表面钝化处理方法
2018-12-28 15:58:46
铝及铝合金工件,无论是化学氧化法或阳极氧化法制取的氧化膜都是多孔的,易受污染,耐蚀性不高。例如,铝及铝合金阳极氧化膜是一种具有蜂窝状结构的多孔膜,其微孔数量达4~77×10。个/cm2,比表面积非常高。因此,使得氧化膜的表面具有极高的化学活性,空气中或者使用环境中的腐蚀介质或污染物极易被吸附到膜孔内,所以未经封闭处理的铝合金阳极氧化膜耐蚀性和抗污染能力均不高。即使氧化膜在染色后也应进行钝化或封闭处理,以提高其耐蚀性。
铝材钝化处理工艺
2018-12-25 10:08:19
铝的密度小,比强度大,具有耐蚀性好,导电和导热性能高,可焊,塑性好,易于加工成型以及优良的表面装饰性能等诸多优点。铝合金是纯铝加入一些合金元素制成的,铝合金比纯铝具有更好的物理力学性能。由于铝是比较活泼的金属,在空气中能自发地形成一层极薄的非晶态的氧化膜,使其在大气中具有较好的耐蚀性,但这层膜厚度仅约4nm,并且结构疏松、薄而多孔、硬度低、耐磨性差、机械强度低,因此需要通过人工的方法在其表面覆盖一层膜,以达到防护的目的。通常可以通过铝材钝化液浸泡钝化处理、氧化处理、电镀、外加涂层等铝合金表面处理技术得到实现。 铝材钝化处理具体内容为: 铝材钝化处理可以适用于所有的铝及铝合金的表面抗氧化防腐蚀。经过大量测试表明,凡经过钝化处理后的铝材及其合金表面抗氧化性能可提高5-10倍以上,并且绝对不会改变其外观颜色、尺寸及任何的后处理和性能。操作工艺也非常简单,只需要浸泡3分钟即可完成处理工艺,无需设备及特殊的场地要求。目前此钝化工艺是最适合用来做铝及铝合金表面抗氧化处理的工艺之一。 氧化处理 氧化处理主要是阳极氧化、化学氧化、微弧氧化。对于进行了化学氧化、阳极氧化以及微弧氧化三种不同工艺的表面处理后,通过SEM技术,磨损实验以及耐腐蚀试验,对经过三种表面处理后铝合金的表面形貌、氧化层厚度、耐磨性及耐蚀性等进行了详细的分析比较,得出经过不同表面处理铝合金表面能形成不同厚度的氧化膜,表面硬度及耐磨性明显提高,合金耐蚀性也得到不同程度的改善。但其工艺较铝材钝化处理要复杂。 电镀及化学镀 电镀是通过化学或电化学方法在铝及铝合金表面沉积一层其他金属镀层后,可以改变铝合金表面的物理或化学性能,如铝电子元件上导体镀银、镀金可提高其接触部位或者是表面的导电率;镀铜、镍或锡可改善铝合金的焊接性;与电镀工艺相比,化学镀是一种极低污染的工艺,得到的Ni-P合金又是一种很好的铬镀层。但是化学镀的工艺设备多,材料耗费大,操作时间长,工序繁琐,而且镀件质量难以保证。如此比较,铝材钝化处理是适合、也是最经济、环保、低成本的表面处理工艺,是铝材有效防腐和抗氧化保护的首选方法。
铝制品表面钝化处理
2019-03-11 11:09:41
关于钝化机理现在存在多种理论,首要分为吸附理论和薄膜理论两种。吸附理论以为,在钝化过程中,金属表面构成一层吸附层,首要是氧的吸附层。正是因为这一吸附层的存在,使金属耐蚀性进步。薄膜理论以为,在钝化过程中,金属表面生成一层氧化膜。正是因为这一层膜的存在,将基体金属与腐蚀介质分隔,到达维护基体金属,使其不被持续受腐蚀。可是上述这两种理论均不能彻底解说悉数钝化现象,有待进一步完善。那么铝制件要求表面钝化处理应怎么进行呢?下面就由PHNIX电镀设备为您共享下:硫酸锆0.2g/L,氢氧化铁0.2g/L,三聚磷酸钠0.2g/L,有机酸1.0g/L,适量,PH11.5-13.5,温度70℃,。将铝件在上述溶液中浸渍6S,用清水洗洁净,放入含植酸20g/L的溶液中(PH=3.5),温度60℃下浸渍6S,用去离子水清洗洁净,枯燥即可。
铝合金制品表面无铬化钝化处理技术问世
2019-01-11 10:51:55
为有效解决铝合金制品生产中的水污染问题,从2012年开始,佛山华昌铝型材厂与华南理工大学合作,研发出铝合金制品表面无铬化钝化处理技术。经过半年多的试验,目前多项指标已达到预期效果。
据华昌相关负责人介绍,他们研发的无铬化钝化处理技术,是代替现在普遍使用的铬酸盐处理技术,可以有效解决铝合金制品生产中的水污染问题。这个项目得到广东省和佛山市环保部门的重视,在“2008年粤港关键领域重点突破项目(佛山专项)”招标中,获得“节能减排关键技术”项目标的,计划三年内完成整套技术的研发。经过半年多的试验,多项指标已经达到预期的效果。“除了废水试验,它的性能离国家的标准还有一定距离,其它的抗冲击性、抗弯曲性等指标,已经达到了国家标准的要求,预计这个项目应该可以提前完成。”
据了解,目前铝型材行业中的表面处理通常采用化学转化工艺进行处理,这种工艺配方中含有的铬化合物是一种有毒的化学品,处理不当就排放出去,不仅会对环境造成污染,而且会危害人类健康。而稀土转化膜具有无毒、无污染和防腐蚀效果好的特点,这项新技术近年来受到业界的高度重视,可望成为主要铬酸盐转化替代技术之一。
铝板氧化处理技术
2019-01-09 09:34:17
针对铝合金的阳极氧化,比较多,可以应用在日常生活中,以为这种工艺的特性,使铝件表面产生坚硬的保护层,可用于生产厨具等日用品。但铸造铝的阳极氧化效果不好,表面不光良,还只能是黑色。铝合金型材就要好一点,下面为大家简单的介绍一下铝板氧化处理的方法。
近十年来,我国的铝氧化着色工艺技术发展较快,很多工厂已采用了新的工艺技术,并且在实际生产中积累了丰富的经验。已经成熟和正在发展的铝及其合金阳极氧化工艺方法很多,可以根据实际生产需要,从中选取合适的工艺。
在选取氧化工艺之前,应对铝或铝合金材质情况有所了解。因为,材料质量的优劣、所含成份的不同,是会直接影响到铝制品阳极氧化后的质量的。关于这一点,洪九德、范济同志已有专门论述(参看《电镀与涂饰》1982年第2期P.27)。
比如,铝材表面如有气泡、划痕、起皮、粗糙等缺陷,经阳极氧化后,所有疵病依然会显露出来。而合金成份,对阳极氧化后的表面外观,也产生直接的影响。
比如,含1~2%锰的铝合金,氧化后呈棕蓝色,随铝材中含锰量的增加,氧化后的表面色泽从棕蓝色到深棕色转化。
含硅0.6~1.5%的铝合金,氧化后呈灰色,含硅3~6%时,呈白灰色。
含锌的呈乳浊色,含铬的呈金黄至灰色的不均匀色调,含镍的呈淡黄色。
一般而言,只有含镁和含钛量大于5%的铝含金,经氧化后可以得到无色透明且光亮、光洁的外观。
在选择好铝及铝合金材料后,自然就要考虑到选取合适的阳极氧化工艺。目前,我国广泛应用的硫酸氧化法、草酸氧化法及铬酸氧化法,均在手册、书刊上有过详细的介绍,不必赘述。
铜及铜合金的分类和焊接特点
2019-05-28 09:05:47
铜及铜合金的分类和焊接特色
纯铜纯铜常被称作紫铜。它具有杰出的导电性、导热性和耐蚀性。纯铜用字母+T}}(铜)表明,如Tl,T2,T3等。氧的含量极低,不大于0. O1%的纯铜称为无氧铜,用TU(铜无)表明,如TU1、TU2等。
黄铜以锌为首要合金元素的铜合金称为黄铜。黄铜用+H;(黄)表明如H80、H70,H68等。
青铜曾经把铜与锡的合金称作青铜,现在则把除了黄铜以外的铜合金称作青铜。常用的有锡青铜、铝青铜和敏青铜等。青铜用“Q,’(青)表明。
铜及铜合金焊接首要选用气焊、惰性气体维护焊、埋弧焊、钎焊等办法。铜及铜合金导热功能好,所以焊接前一般应预热,并选用大线能量焊接。钨极氢弧焊选用直流正接。气焊时,紫铜选用中性焰或弱碳化焰,黄铜则选用弱氧化焰,以避免锌的蒸腾。特色是a难熔合及易变形;b简单发生热裂纹;c简单发生气孔
红铜,钨铜,锻打红铜,铝青铜,磷青铜,杯土铜
铝阳极氧化处理基础
2019-03-11 09:56:47
在酸性电解液中,以铝为阳极,通过电解使铝表面发生氧化膜的材料维护技能。铝的阳极氧化有多种电解液,但基本上是以硫酸、铬酸、乙二酸或为首要组分制造的。其间最常用的是硫酸基的。电源可采用直流、沟通或交变直流的。电压在5~25伏间,温度低于25℃。
电解过程中,氧的阴离子与铝效果发生氧化膜。这种膜初构成时还不行细密,有必定的电阻,使电解液中的负氧离子仍能抵达铝表面持续构成氧化膜。跟着膜厚度的添加,电阻变大,电解电流变小,而与电解液触摸的外层氧化膜同时发生化学溶解,在铝表面构成氧化物的速度渐与化学溶解的速度平衡时,这一氧化膜便可到达这一电解参数下的最大厚度。铝的阳极氧化膜的结构与其他转化膜有所不同,接近基体金属部分的是0.01~0.1微米的细密层,其上是许多空心六角柱体所构成的蜂房状层,总厚度为2~100微米不等。由各种电解液发生的阳极氧化膜色彩纷歧,有的是全体上色的,多用于建筑工业,有的能够染料上色或运用水解和复分化的办法,使构成的颜料沉积在六角柱的空心部分,添加美感。
最终还需要进行关闭和烘干。有阳极氧化铝膜的铝材,抗蚀性有时优于通过铬酸盐处理的铝材。这种铝材除在建筑工业和日用五金产品方面广泛运用外,也用于飞机、轿车、民用船只。运用低温、溶解力弱小的电解液和较高的电压(100~150伏),可构成工程用的硬质阳极氧化膜,用于与纤维、纸张和橡胶触摸的机械零件和液压元件。在普通阳极氧化铝层的六角柱体空泛中填充聚四氟乙烯,能够获得摩擦系数极低的零件。
铝合金强化处理技术
2019-01-14 11:15:42
铝合金的强化方式主要有以下几种: 1.固溶强化 纯铝中加入合金元素,形成铝基固溶体,造成晶格畸变,阻碍了位错的运动,起到固溶强化的作用,可使其强度提高。根据合金化的一般规律,形成无限固溶体或高浓度的固溶体型合金时,不仅能获得高的强度,而且还能获得优良的塑性与良好的压力加工性能。Al-Cu、Al-Mg、Al-Si、Al-Zn、Al-Mn等二元合金一般都能形成有限固溶体,并且均有较大的极限溶解度(见表9-2),因此具有较大的固溶强化效果。 2.时效强化 合金元素对铝的另一种强化作用是通过热处理实现的。但由于铝没有同素异构转变,所以其热处理相变与钢不同。铝合金的热处理强化,主要是由于合金元素在铝合金中有较大的固溶度,且随温度的降低而急剧减小。所以铝合金经加热到某一温度淬火后,可以得到过饱和的铝基固溶体。这种过饱和铝基固溶体放置在室温或加热到某一温度时,其强度和硬度随时间的延长而增高,但塑性、韧性则降低,这个过程称为时效。在室温下进行的时效称为自然时效,在加热条件下进行的时效称为人工时效。时效过程中使铝合金的强度、硬度增高的现象称为时效强化或时效硬化。其强化效果是依靠时效过程中所产生的时效硬化现象来实现的。 3.过剩相强化 如果铝中加入合金元素的数量超过了极限溶解度,则在固溶处理加热时,就有一部分不能溶入固溶体的第二相出现,称为过剩相。在铝合金中,这些过剩相通常是硬而脆的金属间化合物。它们在合金中阻碍位错运动,使合金强化,这称为过剩相强化。在生产中常常采用这种方式来强化铸造铝合金和耐热铝合金。过剩相数量越多,分布越弥散,则强化效果越大。但过剩相太多,则会使强度和塑性都降低。过剩相成分结构越复杂,熔点越高,则高温热稳定性越好。 4.细化组织强化 许多铝合金组织都是由α固溶体和过剩相组成的。若能细化铝合金的组织,包括细化α固溶体或细化过剩相,就可使合金得到强化。 由于铸造铝合金组织比较粗大,所以实际生产中常常利用变质处理的方法来细化合金组织。变质处理是在浇注前在熔融的铝合金中加入占合金重量2~3%的变质剂(常用钠盐混合物:2/3NaF+1/3NaCl),以增加结晶核心,使组织细化。经过变质处理的铝合金可得到细小均匀的共晶体加初生α固溶体组织,从而显著地提高铝合金的强度及塑性。
再生铝合金净化处理
2018-12-18 10:15:53
众所周知,废杂铝的回收至今极少走原生铝的流程,即还原电解,其主要原因是经济上划不来。因为废杂铝的回收花费大。通常报道,再生铝回收电耗仅为原铝的5%,仅仅指熔化废铝、废铝回收处理和运输消耗的能量。电解铝所需的能量则远远大于此数,通常吨铝电解电耗为13000~15000千瓦小时,能耗成本将十分可观。同时,由于废杂铝中存在有许多矿石中所没有的添加元素,这将给再生利用带来麻烦,甚至一般工艺无法达到恢复原生铝纯度的目的。从各种因素综合考虑,现今各国再生铝工艺的工序是废铝-分解-处理-重熔-不同牌号成分的再生铝合金。当然以上工艺程序存在有成分难以控制、配制的困难。 因此,在重熔时净化、提纯的课题仍是再生铝工业中大家共同探索的课题。除采取在废杂铝在熔化炉之前进行各种处理,以免杂质,外来元素进入等措施外,还需研究根据产品需要、工艺需要在熔化过程中降低杂质元素及某些原合金元素的含量,使其与生产目标合金成分标准要求。目前最通用的方法是净化炉前原料分析,精心配制,分多次加料,加强熔化时搅拌,强化炉前分析,强化精炼出炉、静置炉熔剂精炼等,用以保证金属内部纯度,保证产品质量,提高实收率。强化分析,将原废杂铝按成分分类分级。分别使用是保证产品化学成分质量的最有力的措施之一。经分析综合标准或厂内废料、碎料,在处理打包后重熔或再生锭后再根据分析使用。 熔体净化是十分重要的工序,废杂铝中内部纯度差,不同程度地含有氧化膜等,有的表面被水、油垢、油漆、灰尘污染严重,极易进入熔体,形成梳松夹杂缺陷,影响铸件最终性能,必须强化熔体净化处理. 有的方法对于除氢、非金属夹杂和钠等异物均有不同程度的效果。对于废杂铝中原有的合金元素提取极为困难,鲜见报道,但有时可以利用一些合金元素的相互关系影响合金性能来进行调节控制。如Mg和Si形成Mg2Si化合物强化相。组成的Mg2Si的Mg/Si重量比是1.73。当Mg2Si>1.73时将影响Mg2Si在合金中的固溶度,减弱热处理效应。过剩Si都无影响。Fe和Si同时存在时形成三元化合物,Fe>Si时,形成较多的α脆性相Al2Fe3Si2);
Fe<Si时生成更脆的β相(Al12Fe2Si)。为防止开裂,对Si应控制在充分满足Mg2S的生成后剩余Si不大于铁含量的范围内。适当提高铁可明显降低铸造热裂倾向。根据这些关系,可适当进行成分调整,以满足产品要求。 .
铝棒时效强化及均匀化处理
2018-12-26 09:46:11
经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效硬化。这是铝合金强化的重要方法之一。
由定义可知,铝合金时效强化的前提,首先是进行淬火,获得饱和单相组织。在快冷淬火获得的固溶体,不仅溶质原子是过饱和的,而且空位(晶体点缺陷)也是过饱和的,即处于双重过饱和状态。经研究可知;铝合金固溶处理温度越高,处理后过饱和程度也越大,经时效后产生的时效强化效果也越大。因此固溶处理温度选择原则是:在保证合金不过烧的前提下,固溶处理温度尽可能提高。
固溶处理后的铝合金,在室温或某一温度下放置时,发生时效过程。此过程实质上是第二相从过饱和固溶体中沉淀的过程。这种过程是通过成型和长大进行的,是一种扩散型的固态相变。它依下列顺序进行:a过→G.P区→θ’’相→θ’相→θ相 影响时效强化效果的因素有哪些? 时效是按一定顺序进行的,强化效果受以下因素影响。 (1) 时效温度。固定时效时间,对同一成分的合金而言,时效温度与时效强化效果(硬度)之间关系。在某一时效温度时,能获得最大硬化效果,这个温度称为最佳时效温度。不同成分的合金获得最大时效强化效果的时效温度是不同的。统计表明,最佳时效温度与合金熔点之间存在如下关系:T0 = (0.5 – 0.6)T (2) 时效时间。硬度与强度峰值出现在θ’’相的末期和θ’过渡相的初期,θ’后期已过时效,开始软化。当大量出现θ相时,软化已非常严重。故在一定的时效温度内,为获得最大时效强化效果,应有一最佳时效时间,即在θ’’产生并向θ’转变时所需的时间。 (3) 淬火温度、淬火冷部却速度和淬火转移时间。实践证明,淬火温度越高,淬火冷却速度越快,淬火中间转移时间越短,所获得的固溶体过饱和程度越大,时效进行后强化效果越大。 (4) 时效工艺。时效可选单级或分级时效。单级时效指在室温或低于100℃温度下进行的时效过程。它工艺简单,但组织均匀性差,抗拉强度、屈服强度、条件屈服强度、断裂性、应力腐蚀抗力性能很难得到良好的配合。分级时效是在不同温度下进行两次时效或多次时效。在较低温度进行预时效,目的在于在合金中获得高密度的G.P区,由于G.P区通常是均匀成核的,当其达到一定尺吋后,就可以成为随后沉淀相的核心,从而提高了组织的均匀性。在稍高温度保持一定时间进行最终时效。由于温度稍高,合金进入过时效区的可能性增大,故所获得合金的强度比单级时效略低,但是这样分级时效处理后的合金,其断裂性值高,并改善了合金的抗腐蚀性,提高了应力腐蚀抗力。
均匀化处理:
均匀化处理作为提高锭坯的冶金质量及挤压性能的手段已经得到了广泛的应用。均匀化处理重要的参数如:均热时间、均热温度及冷却速率都有了明确的提法。间歇式的均匀化炉也被的连续均匀炉所取代,连续均匀化炉具有先进的控制系统、完整的自动检测系统、锯切及装载系统。当然这种处理过程成本相当高,量化的收益就会有所减少。
未均匀化处理锭坯的适应性:
但铝棒加热的重要性也得到了普遍公认,均匀化潜在的好处也許是可能被改进的加热工艺实践所取代。直接加热的锭坯被认为会引起限制挤压速度提高的模具缺陷和撕裂。该情况发生确切的机理还不是清楚。金属间存在的相、及其形状、固溶度都影响着合金的挤压性能、机械性能。
近年來未均匀化处理锭坯其应用前景不错,也许要比我们想象的还要好些。Mg、Si的高固溶度对合金来说是一个相当重要的性能,这只要中等的加热温度也许就能达到。因为较长的加热时间只需要较低的温度。T1、T5状态下其硬度非常接近于最大值(但如与T4、T6状态下性能作比较)。
对未均匀化处理的锭坯在低温下和无保温时间下(0小时/480℃加热条件下)进行挤压,这对挤压产品T5状态下性能不利。然而其性能仍能达到标准的下限。无凹痕碰撞性能也会降低,然而我们惊奇地发现其带凹痕碰撞性能要高于最高的加热条件下挤压产品。
如果需要,使用快速挤压及标准的固溶及时效处理,产品的硬度和拉伸性能能被提高到与最高加热条件下的挤压产品相当。也许能够通过提高挤压温度来提高未均匀化处理锭坯挤压产品T1、T5状态下的性能,然而,更高的挤压出口温度将限制最大挤压速度实现的可能。 似乎通常的煤气加热炉,都有一个长度合理的热区,用来适合6063合金锭坯的各种加热。如果需要更高的加热温度来优化合金性能,有这样的铝棒加热炉,能满足挤压前锭坯加热的要求,并形成温度梯度。这种方法能用来适应未均匀化处理锭坯的加工。
使用低温加热或短时间加保温意味着含Fe金属间化合相并没有完全转化为平衡相α-Al8Fe2Si,已经研究了其对强度及抗冲击性能的影响,这也许还影响到挤压性能。例如:金属间化合物的大小、形状、类型可能影响到模具磨损及粘铝。如果Mg和Si得不到完全固溶,剩余的Mg2Si/Si会因为低共晶化合物熔解、撕裂从而对挤压速度产生负面影响。也许在工作中并没有发现加热条件对突破压力及挤压产品表面产生不明显的影响。
另一个必须考虑的因素是合金成分。因此就需要更高的加热温度及加热时间。改变Mg和Si的含量将直接影响着合金的某些性能,并间接的影响到合金的固溶温度。另外,不同的Fe含量会与不同量的Si发生反应结合在一起,这将影响产品的最终性能。
观察结论:
合金的固溶温度对均匀化、锭坯加热、挤压(关系到出料口温度)和固溶处理来说是一个非常重要的参数。使用多项技术(工艺):硬度、微观分析、微探针形貌分析、(热电偶)来评估锭坯加热。实验结果表明6063合金固溶温度大约为490℃。
锭坯加热过程中,含Fe金属间化合物的构成很大程度上都依赖于加热温度,计算平衡相α-Al8Fe2Si为经570℃2小时保温后6063合金仅存的相,但在540℃及更低的温度下发现了一个以上的金属间化合物。
使用未均匀化处理铝棒虽然会导致产品T5状态下硬度、抗拉强度和无凹痕碰撞能的降低,但仍可达到合金机械性能。当加热条件接近与常规的均匀化处理,其性能达到高值。使用未均匀化处理的锭坯T5状态下的带凹痕碰撞能和T6状态的抗拉性能有不利的影响。而其对挤压性能的影响有待进一步量化。删除