氯氧化铋的生产
2019-01-31 11:06:04
氯氧化铋是三氯化铋的水解产品,首要用于塑料工业,使塑料制品具有美丽的珍球光泽。用量一般为氯氧化铋:树脂为0.4%~0.8%,可根据种类要求适量增减。
一、工艺流程。
如图1,包含溶解、转化水解、洗滤、烘干等工序。图1 氯氧化铋出产工艺流程
二、首要技能条件。
水淬后的铋粒,用稀释一倍的硝酸溶液溶解,生成溶液。
食盐转化:将溶液参加到饱满食盐水(密度1.2克/厘米3)中,拌和均匀,若发生白色水解物,则稍加稀溶化。
水解:将相当于氯化铋溶液体积4倍的稀释水加热至95℃,参加相当于稀释水体积0.7%~0.8%的于稀释液中,在拌和下将铋液倒入,再用热水稀释至pH=2.3,弄清后,与上清液别离,用蒸馏水洗刷BiOCl至pH>5。
枯燥:BiOCl在95~100℃下恒温枯燥脱水,枯燥后经过80目。
三、首要设备。
不锈钢溶解罐一个:硬聚氯乙烯塑料焊制转化槽一个;水解槽一个:离心机一台。
四、产品质量。
产出之氯氧化铋成分为(%):BiOCl>98.5,H2O<0.5,酸不溶物低于0.1。
酸浸法处理氧化铋渣
2019-03-05 12:01:05
西南地区某广在处理氧化铋渣时,选用酸浸法,其工艺流程如图1。图1 氧化铋渣的酸浸法工艺流程图
整个流程包含硫酸二段逆流浸铜、浸铋、水解置换、海绵铋熔铸等首要工序。
一、硫酸浸铜。
氧化铋渣经球磨机破碎呈粉状,用硫酸溶液浸出,其反响为:
为了进步浸出作用,选用二段逆流浸出:即一次硫酸浸出后之渣,再进行二次硫酸浸出,二次硫酸浸出后之渣,进入下道工序,而二次硫酸浸出后之溶液,回来一次硫酸浸出,一次硫酸浸出后之溶液,用来收回铜。
技能条件及目标:
一次浸出液固比(3~3.5)∶1;一次浸出拌和时刻40~60分钟;一次浸出液终酸pH约2;一次浸出液弄清时刻10小时以上;二次浸出液固比(3~3.5)∶1;二次浸出拌和时刻2小时;二次浸出加酸量:工业60升,在80~l00分钟内加完。
铜浸出率43%:硫酸耗费2530千克/吨精铋。
二、浸铋。
硫酸浸出后的浸出渣,含有铋、铅与未彻底浸出的铜和铁以及银、碲、砷.锑等。浸出时,发作如下反响:
浸出后的浸出渣,再用稀溶液洗刷后,送往下道工序,用硫酸洗铜与收回银,洗铜液与硫酸浸出之硫酸铜溶液一道,加石灰乳碱性沉铜,产出Cu(OH)2渣,从中收回铜。而稀洗刷液与浸出液一道送去提铋。
技能条件及目标:
提出液固比(3~3.5)∶1;加酸量每批加工业400~430升;拌和时刻2小时;弄清时刻10小时以上;稀洗渣溶液酸度HCl 15~20克/升;洗渣时液固比2∶1;洗渣拌和时刻30分钟;洗渣弄清时刻10小时以上。
铋浸出率92%:耗费8380千克/吨精铋。
三、水解与置换。
将浸出液进行水解,使铋水解沉积而与部分杂质别离,其反响为:水解程序是将自来水注入三氯化铋谘液中,能够进步产出的氯氧化铋的档次(含铋70%以上),为了削减液量而用稀碱液水解,或将三氯化铋溶液参加自来水中,即便终究酸度相同,都会使氯氧化铋含铋档次下降为65%左右,而且沉积物的沉降速度和过滤速度都明显下降。
图2表明BiOCl溶解率、水解水量与pH值的联系。
因为BiOCl中还含有Cu、Fe、CaSO4等杂质,需用工业重溶,而且鼓风拌和,然后别离出不溶性的CaSO4与PbSO4。为了削减铋的丢失,残渣用pH≤1的溶液洗刷,以进步铋的收回率。图2 BiOCl溶解率。水解水量与pH联系
用重溶后的三氯化铋溶液,送往置换槽,用铁板置换海绵铋。因为天然置换速度太慢,为了加快速度,选用直流电电积法:置换后液回来浸出,而置换出的海绵铋放入熔融的苛性钠中熔化。
技能条件及目标:
水解稀释比为溶液∶水=1∶10;水解后弄清6小时;置换后液含铋低于1克/升。
水解后液排放标准为加石灰中和至pH为5~6。
四、酸浸法设备。
破碎用球磨机一台;浸出并带机械拌和的2米3浸出槽四个,设备的原料为硬塑料;过滤用硬塑料制的0.5米3真空吸滤槽5个;置换用3600×900×1100毫米水泥烙沥青槽4个,阴、阳极均为950×800×10毫米钢板;水解槽共6个,巨细与原料同置换槽。
五、海绵铋熔铸。
置换出的海绵铋在铸钢锅内加固体碱熔融,然后进行精粹。
技能条件及目标:
加料温度350~400℃;熔化温度450~550℃。固体碱耗费200千克/吨海绵铋。
氧化铋生产工艺现状
2019-02-25 13:30:49
湿法的首要工艺流程:
1、精粹铋→熔化→水淬→硝酸溶解 溶液浓缩结晶→结晶煅烧→氧化铋
2、精粹铋→熔化→水淬→硝酸溶解 溶液加碱中和→氧化铋过滤洗刷→枯燥→氧化铋制品
火法的首要工艺流程:
精粹铋—→熔化—→雾化焚烧—→产品搜集—→产品分级。
目前国内的氧化铋出产厂商大都选用湿法硝酸系统出产氧化铋,因为出产过程中因硝酸介质的引进导致发生很多NXOY污染环境,产品中也不可防止残留NXOY;不论选用煅烧或枯燥,均难防止氧化铋粉末的聚会,影响产品粒度,粒度均在5μm~7μm以上,且粒度散布不均匀,对产品的使用也有较大的影响。国内选用火法出产氧化比铋产品粒度在3μm~5μm。日本和德国则多以熔体雾化–焚烧法出产氧化铋,产品粒度在1μm~2μm。中国是世界上氧化铋产值最大的国家之一。首要用硝酸法出产工艺,产品难以彻底满意该部分高端商场的需求
盐浸法处理氧化铋渣
2019-03-05 12:01:05
处理氧化铋渣,常选用硫酸加食盐浸出,其工艺流程如图1所示。图1 氧化铋渣盐浸法工艺流程图
从图1可见,氧化铋渣的盐浸法(混酸浸出)包含混酸二次浸出、中和水解等工序,产出之BiOCl,可经火法还原为粗铋;也可用重溶、铁屑置换,产出海绵铋,碱熔后铸成粗铋。
一、浸出
硫酸加食盐混酸浸出本质上是一种氯盐浸出,即用含有NaCl的硫酸溶液浸出氧化铋渣,使铋呈氯化物溶出。NaCl参加后有两方面效果:一是作为添加剂,带入和添加溶液中氯离子浓度,进步被提取金属在溶液中的溶解度;一是作为氧化剂,参加反响将被提取金属溶解。
氧化铋渣中铋以Bi2O3状况存在,在浸出中按下式反响:
这个反响本质是借助于BiOCl从中转化而完结的。所以上反响分两步进行:
氧化铋在混酸中的溶解曲线如图2所示。图2 Bi2O3在H2SO4-NaCl溶液中溶解曲线
从图2可见,当H2SO4为1N,NaCl浓度大于100克/升吋,铋的溶解兴旺20克/升。
依据物相分析得知,氧化铋渣中的铅以PbO状况存在,浸出中以PbCl2形状溶入溶液中,跟着溶液中NaCl浓度的添加,PbCl2在溶液中的溶解度增大。表1展示出这种联系。
PbO溶于混酸的反响如下:
表1 PbCl2在食盐溶液中的溶解度当溶液中有很多NaCl存在时:溶液中一起还存在很多的硫酸根,所以氧化铅能够生成硫酸铅:尽管PbSO4的溶度积比氯化铅的溶度积更小,可是生成的硫酸铅又进一步参加反响:所以PbCl2是铅浸出的终究产品。
氧化铋渣中的铜以CuO与Cu2O状况存在,浸出时,一部分生成硫酸铜,一部分生成:
当向溶液鼓入空气时,因为空气的氧化效果,可加快Cu2O的
溶解,进步铜的浸出率:氧化铋渣中的银以金属银状况存在,浸出时一部分构成氯化银。
经过浸出,铋、铜进入溶液,便于别离收回。铅与银虽部分被浸出,但当浸出结尾因为浸出液酸度下降,液温下降时,氯化铅与氯化银又从头结晶沉积,经过处理结晶、浸出渣而收回。
技能条件与目标:
浸出液组成:H2SO4 250升、NaCl 300千克、氧化铋渣500千克;液固比(4~5)∶1;浸出时刻2小时;浸出温度95℃。
铋浸出率高于95%:铜浸出率高于90%;浸出渣率40%左右;银入渣率高于90%;硫酸耗费为1250升/吨铋;食盐耗费1500千克/吨铋。
浸出设备:1500升带拌和机的珐琅反响釜四个,球磨机一台。
二、中和与水解
选用二段逆流浸出,从产出的二次浸出渣中收回银与铅;而将一次浸出液弄清一昼夜后,抽取上清液中和、水解,别离铜、铋,产出BiOCl,再从中收回铋;后液用铁屑置换,产出海绵铜,从中收回铜。
为了避免一次浸出液中分出硫酸铜结晶,有必要坚持浸出液含Cu2+低于60克∕升,为确保不发生铋的再沉积现象,浸出液的pH值应始终坚持低于1。
当浸出液含有高浓度的铜和铋时,不能用铁屑置换,不然会得到铜与铋的混合物。所以选用加碱和水稀释,以进步溶液的pH值,使铋呈BiOCl沉积别离。
选用加Na2CO3或NaOH以升高溶液的pH值,当pH值从0.6升至1.8时,溶液中铋离子浓度明显下降,pH值与溶液含铋离子浓度联系如表2。
表2 浸出液终究pH值对残Bi3+的影响当pH 1.8时,溶液含铋小于50毫克/升,尽管铋含量很低,但对下工序从溶液中置换铜影响很大。为了确保海绵铜含铋低于0.04%,当溶液中含铜为25克/升时,有必要使含铋量小于10毫克/升,所以有必要将浸出液终究pH值进步2.3以上。
水解最好分两步进行:第一步用碱液将pH值调至1.5;第二步将溶液体积用水稀释两倍,使pH值上升至2.3。中和与水解次第不能倒置,避免BiOCl被污染。水解反响为:氯氧化铋被污染主要是因为部分规模pH值偏高引起氢氧化铁沉积。若终究用碱调pH值,杂质铁含量有时达2%;而终究选用水稀释时,即便进步pH值至3,也无铁离子水解沉积。水解能使溶液中99.6%以上的铋沉积,产出易于弄清与过滤的颗粒较粗的BiOCl。
技能条件与目标:
中和:用30% NaOH溶液或40% Na2CO3溶液中和一次浸出液至pH 1.5。
稀释:用两倍体积水稀释,使溶液pH值由1.5进步至2.3。
常温操作,水解后溶液弄清一昼夜。
碱耗由一次浸出液终酸断定。铋水解收回率高于98%;BiOCl含铋量大于70%。
水解设备:质料为钢槽衬腔。其间碱液槽容量2米3,尺度φ1200、H2000毫米;水解槽容积10米2,尺度φ2000、H3500毫米。
三、置换
水解沉铋后液参加铁屑置换铜:技能条件及目标:
置换温度95℃,加温拌和至溶液通明不显蓝色为结尾。
铁屑耗量为理论量1.5~2倍;置换铜收回率高于95%。
置换设备:因为置换周期短,选用带拌和的1500升珐琅反响釜两个,蒸汽夹套加温,每批结尾后中止拌和,弄清别离,排放上清液,再注入沉铋后液,开动拌和,先使用海绵铜中搀杂的铁屑置换,然后参加新铁屑,直至沉铋后液分批置换结束,再放出铜渣沥干,作为收回铜的质料。
氧化铋矿物的分离和自然铋与辉铋矿的分离
2019-02-27 11:14:28
铋在地壳中白勺均匀含量为2×10-5%,独自白勺铋矿床很少见到、铋矿藏一般与pb、cu、w、sn、ni、co等等元素白勺硫化物其生。具有工业价值白勺铋矿床大都为热液矿床,其间最重要为高温文辉铋矿型和中温热液多金属铋型。高温热液型中铋以天然铋和辉铋矿(bi2s3)状况存在于w、sn及as白勺矿石中,与之共生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以其生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以辉铋矿为主,此外还有天然铋及铋白勺硫代酸盐类,与cu和ni、co以及as白勺硫化物共生,铋作为铜矿石及其他矿石白勺副产物。在矿床白勺氧化带,原生铋矿藏可风化构成铋华(bi2o3)和碳酸铋矿藏[如泡铋矿(bi2o3.co2.h2o)、基性泡铋矿(2bi2o3.co2.h2o)、含水泡铋矿(bi2o3.co2.nh2o)、球泡铋矿(bi2o3.h2o)]。现在已发现白勺含铋矿藏已有50余种,但只要上述数种矿藏具有工业价值。铋矿石化学物相分析[1,2],一般只测定氧化铋矿藏、辉铋矿和天然铋。下面介绍此三种矿藏白勺别离办法。 一、氧化铋矿藏白勺别离氧化铋矿藏系指铋华和铋碳酸盐矿藏。10%hcl可用于浸取氧化铋,天然铋和辉铋矿不溶解。但浸取过程中如有fe3+存在,则天然铋和辉铋矿白勺浸取率添加,为此,于hcl中参加sncl2。也有人以为参加抗坏血酸效果更好。羟胺也起相同白勺效果。hcl浓度和浸沉取温度都对浸取和别离效果有显着影响,故应严厉把握操作条件。文献中还引荐了其他一些别离氧化铋白勺办法,也各有特点。如用c(h2so4)=0.25mol/l-50g/l溶液,在氮气或流中浸取1h;用5%hcl-30g乙酸溶液,于80℃浸取10min。二、天然铋与辉铋矿白勺别离别离氧化铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋能从agno3溶液中置换出金属银,而自身进入溶液中。了避免bi3+水解,向agno3溶液中参加一定量酸一般用20%-20g/lagno3溶液或3-6%hno3-17g/lagno3溶液,作为天然铋白勺溶剂,在规则条件下,天然铋浸取率为99%左右,辉铋矿仅溶解1.5%。本法适用于天然铋含量高白勺试亲。(2)在加热白勺情况下,辉铋矿可溶于浓hcl,天然铋不溶。浸取时试亲中白勺氧化铁与hcl效果,所生成白勺fecl3对天然铋有氧化效果,故应参加还原剂(如羟胺)以消除fe3+白勺影响。本法更适合于以辉铋矿为主白勺试样
三氧化二镍
2017-06-06 17:49:58
三氧化二镍Ni2O3 又称氧化高镍。黑色有光泽粉末。密度4.83。不溶于水,溶于硫酸和硝酸放出氧,溶于盐酸放出氯,也溶于氨水。在600℃时还可还原一氧化镍。用作陶瓷、玻璃、搪瓷的颜料,并用于制镍粉。由温和地加热硝酸镍、碳酸镍或氢氧化镍而得。 硫酸镍溶液与碳酸钠溶液进行复分解生成碳酸镍,经过滤、浓缩、冷却结晶、离心分离、干燥得到干燥的碳酸镍固体,再经煅烧、球磨粉碎,制得三氧化二镍。三氧化二镍制备硫酸镍溶液与碳酸钠溶液进行复分解生成碳酸镍,经过滤、浓缩、冷却结晶、离心分离、干燥得到干燥的碳酸镍固体,再经煅烧、球磨粉碎,制得三氧化二镍。 三氧化二镍用途用作玻璃、陶瓷和搪瓷的着色材料,也用于制造镍粉和磁性体的研究。操作注意事项: 密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴防尘面具(全面罩),穿连衣式胶布防毒衣,戴橡胶手套。避免产生粉尘。避免与酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。 三氧化二镍储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。应与酸类、食用化学品分开存放,切忌混储。储区应备有合适的材料收容泄漏物。
三氧化二铝
2017-06-06 17:50:12
三氧化二铝又名活性氧化铝。 活性氧化铝(分子式Al2O(3-x)(OH)2x,0<x<0.8)是当前世界上大量使用的无机化工产品之一。由于活性氧化铝具有多孔结构,高比表面积且处于不稳定的过渡态,因而具有较大的活性。在石油化工、化肥工业中,广泛用作催化剂、催化剂载体。活性氧化铝又具有吸附特性,因而用作气体和液体的干燥剂、气体净化的吸附剂、饮水除氟剂、工业污水的颜色和气味消除剂等。当今得到的主要的工业活性氧化铝产品都是靠快速脱水法生产的。活性氧化铝是指经过充分细磨、以原晶尺寸大小1μm的α- Al2O3为基本组成(20%-90%)的煅烧氧化铝。 高性能的活性氧化铝在不定形耐火材料配料中能带来以下好处:提高坯体密度、流动性、强度,提高二次莫来石生成量等,降低加水量和气孔率。此外,活性氧化铝还能做干燥剂,吸水量大、干燥速度快,能再生(400 -500K烘烤)。活性氧化铝属于化学品氧化铝范畴,主要用于吸附剂、净水剂、催化剂及催化剂载体,根据不同的用途,其原料和制备方法不同。 在催化剂中使用的三氧化二铝的通常专称为“活性氧化铝”,它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体。 该纳米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。 了解更多有关三氧化二铝的信息,请关注上海
有色
网。
三氧化二铝
2017-06-06 17:50:09
三氧化二氯俗称氧化铝概要 三氧化二铝,刚玉型晶体接近于原子晶体,其它晶型的基本上是离子晶体,熔点为2050℃,沸点为3000℃,真密度为3.6g/cm。 三氧化二铝的流动性好,难溶于水,能溶解在熔融的冰晶石中。它是铝电解生产中的主要原料。 有四种同素异构体β-氧化铝 δ- 氧化铝 γ-氧化铝 α-氧化铝 ,主要有α型和γ型两种变体,工业上可从铝土矿中提取。 名称 氧化铝;刚玉;白玉;红宝石;蓝宝石;刚玉粉;corundum 化学式 Al?O?外观 白色晶状粉末或固体物理属性 式量 101.96 amu 熔点 2303 K 沸点 3250 K 真密度 3.97 g/cm3 松装密度:0.85g/mL(325目~0)0.9g/mL(120目~325目) 晶体结构 三方晶系 (hex) 导电性 常温状态下不导电 热化学属性 ΔfH0liquid −1620.57 kJ/mol ΔfH0solid −1675.69 kJ/mol S0liquid, 1 bar 67.24 J/mol•K S0solid 50.9 J/mol•K安全性 食入 低危险 吸入 可能造成刺激或肺部伤害 皮肤 低危险 眼睛 低危险 在没有特别注明的情况下,使用SI单位和标准气温和气压。 氧化铝是铝和氧的化合物,分子式为Al?O?。在矿业、制陶业和材料科学上又被称为矾土。编辑本段应急处理 隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。用途 1. 红宝石、蓝宝石的主成份皆为氧化铝,因为其它杂质而呈现不同的色泽。红宝石含有氧化铁和氧化钛而呈红色,蓝宝石则含有氧化铬而呈蓝色。 2. 在铝矿的主成份铁铝氧石中,氧化铝的含量最高。工业上,铁铝氧石经由Bayer process纯化为氧化铝,再由Hall-Heroult process转变为铝
金属
。 3. 氧化铝是
金属
铝在空气中不易被腐蚀的原因。纯净的
金属
铝极易与空气中的氧气反应,生成一层致密的氧化铝薄膜覆盖在暴露于空气中铝表面。这层氧化铝薄膜能防止铝被继续氧化。这层氧化物薄膜的厚度和性质都能通过一种称为阳极处理(阳极防腐)的处理过程得到加强。 4. 铝为电和热的良导体。铝的晶体形态金刚砂因为硬度高,适合用作研磨材料及切割工具。 5. 氧化铝粉末常用作色层分析的媒介物。 6. 2004年8月,在美国3M公司任职的科学家开发出以铝及稀土元素化合成的合金制造出称为transparent alumina的强化玻璃。 资料刚玉粉硬度大可用作磨料,抛光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉主要成分α-Al2O3。桶状或锥状的三方晶体。有玻璃光泽或金刚光泽。密度为3.9~4.1g/cm3,硬度9,熔点2000±15℃。不溶于水,也不溶于酸和碱。耐高温。无色透明者称白玉,含微量三价铬的显红色称红宝石;含二价铁、三价铁或四价钛的显蓝色称蓝宝石;含少量四氧化三铁的显暗灰色、暗黑色称刚玉粉。可用做精密仪器的轴承,钟表的钻石、砂轮、抛光剂、耐火材料和电的绝缘体。色彩艳丽的可做装饰用宝石。人造红宝石单晶可制激光器的材料。除天然矿产外,可用氢氧焰熔化氢氧化铝制取。 氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。 Al2O3+6H+=2Al3++3H2O Al2O3+2OH-=2AlO2-+H2O当能源
价格
不断攀升之时,世界各大铝业公司开始把建设铝业生产基地的目光转向电价低廉的中东和非洲。通过降低左右生产成本的电费,确保铝业生产的
价格
竞争力,成为世界各大铝业公司的着眼点。从国内政策面上分析,国家
产业
政策给铝
行业
定位在满足国内需求上,且在对高精尖产品和低技术含量产品在政策上将会有区别。因此,上下游铝企业对于
行业
所出现的政策性和结构性拐点,应着眼于内销
市场
,扩大铝在国内
市场
的应用;扩大铝应用领域,提高铝应用的附加值、提升技术含量。另外,铝生产企业应该多关注相关
行业
和下游
行业
发展动向,特别是掌握交通运输、电力、包装、家电等
行业
发展趋势,同时加大技术攻关和科技投入。
氧化铝生产(三)
2019-01-25 13:38:01
表4 铝矿物一览表序号名称分子式相对分子质量质量/%密度/(g/cm3)莫氏硬度Al2O3H2OSiO2Na2OK2OSO31一水铝石Al2O3·H2O1208515 3.01~3.53.5~7.02三水铝石Al2O3·3H2O15665.434.6 2.35~2.422.5~3.53霞石Na2O· Al2O3·2SiO2284.235.9 42.321.8 2.635.5~6.0 K2O· Al2O3·2SiO2316.432.2 38 29.8 2.4~2.664明矾石K2SO4·Al2(SO4)3·4Al(OH)3838.236.913.05 11.438.652.6~2.83.5~4.05刚玉Al2O3102100 4~.196蓝晶石Al2O3·SiO2162.162.9 37.1 3.56~3.684.5~7.07红柱石Al2O3·SiO2162.162.9 37.1 3.157.58红线石Al2O3·SiO2162.162.9 37.1 3.247
湿法生产三氧化二铋
2019-01-31 11:06:04
一、工艺流程。
如图1。图1 湿法出产氧化铋工艺流程
包含溶解、中和、枯燥等工序,产出氧化铋;滤液经转化、结晶,产出。
二、首要技能条件。
水淬与硝酸溶解同火法出产。中和:与液碱反响如下式:
2Bi(NO3)3+6NaOH=Bi2O3+6NaNO3+3H2O
将固体碱用蒸馏水溶解制成30%的NaOH溶液,弄清后撇去悬浮物,取上清液备用。要求上清液清亮通明,不染杂色。然后取体积1.5~2.5倍于硝酸溶液的NaOH溶液加热至95℃左右,将饱满的溶液逐步缓慢注入加热后的NaOH溶液,边加边拌和边升温,使生成的氧化铋沉积呈黄色。留意不能加得太快,太快则易发生白色的氢氧化铋与碱式沉积。
当参加之饱满溶液体积约为NaOH溶液之一半时,尽管此刻溶液中NaOH浓度仍约为5N,但不能再加,再加则生成白色絮状氢氧化铋胶体物。持续拌和及保温半小时,使生成的氧化铋由浅黄色转变为澄黄色,再转变为暗黄色,然后坚持暗黄色不变。
过滤洗刷:中和后中止加温拌和,弄清过滤,沉积即Bi2O3粉末,用水屡次淋洗至洗水呈中性,枯燥后的氧化铋粉末(约200目)即产品。
硝酸转化:滤液中除NaNO3外,尚有NaOH存在,缓慢参加HNO3于滤液中,使NaOH转化为NaNO3,其反响为:当溶液呈中性时,阐明已悉数转化为溶液,然后加温浓缩结晶,分出副产物。
三、首要设备。
不锈钢溶解槽一只:中和罐一个、浓缩结晶罐一个、选用夹套式珐琅反响釜,附机械拌和:离心机一台;烘箱一台。
四、产品质量。
当用自来水出产时,可达工业纯级,其成分为(%):Bi2O3>98.5%,Fe<0.01,碱金属硫酸盐低于0.1,不溶物低于0.1;当用蒸馏水出产时,可达化学纯级,其成分为(%):Bi2O3高于99.5,Fe<0.005,碱金属硫酸盐低于0.03,不溶物低于0.005。
火法生产三氧化二铋
2019-01-31 11:06:04
一、工艺流程。
如图1。图1 火法出产氧化铋工艺流程
二、首要技能条件。
将1号精铋熔化,缓慢呈细流参加水淬池中水淬成疏松多孔、粒度为5毫米以下的颗粒。
硝酸溶解:将硝酸体积用蒸馏水稀释一倍,常温下参加水淬铋,其反响为:
Bi+4HNO3=Bi(NO3)3+NO+2H2O
为避免氮氧化物很多逸出,水淬铋应缓慢参加。反响后之溶液即溶液。
浓缩结晶:浓缩温度控制在100℃左右,溶液体积蒸发到50%再冷却结晶,10小时后溶液中所含的有60%~70%结晶分出来;将分出之结晶别离后,一次母液再进行浓缩,体积缩小一倍,还可得到20~30%的结晶,杂质悉数留在二次母液中,将二次母液加热并用水处理以构成碱式沉积,将Bi(OH)2NO3滤出后再回来用硝酸溶解:将分出的结晶用少数含酸水洗刷(H2O∶HNO3=5∶2),常温下风干,此进程将开释部分氮氧化物尾气。
煅烧:温度控制在600℃左右,焚烧时刻为3~4小时,此刻有很多氮氧化物气体逸出。其反响为:
4Bi(NO3)2=2Bi2O3+12NO2+3O2
煅烧至无氮氧化物逸出停止,然后降温,取出煅烧后的氧化铋,用瓷球磨机破坏至粒度一60目。
三、首要设备。
马弗电炉一台;瓷球磨机一台。
氧化铝生产工艺技术(三)
2019-01-25 13:38:15
主要生产过程简述如下。 ①原料准备系统 为熟料烧成准备原料——生料浆,要满足水分、配比及细度的要求。 由矿山来的铝矿石先经破碎、均化及贮存达到粒度小于15mm及化学成分稳定的要求,然后送入管磨机中进行生料浆磨制,同时加入磨机中的物料还有5种:工业碱粉(补充生产过程中碱的损耗)、脱硫用煤(在烧成窑中脱硫)、石灰(与SiO2反应用)、蒸发母液(循环碱液)及硅渣(生产过程中间产物)。本工序控制的主要技术指标是:料浆水分38%;细度120#筛残留
90%,Na2O>93%。 ④调整液配制 虽然熟料中的有用成分能溶解于热水中,但为了溶出泥浆的稳定性避免二次反应损失,要保持溶出液有一定的Na2O浓度及苛性比值,这就要靠调整液来完成。配制调整液就是把四种溶液按比例掺配,以满足对调整液的要求。这四种溶液是氢氧化铝洗液、种子分解母液、赤泥洗液及碳酸分解母液。配制所用的设备是贮槽及泵。 ⑤赤泥分离及洗涤 将固(熟料溶出后的残渣——赤泥)液(溶出后的溶液——铝酸钠溶液)混合物进行分离并将赤泥进行洗涤的过程称赤泥分离及洗涤。分离得到的溶液称粗液,送中压脱硅工序处理;洗涤后的残渣——赤泥送堆场或水泥厂,赤泥可做水泥制造的一种原料。对这一过程的要求是“快速”,尽力缩短固液接触的时间,以防固液之间发生二次反应,使溶液中的氧化铝再返回固相中。这一过程通常用的设备是沉降槽、真空过滤机。本工序控制的主要技术指标是:分离沉降槽底流固体含量百分数30%-40%;过程温度95℃;弃赤泥附液中碱含量Na2O≤5kg/t干泥。[next] ⑥溶液脱硅 这是对溶液进行净化的一种手段。根据对净化后溶液的质量要求不同,可采取一段脱硅(中压脱硅)及二段脱硅两种方法。中压脱硅即将粗液(加入硅渣种子及部分种分母液)加热到170℃并保持1.5-2h,使溶液中的组分发生化学反应产生固相硅渣,进而将硅渣分离出去返回配料,将溶液进行控制过滤分离出细小的固体悬浮物后即得精制液,送往分解工序处理。中压脱硅使用的主要设备是脱硅机、分离沉降槽及叶滤机。 二段脱硅系将中压脱硅所得的分离沉降槽溢流,加入石灰乳在常压下再搅拌反应2h,使溶液中的SiO2进一步以固相析出,得到更纯净的溶液,此时溶液中A12O3/SiO2(质量比)可达1500,然后再分离固相及液相。一般情况下都使用一段中压脱硅,当对氧化铝产品有特殊要求时才采用二段脱硅。 ⑦种子分解 烧结法中采用种子分解的目的是获取苛性溶液(种分母液),以返回使用保证溶液的安定性,同时获得固态氢氧化铝是其副产品。种子分解的分解率低(小于50%)、分解时间长(55h以上)、占用设备多是其不足。种子分解所用设备及工艺流程与拜耳法的相同。 ⑧碳酸分解 与种子分解相比,碳酸分解的分解率高(大于90%)、分解时间短(2-3h)、所用设备少。但是,分解后所得的溶液(碳分母液)是Na2CO3水溶液,只能经过蒸发浓缩后,再经原料磨配料后在烧成窑中与矿石中的成分起反应。碳酸分解所使用的主要设备是碳分槽,可间断分解也可连续分解。分解所使用的CO2气体来自经净化后的石灰炉烟气,其浓度为CO2>38%(体积百分数)。 当前在运行的处理铝土矿的烧结法厂有3个,联合法厂有7个,处理霞石矿的有3个厂。 烧结法存在的问题主要是能耗高,工艺综合能耗为46.05MJ/t氧化铝。主要技术经济指标为:氧化铝总回收率87%;铝土矿单耗2t/t;石灰石单耗1.8t/t;苏打单耗108kg/t;焦炭单耗95kg/t;烧成煤单耗770kg/t;生料加煤量100kg/t;焙烧耗油量78kg/t;电力消耗450kW.h/t;蒸汽单耗4.2t/t;压缩空气消耗980m3/t;新水消耗18t/t。[next] (3)联合法联合法是将拜耳法与烧结法联合使用生产氧化铝的方法,方法的最大特点是可用烧结法系统所得的铝酸钠溶液,来补充拜耳法系统中的碱损失。方法适于大规模生产和用于处理A12O3/SiO2=5-7的原料。 联合法有三种形式,即并联法、串联法及混联法。世界上只有美国、前苏联和中国采用联合法,美国曾用过串联法,中国开发了混联法。 ①并联法 并联法是指拜耳法与烧结法平行地进行,各自处理高品位及低品位的矿石,各自排出自己的废渣——赤泥。拜耳法与烧结法互为利用的方面是:拜耳法析出的碱不设苛化来处理,而是送烧结法配料;拜耳法的碱耗用烧结法的铝酸钠精液来补充;拜耳法与烧结法生产出来的氢氧化铝合并洗涤而焙烧。 使用并联法时,工厂必须要有高品位矿及低品位矿的供应,高品位矿供拜耳法处理,低品位矿供烧结法处理。 ②串联法串联法是指拜耳法与烧结法的串联,矿石先经拜耳法处理,产出的残渣—赤泥再经烧结法处理,最终的残渣由烧结法排出。 该生产方法与纯拜耳法及纯烧结法的不同点是: a.拜耳法的赤泥不外排而是送烧结法配料,再经烧结法处理,配料时不加矿石; b.拜耳法生产过程中循环积累起来的碱(Na2CO3)析出后,不设苛化处理而是送烧结法配料,简化了拜耳法工艺流程; c.烧结法产出的铝酸钠精液不设碳酸化分解处理,而是送往拜耳法种子分解工序,简化了烧结法工艺流程又补充了拜耳法的碱耗。 串联法的优点是:矿石经二道处理,矿石中氧化铝的回收率高;拜耳法部分的能力大,烧结法部分的能力小,故使工厂投资较小、产品成本较低。 目前,在世界上只有惟一的一个串联法生产厂—哈萨克斯坦的巴夫洛达尔氧化铝厂。该厂也是经过了多年研究、改进,终获成功。该厂的工艺流程如图3。[next]
锰矿石中三氧化二铝的检验
2019-03-11 11:09:41
一、替代—EDTA容量法
很多锰存在对EDTA络合滴定法测定铝有搅扰,使滴定结尾无法判别。在滴定溶液中,即便只要0.5~1毫克锰,也会使滴定结尾不稳定,影响严峻。因而有必要把锰别离后再进行测定。
汲取别离二氧化硅后的滤液用硝酸—别离锰后,再用—氯化钠小体积别离别离除掉铁和钛。参加过量的EDTA溶液,调理溶液至pH6,用锌盐回滴过量的EDTA,加煮沸置换出铝络合的EDTA,再用锌盐滴定。求得三氧化二铝的含量。
分析手续
分取前节钙、镁的测定中经硝酸—法别离除锰的滤液100毫升(相当于0.16克试样),置于250毫升烧杯中,加热浓缩至2~3毫升。参加8克氯化 钠,摇匀,参加50%溶液10毫升,再搅匀。用水稀释至40~50毫升,微沸,冷却。将溶液连同沉积一同移入100毫升容量瓶中,用1% 溶液稀释至刻度,摇匀,干过滤。滤液供测定铝用。
汲取滤液50毫升 (相当于80毫克试样),置于250毫升锥瓶中,参加0.1%甲基红指示剂1滴,用1∶1中和至溶液刚变赤色。参加1%EDTA溶液 10~20毫升,微热,用1∶1中和至溶液刚变黄色。参加20毫升pH6的乙酸盐缓冲溶液,煮沸1~2分钟。冷却,参加几滴0.2%二橙指示剂, 用乙酸锌溶液滴定至紫赤色(不用计读数)。参加20%溶液5~6毫升,加热煮沸1~2分钟。冷却,用乙酸锌标准溶液滴定至紫赤色为结尾。由第2次滴 定所耗费的乙酸锌标准溶液毫升数核算三氧化二铝含量。
二、铬天蓝S比色法
铝含量小于5%时,用铬天蓝S比色法进行测定。但取样不宜超越5毫克,中和前应参加1%羟胺以消除锰的搅扰。
汲取别离二氧化硅后的部分滤液,按“铝及铝土矿、粘土、高岭土分析”中铝的测定手续进行。
氧化铅锌矿选矿工艺(三)
2019-02-27 11:14:28
3选冶联合工艺
选冶联合工艺是将浮选与冶金工艺优势相结合的一种选别工艺。
关于一些性质杂乱,含钙、镁、硅等较高的氧化矿,运用单一的浮选法难以收回,选冶联合工艺常能获得不错的作用。
选用“硫化焙烧—人工硫化矿浮选”的选冶技能思路,石云良等人对兰坪氧化铅锌矿进行了硫化焙烧浮选实验研讨,焙烧产品通过惯例硫化矿的浮选后获得的混合精矿铅档次7.85%、锌档次34.24%,铅锌收回率分别为79.13%和79.04%。
李珊珊等人选用循环浸—萃取—酸性电积—浸出渣浮选的工艺流程处理云南兰坪高碱性脉石型低档次氧化锌矿,对浸渣再磨后以硫化—黄药法一起浮选浸出渣中闪锌矿和残留菱锌矿。终究得到锌档次为22.16%的锌精矿,收回率为68.97%,锌的总收回率达92.57%。
简胜等人选用选冶联合工艺归纳收回铅、锌及铁。选用惯例硫化浮选工艺能得到铅档次为50.43%、铅收回率为72.46%的铅精矿;选铅尾矿选用配煤高温复原一磁选工艺,能得到铁档次为87%左右、铁收回率在90%左右的金属铁粉,锌在高温复原过程中的蒸发率高达90%左右。
选冶联合工艺对氧化铅锌矿的处理能躲避氧化铅锌矿中钙、镁、硅等杂质的不良影响,既能充分发挥冶炼技能对有价金属的收回,又能充分发挥浮选技能收回硫化铅锌矿的优势,从全体上进步了资源使用率,降低了能耗。
4结语
①因为氧化铅锌矿矿藏组成杂乱,共伴生矿多,嵌布粒度细,性脆而易过磨而发作泥化现象,且可溶性盐含量高,各种不免离子对铅锌可浮性的影响极大,造成了其难以选别和使用。
②关于氧化铅锌矿的使用,国内外的学者做了很多研讨,近年来虽然在氧化铅锌矿浮选工艺和药剂方面研讨获得必定效果,但大都还停留在实验室研讨阶段,局限性较强,因为经济技能上的原因,难以进行工业化使用。
③使用新技能简化药剂组成的条件,开发廉价高效的新式浮选药剂,进一步研讨细微粒浮选的新工艺,完成氧化铅锌矿的高效低成本收回,是当下选矿工作者们尽力的一大方向。一起选冶联合工艺结合冶金和浮选的优势,能大幅度简化选别流程和进步选别目标,在氧化铅锌矿的选别中有极大的发展潜力。而现在对选冶联合工艺研讨相对较少,值得进一步深入研讨。
花垣投产一四氧化三锰新技术项目
2018-12-11 09:57:52
在湖南、贵州、重庆三地交界处有一个“锰三角”,这里生产的锰矿和金属锰占全世界的40%,曾经因为开矿矛盾不断的“锰三角”吸引了大家的视线。
湖南湘西的花垣县是“锰三角”的重要支点,文学大师沈从文笔下的“边城”写的就是花垣县的茶峒,现在这里已经改名叫边城镇了。华如启是边城的一个村长,曾经带领村民上山砸了200多个矿洞的老华,最近却自愿到一家矿山企业干起了管理工作。
老华说,前几年带着村民砸矿洞,是因为看着千疮百孔的大山心痛,更不想把有限的资源白白浪费光。
更让大家忍无可忍的是,电解锰生产把水都污染了,当年大师笔下清澈见底的清水江被一层厚厚的黑砂泥盖住了江底的彩色石头。
后来在各级政府的严厉督导下,“锰三角”地区的污染整治才明显好转。看到政府整顿了矿山,治理了污染,老华的心气顺了,这才上矿山做了管理人员。但工作没一个月,老华又头痛了,公司的尾矿库眼看就要填满了,新的场地却没有批下来。
这里就是花垣县重新规划的大型尾矿库,在它的旁边,一个两亿元的国家863项目日前正式投产,新的技术和工艺让这家企业省去了高耗能、高污染的电解锰过程,直接生产半导体工业急需的四氧化三锰。同时,一项新的选矿技术也完成了中试。
目前,花垣县锰矿企业已经从200多家整合为27家,清水江的水质也越来越好,老华家门口的边城河街上,游客逐渐多了起来。
钼焙砂升华法生产三氧化钼
2019-02-12 10:08:00
三氧化钼的熔点,沸点均较低,其熔点为795℃沸点为1155℃。三氧化钼在熔化前就已开端提高,当温度达900~1100℃时,蒸腾已适当快。气相的三氧化钼是以重聚合分子(MoO3)3状况存在。纯三氧化钼随温度改变,其蒸汽压的改变见下表。
表 温度与三氧化钼蒸汽压联系
温度(℃)600610625650720750800蒸汽压(Pa)0.001.202.406.6779.99233.311346.55温度(℃)8509009501000105011001150蒸汽压(Pa)3119.747186.0614012.1426504.4138436.7363487.94101324.7
液态三氧化钼上面的蒸汽压与温度之间联系,可用如下方程式表明: LgP(MoO3)3=-1024580+1101.2T
式中P——(MoO3)3蒸汽压(Pa);T——标定温度(K)。
此刻,蒸腾热△H蒸=147KJ/mol,蒸腾熵△S蒸=103J/mol。
纯三氧化钼的蒸腾速度随气流温度,速度而改变。即与重聚分子(MoO3)3从液面迁移出的速度相关。当气流速度在0.2~0.3cm/s时,气流温度为900℃,纯三氧化钼蒸腾速度为12.3kg/(m2·h),气温升至1100℃后,蒸腾速度骤升至110kg/(m2·h)。
提高法出产高纯三氧化钼的质料是工业钼焙砂,其间含有不少杂质,它们混入液体三氧化钼内,将下降三氧化钼的蒸汽压,因此下降三氧化钼的蒸腾速度。杂质含量愈高,影响愈显着。同一质料随蒸腾的继续进行,剩余物中杂质比率也显着加大。所以,出产实践中三氧化钼蒸腾速度也在逐步下降。在1000℃和气流速度2.3cm/s条件下,三氧化钼从含MoO348%~50%的钼焙砂中蒸腾速度仅为10~20kg/ (m2·h)。
钼焙砂所含杂质都是随钼精矿带入的。它们包含:氧化钙、氧化镁、氧化铁、氧化铅、氧化铜、氧化锌及二氧化硅等。对三氧化钼蒸腾速度影响最大的是那些能生成安稳钼酸盐并在提高温度(950~1100℃)下也不分化的钙、镁、铅、铁的氧化物杂质。明显,这些钼酸盐中的钼是无法提高出三氧化钼。至于氧化铜、氧化锌与三氧化钼生成的CuMoO4、ZnMoO4在≥900℃后就已分化;二氧化硅与三氧化钼间不发生化学反响。而PbMoO4不只储留了MoO3并且由于它的沸点为1060℃与MoO3明显提高温度共同,在1000~1100℃时,蒸汽压也适当可观,会随三氧化钼一起蒸腾进人高纯三氧化钼产品。所以,对用于提高法出产高纯三氧化钼的钼焙砂含铅量要求较严。当含量较高时,应严格操控提高温度,不该高于1000℃。可是,不论是否参予三氧化钼的反响,一切杂质都会影响三氧化钼的提高速度。[next]
美国克莱迈克斯选用含Mo56%、Cu0.16%、Fe 0.38%、SiO24.5%、A13O3 0.28%、CaO0.06%、Pb0.04%高质量钼精矿,经焙烧成含三氧化钼约90%的钼焙砂作质料,用电炉加热到1100~1200℃,并不断送入空气,提高的三氧化钼由空气带入收尘体系搜集,所得产品纯度可达99.9%,乃至高达99.975%MoO3。松装密度约0.2g/cm3。但质料中三氧化钼提高率仅60%~65%,余下的炉渣往往还含20%~30%未提高的MoO3被送去由湿法收回或冶炼钼铁。
前苏联在提高工艺中操控气流中MoO3浓度≥0.05g/L,气流速度7~14cm/s,温度>690℃,出产出高松装密度0.8~1.2g/cm3的高纯三氧化钼。提高用电炉常有接连与间歇两种。
美国的一些厂商往往选用环形旋转炉底能接连出产的电炉,如下图。
图 电提高炉示意图
为防剩余物料烧结,炉底铺有一层石英砂。在炉上部径向摆放有硅碳加热电极。钼焙砂不断参加电炉炉底上,一边焙烧一边浸透石英层构成固定炉床,空气按要求的流速从炉底流过,带走已提高的三氧化钼,经过总集气管,表面冷凝体系,进入空气集尘器,高纯三氧化钼产品在此与空气别离。电炉由电极加热至1000~1100℃,并不断旋转。钼焙砂随电炉旋转一周后,其间三氧化钼已提高60%~65%,剩余炉料被螺旋耙料机从炉底卸出,并由给料器补加新的钼焙砂。被卸出的残渣还含有20%~30%的三氧化钼,往往经过浸收回,也有送去冶炼钼铁。此种电炉昼夜可出产3.75t高纯三氧化钼。
奥地利普兰杰厂出产规模较小,所以选用小型间歇式电炉提高三氧化钼。他们将钼焙砂与石英砂的混合物装入石英坩锅中,再放入与地表成35℃的旋转电炉内。歪斜增大了炉料的蒸腾面积,通入坩锅的空气将三氧化钼蒸汽带走。经电炉上通风罩由抽风机抽到带滤器中。
提高法出产高纯三氧化钼,工艺简略,产品纯度高。可是,对质料质量要求高,产品钼收回率低。
化学氧化技术:铝合金三价铬处理工艺
2019-03-08 12:00:43
一、概述
铝合金作为一种重要金属材料,近年来在在轿车,电子,家电,航空航天,建材等新式工业范畴的运用越来越广。作为铝合金的一种首要防腐技能,铬酸盐钝化工艺被广泛运用达半个多世纪。但是因为六价铬的高危害性和致癌性,严峻阻止了该材料的运用。跟着欧盟RoHS,ELV,WEEE法规的施行,六价铬酸盐将被严厉约束运用,终究将被全面停止运用。近年来,关于六价铬酸盐代替物(或称绿色防腐材料)的研讨开发在全球正方兴未已。现时国际上已开宣布许多新技能并已商业化。首要类型有:
1.锆-钛系统。
2.硅烷偶联剂系统。
3.铈盐系统。
4.三价铬盐系统。
5.钼酸盐系统
6.钒酸盐系统
为点评各种技能代替六价铬酸盐的或许性,由美国国防部牵头安排建立的污染物防治一起小组(JG-PP)对铝合金的非六价铬酸盐转化膜产品进行了很多比照实验,测验结果表明,从工业运用视点看,三价铬系统是现在最有或许全面代替六价铬酸盐的。其它系统现在尚只能满意铝合金表面处理的部分要求,表现在:
1.与铬酸盐比较,运用工艺较严厉,杂乱;
2.本钱较高;
3.在某些功能,特别是裸铝耐蚀功能上还难以满意需要;
4.对原料有选择性。
由珠海市奥美伦公司在吸收国外先进技能基础上开发成功的铝合价铬钝化剂AllmeluxSF-565,选用低浓度三价铬及其它成膜助剂,被验证为可彻底代替六价铬酸盐工艺。到达乃至超越国外同类产品技能水平。首要特点:
1.低污染,无环保约束问题,满意RoHS,ELV,WEEE法则要求。
2.高功能,满意乃至超越MIL-DTL-81706B,MIL-DTL-5541FClass1A&Class3的耐蚀要求
3.运用操控简略,合适工业运用环境。
4.有竞争力的运用本钱。
下面将以数据图解说明SF-565的首要特性及运用。
二、转化膜的质量
按MIL-DTL-81706B4.5.4测得转化膜的质量在20-23mg/ft2
三、转化膜的硬度
与传统六价铬不同,AllmeluxSF-565构成的转化膜枯燥后具有很硬的表面,在批量生产中不易引起工件划伤,下降膜层损害及粘连。
钼酸铵热解生产三氧化钼
2019-01-29 10:09:51
工业仲钼酸铵是一系列钼的同多酸铵盐的混合物,它主要包括有:钼酸铵,四钼酸铵与仲钼酸铵。
下表列出了常见几种钼酸铵盐。
表 常见几种钼酸铵盐
名称分子式脱水温度(℃)转化温度(℃)转化产品仲钼酸铵(NH4)6Mo7O24·4H2O90°脱一个结晶水230四钼酸铵四钼酸铵(NH4)2MoO13130°脱其余结晶水315三氧化钼钼酸铵(NH4)2MoO4·2H2O120 三氧化钼
仲钼酸铵热离解反应及条件如下:
(NH4)6Mo7O24·4H2O90~130℃(NH4)6Mo7O24·4H2O+4H2O↑→
(NH4)6Mo7O24150~250℃(NH4)2Mo4O13+NH3↑+2H2O↑→
(NH4)2Mo4O13280~380℃4MoO3+2NH3↑+H2O↑→
工业生产中,这一系列反应在同1台回转炉内进行。炉温保持在450~500℃。炉温偏低,仲钼酸铵等热解离不彻底;炉温偏高,解离后的三氧化钼蒸汽压上升,会因升华而损失。回转炉的加热通常由炉外缠绕的电阻丝来实现。
由仲钼酸铵热解离生产的三氧化钼呈极淡的黄绿色,基本可满足高纯三氧化钼的要求。此工艺对原料——仲钼酸铵的质量要求较高,原料中的杂质往往进入焙烧后钼砂——高纯三氧化钼的产品中。所以,当原料含杂质较高时,必须先经除杂纯化,直至达到要求之后,再进入热解离段工艺。
高纯三氧化钼中的知识简介
2019-02-12 10:08:00
高纯三氧化钼中MoO3的分量百分含量一般为99.8%~99.99%,它是制取金属钼粉的根本质料,也可作高纯试剂的质料。出产高纯三氧化钼的根本质料是钼焙砂——工业三氧化钼粉。
由钼焙砂出产高纯三氧化钼粉,有两条截然不同的工艺道路:一条习惯上称湿法——由焙砂经浸,湿法提纯净化,出产成仲钼酸铵粉,仲钼酸铵经加热解离,驱逐净气而获高纯三氧化钼;另一条习惯称火法—由钼焙砂直接加温,钼焙砂中杂质残留在焙烧渣中,而大部分三氧化钼经提高,再结晶而净化,生成高纯三氧化钼粉。
火法,湿法都可出产出纯度很高的产品,常见标准见下表。
表 高纯三氧化钼质量标准
供应商
含量
元素克莱麦克斯标准 1971年典型分析规范MoO399.9599.95Al0.00100.0025Ca0.00100.0025Cr0.00050.0015Cu0.00100.0025Fe0.00100.0030Pb0.00200.0040Mg0.00050.0010Ni0.00050.0010Si0.00900.0140S0.00150.0300Sn0.00500.0100Ti0.00050.0010
用菱锰矿制备四氧化三锰工艺研究
2019-01-17 13:33:17
用菱锰矿制备四氧化三锰工艺研究,中国矿冶网,金属矿产资源矿冶技术中小企业服务平台,国家金属矿产资源综合利用工程技术研究中心,中国矿冶技术中小企业联盟
用菱锰矿制备四氧化三锰工艺研究
高纯四氧化三锰是电子工业生产锰锌氧软磁材料的重要原料之一。随着国家“绿色照明”工程的实施,电视机、移动通讯、计算机与节能灯等迅速发展,软磁铁氧体需求量迅速增长,使得四氧化三锰的需求量迅速增大。因而四氧化三锰的开发具有广阔前景。
目前四氧化三锰生产采用氧化法,此法以纯净的电解金属锰片为原料,制备高纯四氧化三锰,具有工艺简单,操作方便,锰回收高,污染小等优点,但需要使用电解金属锰作原料,生产成本相对较高。
用原生锰矿直接制备四氧化三锰工艺与氧化法相比,省去了电解工序,节省了大量的电力资源,对降低四氧化三锰的生产成本,提高产品竞争力具有重要的意义。
1 原料与试剂
原料:碳酸锰矿粉由金瑞新材料科技股份有限公司贵州分公司提供,粒度:-100目,化学成分列于表1。
试剂:H2SO4工业级、NH3·H2O工业级、SDD工业级、NH 4F工业级、NH4HCO3工业级
2 基本原理
硫酸浸出:用硫酸浸出碳酸锰矿粉的目的就是以硫酸为浸出剂,使碳酸锰矿粉中的低价锰转变成硫酸锰溶液。化学反应为:MnCO3+H2SO4→MnSO4+H2O+CO2↑
硫酸锰溶液净化:碳酸锰矿粉中都不同程度地含有钙、镁、硅、铁、铝、铜、钴、镍和铅等杂质。在浸出过程中,这些杂质的除去是分四步进行的:第一步是氧化中和水解法除铁;第二步是硫化沉淀法除铜、钴、镍等重金属;第三步是氟化沉淀法除钙镁;第四步是浓缩絮凝除硅。
三种氧化铝强化溶出生产新技术
2019-01-08 09:52:48
强化溶出新技术有:(1)管道化溶出;(2)单管预热-高压釜溶出;(3)管道化加热-停留罐溶出。
一、管道化溶出
管道化溶出就是“溶出过程在管道中进行,且热量通过管壁传给矿浆”的溶出。有单流法和多流法两种。德国采用单流法,匈牙利采用多流法。
1980年RA-6管道化溶出装置在Nab厂投产,采用图1所示的工艺流程。LWT表示原矿浆-溶出矿浆热交换管,外管Φ368mm,内装4根Φ100mm管,共长160mm。BWT(1~8)是溶出矿浆经八级自蒸发产生的二次蒸汽与原矿浆进行交换的管,有200×10=2000m。BWT(1~6)的外管直径为400mm,BWT(7~8)的则为508mm,内装4根Φ100mm管。E(1~8)为八级溶出矿浆自蒸发器,E(1~6)的规格为Φ2200mm×Φ4500mm,E(7)Φ2600mm×Φ4500mm,E(8)Φ2200mm×Φ4500mm。K(0~7)为八级冷凝水自蒸发器,K(0~3)的规格为Φ1000mm×Φ1400mm,K(4~6)Φ1400mm×Φ1800mm,K(7)Φ3300mm×5000mm。图1 RA-6管道化溶出流程
1-矿水槽;2、3-混合槽;4-泵;5-高压泵;6、8-管式加热器;
9-保温反应器;10-冷凝水自蒸发器;11-矿浆自蒸发器;12-泵;13-融盐槽
原矿浆经LWT管加热到90℃,在BWT管中加热到220℃,再往SWT管中加热到280℃,经反应器充分溶出后,到八级自蒸发和LWT换热系统降温后排出。RA-6管道化溶出装置还配有检测、控制和数据处理系统。管道化溶出技术在德国用于处理三水铝石型和一水软铝石型铝土矿。获得较好的经济指标。
1984年11~12月在Nab用RA-6装置对我国山西孝义一水硬铝石型铝土矿进行了工业试验。矿石成分(%):Al2O366.7,SiO212.27,Fe2O32.08,TiO22.74,CaO0.68,灼碱14.4。矿物组成(%):一水硬铝石68.2,高岭石24.9,针铁矿2.3锐钛矿2.6,金红石0.4,方解石0.7。工业生产用碱液为种分母液Na2Ok。浓度152.3g/L,苛性比2.76。要得到90%以上的氧化铝溶出率及1.50以下的溶出苛性比,就必须按以下要求操作:温度为280℃,时间为10min,添加CaO6%。原郑州铝厂于1990年购入Nab的RA-6型管道化溶出装置,用于处理铝硅比7.58的铝土矿。在原有保温反应管后串联Φ1200mm×Φ1200mm的6个停留罐,矿浆流量300m3/h,使氧化铝溶出率从69%提高到80%,每生产1t氧化铝的脱硅、溶出、蒸发的热耗由19GJ降至10.3GJ。
与RA-6管道化溶出过程不同,匈牙利采用多流管道化溶出装置,即碱液和预脱硅的矿浆分别用高压泵送入管式反应器中,先用高温矿浆产生的二次蒸汽加热至215℃,再用新蒸汽加热至溶出温度(240~260℃)。已加热的矿浆和碱液在混合管中合流充分溶出,之后进入多级自蒸发系统降温,排出反应器后进入稀释槽。匈牙利用这套装置处理一水软铝石型铝土矿(成分(%):Al2O350、SiO26.67、Fe2O322.8),氧化铝的溶出率为85%。所用的技术条件为:溶出温度248℃,矿浆流量120m3/h,Na2Ok浓度为200g/L,溶出液苛性比为1.44。匈牙利的多流管道化液出装置的主要问题是碱液结疤,后来也改为单流法。
二、单管预热-高压釜溶出
广西平果铝业公司从法国引起了单管预热-高压釜溶出技术,溶出系统流程如图2所示。固体含量300g/L的矿浆在Φ8000mm×Φ8000mm的矿浆槽加热至100℃,用高压橡胶隔膜泵送入五级长2400m的单管预热器(外管Φ336mm,内管Φ253mm),用后五级自蒸发器产生的蒸汽加热矿浆至155℃。随后进入中温脱硅器分段保温(同时也加热)停留20min脱硅,即到5台Φ2.8m×16m的加热高压釜,用前五级自蒸发器产生的蒸汽加热矿浆至200℃。再进入6台Φ2.8m×Φ16m的反应高压釜,用6MPa的新蒸汽加热矿浆至260℃。然后在3台Φ2.8m×Φ16m的终端高压釜中,保温反应45~60min。溶出矿浆经十级自蒸发降温到130℃以下,经缓冲现槽进入稀释槽稀释。加热高压釜和反应高压釜都配有机械搅拌及加热管束,终端高压釜只有机械搅拌装置。图2 广西平果铝业公司从法国引进的单管预热-高压釜溶出流程图
单管预热-高压釜溶出装置用于处理一水硬铝石型铝土矿,矿浆流量为450m3/h,设计年产氧化铝33万t。广西平果铝业公司用该设备于1998年生产38万t氧化铝。溶出液的αk为1.50,蒸发母液的Na2Ok浓度为230g/L,氧化铝的相对溶出率达91%。工业生产表明溶出效果好,存在的问题是磨损严重,需要定期频繁停产检修。
三、管道化加热-停留罐溶出
管道化加热时矿浆在管道内高速流动,雷诺系数Re达到105,处于高度湍流状态,传热系数达8000kJ/(m2·h·℃),比列管式热交换器高5倍,所需热交换面积减少。然而,对于一水硬铝石型铝土矿,即便溶出温度达310℃,若没有充足的停留时间,氧化铝的溶出率是很低的,管道化溶出的停出时间要延长,管道就会长得难以经济摆布。为此提出了管道化加热-停留罐溶出强化技术。
1988年广西平果铝业公司的铝土矿进行管道化加热-停留罐溶出的结果为:碱液浓度为Na2Ok230g/L,石灰添加量为7%~10%,管式反应器预热时间为10~12min,停留罐溶出时间为40min,氧化铝的相对溶出率达92%,溶出液的αk为1.50。管道化加热-停留罐溶出技术对我国其他矿的试验也收到良好效果。
纳米三氧化二铝在锂电池中的应用
2019-01-15 09:49:25
纳米三氧化二铝在锂电池里面的主要作用是做电极涂层。另外,还对锂电池起到表面修饰作用,用纳米三氧化二铝处理过的锂电池焊接效果好,焊接外观漂亮,比一般的焊接耐用。
目前中科院物理所已经将纳米三氧化二铝应用于改性进尖晶石锰酸锂材料,生产出可逆容量达到107mAh/克,55C循环200次容量保持率大于90%,优于国际同类产品水平,是国内靠前个可用于混合电池用高功率锂离子电池的材料。
北京星恒公司用此材料制造的高功率混合汽车用锂离子电池全面通过了863计划电动汽车重大专项组织的统一测试,功率达到1200W/千克,安全性、循环、高低温性能等测试全部通过。
[小知识] 纳米氧化铝,别名:纳米三氧化二铝,分子式:Al2O3 , 分子量:101.96 熔点:2050℃ , 沸点:2980℃ a相纳米氧化铝为白色疏松粉末,粒径小而且均匀,纯度高,分散性好,在锂电池中能很好的改善锂电池的容量性能。 技术指标: 型 号 VK-L30 外 观 白色粉末 晶 型 α相 含 量﹪ ≥ 99.99% 粒 径 nm 30±5
镁精炼(三)
2019-03-04 16:12:50
电解法炼镁进程中从电解槽取出的镁和热复原法炼镁进程中从复原炉取出的镁,均称为粗镁,都达不到质量标准,有必要去除镁中杂质,才干到达质量标准。 电解法粗镁含有金属杂质和非金属杂质。金属杂质有Fe、Si、Al、Ni、Mn、Cu、K、Na和Ca。这些金属杂质,有的是电解进程中在阴极上分出的,有的是其氯化物或氧化物被镁复原出的。非金属杂质物质有MgCl2、NaCl、KCI、CaCl2、Mg3N2、MgO、SiO2、Fe2O3,CaO。非金属杂质中氯化物是出镁时从电解槽带出的电解质;Mg3N2是镁在空气中焚烧生成的;MgO是质料和电解质含有的,也有镁焚烧生成的;其他氧化物是从槽衬耐火材料磨损下来的。热复原法粗镁也含有金属杂质和非金属杂质。金属杂质有Si、Al、Fe、Mn、Ni、Zn、K和Na。金属杂质中Si、Fe、A1、Mn首要来源于复原剂硅铁粉尘;其他金属杂质是被复原出来的。非金属杂质有MgO、CaO、Fe2O3、 SiO2、CaF2,来源于球团料粉尘。不管电解法粗镁仍是热复原法粗镁,金属杂质含量较少,小于或等于重熔镁锭标准中较低等第的规定值;非金属杂质含量较多。 镁精粹办法有熔剂精粹、沉降精粹、添加剂精粹、真空蒸馏、区域熔炼和电解精粹。熔剂精粹和沉降精粹是精粹粗镁的办法。各镁厂或选用熔剂精粹办法或选用沉降精粹办法精粹粗镁。通过其间一种办法精粹过的镁称为精镁,镁质量到达了一般用处的重熔镁锭质量标准,铸成镁锭供应。添加剂精粹是去除一种或几种杂质的办法,是前两种精粹办法的弥补。真空蒸馏、区域熔炼和电解精粹是将精镁再精粹,进一步去除杂质,制取特殊用处的简直不含杂质的高纯镁,这儿不介绍了。 熔剂精粹是在熔融状态下用熔剂去除镁中杂质。熔剂精粹首要作用是去除非金属杂质,又能通过化学作用除掉碱金属K和Na。熔剂应具有以下性质:熔剂与镁和坩埚不起化学反响;熔剂熔点低于镁的熔点;熔剂与杂质间界面张力小,与液体镁界面张力大,因此熔剂既可以吸附杂质,又能与液体镁别离;熔剂与液体镁密度不同。按用处区分,有精粹熔剂和掩盖熔剂。精粹熔剂密度大于液体镁密度,用作去除杂质。掩盖熔剂密度小于液体镁密度,用作掩盖于液体镁表面,阻隔空气,避免镁氧化。 熔剂由碱金属和碱土金属氯化物与氟化物组成。各镁厂的熔剂配方不同。我国镁厂精粹粗镁用的熔剂成分见表2。表2 我国镁厂精粹熔剂成分/%熔剂称号MgCl2KClNaClCaCl2BaCl2MgO根底熔剂38±337±38±38±39±3精粹熔剂根底熔剂90~95+CaF26~10掩盖熔剂根底熔剂75~80+硫黄粉20~25[next]
熔剂精粹选用坩埚精粹炉。精粹炉由普通耐火砖砌筑,由电、天然气或煤气加热。坩埚有铸钢的,也有耐热钢板焊接的。首先把熔剂参加精粹炉坩埚,并开端加热,熔剂熔化后参加粗镁。待粗镁熔化、温度到达700℃时,用拌和器拌和液体镁,使液体镁与熔剂充沛触摸、吸附杂质,拌和时刻约20min,再升温至730-750℃,静置5-15min,使杂质和熔剂沉降,与液体镁别离。在以上进程中,经常向坩埚内撒些掩盖熔剂,避免液体镁焚烧。精粹进程中,非金属杂质被熔剂吸附、沉降,与镁别离。一起,碱金属K和Na与熔剂中MgCl2反响生成KCl和NaCl,进入熔剂而被除掉。静置期间,精粹炉中止加热。当液体镁温度降到680-710℃时,用气动泵抽取液体镁注入铸锭机铸成镁锭。精粹1t电解粗镁(液体镁)耗电300kW·h,熔剂30kg。精粹1t皮江法粗镁(结晶镁)耗电600kW·h,熔剂120kg。 热复原法镁厂均选用熔剂精粹法精粹粗镁。小型电解法镁厂也选用此法。 (二)沉降精粹 沉降精粹是大型电解镁厂精粹粗镁的办法。该法是在电加热熔盐炉(为接连精粹炉)中通过沉降去除镁中杂质。精粹炉见图,精粹炉为圆形,钢壳内衬耐火砖;炉顶直径约5.5m,炉底直径约3m,高约4.5m;炉中心部位是集渣井,炉体下部均匀分布6根石墨电极,加热功率300kW;加热介质氯盐温度720-730℃,氯盐成分为MgCl2 8%-12%、KCl 55%-65%、NaCl 18%-22%、CaCl2 0.5%-2%、BaCl2 5%-8%、CaF2 0.3%-1%。其密度大于液体镁的密度,因此坐落液体镁层下面。
[next]
电解槽中抽取出的液体镁,用台包运到精粹车间,从粗镁参加口注入接连精粹炉。因为加料管伸入氯盐熔体基层,液体镁从加料管出来后通过氯盐熔体层上浮到镁液层。这一进程与熔剂精粹进程相同。镁液层储存镁8-10t,温度710-720℃。镁在炉内逗留2h以上,镁中非金属杂质充沛沉降别离。精粹渣聚集于炉底中部集渣井内,定时翻开井盖用抓斗抓取渣。铸锭用的虹吸管从炉盖上刺进镁液层,开端铸锭时用真空泵将虹吸管抽成负压、使液体镁流出。为了避免液体镁焚烧,向炉内充氩气。接连精粹炉每天产精镁50-100t。精粹1t镁耗电50-100 kW·h,氯盐60kg。 (三)添加剂精粹 该办法是通过向液体镁中参加某种单质或化合物除掉镁中某些杂质的办法。添加剂精粹是对熔剂精粹或沉降精粹过的镁进一步精粹。 电解法粗镁和热复原法粗镁,通过熔剂精粹或沉降精粹,除掉了非金属杂质和碱金属K和Na,不能除掉其他金属杂质Fe、Si、Al、Mn、Cu和Ni。因为粗镁中金属杂质含量较少,通过熔剂精粹或沉降精粹,镁的质量一般能到达重熔用镁锭质量标准中我国标准Mg 99.90等第,可以满意普通用处要求。若要求镁含Fe 0.04%-0.003%、Si 0.01%-0.005%,应对熔剂精粹或沉降精粹的镁进行添加剂精粹。添加剂精粹除掉杂质最多的是Fe和Si,其次是Al和Mn,也能除掉一部分Cu和Ni。 用作精粹添加剂的有锰、钛和锆。锰以镁锰合金方式参加,钛和锆可以金属或氯化物方式参加。这几种添加剂可以与Fe、Si等金属杂质构成难溶于镁的金属间化合物,然后沉降别离出来。其间,钛和锆的精粹作用好,锆报价贵,因此常用的是钛。用钛添加剂精粹过的镁的杂质含量为Fe 0.004%、Si 0.005、Al 0.005%、Mn 0.01%、Cu 0.003%、Ni 0.0007%。镁的质量到达了我国标准Mg 99.95等第,行将熔剂精粹或沉降精粹过的镁进步一个等第或更高等第。 用钛添加剂精粹镁,运用的设备是坩埚精粹炉。先制备含钛熔剂,在坩埚精粹中熔化氯盐,氯盐成分为KCl 40%-70%、NaCl 20%-50%、MgCl2 10%,待氯盐熔化后参加粒度为18-60目海绵钛粉,拌和混合均匀。将熔剂精粹或沉降精粹过的镁参加坩埚精粹炉,然后参加含钛熔剂,当温度到达700-720℃时,用拌和器拌和5-15min,使钛与Fe等金属杂质充沛触摸、吸附、构成金属间化合物,静置沉降15-30min,最终进行铸锭。氯盐参加量为镁的20%,钛参加量为镁的0.05%-0.3%。 也可以用作添加剂。与镁反响生成钛,然后由所生成的钛吸附镁中金属杂质。但选用作添加剂精粹设备比较复杂。
三氯化锑
2017-06-06 17:50:12
三氯化锑 1英文名称 Antimony trichloride 别 名 氯化亚锑 分子式 SbCl3 外观与性状 白色易潮解的透明斜方结晶体,在空气中发烟 分子量 228.11 蒸汽压 0.13kPa(49.2℃) 熔 点 73.4℃ 沸点:223.5℃ 溶解性 溶于醇、苯、丙酮等 密 度 相对密度(水=1)3.14 稳定性 稳定 危险标记 20(酸性腐蚀品) 主要用途 用作分析试剂、催化剂及用于有机合成三氯化锑 对环境的影响:一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、摄入或经皮肤吸收对身体有害。高浓度的三氯化锑对眼睛、皮肤、粘膜和呼吸道有强烈的刺激作用。可引起支气管炎、肺水肿。 慢性影响:实验表明有诱变作用。二、毒理学资料及环境行为 急性毒性:LD50525mg/kg(大鼠经口) 危险特性:受热或遇水分解放热,放出有毒的腐蚀性烟气。具有较强的腐蚀性。 燃烧(分解)产物:氯化物。三氯化锑 应急处理处置方法:一、泄漏应急处理 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用沙土、干燥石灰或苏打灰混合,转移到安全场所。如大量泄漏,收集回收或无害处理后废弃。二、防护措施 呼吸系统防护:可能接触其粉尘时,应该佩带防尘口罩。必要时佩带防毒面具。 眼睛防护:戴化学安全防护眼镜。 防护服:穿工作服(防腐材料制作)。 手防护:戴橡皮手套。 其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯。三、急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水彻底冲洗。若有灼伤,就医治疗。 眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。 吸入:迅速脱离现场至空气新鲜处。注意保暖,保持呼吸道通畅。必要时进行人工呼吸。就医。 食入:患者清醒时立即漱口,给饮牛奶或蛋清。立即就医。 灭火方法:干粉、砂土。
氯气选择性浸出硫化铋矿
2019-01-31 11:06:04
此法选用操控电位的方法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。避免了很多的铁离子在流程中的循环和三价铁的再生问题,提高了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反应为:选择性浸出,铋的选择性较高,但消耗量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。
选择性浸出的工艺流程见图1。图1 选择性浸出铋准则工艺流程图
碲化铋拓扑绝缘体应用前景广阔
2019-01-04 09:45:23
近年,拓扑绝缘体成为了物理学领域最为热门的话题之一,这些拓扑绝缘体材料可同时作为绝缘体和导体,因其内部结构阻止了电流通过,而其边缘以及表面却能保证电流运动。而最为重要的可能是拓扑绝缘体的表面可保证旋转极化电子运动,另外也防止了能量消耗时出现的电子分散情况。因这些种特性,未来拓扑绝缘体材料在晶体管、存储设备以及磁性传感器等能耗效率高的产品领域均有很大的应用前景。在《自然纳米科技》杂志上,来自加州大学洛杉矶分校(UCLA)的工程及应用科学院和澳洲昆士兰大学的材料研究所的研究员发表论文,展示了碲化铋拓扑绝缘子的表面传导渠道,说明了这些绝缘体的表面可以根据费密能级的位置来调节表面态的传导性能。USLA工程及应用科学院的教授Kang L. Wang说道:“我们的发现为新一代低功耗的纳米电子和自旋电子器件的研发创造了更大的空间。”碲化铋以其热电性能而出名,并因其独特的表面状态被推断为三位拓扑绝缘体。最近针对碲化铋散装材料开展的一些实验也说明了其表面态具有二位传导渠道。但是 这种能带隙小的半导体的热激发性以及纯度不够等原因造成的重要体散射也使得调整表面导电功能成为一项很大的挑战。而拓扑绝缘纳米技术的发展在这方面做出了补充。这些纳米材料绝大程度的夯实了表面条件,使得靠外力完全能控制表面状态。Wang和他的团队使用碲化铋纳米材料作为场效应晶体结构的传导渠道。这依赖于外部电场来控制费密能级,从而调控渠道的传导状态,最高传导率可达到51%。研究员们首次做到了展示调节拓扑绝缘体表面的可能性。中国小金属资源信息网
四氯化钛气相氧化的热力学(三)
2019-02-15 14:21:16
从上表4中能够看到,晶型转化率受温度影响很大。在1500K时晶型转化所需的时刻与反响所需的时刻在数量级上大体一致,可同步完结。 实践中证明,单一TiCl4与O2反响的金红石型转化率只要30%-65%,为取得金红石型产品含量≥98. 0%需求加人晶型转化剂。我国在开发氯化法钛白技能中从前做过很多晶型转化剂的挑选实验,终究以为AIC13是最经济、作用较好的晶型转化剂。氧化产品中A1203含量达0.9%-1.2%时,产品中金红石型的含量就完全能够完成)98.0%的要求。 实践也证明,TiCl4气相氧化反响过程中没有引人成核剂,产品的均匀粒度粗、粒度散布宽,很难得到优秀的颜料级Ti02粒子。一般的成核剂有水蒸气及元素周期表中榜首主族元素、第二主族元素及镧系元素的盐类,如锉、钠、钾、钙、、铈的各种盐类,它们在高温下很简单生成氧化物。一般把它们按必定份额溶解在水中,使用氮气或许氧气作载体把它们压送到氧化反响器中,最好加人到热氧气流中。 经过实验,以为最好的成核剂为。当加人KC1量为(90-110)×10-6时,产品的CBU(炭黑底彩值表明产品消色力)进步5-6,到达12.4。满意颜料对氧化半成品的要求。 各种碱金属氯化物作成核剂的挑选性实验见下表5。美国专利2791490、5201949、3208866较具体地叙说了加人晶粒细化剂对炭黑底调的影响。炭黑底调是Ti02粒子巨细和粒子巨细均匀度的一种测量方法的衡量单位,值愈大,其粒子愈细,散布愈会集。其反响条件氧气过量系数为1.10,预热到1000℃,TiC14蒸气预热到800℃,反响区温度在1000-1400℃之间,把盐溶液喷到紧靠反响区的热氧流之中。
导致铝型材氧化膜颜色不均的三个原因分析
2019-03-12 09:00:00
导致铝型材氧化膜颜色不均的三个原因分析:
(1)铝型材工件面积过大,操作时在槽内摇摆过大,边际和中心部位与溶液的触摸、更新、交流有过大的差异,然后导致氧化膜颜色不一致。.防备办法:铝型材氧化时工件摇摆的起伏要小,静处理也能够,但当溶液温度过低时简单呈现地图状花斑,显得不自然。
(2)包铝型材加工时部分包铝层遭到损坏,被切削掉,外层包铝属优质铝,被包的内层是杂铝,两种铝质差异较大,故氧化后呈现“良癜风”似的斑驳。这一现象客户往往不会太了解,供应商要多做解说作业,阐明原委,避免引起误解。
(3)氧化工艺操作方面问题:
①工件碱蚀处理不完全,部分处原始氧化膜、污物未能除尽;
②碱蚀后没有当即进行出光处理,工件表面仍呈碱性;
③工件在传递过程中触摸过异物。
当遇有膜层颜色不均匀时要从多方面去寻觅原因,采纳针对性办法予以处理。
由碱蚀液中铝离子积累过高引起毛病一位读者来电问询工件经碱蚀后难以获得导电氧化膜的原因,经对导电氧化膜难以构成的许多要素扫除之后,考虑到碱蚀液中是否有过高铝离子问题,对方说碱蚀液很稠。但碱蚀速度不快。其时笔者主张替换碱蚀液,由于碱蚀液使用时间过长之后会积累过多的铝离子,铝离子在工件表面较难洗脱,然后影响铝件表面与导电氧化溶液的触摸,然后影响到氧化膜的构成。另一主张是若其时无条件替换碱蚀溶液,可将碱蚀后的工件经热水漂洗后立即在活动水中漂洗,然后再在含有的浓硝酸中出光,然后经充沛漂洗后进行导电氧化处理。后该读者来电话说碱蚀后用热水洗烫作用很好。笔者经历是,在热水中洗烫后敏捷脱离热水并当即浸入流水中,避免工件干化后因遭到氧化而影响到导电氧化膜的构成。
四氧化三锰工业废水中锰离子的回收
2019-02-21 10:13:28
四氧化三锰是出产软磁铁氧体的首要原材料,其制成的锰锌铁氧体广泛应用于电子、电器、电力、信息等工业。自20世纪90年代中期开端进入工业出产以来,通过十余年的开展,我国四氧化三锰的出产值和规划均居国际首位,到2005年年末全国产值已到达7万余吨。四氧化三锰的制备办法现在首要选用金属锰粉悬浮液法,每吨四氧化三锰用水量5~20 t,废水中含锰离子(100~600)×10-6,远大于国家污水排放标准所规则的2×10-6,假如直接排放将对环境构成损害。本研讨对四氧化三锰废水进行了处理,经处理后废水中锰离子到达国家污水排放标准GB8978-1996,收回的锰离子通过除杂后能够再制成高纯四氧化三锰,在工业出产中能够获得较好的经济效益和社会效益。
一、试剂及仪器
(一)试剂。、、氯化、碳酸(氢)钠、絮凝剂等。
(二)仪器。反响釜、拌和槽、真空过滤机、空气压缩机等。
二、实验原理与流程
四氧化三锰出产排放的废水中首要含锰、钙、镁、钠、氯、硅等离子,其间锰离子对环境有害,但经收回后具有经济价值。其他离子影响软磁铁氧体功能,需求别离处理。用化学二氧化锰作过滤层除掉微量悬浮物及H2SiO3胶体,参加生成钙、镁沉积过滤除掉钙、镁离子。收回锰离子有两种办法:一是氢氧化锰转化法(图1),即用或或其混合物将锰离子沉积为氢氧化锰,参加氯化铵作催化剂,然后通空气氧化生成四氧化三锰;二是碳酸锰转化法,即用碳酸钠或碳酸氢钠沉积锰离子生成碳酸锰,然后高温焙烧生成四氧化三锰。其反响式为:图1 氢氧化锰转化法实验流程
三、实验进程
取出产排放的废水进行水质成分分析,将废水匀速通过由化学二氧化锰组成的过滤层。在拌和的条件下参加适量的,静置、陈化必定时刻,用压滤机过滤去除钙、镁沉积物,在清液中参加、、碳酸钠、碳酸氢钠或其间的组合,别离实验参加量、参加次序、拌和强度、沉积温度、絮凝剂品种等条件。将得到的氢氧化锰或碳酸锰沉积陈化必定时刻,过滤除掉大部分杂质,将氢氧化锰沉积物配成必定浓度,参加氯化铵作为催化剂,通人空气氧化生成四氧化三锰,参加络合剂除掉少数杂质,终究烘干、破坏得到产品;或将碳酸锰沉积在1050℃氧化焙烧生成四氧化三锰。废水水质成分分析成果见表1 。
表1 车间排放废水水质成分分析成果×10-6成分Mn2+Ca2+Mg2+Cl-SiO2Na+SO2-4含量3862035400247120
四、实验成果及分析
(一)氢氧化锰转化法
将锰离子转化为氢氧化锰再氧化生成四氧化三锰办法中,关键在于怎么将废水中锰离子沉积彻底以到达国家规则的排放标准,以及怎么避免将废水中的其他杂质带人产品中。经实验发现沉积剂品种及量、沉积温度、絮凝剂、陈化时刻是首要影响要素,在不同的沉积剂及量的条件下通过实验得到的成果见表2。通过正交实验标明依据锰离子沉积所需的氢氧根数量的1.02倍,在常温下别离将和按理论量的30%和70%匀速参加拌和0.5 h,滴加1.5‰的聚酰胺类絮凝剂,静置、陈化1.5h,过滤后再用pH =6~7的去离子水洗刷2~3次,氧化后得到四氧化三锰,再参加少数络合剂洗刷除掉有害杂质,能够到达四氧化三锰化工职业标准HG/T2835 -1997(表3)。废水中锰离子为1.5×10-6,低于国家污水排放标准的2×l0-6。
表2 氢氧化锰转化法中锰中离子收回实验成果实验编号实验条件水中Mn2+/×10-6沉积剂用量沉积温度/℃絮凝剂/‰陈化时刻/hX01理论量NaOH201.02.08.3X021.05倍理论量NaOH401.03.01.7X03理论量301.54.021.5X041.05倍理论量401.53.03.8X05NaOH与按恰当份额室温1.51.51.5
表3 氢氧化锰转化法中四氧化三锰首要目标与职业目标比照成果%含量MnSiO2KNaCaMgPbX0271.080.00850.00180.02680.00680.00450.0003X0471.140.00480.00160.00280.00580.00370.0005X0571.120.00350.00090.00680.00370.00180.0002职业标准≥71.0≤0.01≤0.005≤0.01≤0.01≤0.005≤0.001
1、沉积剂及用量的影响
依据化学反响式核算后参加理论量的或,在不同的温度和絮凝剂用量下,锰离子沉积成果很难合格。其原因是沉积锰离子需求必定的pH值,废水中存在少数的钙、镁、铁等离子所以需求耗费一部分的氢氧根离子。通过实验标明,参加1.05倍理论量的能够将锰离子沉积彻底,废水中锰离子能够到达1.7×l0-6。但由于很多钠离子的存在,反响进程中会发生包裹、吸附等现象,通过洗刷很难将钠离子等除掉。实验标明,1.15倍理论量的能够到达最优成果,废水中锰离子可到达3.8×10-6,再持续增加并不能将锰离子进一步沉积出来。所以单独用或沉积废水中锰离子不能合格排放或不能得到合格产品。通过实验发现,将和按恰当的份额分阶段按必定速度匀速参加,废水中锰离子能够低于2×10-6,终究产品中钠离子、硫酸根等能够到达要求。其原因是削减了反响溶液中的钠离子量;构成的铵盐或许有助于生成的氢氧化锰晶体颗粒变粗,削减对钠离子的包裹、吸附现象;沉积剂的参加速度影响沉积的生成速度、影响颗粒结晶巨细。
2、温度的影响
温度高时生成的氢氧化锰晶体颗粒较粗,沉积比较彻底,溶液中悬浮形状的微细颗粒少。颗粒粗不简略包裹吸附杂质离子,易于洗刷过滤除掉杂质。但温度升高不利于硫酸根及钙离子的去除,在其他条件恰其时室温沉积也能够得到抱负成果。
3、絮凝剂的影响
由于生成的氢氧化锰是胶体状态,生成的碳酸锰有部分微细颗粒很难沉积,不加絮凝剂则需沉积时刻较长,过滤进程中简略穿滤,所以需求参加絮凝剂将其絮凝生成较大的颗粒以便沉降和过滤。为避免带人杂质离子,能够挑选聚酰胺类絮凝剂、聚乙烯醚、聚乙烯醇等有机高分子絮凝剂,其参加量与溶液pH、悬浮物量、胶体物质等有关。实验发现絮凝剂参加机遇与溶液中悬浮物浓度有联系,悬浮物浓度大时参加絮凝剂则锰离子沉积比较彻底,但包裹搀杂的钠离子等较多,不易去除;悬浮物浓度过小时参加,或许由于吸附载体较少难以构成大颗粒,锰离子沉积很难彻底。
(二)碳酸锰转化法
将锰离子沉积转化为碳酸锰,洗刷过滤后再高温焙烧为四氧化三锰,其长处是碳酸锰沉积颗粒粗,沉积疏松,在常温下即可洗刷除掉钙、镁、钠、硫酸根等杂质。缺陷是用量较多时才能将锰离子沉积合格,需求高温焙烧氧化,能耗较高,焙烧生成的产品反响活性较差。锰离子的沉积作用依然与沉积剂用量、沉积温度、絮凝剂、陈化时刻等有关。焙烧后的四氧化三锰目标见表4,处理后废水中锰离子浓度见表5。
表4 硫酸锰焙烧氧化的四氧化三锰首要目标与职业标准%含量MnSiO2KNaCaMgPbX0771.220.00450.00080.00180.00170.00310.0002职业标准≥71.0≤0.01≤0.005≤0.01≤0.01≤0.005≤0.001
表5 碳酸锰转化法锰离子收回实验成果实验编号实验条件水中Mn2+/×10-6沉积剂用量沉积温度/℃絮凝剂/‰陈化时刻/hX061.05倍理论量碳酸钠551.81.520.8X071.2倍理论量碳酸钠552.80.51.6X081.15倍理论量碳酸氢钠501.52.035.5X091.25倍理论量碳酸氢钠501.21.51.4
五、定论
(一)使用和的混合物或碳酸(氢)钠沉积处理四氧化三锰出产中的含锰废水,可使废水含锰离子量低于国家规则的污水排放标准2 ×l0-6,用收回的锰离子能够出产高纯四氧化三锰。
(二)碳酸锰转化法简略去除杂质,但存在能耗高、本钱高,产品活性差的缺陷。
(三)氢氧化锰转化法工艺操作简略、本钱较低,能够获得较好的生态效益和经济效益。
四氯化钛气相氧化工艺设备(三)
2019-02-15 14:21:16
(六)二氧化钛(中间半成品)脱氛 从布袋搜集下来的半成品二氧化钛吸附必定量的(0.1%一0.5%)的游离氯,微量的TiC14氯氧化物如TiOC12、Ti2O3C13等。这些杂质不脱除带人后处理会影响产品的白度,制漆时氯与树脂反响影响漆用功用,产品吸潮变黄,使设备的腐蚀严峻。工艺要求脱出二氧化钛粒子吸附的及其他氯化物。 脱氯的办法首要分为干法脱氯和湿法脱氯。 1.干法脱氯 干法脱氯首要为沸腾床脱氯。干法脱氯工艺流程如图10所示。 流化床通电加热,温度控制在400-500℃,吸附的氧化半成品从炉中间加人,炉底筛板吹入枯燥空气,使Ti02粉料流化被空气从Ti02粒子表面脱出进人空气中,稀释从气固混合流经旋风、布袋收尘器别离,气相进人碱淋洗塔净化。 脱氯后的料制浆经泵送到后处理涣散后砂磨。也有的把干料送入粉磨机磨成细粉。 这种办法工艺杂乱,设备繁复,耗能多,现在氯化法生产工艺已被筛选。 2.湿法脱氯 现在大型氯化法钛白的设备基本上都选用湿法脱氯。湿法脱氯工艺流程如图11所示。[next]
一般用的脱氯剂有焦钠(Na2S2O5),硫代硫酸钠(Na2S2O3)、(H202),脱氯反响式如下: (1)H202脱氯反响 2HC1(g)+H202(I)===C12(g)+2H2O(1) NaC1O(1)+H202(1)===NaCl(1)+O2(g)+H20(1) (2)焦钠、硫代硫酸钠反响 C12+H2O===HC1O(1)+HCl NaOH+HC1O===NaCIO+H20 Na2S2O3(1)+4C12(g)+5H2O(1)=== Na2SO4(1)+H2SO4(1)+8HC1 NaOH+HCl===NaCl+H2O H2S04+2NaOH===Na2S04+2H20 Na2S203+NaCIO十H2O===Na2S404+2NaOH+NaCl (3)Na2S03脱氯: Na2S205===Na2S03十S02 Na2S03+Cl2===Na2S04+2NaCl 脱氯反响首要是把具有较强氧化性的游离氯、次氯酸、次氯酸盐还原成安稳的氯化物如氯化钠,而钠、硫代硫酸钠、焦钠等脱氯剂被氧化成硫酸盐在后处理时很简略被洗去,不影响产品漆用功用。 (七)氧化尾气的循环运用 经过脉冲布袋别离后的氧化尾气大致成分见表2。表2 氧化尾气成分成分Cl2COCO2O2HClN2含量/%68~790.8~1.64~64~81~310~13
浓度很高一般回来氯化运用。回来运用最简洁的办法是直接运送到氯化工序运用,杜邦、美礼联等一些公司都是这样做的。条件是氧化炉的工作压力高,从氧化运送到氯化进程中通导才能大,阻力丢失小,无需加压可直接运用。因氧化尾气中含有4%-8%的氧气在氯化炉与碳反响放出热量,使氯化炉气的温度给后边TiC14的冷凝带来更多的困难。 此外,为防止氧化尾气直接用于氯化带来的热量、废气量大的缺陷,国外某公司运用低温TiCl4吸收氯的特色,运用TiC14在低温下吸收把与其他无用成分的气体分隔,然后将TiC14加热后吸收的释放出来,再经过加压以较纯的循环运用。 在TiCl4中的溶解度见表3.[next]表3 在TiCl4中的溶解度温度t/℃-2020406080100120含量/%56.728.116.310.16.754.713.272.27
尽管这样的工艺较为杂乱,但送到氯化工序的纯,不含氧气,能够进步氯化率,削减反响热,使TiCl4冷凝的工艺得到简化。 氧化尾气直接运送的管道因压力较高,其含HCl很简略液化腐蚀管线,在生产中运用衬四氟乙烯的钢管作用很好。 (八)晶粒细化剂参加 在氧化反响进程中为了得到产品均匀粒径0.25μm且粒径散布窄的产品,实验证明,必需要加人晶粒细化剂。细化剂多为碱金属盐类的水溶液。其中最经济、作用也非常好的晶粒细化剂是KCl。 晶粒细化剂加人流程如图12所示。
经过实践人们认识到氧化反响器首要应具有以下功用。 ①使与TiC14反响的氧气被加热到≥1180℃,并能完成使其气流成平稳轴向脉冲流。 ②使被加热到420一500℃的TiCl4气体能均匀、接连地径向喷人反响器内。 ③使轴向高温氧流与沿必定视点径向喷人的TiC14气流穿插,快速混合完成传热、传质同步开端反响,该视点与轴向成60°-90°角。 ④具有穿插混合气流升温胀大不向燃烧室返混的办法。 ⑤有牢靠的使TiC14喷口邻近及喷口下流反响器不结疤,及时冲刷除疤,确保反响器长周期运转的功用。 ⑥反响器中温度高达1450℃以上,有强腐蚀介质热氧及浓度≥65%(体积)的流,设备材料应具有耐腐蚀、耐高温的牲能和保护办法。 ⑦反响器结构上易腐蚀件易替换保护,结构简略。 ⑧反响器结构有利于高温悬浮气流快速脱离反响区进人冷却区。 依据以上功用的要求,氧化反响器的开发阅历了不断创新的进程,因此为满意反响器首要功用,各氯化法钛白生产厂研发了多种多样的氧化反响器,其技术创新推进着氯化法钛白的技术进步。