串联电阻低、高低温特性好、运用寿命长、归纳功能优异、其他电容器难以与之媲美,它被广泛用于通讯(交换机、手机、传呼机、传真机等)、计算机、轿车、家用和办公用电器、仪器仪表、航空航天、国防军工等工业和科技部分。所以,钽是一种用途极广泛的功能材料。

含钽和铌锡渣富集制取人造钽铌精矿

2019-03-05 12:01:05

钽铌常和锡、钨、钛、铁、锑等的矿藏共生或伴生,选矿办法难以将钽铌矿自别离出来,在锡、钨、铁等的熔炼中它们进入冶金渣中,虽然在过程中得到必定程度的富集,但仍达不到法说到钽铌所要求的高档次精矿的水平。而有必要选用冶金手法富集以制取人工钽铌精矿。此外,有些钽铌粗精矿,进一步精选的收回率很低,也要用冶金办法富集。这种钽铌质料品种繁式,档次凹凸纷歧,富集办法形形。下面大致按质料品种介绍一些较有代表性的办法。但应指出,用于一种质料的办法不完满是专用办法,它也可适用于其他质料。       一、含钽、铌锡渣       按钽、铌含量将锡渣分为高、中、低档次三种。高档次锡渣含(Ta,Nb)2O58%以上,中档次4%以上,2%以下为低档次锡渣。现在以经济地收回钽铌的限于中、高档次的锡渣。在泰国、马来西亚、印度尼西亚等国积存有很多历史上遗留下来的低档次锡渣,现在尚短少经济收回的办法,但它是未来钽的重要质料来历,迫切需要开发经济有用的钽铌收回工艺办法。各国锡渣典型成分见表1。   表1  各国锡渣的典型成分国家Ta2O5Nb2O5FeOTiO2SiO2CaOMnO刚果(金)12.29.914.21.821194.4泰国8.09.918.27.419210.7尼日利亚4.213.57.212.723235.0马来西亚3~44.011.211.020.9251.3       二、过原-氧化法       复原-氧化法适于处理中、高档次锡渣。由电弧炉复原、磁选别离、氧化和浸洗4部分组成,流程图见图1。质料锡渣组成为:Ta2O53.85%,Nb2O54.1%,TiO210.72%,WO33.28%,SiO2 21.3%,CaO21.3%。先将锡渣362kg、焦炭508kg、非磁性循环物料113kg混合均匀,在功率为3000kW的敞式电弧炉中在1650℃下复原熔炼2.5h,取得含(Ta,Nb)2O520%~25%的钽铌碳化物炉床富集物,杂质进入炉渣中,反响为:   (Ta,Nb)2O5+7C=2(Ta,Nb)C+5CO       然后使用钽铌碳化物具有弱磁性的特色,经过磁选机将钽铌碳化物和非磁性物分隔,所得磁性富集物的组成为:Ta2O510%~12%,Nb2O510%~12%,TiO213%,SiO214%,然后将碳化物磁性物料与氧化剂和碳粉按碳∶磁性碳化物∶=1∶5∶13份额配料,在无面料的铸铁坩埚内加火油焚烧使氧化,首要反响为:   10(Ta,Nb)C+14NaNO3=5(Ta,Nb)2O5+7Na2O+7N2+10CO   5WC+8NaNO3=5WO3+4Na2O+4N2+5CO    图1  处理锡渣工艺流程       氧化熔炼为放热反响,焚烧后温度主动升至1000℃,反响时间20~30min,熔体然后按液固比6∶1在90~95℃下进行水洗,除掉可溶性钠盐(铝酸钠、钨酸钠、硅酸钠等,其间95%钨以钨酸钠方式进入水溶液中)。铌和钽残留在水洗渣中,过滤后的滤渣再用20%HCl在75~100℃下酸浸2~4h以除掉铁、锰,一同使钽(铌)酸钠转化为氢氧化物,过滤枯燥后即得含(Ta,Nb)2O540%~50%的人工锟铌精矿。       三、铁合金法       先将锡渣(或低档次铌钽矿)和铁矿石一同反响使生成铌铁或铌钽铁,适当部分杂质进入渣中得以和钽铌取得开始别离。所得铌钽铁合金再用以下办法处理进一步富集。       (一)铁合金复原-电解法       该法是将锡渣或低档次钽铌矿复原所得铌(钽)铁合金进行电解,使钽铌在阳极堆积收回。质料锡渣的组成为:Ta2O51.7%~2.1%,Nb2O52.3%~3.5%,WO31.0%~3.0%,TiO27%~10%,ZrO23%~6%。出产中将锡渣1000kg、硫酸渣700kg(含Fe60%,S2%,为硫化铁矿焙烧制酸渣)和焦炭粉150kg、石灰石100kg混合均匀,在电炉内于1400℃复原,取得含钽3%、铌3.6%、钨2.9%的铁合金。然后以铌钽铁合金为阳极,在FeCl2-HCl-(NH4)2SO4电解液中进行电解,铁在阴极上分出,得电解铁粉产品,跟着铁合金的溶解,钽铌堆积在阳极泥中。最后用石油和苏打水洗去阳极泥中S,取得含Ta2O525%、Nb2O529%、WO324%的人工精矿。       (二)处理法       该法是用溶液浸出铌钽。工艺上是将铌钽铁研磨至0.1~0.2mm,在耐蚀钢反响器中于100℃下和浓溶液(1L水中加670g/L KOH)反响生成多铌钽酸钾:   6Nb+8KOH+11H2O=K8Nb6O19+15H2   6Ta+8KOH+11H2O=K8Ta6O19+15H2        Fe(OH)2和钛酸残存渣中,为促进Fe2+氧化成Fe3+,浸出时不断鼓入空气。过滤后的浸出液含铌达89g/L。然后往溶液中参加固体NaCl,铌和钽以难溶的多铌钽酸钠盐分出:   K8Nb6O19+8NaCl+nH2O=Na8Nb6O19·nH2O+8KCl   K8Ta6O19+8NaCl+nH2O=Na8Nb6O19·nH2O+8KCl       杂质钨、铝、硅、锡等留在碱性溶液中。沉积出的多铌钽酸盐用处理即可得铌钽的水合氧化物:                Na8Nb6O19·nH2O+8HCl+(2n-4)H2O=3Nb2O·nH2O+8NaCl                Na8Ta6O19·nH2O+8HCl+(2n-4)H2O=3Ta2O5·nH2O+8NaCl       四、碳酸钠培烧法       这是我国20世纪60年代针对广西栗木锡矿产的锡渣的特色而开发的办法。其长处是可以处理含(Ta+Nb)2O5<2%的锡渣,并可一同收回钽、铌、钨、锡等金属。钽铌收回率达70%。该办法首要由碳酸钠焙烧、水煮、除硅、酸浸等工序组成,工艺流程见图2。焙烧时将锡渣和碳酸钠按质量比1∶0.4混合,在回转窑中于800~900℃下焙烧30min,使渣中硅、钨等转化为钠盐,焙烧反响为(铌有相似反响):   4(Mn,Fe)(TaO)2+4Na2CO3+11O2=8NaTaO3+2(Fe,Mn)2O3+4CO2↑   4(Fe,Mn)WO4+4Na2CO3+O2=4Na2WO4+2(Fe,Mn)2O3+4CO2↑   SiO2+Na2CO3=Na2SiO3+CO2↑       焙料水煮(90℃)、过滤,90%钨进入溶液(再加CaCl2收回白钨),钽铌留滤查中。然后用7%~9%HCl在80~90℃下处理滤渣,脱去60%~70%的硅我铝,钽铌仍留渣中。最后用12%~15%HCl在95℃下浸出滤渣2h,锡等进入酸浸液(再用铁屑复原电积产出电积锡),浸出渣即为含(Ta+Nb)2O535%~55%的人工精矿,钽铌收回率达94%~99%。    图2  硫酸钠焙烧-酸洗流程简图