您所在的位置: 上海有色 > 有色金属产品库 > 锂硫电解液 > 锂硫电解液百科

锂硫电解液百科

电解铜电解液

2017-06-06 17:49:56

电解铜电解液作为电解铜时的重要原料也受到电解铜厂家的重视。电解铜电解液的成分以及含量、电解后的回收利用开始受到生产厂家的关注。中国是世界最大的铜材生产国、消费国、进口国,也是重要的出口国,铜材总产量己连续7年居世界首位。中国铜加工业所面临的新形势是:世界金融危机对铜加工的不利影响并未消除,出口形势并不乐观,节能减排和企业升级任务艰巨。    电解铜电解液一般以硫酸(H2SO4)和硫酸铜(CuSO4)的混和液作为电解液。铜的电解提纯生产方式是:将粗铜(含铜99%)预先制成厚板作为阳极,纯铜制成薄片作阴极,以硫酸(H2SO4)和硫酸铜(CuSO4)的混和液作为电解液。通电后,铜从阳极溶解成铜离子(Cu)向阴极移动,到达阴极后获得电子而在阴极析出纯铜(亦称电解铜)。粗铜中杂质如比铜活泼的铁和锌等会随铜一起溶解为离子(Zn和Fe)。由于这些离子与铜离子相比不易析出,所以电解时只要适当调节电位差即可避免这些离子在阳极上析出。比铜不活泼的杂质如金和银等沉积在电解槽的底部。 这样生产出来的铜板,称为“电解铜”,质量极高,可以用来制作电气产品。沉淀在电解槽底部的称为“阳极泥”,里面富含金银,是十分贵重的,取出再加工有极高的经济价值。    铜火法精炼的产品叫火精铜,一般含铜99.5%以上。火精铜中常含有金、银等贵金属和少量杂质,通常要进行电解精炼。若金、银和有害杂质含量很少,可直接铸成商品铜锭。电解精炼是以火法精炼的铜为阳极,以电解铜片为阴极,在含硫酸铜的酸性溶液中进行。电解产出含铜99.95%以上的电铜,而金、银、硒、碲等富集在阳极泥中。电解铜电解液一般含铜40~50g/L,温度58℃~62℃,槽电压0.2~0.3V,电流密度200~300A/m2,电流效率95%~97%,残极率约为15%~20%,每吨电铜耗直流电220~300kwh。中国上海冶炼厂铜电解车间电流密度为330A/m2。    更多关于电解铜电解液的资讯,请登录上海有色网查询。 

金电解液的制备

2019-03-06 09:01:40

制备金电解液的最好办法是电解法,俗称电解造液。别的,还可运用法。 电解造液均运用隔阂电解法。这种办法是在与金电解相同的槽中,选用与金电解根本相同的技能条件进行的。其最大不同点是纯金阴极很小且装于未上釉的耐酸素瓷隔阂坩埚中(图1)。此法广泛应用于工业出产中,当运用25%~30%的液,在面积电流1000~1500A∕m2和槽电压不大于3~4V条件下,可制备出含金380~450g∕L的浓溶液。图1  金的隔阂造液 1-阳极;2-阴极;3-隔阂坩埚 某厂电解造液是在电解槽中参加稀(化学纯或蒸馏),槽中装入粗金阳极板,在素瓷隔阂坩埚中装入105mm×43mm×厚1.5mm的纯金阴极板。素瓷坩埚内径为115mm×55mm×深250mm,壁厚5~10mm。坩埚内的阴极液为1∶1的稀。阴极液面比电解槽阳极液面高5~10mm,以避免阳极液进入阴极区。 电解造液的条件一般选用面积电流2200~2300A∕m2,槽电压2.5~4.5V,分量沟通电为直流电的2.2~2.5倍,沟通电压5~7V,液温40~60℃,同极距100~120mm。当接通电流时,阴极上开端放出,而阳极则开端溶解。造液44~48h,即取得密度1.38~1.42g/m3、含金300~400g∕L(延伸周期最高可达450g∕L)、含250~300g/L的溶液,通过滤除掉阳极泥后,贮存在耐酸瓷缸中备用。作业停止后,取出坩埚,阴极液会集进行置换处理,以收回或许穿透坩埚进入阴极液中的金。 鉴于金价贵重,为进步金的直收率,使金不致积压于出产过程中,某些厂曾运用含金95~120g∕L、120~150g∕L的电解液。 造液,是将复原的金粉加溶解而制得。一份金粉参加一份,经溶解后过滤除掉杂质。为了除掉溶液中的硝酸一般在金粉悉数溶解后,持续加热赶硝以使其分解成氧化氮而被除掉。在苏联曩昔多运用造液,南非和日本如今仍多选用之。此法的长处是速度快,但溶液中的硝酸不或许彻底被扫除,用此溶液进行电解时,因为硝酸根离子的存在,会使电解过程中呈现阴极金反溶解的不利因素。 近代金电解工艺中,还有选用离子交换膜造液的。

镍电解液净化除铁方法

2019-02-13 10:12:44

在镍电解出产中,阳极液含铁量一般为100~500mg/L,净化后要求溶液含铁量降至0.5~4mg/L,一般选用水解沉积法除铁。       (一)湿法冶金常用的水解沉积除铁办法 工业出产上常用的水解沉积除铁办法有中和水解法、黄钠(钾)铁矾法、针铁矿法和赤铁矿法。           1)中和水解法       一般所说的中和水解法是用碱调理溶液PH值,在保证待提取的主金属离子不发作水解沉积时,杂质金属离子以氢氧化物M(OH)n形状分出,故也称为氢氧化物沉积法。 金属离子不解按下式进行: Mn++nOH-=M(OH)n↓        OH-离子来源于水的离解反响。假如发[Mn+]标明溶液中的金属离子在水解反响到达平衡时的浓度,则[Mn+]与PH的联系可用图2示出。当金属离子浓度一守时,Mn+发作水解沉积的PH见表1。 表1 氢氧化物沉积时,Mn+的平衡PH(25℃)Mn+Ca2+Mg2+Ni2+Fe2+Pb2+Zn2+Co2+Cu2+Fe3+Co3+平衡[Mn+]=lmol/L11.378.377.16.356.225.655.14.371.53-0.2PH值[Mn+]=10-6mol/L14.711.3710.19.359.228.658.17.373.531.8[next]        从图2和表1可得如下定论:       (1)在离子浓度相同的情况下,坐落图左面各种离子的平衡P敊,故它们在较小的P眄便可沉积,或者说它们的盐类简单水解,而碱土金属的盐类难于水解。         (2)对照Fe2+—Fe3+、Co2+—CO3+的水解平衡线可知,对变价金属而言,同一金属其高价离子比贱价离子简单水解。因而在镍电解液净化时,为使溶液中的Fe2+也优先水解沉积,则鼓入空气使Fe2+氧化成Fe3+,进而成Fe(OH)3沉积。相同的道理,用将Co2+氧化成Co3+,以Co(OH)3沉积。       氢氧化物沉积法为提取冶金中使用最广的除铁办法,可是这种办法的首要缺陷是Fe(OH)3具有胶体性质,不只沉积速度慢,弄清过滤困难,并且使金属和其他有价金属被吸附而丢失。因而,当Fe3+浓度较大时,从溶液 中别离Fe(OH)3是很困难的。出产实践标明,该法只适宜于用来净化处理低浓度(如铁离子浓度在/L左右)的溶液。        2)黄钠(钾)铁矾法、针铁矿和赤铁矿法        怎么从铁离子浓度较高的溶液中除掉F3+(或Fe2+),惯例的水解沉积法因生成很多Fe(OH)3胶状沉积导致沉铁进程液固别离困难。经长时间的研讨和实践,在20世纪六十年代,先后有黄钾(钠)铁矾法、针铁矿法和赤铁矿法三种新的除铁办法在湿法冶金中推广使用。三种办法的一同特点是操控必定的沉铁条件,使溶液中的铁离子以人工矿藏(如铁矾、针铁矿和赤铁矿等)沉积,这些人工矿藏沉降物呈结晶状,易于沉降、过滤和洗刷。       (1)黄钠(钾)铁矾沉铁法       在自然界有些矿藏具有类似的组成、相同的结构和相同的结晶形状,这就是地球化学上所称的类质同晶。所谓矾就是一系列类质同晶矿藏的总称,而一价金属离子(如K+、Na+、Ag+、NH4+等)和三价金属离子(如Al3+、Fe3+、Cr3+等)的硫酸盐最简单一同构成矾。       黄钾铁矾类的铁矾,如钾铁矾、钠铁矾、铵铁矾等,其化学通式为MFe3(SO4)2(OH)6。M可所以K+、Na+、NH4+等一价金属离子,其顔色均为黄色。在湿法冶金上,考虑试剂的经济本钱(其间含K+的碱或盐报价贵重),常以纯碱或液作沉铁试剂,以供给构成铁矾所需的一价金属离子。[next]       处理镍电解阳极液中和水免除铁所产出的高镍铁渣时,选用硫酸溶解一氧化一黄钠铁矾法除铁。沉铁进程是在溶液中有满足的Na+和SO42-存在时,在高温(90~95℃)下,操控恰当的P上.5~1.8),就能生成黄钠铁矾沉积。 3Fe2(SO4)3+Na2SO4+12H2O=Na2Fe6(SO4)4(OH)12↓+6H2SO4       铁矾类复盐呈黄色或淡黄色斜方结晶,成分安稳,在酸性溶液中溶解度小,沉降、过滤和洗刷性能好,液固别离易于进行,所以除铁作用好。      (2)针铁矿沉铁法       针铁矿沉铁法又称空气氧化除铁法。它是在高温(~90℃)和低酸浓度的硫酸盐溶液中,通入涣散空气使溶液中的Fe2+氧化成Fe3+,并表成与天然针铁矿(如纤铁矿,化学式为γ-FeOOH)在晶形与化学成分上类似的化合物沉积:        该反响构成的针铁矿为a-FeOOH,系棕色针状结晶。针铁矿法除铁的重要条件是溶液中Fe3+浓度应小于1g/L,因而需求增高一道复原工序,将Fe3+复原成Fe2+。      (3)赤铁矿沉铁法       赤铁矿是一种炼铁质料。人们研讨发现,在高温、高压条件下,当硫酸浓度不高时,溶液中的Fe3+便会发作加水分化反响,得到a-Fe2O3沉积:        从化学式所标明的化学成分可知,赤铁矿沉积渣中铁的含量(~60%Fe)比黄钠(钾)铁矾法和针铁法铁渣中铁的含量都高,因而该法的铁渣量少,可作炼铁质料,但需求贵重的高压釜作沉铁设备,模块样要预先将Fe3+复原成Fe2+,该法的建造出资大。现在该办法还只有在国外湿法炼锌工厂有出产使用。 湿法冶金中的氧化水免除铁办法比较见表2。表2  氧化水免除铁办法比较办法适用铁的 浓度规模开始铁 离子形状沉积物形状进程条件PH值温度/℃压力预处理惯例低铁溶液 (Fe﹤1g/L)Fe3+Fe(OH)33.5~4.560~80常压Fe2+需氧化铁矾法高铁溶液Fe3+M2Fe6(SO4)4(OH)121.5~1.890~95常压Fe2+需氧化针铁矿法高铁溶液Fe2+FeOOH3~3.580~90常压Fe3+需复原赤铁矿法高铁溶液Fe2+a-Fe2O340~50g/L H2SO4180~200高压Fe3+需复原

废电解液中的金回收

2019-02-14 10:39:59

废电解液中含有250~300克/升的金。常用的收回办法有置换法及复原法。    置换法:用锌粉置换,反响式为:                    2HAuCl4+3Zn=2Au↓+3ZnCl2+2HCl    选用锌粉置换前废电解液要煮沸,赶硝,避免金返溶。置换时pH=1~2,避免锌盐水~30克解,防碍金的沉积。    复原法:可用硫酸亚铁或钠复原,反响式分别为:                3FeSO4+HAuCl4= Au↓+FeCl3+Fe2(SO4)3+ HCl                      Na2SO3+2HCl=2NaCl+H2O+SO2↑                2HAuCl4+3SO2+6H2O=2Au↓+8HCl+3H2SO4    硫酸亚铁除贵金属外,对其他金属简直无复原作用,因而有利于进步复原金的纯度。可是硫酸亚铁复原反响缓慢,反响不完全,尾液还需用锌粉进一步处理。    废电解液中如含有硝酸,在复原前要加热煮沸,除尽游离的硝酸。复原时恰当加热可获得大颗粒海绵金。为增强海绵金的复原作用,国外有人主张向溶液中参加0.3克/升的聚乙稀醇作为凝聚剂。

硝酸银电解液的制备

2019-03-06 09:01:40

制造电解液,一般是运用含银99.86~99.88%以上的电解银粉或附近纯度的化学精粹银。将银粉置于耐酸瓷缸中,先加适量水湿润后,再分次参加硝酸和水,在自热条件下使其溶解而制得。某厂生产中,每批造液运用银粉40kg,配入工业纯硝酸40~45kg,水25~30kg。因为硝酸的激烈氧化,会放出很多的氧化氮和热,为防止氧化过火激烈形成溶液的外溢,硝酸应选用小流量接连参加或连续小批量参加的方法。当或许呈现外溢时,便参加适量自来水冷却之。待加完硝酸和水,反响逐步缓慢后,用不锈钢管刺进缸内,直接通蒸汽加热并拌和以加快溶解。银粉彻底溶解后,持续通入蒸汽以赶除过量的硝酸。一次造液进程约需4~4.5h。最终加水弥补至60L,溶液含银约600~700g∕L,硝酸小于50g∕L。再加水稀释至所需浓度供作电解渡用,或直接将浓液按核算量弥补于电解进程中。 造液作业通常在硬塑料的通风柜中进行,产出的很多氧化氮气体,经过塑料烟囱经洗气后排出。 国内外的一些工厂,也有用含银较低的银粉或许租银合金板及各种不纯银质料造液的。但因杂质含量高,需常常替换电解液。

金电解阳极泥和废电解液的处理

2019-03-06 09:01:40

金电解阳极泥中,约含90%AgCl、1%~10%金,一般将其回来再铸金银合金阳极板供银电解。因为氯化银的熔点低(452℃),熔炼时简单蒸发丢失,为此某厂将金电解阳极泥于地炉中熔化后用倾析法别离金。氯化银渣参加碳酸钠和碳进行复原熔炼,铸成粗银阳极送银电解。金回来铸金阳极。 当金阳极泥中含有锇铱矿时、应先筛分阳极泥,选出锇化铱后,再收回金、银。 替换电解槽中的金电解液,是先将废液抽出,并将阳极泥清出,洗净电解槽参加新液。废液和洗液悉数过滤,取得的阳极泥洗净烘干。 废液和洗液,一般先用二氧化硫或亚铁复原其间的金后,再加锌块置换铂旅金属至溶液弄清停止。经过滤,滤液弃去。滤渣含铂族金属较高,用1∶1的稀浸洗除掉铁、锌后,送精制铂族金属。 当电解废液含铂、钯很高时,也可先用氯化亚铁复原其间的金,再别离铂、钯等。处理这种金电解废液,也有先参加氯化铵使铂呈铵沉积后,再用中和溶液至pH8~10,使贱金属水解除掉,再加酸化至pH1,钯即生成二氯二络亚钯沉积。余液用铁或锌置换收回剩余贵金属后弃去。 金电解进程中,如电解液中含铂、钯过高,有可能与金一道分出时,也可采用上述办法净化电解液。除掉铂、钯后,溶液可回来电解运用。 某厂在进行含金49.85g∕L、钯4.74g/L、铂0.68g∕L的金电解废液实验时,别离运用硫酸亚铁、二氧化硫和草酸复原金,金的沉出率和精液中铂、钯的散布率如下表。 表  金铂钯的收回率(%)复原剂金钯铂硫酸亚铁99.1395.99100.00二氧化硫99.9351.3995.60草酸96.0197.0592.53 从上表中能够看出:亚铁复原金的复原率高,铂、钯的丢失少;草酸最低;二氧化硫复原金的复原率虽最高,但钯的丢失过大,可能是生成不溶性的钯络盐之故。复原金后的溶液,尚含有少数金,再参加锌块置换,贵金属的收回率别离为(%):Au99.77,Pd98.93,Pt约100。当把溶液酸度提高到2mol时,用锌复原作用会更好。如将草酸复原金的滤液不加锌置换改用复原,先将溶液调pH至6,再参加,贵金属的收回率别离为(%):Au99.70,Pd99.97,Pt96.09。 又据某公司十多年运用锌置换法处理各种贵金属氯化液和精粹进程废液的经历证明:锌置换法是一种具有进程敏捷、置换完全、操作简洁以及不需特殊设备的简洁易行的牢靠办法。经鼓风拌和,并终究加锌粉置换后的残液中,金、铂、钯在0.0005g∕L以下,达到了出产抛弃的标准。金、铂、钯的置换收回率在99~99.9%之间,作用是令人满意的。为了取得更好的作用,还能够采纳下列办法: (1)可适当添加置换液的酸度,并鼓风拌和,防止贵金属精矿中含锌粉过高。如锌粉过高,可于3mol/L液中加热至80~90℃拌和除锌。 (2)溶液含铜等贱金属过高时,改用铜置换。用锌或铜置换所得的贵金属精矿,均运用60g∕L的硫酸高铁液浸出除铜。 (3)含有硝酸和亚硝酸介质的溶液,锌置换法不能完全收回其间的贵金属,应防止运用。 前苏联曾运用电解法处理金电解废液。废法是在金电解造液时,将电解废液注入阴极隔阂内,在阳极区溶解阳极的一起,废电解液中的金则于阴极上分出。分出的阳极金供铸阳极用。 某矿曾用从金电解废液中萃取金,再经置换复原后供铸金阳极。

镍电解液净化除微量铅锌的方法

2019-02-13 10:12:44

在硫化镍阳极电解时,阳极所含的微量铅、锌也会随镍一同溶解进入溶液。例如,依据金川公司的实测,硫化镍阳极含Pb0.03%~0.05%时,阳极电解液含Pb4.5~8.0mg/L。       镍电免除掉微量铅锌的工艺有沉积法、离子交流法及溶剂萃取法。     1、共沉积法除铅锌     在沉积进程中,某些未饱满组分随难溶化合物的沉积物而发作沉积,这种现象称为“共沉积”。其沉积分为吸附共沉积和结晶共沉积两种类型。结晶共沉积也叫共晶沉积法。在电解质溶液中,当有两种物质能与电解质共存,并且它们的晶格结构又相一起,则在恰当的条件下,它们能够构成晶形结构相同的沉积从溶液中一同沉积下来,这种现象称为共晶共沉,选用共晶共沉积法除杂质要考虑所加试剂对下道工序的影响。镍钴冶炼中多选用吸附沉积除杂质。     在氧化中和水免除钴进程中,钴被氧化的一起,铅和部分镍也被氧化,发作PbO2和Ni(OH)3并构成共沉积。这是因为PbO2被Ni(OH)3沉积吸附而除掉。别的,在除钴进程中,将除钴结尾PH进步,锌也能与镍的水合物以同晶形共沉积的办法人溶液中除掉。共沉积除铅锌工艺的长处是不添加工序,除铅、锌与除锌与除钴一个工序内完结。缺陷是渣量大,渣含镍高。     2、离子交流法除铅锌    离子交流法是从含有有价金属的电解质溶液中提取金属的办法之一。在料液与离子交流剂(固态物质)触摸进程中,离子交流剂上的离子以离子交流的方式,从溶液中吸附同符号(同性)的离子。附了离子的离子交流剂经水洗、淋洗剂洗刷扣,吸附在离子交流剂上的欲提取的离子转入淋洗液中,离子交流剂经再生扣供循环运用。     离子交流与吸附有某些相似之处,而其差异在于:离子交流是按化学计量的置换,即离子交流剂对每个换剂有无机离子要还给溶液一个等量的同符号的离子,而吸附则仅仅吸收溶质。离子交流剂有无机离子交流剂、离子交流树脂两大类。离子交流树脂是人工组成的、具有活性基因的三维交联不溶性有机高分子聚合物,一般由高分子部分、交联剂和官能团是决议树脂化学活性的首要组成部分,它是由固定基因(如-SO3-、-COO-等)和带相反电荷的活动离子(即可交流离子,也称反离子,如H+)组成的。固定基因牢牢地固定于慵懒骨架上,不能活动。活动离子使树脂自身呈电中性,在发作离子反响时,可进行定向移动。     各种离子交流树脂都具有必定的交流容量,所以交流到必定的时刻,树脂就到达了“饱满”而不能再进行交流,此刻树脂就必须进行洗脱“再生”。所谓再生是将它吸附的离子的暂时储藏所,而树脂康复其本来状况,回来运用。不难看出,l交流树脂在交流进程中反作用某些离子的暂时储藏所,而树脂自身不起改变。[next]     离子交流树脂的交流容量是离子交流树脂的一个重要特性。它是由制取树脂时引进的官能团数量决议的。通常以单位数量(或单位体积)的树脂所以交流吸附离子的数量来表明。     离子交流嗀程首要包含两个阶段,即吸附(或交流)和解吸(洗脱再生)。     (1)吸附(交流吸附)     吸附是离子交流进程的首要工序 ,待交流的原液以必定的流量进入交流柱,在柱内与树脂进行离子交流作用经过交流后的溶液从交流柱出口流出,其出口液为被交流后的溶液,应守时取样分析。当出口液中需交流的离子到达饱满时,中止进液,树脂将预备洗脱再生。     树脂在洗脱再生前必须用清水或其他淋洗剂淋洗洁净,以除掉柱内树脂间夹藏的溶液。淋洗剂只能淋洗柱内树脂夹的剩余溶液,而不会使已被 树脂吸附的金属离子洗脱下业。淋洗剂一般选用清水。     (2)洗脱再生     “饱满”树脂淋洗洁净后,从柱内的时液处往往内通入少数洗脱剂,将被树脂交流吸附上去的金属离子洗脱下业,待悉数树脂得到再生后,再用纯水洗去柱中树脂间的剩余洗脱剂,此刻树脂又可进行下一轮的离子交流操作。     洗脱下来的金属,按其交流的意图和金属的价值收回或弃去。     离子交流法是一种无渣新工艺,它不仅能较彻底地别离、提纯和定集金属,并且操作简略,易完成自动化,为简化操作、改进劳动条件、进步金属收回率供给了条件,但它只适合于处理离子浓度小于10-6mol/L的稀溶液。当金属离子浓度大于1%时,用这种办法别离作用欠好。     高氯根溶液中,铅、锌能与Cl-结组成ZnCl42-、PbCl42-络合阴离子,而镍不构成络合阴离子,选用阴离子交流树脂可交杂质铅、锌除掉。在镍的生产中我国某些厂选用离子交流除铅、锌的净化工艺,选用701树脂除铅、717树脂除锌。     701树脂是带有伯胺基团RNH3+的弱碱性阴离子交流树脂,Pb2+在高Cl-溶液中,构成PbCl42-络阴离子,这种络阴离子和转型后的701树脂上的阴离子Cl-发作交流反响: 2RNH3Cl+PbCl42-=(RNH3)2PbCl4+2Cl-     而Ni2+和Cl-不构成PbCl42-存在的条件,即可将树脂吸附的铅洗脱下业,然后到达除铅的意图。树脂再生后可持续运用。     701树脂也能除锌,但酸度要求较高,其除锌的交流容量比717树脂小。     717树脂是带季胺基团(-R4N)+的强碱性阴离子交流树脂,它能吸赞同交流溶液中带负电荷的离子,Zn2+在高Cl-溶液中极易构成ZnCl42-络阴离子,这种络阴离子和转型后的717树脂上的阴离子Cl-发作交流反响而被吸附在树脂上,然后下降溶液中的锌含量,用水或酸反洗饱满的树脂,到达除锌的意图。其反响为: 2R4NCl-+ZnCl42-=(R4N)2ZnCl4+2Cl-     吸附ZnCl42-的树脂经水或稀再生后可持续运用。     离子交流除锌扣液含锌可降至0.3mg/L以下。717阴离子交流树脂除锌工艺对溶液中的微量铜和铅的除掉也有必定作用。

镍电解液净化除铜的原理与方法

2019-02-13 10:12:44

在镍电解阳极液中,铜是首要杂质之一,其含量一般在0.1~1g/L之间。阳极液净化进程要求除铜降至0.0003~0.003g/L。根据铜在镍电解液中的许多金属元素中,铜属较典型的慵懒金属,且铜的硫化物在一般弱酸性溶液中其间溶度积很小,化学性质很安稳,因而在出产上一般都选用置换法或硫化沉积法除铜。       1、置换沉积法除铜       置换沉积的原理是在金属盐水溶液中,用较生动金属(电位较负)将较慵懒的金属(电位较正)复原成金属而沉积的溶液净化办法。在由硫酸盐和氯化物组成的镍电解阳极液中,Ni2+的标准电极电位(-0.25V)较待净化除掉的杂质Cu2+(+0.34V)更负,因而可用金属镍粉交铜从溶液中置换出来,发作如下反响: Ni+Cu2+=Ni2++Cu↓       但是,铁粉的电位(-0.44V)比铜更负,为什么不必铁粉作置换剂呢?这是由于用镍粉置换铜,既除铜,又补镍,且不会给溶液再带入杂质铁。       在出产上,当镍粉生动性较差,则添加来加速除铜进程: Cu2++Ni+S=CuS+Ni2+       国镍电解厂较多选用加镍粉除铜。为了得到满足的除铜效果,操作时应遵从下列要求:       (1)镍粉应具有较高的活性。通常在比较低的温度下,用氢复原氧化镍粉的办法能得到合适这种要求的镍粉。       (2)阳极液的温度应保持在80℃,PH应低于3.5。进步液温度可加速镍粉的置换反响速度,保持溶液的PH值低于Fe3+的水解值,可消除胶状的氢氧化铁沉积包裹镍粉的损害。       (3)设备应密封,削减空气进入净化槽,避免现已置换出来的海绵铜氧化重溶。       20世纪50年代末,前苏联北方镍公司研制成功用流态化置换槽替代机械拌和槽除铜。实践证明,当阳极电解液含Cu0.40~0.56g/L,流量为160m3/h,经流态化置换槽处理后,溶液中残留铜为1.2~4.0mg/L。与机械拌和槽比较,流态化槽的除铜后液残铜浓度低,镍粉利用率高。该厂用两个容积为25m3的流态化置换槽可替代56个容积为80m3的机械拌和槽。       加拿大汤普森厂为了加还镍粉除铜反响,在参加镍粉的一起,还添加粉。反响沉积产品为CuS。该法的长处是对镍粉的活性无严厉的要求。       我国某研讨院曾选用液相压氢复原所得到的镍粉进行降铜研讨,所用镍粉含镍大于99.8%,粒度﹤0.074mm。研讨结果表明,当镍粉用量为理论量的1.4倍时,除铜后液含铜呆降至0.4mg/L以下,除铜率达99%以上。下降镍粉用量即便降至理论量,也能够获得较好的除铜效果。       2、硫化沉积法除铜      1、 硫化物沉积法的基本原理       硫化物沉积法是根据许多元素的硫化物难溶于水,因而,当溶液中有Mn+存在,参加S2-,则将发作以下沉积反响: 2Mn++nS2-=M2Sn↓       其溶度积KSP=[Mn+]2[S2-]n。某些硫化物的溶度积如表1所示。[next]表1 某些硫化物的溶度积硫化物温度/℃KsplgKsp硫化物温度/℃KsplgKspMnS252.8×10-13-12.25CdS257.1×10-27-26.15FeS254.9×10-18-17.31PbS259.3×10-28-27.03NiS(a)252.8×10-21-20.55As2S3184×10-29-28.4CoS(a)251.8×10-22-21.74Sb2S3181×10-30-30SnS251×10-23-23CuS258.9×10-36-35.05ZnS258.9×10-25-24.05Cu2S182×10-47-46.7       常用的硫化剂有H2S和Na2S。       气体在水中的溶解度不大,在通常情况下每一体积水中能溶解4.7体积的H2S气体,浓度约为0.1lmol.L-1。H2S在水溶液中有如下电离效果:        许多金属离子能和H2S或S2-效果,生成溶解度很小的硫化物(见表9—5)。溶液中氢离子浓度和硫离子之间的联系是[H+]2[S2-]=6.8×10-24,在酸性([H2S]=0.1mol.L-1时)溶液中通入H2S只能供应低浓度的S2-只能从溶液中沉积那些溶度积小的金属硫化物;而在碱性溶液中通入H2S(生成碱金属硫化物),则能供应较高浓度的S2-离子,能够把溶度积大或小的金属硫化物都沉积出来。所以在操控的酸度下,能够用H2S把溶液中不同金属离子别离沉积下来。       关于同一种金属离子,溶液P佱添加,则金属离子的残留浓度下降。25℃时,S2-浓度为0.1mol/L,某些金属离子的残留浓度与P值的联系如图1所示。 [next]         从表1和图1可知,在镍电解液的各种元素中,以铜的硫化物溶度积为最9小,且与镍、钴等主金属硫化物的不同较大,故选用硫化沉积法来别离铜镍,是比较牢靠的办法。       2、硫化沉积法除铅的出产实践。       硫化沉积法一般以H2S作沉积剂,进程的PH为1.8~2.5,其反响式为: Cu2++H2S=CuS+2H+       在反响进程中,应使气体高度均匀地涣散溶解于除Fe后液中,使S2-与Cu2+充沛触摸生成很多的CuS沉积晶核,这些晶核在反响进程中经过本身的运动和分散、磕碰、吸附而长大,终究沉积于底部到达渣液别离的意图。       我国成都电冶厂和重庆冶炼厂均选用H2S除铜。其净化进程是首先将Na2S溶液与稀H2SO4溶液反响发生H2S气体,并通入阳极溶液中,溶液中的Cu2+与H2S反响成CuS沉积。经嗀滤,铜便从溶液中除掉。为避免溢出,除铜应在负压下操作,并操控PH值在2以下,可抑制Ni2+和Co2+因沉积而进入除铜渣中。除铜Cu进程技能条件如表2所示。       从硫化物溶积来看,用H2S除铜有较好的选择性。通H2S气体时,操控好溶液氧化复原电位为-50~-80mV,可得到铜镍比高达10:1的铅渣,但H2S有剧毒,若有走漏,易形成人身事故;H2S通入量也有必要严厉操控,不然不能得到高品们铜渣。       Na2S也可作沉铜剂,其反响机理与H2S相同,但因会引起出产体系Na+升高,故一般不选用。表2 用H2S除Cu进程技能条件项目操控条件除Cu进程溶液温度﹥60℃H2S发作器负压佱0~3×10-2M Pa反响室负压佱0~2.5×10-2MPaH2S发作器温度33~55℃除Cu前液含Cu﹤1g/L除Cu后液含Cu≤0.005g/LNa2S溶液200~240g/LH2SO4浓度55%~57%

碱性湿法炼锑废电解液的处理

2019-03-05 09:04:34

一、工业的提取 电解进程中,不光不耗费Na2S,并且还副产Na2S,电积耗费而需求弥补的仅仅作为阳极液的NaOH溶渣。依据电积进程总反应式:核算分出1kg锑,溶液中将有1.92kg的Na2S生成,在浸出进程中溶解1kg锑只需耗费0.96kg的Na2S,故浸出-电解进程中有0.96kg的Na2S增生。可是,在浸出-电积循环进程中,因为部分Na2S氧化生成Na2S2、Na2S2O3等多,所以实际上增生了Na2S30.4~0.8kg。 为了综合利用原猜中的硫和NaOH中的钠,应当提取增生的Na2S,以利于碱性浸出进程。即从电积的阴极液冷冻结晶Na2S·9H2O,进一步浓缩产出。 电积后阴极液中Na2S的浓度为170~190g∕L,温度降至15~18℃,增生的便以Na2S·9H2O形状结晶出来,经离心机过滤,得Na2S·9H2O和母液,母液含Na2S 130~140g∕L,再回来浸出,晶体再经浓缩和脱水产出工业。 二、结晶母液的净化 在浸出-电积进程中,因为受空气氧化和阳极进程的氧化,溶液中硫代硫酸钠、硫酸钠、钠等慵懒盐逐步堆集。隔阂电积的阴极液中Na2SO4堆集到45g∕L时,即时电积有晦气影响,因此常以Na2SO4浓度到达45g∕L作为溶液净化的起点。 溶液净化的办法,主要有电积贫化法、复原净化法和低温两次结晶净化法。 三、阳极液的净化 电解进程中堆集的慵懒盐主要由阳极氧化发生。外国湿法炼锑厂选用BaS处理、以生成溶解度很小的盐沉积除掉,其反应为:因为BaS溶液的参加,阳极液体积胀大,晦气于净化;再生的Na2S大部分留在阳极液内循环,晦气于电积操作,一起所产渣又需处理收回,使工艺流程复杂化。我国选用真空蒸腾和结晶净化法,其原理是将阳极液水分蒸腾后,Na2SO4在NaOH溶液中到达饱满,可结晶出来,溶液放出过滤,滤液回来阳极液循环,滤渣是以结晶硫酸钠为主的混合钠盐,可用于制取工业的质料。

叉车电池加电解液时,应该注意什么?

2018-12-18 11:17:20

在电动类叉车,如普通电动叉车、电动堆高车、电动搬运车等的日常维护保养过程中,电池的维护是必不可少的。电池维护保养的好坏将直接关系整台叉车的性能。目前国内主流的铅酸蓄电池都是需要增加电瓶液的,下面为大家介绍蓄电池加电解液的注意事项。注意事项: 1、电解液加注时的高度高过极板10至15毫米即可。有两条红线的电池,电解液不能超过上面标注的红线,否则溢出来的电解液会从蓄电池盖的小孔中溢出。众所周知电解液是导电的,一旦流到蓄电池正、负两极之间,就会形成电池回路自放电。遇这种情况就应将电解液擦掉,或用开水冲洗擦净。2、加电解液时如果不小心有东西掉入里面,切勿用金属物去捞,应该用木棒夹出杂质,如用铁丝或铜丝去捞,金属分子会在硫酸的腐蚀下进入蓄电池形成自放电,而损坏蓄电池。3、蓄电池在充放电过程中,电解液中的水会因为电解和蒸发而逐渐减少,导致电解液面下降。如果不及时补充的话,有可能缩短蓄电池的使用寿命,应及时补充蒸馏水,切忌用饮用纯净水代替。因为纯净水中含有多种微量元素,对蓄电池会造成不良影响。

镍电解液净化除钴的原理与方法

2019-02-13 10:12:44

镍电解液中的杂制裁元素钴,其性质与镍附近,而金属镍中含必定量的钴对镍的性质并无太大的影响,因而,世界各国在核算金属镍的档次时,大多是把钴视同镍相同兼并起核算的。可是因为钴是一种比镍更贵重的稀疏金属,应尽或许独自收回作为产品。为了进步钴的收回率,一般在镍冶金中先将钴富集起业,为下一步提钴发明条件。       在镍电解系统中,除钴办法一般有中和水解法、溶剂萃取法及“黑镍”氧化水免除钴法等。       1、中和水解法除钴的基本原理       如前所述,在镍电解液中的杂质往往多以贱价存在,例如Fe2+、Co2+、Ni2+等离子,用简略水解的办法是不能将它们别离的,而必须将其氧化成高价离子而进行氧化水解净化。       Fe2+和Cu2+被氧化成三价的氧化复原电位为:          可见,中和水解法除Co的基本原理与除Fe尽管相似,但Co2+较Fe2+难氧化,而Co3+比Fe3+又难水解沉积,因而除Co比除Fe要困难,需要比空气更强的氧化剂,沉积PH值也较高。当选用氯化物电解质或氯化物-硫酸盐混合电解质时,常用作氧化剂。当选用纯硫酸盐系统为电解质,则常用黑镍(NiOOH)氧化除钴。       2、氧化中和水解法除钴       是一种强氧化剂,它比空气重2.5倍。氯在水中的溶解度很小,跟着温度的升高,其溶解度更小,例如,在25℃时,100g水溶解氯0.6411g;在80℃时,溶解氯仅0.2226g。       在湿法冶金中,氯和氧(空气)都常作为氧化剂运用,它们的氧化复原电位分别为:          可见的氧化性较氧气强,运用钴和镍的氧化复原电位和水解PH的差异,可运用将Co2+优先氧化成Co3+,并使Co3+水解生成难溶的Co(OH)3沉积,到达除钴意图,其反响式为: 2CoSO4+Cl2+6H2O=2Co(OH)3↓+2H2SO4+2HCl       为了促进反响向右进行,加碳酸镍(或Na2CO3)中和水解反响所发作的酸: 2HoSO4+2HCl+3NiCO3=2NiSO4+NiCl2+3H2O+3CO2↑       归纳上述丙个反响,则除钴守程总的反响为: 2CoSO4+Cl2+3NiCo3+3H2O=2Co(OH)3↓+2NISO4+2NiCl2+3CO2↑       在除钴的一起,残留在溶液中的铁也会发作相似反响: 2FeSO4+Cl2+3NiCo3+3H2O=2Fe(OH)3↓+2NiSO4+NiCl2+3Co2↑       在除钴后期,当P进步到4.5~5.0时,溶液中的其他杂质铜、锌、铅等也会水解沉积:[next] ZnSO4+2H2O=Zn(OH)2↓+H2SO4 CuSO4+2H2O=Cu(OH)2↓+H2SO4 PbCl2+2H2O=Pb(OH)2↓+2HCl       此外,部他铅还会被氧化成嗀氧化铅沉积分出: PbCl2+2H2O+Cl2=PbO2↓+4HCl       在除钴进程中,尽管Ni2+的氧化复原电位比Co2+略高,但因为溶液中Ni2+的浓度远远大于Co2+的浓度,所以在Co2+水解的一起,部分Ni2+也相应地会发作与Co2+相相似的反响: 2NiSo4+Cl2+3NiCo3+3H2O=2Ni(OH)3↓+2NiSO4+NiCl2+3CO2↑       因而会构成镍的丢失,使钴渣含镍量升高,但又因为下列反响: Ni(OH)3+CoSO4=Co(OH)3↓+NiSO4       在必定程度上能削减镍的丢失。       影响除钴功率的要素较多,主要有通办法、进程PH值的操控以及和剂的运用。       镍电液中钴含量较低,一般为0.1~0.3g/L,所以用气态氯通入溶液中氧化钴时,的运用率较低。因而,在溶液中的涣散度必将影响除钴功率,在溶液中涣散愈好,则钴氧化得愈彻底。故挑选适合的通氯办法具有重要意义。通氯办法有以下几种:       (1)球室反响        此法是让和溶液经过文丘里管混合后当即进入球室再进行反响,球室体积依据流量巨细而定,为经过喷嘴的溶液充沛触摸发明了条件。       (2)缸体闭路循环       在缸体外侧独自设一台泵和一条管路,与缸体内溶液构成一闭路循环系统,从泵的出口处通入.泵的出管伸入到反响液面以下,通时将泵开动,使缸内溶液经过循环管不停地闭路循环,使与溶液得以充沛混合。       (3)管道反响        加长入中和除钴槽之间的管道,依据流量核算可加长至80~100m,使和溶液在这一段管道中进行充沛 混合,以进步的运用率,某厂正是选用此种办法,作用杰出。       在除钴进程中,高速好PH对高除钴功率也很重要。除钴前液P睛般操控为4.5~5.0,其意图在于中和其反响所发作的酸,使尽或许被溶液多吸收,使贱价钴被氧化彻底。净化前液假如PH过低,将影响的吸收,呈现溶液通不进的现象。通后的溶液,其PH一般维持在3.5~4.0。反响终了时,为了使Cu、Pb、Zn等杂质进一步发作水解,应尽量防止会集参加中和剂,以防溶液因部分PH过高而构成镍的丢失。       除钴是净化的最终一道工序,为了确保电解液的净化质量,溶液自管道反响器出来后,又进入4个串联的75m3的帕秋卡或空气拌和槽中持续反响。下表为净化除钴技能操作条件。下表  氧化中和水解净化除钴技能操作条件项目单位技能条件反响温度℃60~70通氯前溶液PH值 4.5~5.0氧化复原电位mV1050~1100除钴结尾PH值 4.5~5.0除钴后液含钴g/L产品牌号为Ni9990电镍时Co≤0.02                        Cu≤0.003                        Fe≤0.004 Zn≤0.00035 Pb≤0.0003 产品牌号为Ni9999电镍时Co≤0.001 Cu≤0.0003 Fe≤0.0003 zn≤0.0003 Pb≤0.00007

镍电解液净化除铁的生产实践

2019-02-13 10:12:44

镍电解液净化除铁的出产实践镍电解厂一般都选用空气中的氧伯化剂,使阳极电解液中的Fe2+氧化成Fe3+,然后水解沉积。除铁反响进程受Fe2+氧化反响速度操控,溶液中存在有少数铜离子时,对Fe2+的氧化有催化效果。因而,一般都将除铁进程安排在除铜之前。       镍电解阳极液水解沉积所得的含镍铁渣经酸溶和用氧化后,用黄钠铁矾法除铁。       一、 阳极电解液净化除铁       除铁作业有接连和接连两种作业方法。大型镍电解厂选用接连作业;小型工厂则多选用接连作业。接连净化方法质量安稳,设备出产能力大,是这一工艺开展的方向。       除铁进程包含亚铁离子氧化和三价铁水解沉积反响:         除铁进程有H+生成,须在鼓风一起参加中和剂。为了防止过多的钠离子进入出产系统常以NiCO3作除铁中和剂: 4H++2NiCO3=2Ni2++2CO2↑+2H2O       进步反响P能够加快除铁反响,但PH值过高会引起渣含镍升高。       溶液中铜离子的存在,能够加快Fe2+的氧化反响。这是因为铜离子在Fe2+的氧化进程中起传递电子效果: Cu+-e=Cu2+ Cu2++Fe2+=Cu++Fe3+       净化水解铁渣还呆带走溶液中1/3~2/5的铜,减轻了除铜担负。       在除铁进程中,因为运用空气作氧化剂所构成的溶液电位缺乏以使Ni2+、Co2+氧化成高价态,但部分Ni2+会以碱式盐的方式水解沉积: 3NiSO4+4NiCO3+4H2O=3NiSO4.4Ni(OH)2↓+4CO2↑       Fe(OH)3具有很强的吸附性,在除铁进程中,一定量的锌能与Fe(OH)3发生共沉积而被除掉,一起部分铜也会水解沉积: 3CuSO4+2NiCO3+2H2O=CuSo4.2Cu(OH)2↓+2NiSO4+2CO2↑       某工厂的除铁进程,是将阳极电解液经钛管换热器加热至65~75℃后,再接连经过5个75m3帕秋卡式空气拌和槽。往槽内鼓入空气,既作氧化剂,又为拌和用。在第一个拌和槽入口处,参加碳酸镍,中和除铁反响所分出的酸,使除铁反响操控PH为3.5~4的规模。以过5个槽子的接连沉铁反响,最终将除铁液泵入管式过滤器内进行液固别离,得到含~10%Fe、~20%Ni的铁渣和Fe﹤0.01g/L的除铁后液。[next]       二、水解沉铁渣酸浸液的净化除铁       在镍电解阳极液用NiCO3中和水解沉铁工艺中,按理论核算,三价铁离子在PH≤3.5时水解沉积,可将铁彻底脱除,不丢失镍,但实际上中和沉积时操控PH较高,因而有部分Ni2+呈复盐与铁共沉积,所以工业出产中产出的铁渣都含有较高的镍。为了下降铁渣含镍,某厂将铁渣酸溶后,用黄钠铁矾法除铁,以收回酸浸液中的镍,其工艺流程示于图1。铁渣浆化后在酸溶槽内用工业硫酸溶解,得到酸溶后液。酸溶后液在黄钠铁矾除铁槽内加热至90℃,用作氧化剂,将溶液中的亚铁离子氧化成三价铁离子,槽内留有少数黄钠铁矾渣作晶种,氯可不可能钠效果氧化剂,将溶液中的亚铁离子氧化成三价铁离子,槽内留有少数黄钠铁反响所生成的酸,经过黄钠铁矾再振奋结晶进程,能够收回净化铁渣中90%~95%的镍。       某厂用酸溶-黄钠铁矾除铁法处理电解液净化渣的工艺流程和技能操作条件如表1所示。   表1   黄钠铁矾法处理铁渣技能操作条件项           目单    位技能操作条件铁渣酸溶 温度 风压 结尾PH值 酸溶后液组成        ℃ kPa   g/L  38~50 196 1.5~1.7 Ni55~70  Fe总6~18 Co0.1~0.25  Fe2+0.2~1.5 Cu3~8  Na+32~43黄钠铁矾沉铁 反响温度 氧化进程PH值 参加量 沉铁进程PH值 沉铁后液组成      ℃       g/L  ﹥90 1.5~1.7 NaClO3:Fe2+=(0.3~0.4):1 2.0~2.4 Ni55~67   Fe0.5~1 Cu2~6  Co0.15~0.2 Na30~42

活性炭从电解液中吸附铂、钯

2019-02-20 15:16:12

据某厂的生产实践,电解银时,阳极板中约有40%~50%的铂、钯进入电解液,并不断堆集。运用活性炭挑选吸附涣散于电解液中的铂、钯,然后用硝酸解吸收回。引荐的流程如图1。图1  活性炭吸附、解吸铂钯流程 该厂运用的活性炭为药用活性炭。经筛分,取40~60意图备图用。活性炭及炭柱的制备,是将1∶1的工业稀硝酸加热至90~100℃,按固液比1∶10,向热稀硝酸中缓慢参加活性炭氧化至不再放出棕色气体停止(一般需6~12h),经倾析弃去硝酸,用等量蒸馏水洗3次装柱。装柱后,再用蒸馏水冼至出液pH4~5待用。炭柱为直径70mm的玻璃管,共8根,7柱串联,1柱备用。各柱定量装活性炭1kg,高位槽高出炭柱5~6m。 电解液先于80~90℃加热浓缩4h,再边拌和边参加10%NaOH调整pH至1.5~1.8(游离硝酸1~2g∕L)后,以100~150mL/min的流速接连通过串联的7根炭柱。待榜首柱吸附铂钯饱满后取出,将第二柱改为一往,备用桂串联于尾端作第七柱。依此类推。 饱满了铂、钯的炭柱,用1∶1工业硝酸解吸。解吸液以75~100mL/min的流速通过炭柱,每次取出铂钯富液2.5L收回铂钯。一次和二次解吸贫液及新弥补的1∶1工业硝酸,以逆流方法回来供下一次解吸用。解吸进程每住通过总液量25~30L。 实验结果表明,铂、钯的吸附解吸总收回率为:Pt1027%,Pd96.5%。经吸附后的溶液,含铂、钯多小于1mg/L。可考虑除铜、铅后回来电解进程。 活性炭的吸附容量,按第2柱解吸液中的铂、钯含量核算,钯的全功吸附容最大于72.5mg∕g,铂大于6.9mg∕g。 经解吸后的炭柱用蒸馏水洗至中性后,即可再生运用。经再生4次实验,其吸附容量并未下降。 解吸取得的铂钯富液,铂与钯的含量比为1∶6~7。先用12mol∕L处理使银呈氯化银沉积,过滤后用3mol/L的洗刷氯化银。除银富液与洗液兼并,加固体氯化铵使钯呈粗氯钯酸铵沉出,钯盐用二氯二氢络亚钯法提纯两次后煅烧或用10%复原,可制得含钯大于99.9%的海绵钯。 沉出钯后的母液,经加热浓缩赶硝,用氯化铵沉出铂,再直接水解提纯,并用10%复原,以取得含铂大于99%的海绵铂。 上述工业实验还证明: (1)40~60日的活性炭比20~40意图吸附容量大,运用前者钯添加71%,铂添加32%。 (2)经80~90℃加热浓缩4h的电解液,比不加热处理的电解液,所吸附的钯约添加1倍,铂添加近4倍。 (3)活性炭对铅的吸附差,但可以吸附铋。当电解液中含铋0.26g∕L时,解吸液中铋的浓度可达10.03g∕L。 (4)用调pH值时,带人电解液中的Na+虽有堆集,但通过一段时间运用,未发现对电解银的质量有影响。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

贵液电解方法和条件

2019-03-06 09:01:40

贵液的电解办法有间歇循环作业法和接连流水作业法。 间歇循环法,是将一批贵液泵入高位槽,使它能自流一起进入电解槽的各阴极室中,各阴极室排出的溶液再经离心泵或空气进步器抽送高位槽。溶液在闭路循环中电积至规则的金、银浓度后,废液回来制造解吸液用,然后再进行第二批贵液的电积。故此进程属分批间歇性作业。 接连流水法是将贵液抽送高位槽,并自流从一个电解槽的阴极室进入另一槽的阴极室,经串联的各阴极室电积提取金、银后的溶液直接回来用于制造解吸液用。运用这种办法,贵液在电积进程中顺流经过,可完成接连作业。 间歇循环法和接连流水法所根据的原理根本相同。但因接连流水法能与树脂解吸进程贵液的接连排出相适应,故而得到广泛应用。 贵液电积提金的首要工艺参数有电流密度、溶液温度、流速和槽电压等。在正常条件下,电流密度决议阴极金属堆积速度和堆积量。一般运用的电流密度为20~50A∕m2。实践证明,电流密度由20A∕m2添加至60A/m2时,贵金属在阴极的堆积速度与电流密度的添加成正比联系。但当电流密度超越60A∕m2后,电流效率则呈现下降,并会大大添加电能和阴、阳极材料的耗费。 电积进程中,跟着电解液温度的进步,金在阴极的堆积速度加速。当液温由25℃上升至50℃时,金的堆积速度约添加1.9倍。 因为加大溶液流速,能进步电积进程的速度。在这方面,间歇循环法不受树脂解吸进程中贵液接连排出量的约束,它比接连流水法易于进步溶液的线速度。 出产实践证明,恰当进步电流密度、溶液温度和流速,可使金、银的堆积速度进步3~5倍。正常条件下,金在阴极分出的电位为+0.2V。

熔盐电解法制锂

2019-03-04 16:12:50

氯化锂-低共熔混合物经熔盐电解在电解槽阴极上分出金属锂的进程。它是20世纪90年代工业上出产金属锂的仅有办法。 1818年英国人戴维(H.Davy)用电解熔融碳酸锂的办法,首要制得了金属锂。1855年德国人本森(R.W.Bunsen)和马提森(A.Matthissen)电解熔融氯化锂制得了很多金属锂。但由于氯化锂熔点在873K以上,在高温下电解,氯化锂的蒸发性和吸湿性极强,严峻腐蚀设备,而没有得到实践运用。1893年贡茨(Guntz)提出电解含有等量氯化锂和的熔融体电解质制取金属锂的办法。此法运用氯化锂和共熔混合物熔点低的特性,由氯化锂一低共熔混合物组成电解质不易蒸发,并且熔点又低,可在约。723K温度下电解。迄今为止,金属锂的工业出产均选用这种低共熔混合物电解质。 一、原理 直流电通过氯化锂-熔体时,氯化锂离解为锂离子和氯离子: LiCl → Li++Cl-这些离子按同性相斥、异性相吸的原理运动,Li+移向阴极,在阴极上得到一个电子而分出锂: Li+ + e→Li Cl-移向阳极,在阳极上失掉一个电子而分出: 2Cl- -2e→Cl2在阴极上分出而漂浮于电解质表面的熔融金属锂集合到必定数量时,便进行铸锭。阳极上分出的搜集于阳极室内,排出或进行收回处理。 二、工艺 氯化锂在电解进程中不断被耗费,跟着电解的进行有必要往电解槽中补加必定量的氯化锂,使电解质在电解进程中坚持最佳组成和电解质在电解槽内处于最佳水平高度。电解法制取金属锂出产能力的计算式为: P=0.26Aη 式中P为金属锂的出产能力,g/h;η为电流效率,%;A为通入电解槽的均匀电流,A;0.26为锂的电化学当量,g/(A.h)。 氯化锂-熔盐电解制取金属锂的工艺条件为:电流强度6000~8000A,槽电压8~10V,槽温703~783K,极距离7~10cm,电解质水平60~67cm,电解质组成LiCl:KCl=(57~53):(43~47),阳极电流密度0.8~1.2A/cm2 ,阴极电流密度2.0~4.5A/cm2 ,容积电流密度0.01~0.0123A/cm3 。技能经济指标为:电解槽产值31~32kg/d,电能单耗42kW • h/kg,氯化锂单耗6.5~7kg/kg,单耗0.2kg/kg,电流效率在85%以上,产品纯度98.5%~99%。 三、锂电解槽 常见的锂电解槽有圆形和矩形两种结构方式。一般工业电解槽的槽体都用钢板焊成,内衬耐火砖用石墨作阳极,用低碳钢作阴极,在阴、阳极之间用隔阂分隔。隔阂材料有不锈钢、铝刚玉(Alundum)、滑石、耐火材料等。隔阂的作用是阻挠反响产品与金属锂混合和再化合,以进步电流效率。 国际上选用的锂电解槽有戴维斯(Dagussa)型电解槽、美国型电解槽和法国密封式电解槽三种类型。戴维斯型电解槽有1000A小型电解槽和30000A。大型电解槽两种。小型锂电解槽是用耐火砖面料的圆柱型槽,石墨制成的阳极由槽底伸入,钢板制成的阴极由槽顶刺进。大型锂电解槽的槽体由钢板焊成,用耐火砖面料,由槽底伸入四个圆柱形石墨阳极,槽旁边面引进四个环绕阳极的钢筒阴极。美国型锂电解槽是依据贡茨的专利改善的。槽体由钢板焊成,槽的外壁和底部用气体火焰加热,以坚持电解质熔融。由槽顶刺进五根笔直安放的石墨阳极,由低碳钢制成的阴极固定在槽底。法国密封式锂电解槽的特点是阴极产出的金属锂在特殊的搜集器中搜集,完全避免与空气或触摸,可获得纯度99.9%的金属锂,直接供化学电池及原子能工业运用。其槽体为双层壁,由不锈钢焊成,圆筒型阴极焊接在槽底,石墨阳极由槽顶刺进,阴极顶部装有固定在槽盖上的金属锂搜集器。 我国选用的工业锂电解槽有双层不锈钢结构,耐火砖面料结构和石墨面料、耐火砖保温层的无隔板结构三种槽型。后两种锂电解槽都对错密闭的,阳极产品——不通过收回处理。阴极用不锈钢制成,阳极用石墨制成,阴极和阳极都从槽的上部刺进槽内电解质中,石墨阳极置于槽中心方位,两个不锈钢阴极置于阳极的两边。这种上插式电极的锂电解槽,尽管电极的拆开、检修、装置比较便利,但石墨电极在电解质界面处易被腐蚀,耗费大,运用期短。 石墨面料、耐火砖保温层的无隔板锂电解槽无槽壳,四周用钢板加固,在槽膛与阳极板平行的两边有向槽底歪斜45。的夹角,有用容积为603L。电解槽阳极由两块石墨板合拼而成。通过高铝水泥制成的阳极盖板悬挂于槽瞠中心,两边由隔板和阳极盖板组成阳极室;低碳钢或不锈钢阴极悬挂于隔板两边,组成阴极室。其结构如图。锂电解槽示意图 1-耐火砖;2-石棉板;3-石墨面料;4-钢制阴极;5-阳极盖(高铝水泥);

铋矿浆电解硫的阳极氧化

2019-01-24 09:38:21

矿浆电解工艺的一个显著优点是,硫化矿在矿浆电解过程中,矿物中的硫以元素硫的形态产出,并可提取回收。所产元素硫便于贮存和运辐,解决了火法冶炼SO2污染和硫酸产量过剩,硫酸运输和销售难的问题。 辉铋矿矿浆电解时元素硫的产出过程是矿浆电解阳极氧化过程的一个重要方面,王成彦、邱定蕃等测绘了S0与H2S在石墨阳极上的极化曲线。 试验条件:333K、NH4Cl为200g∕L、H+为1g∕L、搅拌转速600min-1、扫描速度1mV∕s,测得的阳极极化曲线见图1。图1  S及H2S的阳极化曲线 1-NaCl(200g∕L)+H+(1g∕L); 2-NaCl(200g∕L)+H+(1g∕L)+S(L∶S=10∶1); 3-NaCl(200g∕L)+H+(1g∕L)+Na2S(0.01mol∕L); 由图1可以看出,线1与线2基本重合,说明元素硫在阳极上基本不被氧化,而线3有明显的阳极电流,说明有S2-的氧化反应在阳极发生,由于是在酸性体系中进行的研究,可以认为该反应是Na2S酸溶产生的H2S在阳极上的氧化反应:由该图还可以看出,在阳极电流密度大于7mA/cm2(70A/m2)时,阳极将发生析氧反应。因此,在实际的矿浆电解条件下(阳极电流密度为15~25mA∕cm2),H2S在阳极上的氧化反应并不是主要的。阳极反应主要是Fe2+的氧化反应。 由于动力学的原因,Fe3+对S0的氧化很缓慢,说明元素硫在矿浆电解的条件下较稳定。有关的研究工作电表明,在水溶液中元素硫氧化为SO42-、HSO4-的过程极为缓慢。这就是矿浆电解过程能获得较高的元素硫产出率的原因。

镍电解阳极液净化的概述

2019-01-25 15:50:07

硫化镍直接电解阳极化学成分是复杂的,由于熔铸阳极的原料是二次镍精矿和,因此不可避免含有大量的杂质,如铁、铜、钴、铅、锌等。杂质在硫酸盐和氯化物体系的电解液中,与外长一道溶解进入溶液。由于镍电解的阴极过程本身脱除杂质的能力有限,为了防止杂质元素在阴极上析出,产出合格电镍,在生产上采用隔膜电解槽,将阴极液和阳极液分开,同时,阳极液必须经过净化处理,除去杂质,得到相当纯净的电解液(阴极液)才能送去电解。硫化镍阳极电解精炼的阳极液和阴极液的化学成分如下表所列。   表9—1   硫化镍直接电解的阳极液和阴极液的化学成分(g/L)工厂电解液NiCuFeCoZnPbPHⅠ工厂阳极液 阴极液﹥70 ﹥700.4~0.8 ≤0.0030.2~0.6 ≤0.0040.1~0.25 ≤0.0020.001~0.0015 ≤0.000350.001~0.002 ≤0.00031.5~2 4.6~5.0Ⅱ工厂阳极液 阴极液﹥60 60~650.9~1.0 0.00030.1~0.3 0.00060.1~0.6 0.0015﹤0.0015 0.00030.002~0.004 0.000082.5~3 2~2.5Ⅲ工厂阳极液 阴极液﹥60 60~700.4~0.6 ﹤0.00030.06~0.1 ﹤0.00050.06 ﹤0.0010.0004~0.0006 ﹤0.00030.007~0.008 ﹤0.000051.5~2 2~2.5     工业上使用的电解液净化方法有离子沉淀法、置换法、有机溶剂萃取和离子交换法等。

贵液电解时各组分的行为

2019-03-06 09:01:40

来自再生工段的贵液是一种含硫酸的酸性溶液,其间的金、银以的络阳离子〔AuSC(NH2)2〕22+和〔AgSC(NH2)2〕22+方式存在。在电积进程中,金的络离子被复原而在阴极表面分出金。图1示出了从酸性液中电积金时,阴极电位与经过电解质溶液的电流强度的联系曲线。图中的极化曲线在研讨过的情况下,电坐落-0.1~0.25V区域内,因极化电流下降而呈现波形。当电位更负(至-0.3V)时,电流又添加。故溶液中金的电积须在阴极电位-0.3~-0.4V的条件下进行,才干到达极限分散电流。当阴极电位负至-0.5V时,氢和某些杂质金属会与金一道分出于阴极,而对电积金晦气。图1  阴极电位φk与电流强度Ik的联系 硫酸在溶液中以阴离子SO42-状况存在。在电积进程中,它在阳极发作氧化并分化: SO42-+2e=SO4 SO4→SO3+ O2 生成的氧或与其他原子化合,或从溶液中以气态逸出。而SO3又与水效果生成H2SO4。 电解进程中游离的会在阳极上激烈氧化并分化出元素硫,使电解突变混浊,并污染阴极沉淀物和耗费很多。为消除这一有害反响,贵液的电积是在装有离子交换膜的隔阂电解槽阴极区进行。隔阂电解槽阳极区的阳极液运用2%硫酸液。离子交换膜具有杰出的导电性与低的流体渗透性和满足的机械强度。它可让SO42-经过进入阴极区。但分子不能穿透隔阂,而到不了阳极表面。 因为从贵液中提金一般运用不溶钛网或石墨阳极,故电解进程的条件、设备和操作方法等与可溶阳极电解法显着不同。

镍电解净液钴渣提钴

2019-03-05 09:04:34

镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。    在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解:                2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O    溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。

硅酸锂

2017-06-02 15:10:27

硅酸锂是 金属 锂与硅酸反应时生成的一系列的化合物。已知的硅酸锂有以下几种:   一硅酸锂:   Li8SiO6或者 4Li2O·SiO2;   Li4SiO4或者2Li2O·SiO2(正硅酸盐);   Li2SiO3或者Li2O·SiO2(偏硅酸盐)。   二硅酸锂:   Li6Si2O7或者3Li2O·2SiO2;   Li2Si2O5或者Li2O·2SiO2。   五硅酸锂:   Li2Si5O11或者Li2O·5SiO2。   这里专门介绍多硅酸锂。因为多硅酸锂的水溶液相对应于钠水玻璃,所以也叫锂水玻璃,简称硅酸锂。由于它具有一些特殊的性质,所以近二、三十年来越来越受到各国的重视。美国是最早研究硅酸锂制造的国家,生产技术几乎为其垄断。到了80年代,日本对硅酸锂的研究不论是质量,还是应用范围都有超美之势。我国在这方面的研究才刚刚起步。1.硅酸锂水溶液的性质   硅酸锂水溶液为无色透明或呈微乳白色的液体,无臭、无毒、不燃、呈碱性(pH=11~12)。硅酸锂水溶液和硅酸钠一样,加入酸性物质后容易胶凝。但由于锂离子半径比钠、钾离子半径小得多,因而硅酸锂水溶液还具有一些独特的性能:硅酸锂水溶液的性能与二氧化硅胶粒大小密切相关,如SiO2粒子为1mμ左右,则产品清晰透明、粘度低、贮存和使用性能(耐水性、耐火性、耐侯性等)均十分优异;而当SiO2粒子约3mμ时,溶液呈微胶体状,粘度高,存放稳定性差,使用性能差。硅酸锂水溶液允许模数高达8,SiO2含量20%,仍然粘度低,稳定性好。硅酸锂水溶液具有自干性,且能生成不溶于水的干膜,耐干湿交替性极好。硅酸锂水溶液在受热时析出沉淀,但如沉淀不过热、不脱水,则在冷却后还能重新溶解。硅酸锂水溶液有和具有亲水表面的玻璃、钢铁、铝及纤维等的表面反应成膜的特性,60℃以上即可进行,温度愈高,反应愈快。由于制法不同,硅酸锂水溶液中的SiO2可呈结晶态或胶态,而通常稳定胶体SiO2溶液中很少或没有结晶态SiO2;而作为涂料使用时,采用SiO2呈结晶态的硅酸盐制成的涂膜其性能却显著优于胶态硅酸盐制成的涂膜。值得注意的是硅酸锂水溶液在光洁表面上(金属、玻璃等)形成的干膜不连续、附着力差、起皮、掉粉。然而,硅酸锂和硅酸钠或钾混合使用,不仅能降低成本,还可改善硅酸锂的成膜反应。   2.硅酸锂水溶液的用途   由于硅酸锂水溶液的独特性能,因而有其广泛的用途。作为涂料基料,可用水作溶剂,形成的涂膜,除具有无机涂料的耐热、不燃、耐辐射、无毒等一般性能外,还具有自干,耐热可达1000℃,耐磨性、耐湿性、耐侯性、耐干湿交替性佳,耐水性优异等特点。可用于海上工程、石油管道、船舶、桥梁以及建筑涂料和建筑材料用涂料,如浴室、厨房、卫生间、大厦、各种构件,以及水泥、混凝土、石棉瓦、铝、铁、木质材料、合成树脂、陶瓷等的涂装,尤其适宜用于潮湿环境和耐水性装饰涂料。   作为粘合剂,可使用于木材、纸张、塑料、玻璃、金属、混凝土、砖瓦、石棉,以及瓦楞纸箱、纤维板、绝缘板、电视荧光粉、汽车制动器和离合器等等。   作为表面处理剂,可直接涂于金属表面,用作钢铁表面防锈液,手风琴、收音机、仪表仪器等金属元件的防蚀剂和使用于有色金属装饰品、日用品、工艺品的保光、保色;涂覆于玻璃,可形成透光性优良、反光度低的表面涂层;涂覆于镀锌铁皮,在盐水中不腐蚀;涂覆于塑料薄膜,可提高其隔湿性和阻气性等等。   3.制法   因为碳酸锂和石英砂熔融而制成的硅酸锂玻璃,在水中不溶解。因此,常规的可溶性硅酸盐制造方法不能制得硅酸锂水溶液,必须寻求其它制造方法。   文献报导的制造方法虽然不少,但都存在一些缺点或不足之处。如采用较多的硅溶胶法,原料成本太高;硅胶法,虽可使用便宜原料,但要求高温高压设备;硅粉法;原料也不便宜,而且成品外观和反应收率都有问题;离子交换法可以用各种可溶性锂盐,但树脂床在我国投资费用较高,而且处理树脂后的废酸、废水量大,从生产成本和环境保护考虑似乎也不宜选用。在较多的方法中,目前认为较好的方法是活性硅酸——氢氧化锂法。    活性硅酸——氢氧化锂法是利用将水玻璃溶液按阳离子交换法制得的具有一定浓度的活性硅酸溶液与氢氧化锂粉末或水溶液反应而制成。可以得到具有透明性、长期贮存稳定性以及粘结力优良的硅酸锂水溶液。    另据文献报导,我国化工部天津化工研究院硅酸锂试制组,在全面分析比较了国外发表的各种方法后,经反复试验,研究出一条独特的制造工艺路线,即常温常压反应法,其优点能利用廉价原料、简单设备、常温常压反应、直接制造高浓度、高模数的硅酸锂水溶液。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

硫化镍阳极电解的酸性造液过程

2019-02-13 10:12:44

在镍的可溶性阳极电解进程中,因为阳极杂质的影响,使得阳极电流效率(86%左右)低于阴极电流效率(97%左右),再加之电解液在净化进程中因净化渣夹藏而构成的丢失,使得电解液中的Ni2+浓度不断下降。为了避免电解液中镍的贫化,确保出产正常进行,就必须坚持金属离子的平衡。硫化镍电解每出产1t电解镍约需弥补0.2t外长量,其值取决于从净化渣中收回的镍量。电解造液是弥补电解液中镍离子的有用办法之一。    电解造液的阴极进程不同于电解出产的阴极进程,在制品电解槽出产中创造条件操控氢分出,以确保阴极上镍的优先分出,而在造液进程中则恰恰相反,则是创造条件使氢优先在阴极上分出,镍在阳极上正常溶解,成果使镍的阴极电流效率远远低于阳极电流效率,然后使电解液中的Ni2+得以富集。表1 硫化镍阳极电解精粹出产的技能操作条件项目单位Ⅰ工厂Ⅱ工厂Ⅲ工厂汤普森冶炼厂((加)阴Nig/l﹥7060~6560~7075极CuMg/L﹤30.3﹤0.3 液FeMg/L﹤40.6﹤0.5 组CoMg/L﹤201.5﹤1 成ZnMg/L﹤0.350.3﹤0.3  PbMg/L﹤0.30.08﹤0.05  Cl-g/L﹥7070~90120~13045~50 Na+g/L﹤4045~60﹤5065 H3BO3g/L4~6﹥58~1520 有机物g/L﹤0.7﹤11  PH 4.6~5.02~2.52~2.53.5电流强度kA13.5~13.84.1510电流密度A/m2250180~210170~200240电解液温度℃6560~656563同极中心距Mm190190190~200197循环量L/(A.h)0.0650.080.0850.08阳极周期d9~109~106~921阴极周期d4~536~710阴阳液面差mm30~5030~5050~6020~25掏槽周期月4~52~33 [next]     造液进程是不带隔阂的电解槽中进行。常用紫铜片做阴极,造液进程不只起弥补镍离子的效果,一同还有脱铜的效果。因为铜离子的分出电位比镍离子正,所以电解液中的铜离子会在阴极上与氢一同分出,在阴极上构成海绵铜。    造液进程的首要反响为:    阴极反响     2H++2e=H2↑                Cu2++2e=Cu    阳极反响     Ni3S2-6e=3Ni2++2S                Cu2S-4e=2Cu2++S    造液进程的阳极进程与正常电解的阳极进程完全相同,其阳极材料包含硫化镍阳极、合金阳极或来自出产槽的较完好的残极。为了进步贵金属的收回率,阳极板一般被套在尼龙袋内,避免从阳极掉落的阳极泥与在阴极上分出的海绵铜稠浊一同。    在造液进程中,将一部分阳极液引出,以HCl与H2SO4的混合酸将其酸度调至50~55g/L,作为造液电解液。在实践出产中,各种含Ni2+、H+的溶液,如铜渣浸出液、铁矾渣过滤液、阳极泥洗后液以及外来液也都引进造液进程,一同,洗陶管的废酸也打入配酸槽用业高速溶液的到度。因为电解液酸度高,加之阴极分出很多,因而车间酸雾较大,为了改进劳动条件,削减酸雾,出产上常用皂角水构成的泡沫来掩盖电解液表面。    因为造液阴极上分出,使电解液中的酸度下降。根据这个道理,在日本志村镍冶炼厂,选用中和电解槽造液法来弥补电解液中的镍离子,即在若干电解槽内除吊挂硫化镍阳极外,别的还悬挂表面积小的金属镍棒(管)作为阴极然后减小阴极面积,增大阴极电流密度。当阳极电流密度为120~160A/m2时,阳极即可顺畅地溶解,而阴极电流密度增加到1500~3000A/m2,在这样高的电流密度下镍是不会分出的,而只要氢在阴极分出,所以电解液中的Ni2+浓度进步了,H+浓度下降,电解液的P值很简单由1.8进步到5.0,这不只下降了净化进程中的纯碱耗费,还避免了Na+过多引进电解液而构成的损害。    在出产实践中,常把酸性造液电解槽分为高酸造液(出槽6溶液含酸18~22g/L)和低酸造液(出槽溶液含酸4~7g/L)两种。酸性造液电解槽数量,一般为出产电解槽与种板电解槽总数的25%,其技能操作条件如表2所示。表2 酸性造液电解槽技能条件项目单位Ⅰ工厂Ⅱ工厂Ⅲ工厂电流强度kA8~104.15开始溶液含酸g/L50~55140~18050~60终究溶液含酸g/L4~730~4015~20终究溶液含镍g/L﹥80﹥10070电解液温度℃常温60~6560~65同极中心距mm210190180

锂常识

2019-03-14 09:02:01

锂是一种银白色的轻金属,密度0.534,熔点180.54℃,沸点1342℃。锂是生动金属,在室温条件下,锂能和空气中的氮气和氧气发作激烈的化学反应。金属锂可溶于液,锂的弱酸盐难溶于水。在碱金属氯化物中,只要氯化锂易溶于有机溶剂。锂不但是既轻又软、比热最大的金属,并且仍是在一般温度下呈固体状况的一般材料中最轻的一种金属,一般储藏于火油或液体白腊中。  锂在自然界散布比较广泛,在地壳中均匀含量为20×10-6,在首要类型岩浆岩和首要类型沉积岩中均有不同程度的散布,其间在花岗岩中含量较高,均匀含量达40×10-6。在自然界中现在已发现锂矿藏和含锂矿有150多种,其间锂的独立矿藏有30多种,大部分是硅酸盐(占67%)及磷酸盐(占21.2%),其他则很少。作为制取锂的矿藏质料首要是锂辉石(含Li2O5.8%~8.1%)、锂云母(含Li2O3.2%~6.45%)、磷锂铝石(含Li2O7.1%~10.1%)、透锂长石(含Li2O2.9%~4.8%)及铁锂云母(含Li2O1.1%~5%),其间前3个矿藏最为重要。  锂是由瑞典化学家贝齐里乌斯(J.J.Berzelius)的学生瑞典人阿尔费德松(J.A.Arfvedson)于1817年在分析研讨从攸桃岛(Uto)采得透锂长石时初次发现的,贝齐里乌斯把这种新金属称为Lithium。1818年英国人戴维(H.Davy)经过电解碳酸锂制得少数金属锂。1855年德国人本生(R.W.Bunsen)和马提生(A.Matthiessen)经过电解熔融氯化锂制得较很多的金属锂,并较具体地研讨了它的性质。1923年德国开端锂的工业生产。现在工业生产金属锂选用LiCl-KCl熔盐电解法,此法制得金属锂的纯度不低于99%。  1944年开端很多运用无水氢氧化锂作潜水艇中的CO2吸收剂。用作军用气球的充气氢源。1950年锂开端用于热。1960年今后锂开端用于民用工业如润滑脂、空调、合成橡胶、炼铝、医药和玻璃陶瓷等职业,且已成为当时锂的首要用途。因为锂的电化当量高,并具有各种元素中最高的标准氧化电势,锂电池已在某些军事和电子部分运用,以及在电力车辆推动和峰值电力储存方面运用。锂是第一代氚聚变反应堆的重要燃料和反应堆的冷却剂。锂能与多种元素制成合金,例如铝锂、硼锂、铜锂、镁锂、铅锂、、硅硼锂和银锂等,而用于原子能、航空、航天工业。  我国锂矿产资源比较丰富,首要散布在7个省区,以1996年底保有储量(Li2O)排序依次为:四川占51.1%,江西占29.4%,湖南占15.3%,新疆占3%(因首要矿区经40多年来的大规模挖掘,保有储量很多削减),这4省区算计占98.8%。其次是河南、福建、山西,这3省算计占1.2%。我国锂矿产资源有以下首要特点:(1)散布高度会集,有利于建造大型采选冶联合厂商。矿石锂会集散布在四川、江西、湖南、新疆4省区,占全国锂储量的98.8%;卤水锂首要散布在青海柴达木盆地盐湖发育区和湖北潜江洼陷油田内,其间柴达木盆地盐湖区占全国卤水锂储量的83.4%。(2)单一矿床少,共伴生矿床多,归纳利用价值大。我国锂、铍、铌、钽矿经勘探标明大部分是归纳性矿床,其储量以共伴生矿床为主。(3)档次低、储量大。我国锂矿除少数矿床或矿段、矿体档次较高外,大多数矿床档次低,因此拟定的矿产工业目标较低,故勘探以低档次目标核算的储量则很大。

锂知识

2019-03-08 11:19:22

锂是一种银白色的轻金属,密度0.534,熔点180.54℃,沸点1342℃。锂是生动金属,在室温条件下,锂能和空气中的氮气和氧气发作激烈的化学反应。金属锂可溶于液,锂的弱酸盐难溶于水。在碱金属氯化物中,只要氯化锂易溶于有机溶剂。锂不但是既轻又软、比热最大的金属,并且仍是在一般温度下呈固体状况的一般材料中最轻的一种金属,一般储藏于火油或液体白腊中。 锂在自然界散布比较广泛,在地壳中均匀含量为20×10-6,在首要类型岩浆岩和首要类型沉积岩中均有不同程度的散布,其间在花岗岩中含量较高,均匀含量达40×10-6。在自然界中现在已发现锂矿藏和含锂矿有150多种,其间锂的独立矿藏有30多种,大部分是硅酸盐(占67%)及磷酸盐(占21.2%),其他则很少。作为制取锂的矿藏质料首要是锂辉石(含Li2O5.8%~8.1%)、锂云母(含Li2O3.2%~6.45%)、磷锂铝石(含Li2O7.1%~10.1%)、透锂长石(含Li2O2.9%~4.8%)及铁锂云母(含Li2O1.1%~5%),其间前3个矿藏最为重要。 锂是由瑞典化学家贝齐里乌斯(J.J.Berzelius)的学生瑞典人阿尔费德松(J.A.Arfvedson)于1817年在分析研讨从攸桃岛(Uto)采得透锂长石时初次发现的,贝齐里乌斯把这种新金属称为Lithium。1818年英国人戴维(H.Davy)经过电解碳酸锂制得少数金属锂。1855年德国人本生(R.W.Bunsen)和马提生(A.Matthiessen)经过电解熔融氯化锂制得较很多的金属锂,并较具体地研讨了它的性质。1923年德国开端锂的工业生产。现在工业生产金属锂选用LiCl-KCl熔盐电解法,此法制得金属锂的纯度不低于99%。 1944年开端很多运用无水氢氧化锂作潜水艇中的CO2吸收剂。用作军用气球的充气氢源。1950年锂开端用于热。1960年今后锂开端用于民用工业如润滑脂、空调、合成橡胶、炼铝、医药和玻璃陶瓷等职业,且已成为当时锂的首要用途。因为锂的电化当量高,并具有各种元素中最高的标准氧化电势,锂电池已在某些军事和电子部分运用,以及在电力车辆推动和峰值电力储存方面运用。锂是第一代氚聚变反应堆的重要燃料和反应堆的冷却剂。锂能与多种元素制成合金,例如铝锂、硼锂、铜锂、镁锂、铅锂、、硅硼锂和银锂等,而用于原子能、航空、航天工业。 我国锂矿产资源比较丰富,首要散布在7个省区,以1996年底保有储量(Li2O)排序依次为:四川占51.1%,江西占29.4%,湖南占15.3%,新疆占3%(因首要矿区经40多年来的大规模挖掘,保有储量很多削减),这4省区算计占98.8%。其次是河南、福建、山西,这3省算计占1.2%。我国锂矿产资源有以下首要特点:(1)散布高度会集,有利于建造大型采选冶联合厂商。矿石锂会集散布在四川、江西、湖南、新疆4省区,占全国锂储量的98.8%;卤水锂首要散布在青海柴达木盆地盐湖发育区和湖北潜江洼陷油田内,其间柴达木盆地盐湖区占全国卤水锂储量的83.4%。(2)单一矿床少,共伴生矿床多,归纳利用价值大。我国锂、铍、铌、钽矿经勘探标明大部分是归纳性矿床,其储量以共伴生矿床为主。(3)档次低、储量大。我国锂矿除少数矿床或矿段、矿体档次较高外,大多数矿床档次低,因此拟定的矿产工业目标较低,故勘探以低档次目标核算的储量则很大。

高硫铝土矿除硫技术

2019-02-21 11:21:37

我国铝土矿资源丰富,已探明的铝土矿储量达23亿t。其间含硫高的一水硬铝石型铝土矿储量达1.5亿t,占总储量的11.0%左右。这类矿石以中高铝、中低硅、高硫、中高铝硅比矿石为主,且此类矿石高档次所占份额大,需加工脱硫才干运用,因而研讨经济合理的脱硫办法,具有巨大的潜在工业含义。       在氧化铝出产流程中,铝土矿中的硫不只构成Na2O的丢失,并且溶液中S2-进步后会使钢材遭到腐蚀,蒸腾和分化工序的钢制设备因腐蚀而损坏,添加溶液中铁含量。在拜耳法出产氧化铝过程中假如铝土矿中硫的含量超越0.3%,就能导致氧化铝档次因铁的污染而超支,别的还能使氧化铝的溶出率下降。跟着氧化铝工业的不断发展,科学研讨者对脱硫办法进行了许多的研讨工作,但效果及运用均不尽人意。因而有必要对高硫铝土矿进行进一步脱硫研讨,到达拜耳法氧化铝厂对铝土矿含硫的要求。       铝土矿中硫首要以黄铁矿(FeS2)办法存在,因为黄铁矿简略用黄药等捕收剂浮选,而含铝矿藏以氧化物和氢氧化物办法存在,亲水,不易被黄药捕收,因而,浮选用黄药理论上简略完成黄铁矿和含铝矿藏的别离。用浮选的办法下降铝土矿中硫的含量,最早被原苏联人员选用。在我国,浮选脱除铝土矿中的含硫矿藏还未见文献报导。因而,针对我国铝土矿的特色,用选矿脱除铝土矿中含硫矿藏的研讨具有重要含义。       针对河南某地出产的铝土矿的特色,选用黄药等作捕收剂,对反浮选除掉铝土矿中的硫化物进行了实验研讨。       一、实验部分       (一)实验质料       河南高硫矿,碳酸钠(分析纯,上海虹光化工厂),六偏磷酸钠(分析纯,天津市科密欧科技有限公司),(分析纯,天津市科密欧化学试剂开发中心),硫酸铜(化学试剂,天津市博迪化工有限公司),丁基黄药(株洲选矿药剂厂),戊基黄药(长沙矿冶研讨院选矿所),松醇油(株洲选矿药剂厂),单质碘和碘化钾(分析纯,汕头市西陇化工厂)。对河南高硫矿进行了化学分析。首要化学成分列于表1。   表1  试样的首要化学组成(质量分数)/%Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST61.6212.654.603.003.001.810.080.420.96       (二)实验设备及仪器       实验一切设备及仪器包含浮选机,拌和机,pH计,过滤设备,电炉,烘箱,管状炉,石英管,滴定管等。       (三)实验办法       各添加剂预先装备成必定的浓度备用。药剂添加次序为:六偏磷酸钠→→硫酸铜→丁基黄药→戊基黄药→松醇油,实验中各药剂的用量及添加药剂后的拌和时刻见表2。实验所用脱硫浮选办法为简略的一段浮选。浮选产品别离过滤、洗刷、烘干后分析。   表2  药剂用量及拌和时刻药剂称号药剂用量/(g·L-1)拌和时刻/min碳酸钠 六偏磷酸钠硫酸铜 丁基黄药 戊基黄药 松醇油2.5 7.65×10-3 4.00×10-4 1.88×10-2 3.13×10-2 3.13×10-2 0.125  1 1 2 1 2 1       二、条件实验       选用六偏磷酸钠作为按捺剂,和硫酸铜作为活化剂,丁基黄药和戊基黄药作为捕收剂,对高硫铝土矿进行一段浮选脱硫条件实验,研讨各添加剂用量对浮选成果的影响。       (一)碳酸钠用量的影响       在pH>11的高碱环境下,黄铁矿表面会有亲水的氢氧化物生成,进而浮选遭到按捺。碱性增强对黄铁矿的按捺不断增强。低pH值系统中难以浮选,乃至浮选没有泡沫,这与铝土矿结构以及实验条件有关。碳酸钠另一效果是对黄铁矿具有活化效果。在CO32-与HCO3-离子效果下,铁的氢氧化物又可转变成铁的碳酸盐,使黄铁矿表面掩盖的氢氧化物和硫酸盐脱落暴露出新鲜的表面。因而碳酸钠添加量对浮选的效果有较大的影响。按表2所示条件,进行了碳酸钠用量对脱硫效果的影响的研讨,成果见表3。   表3  碳酸钠用量条件实验成果碳酸钠用量/(g·L-1)pH值产品称号产率/%S档次/%S收回率/%0.59.70低硫铝土矿 高硫尾矿82.44 17.560.41 3.5435.25 64.751.010.10低硫铝土矿 高硫尾矿89.91 10.090.420 5.7739.35 60.652.510.43低硫铝土矿 高硫尾矿96 40.44 13.4444 563.510.78低硫铝土矿 高硫尾矿93.4 26.580.48 7.7846.67 53.33       由表3可知,跟着碳酸钠用量的添加和矿浆pH值升高,高硫尾矿中硫的档次越来越高,硫的收回率在逐步下降,低硫铝土矿的产率较大起伏的升高,到碳酸钠用量为2.5g/L,pH值为10.43时,硫的档次达最大值,随后又开端下降,硫的收回率持续下降,低硫铝土矿的产率也到达最大值后又下降。由此可见碳酸钠对浮选具有较大影响。归纳考虑以上要素,高硫矿浮选碳酸钠用量应为2.5g/L,pH值为10.43左右。       (二)按捺剂用量的影响       六偏碳酸钠在含量高时对一水硬铝石具有按捺效果,但在pH>10时,其按捺效果较弱,只要在较高用量的条件下才具有较强的按捺效果。六偏磷酸钠的按捺效果为在浮选过程中损坏和削弱一水硬铝石与捕收剂之间相互效果,增强一水硬铝石表面的亲水性。它的效果办法有3种:消除活化离子;在矿藏表面构成亲水薄膜;消除矿藏表面的活化薄膜。六偏磷酸钠一起可对矿浆起涣散效果。按表2所示条件,进行六偏磷酸钠用量对脱硫效果的影响,成果见表4。   表4  六偏碳酸钠用量条件实验成果六偏碳酸钠用量/(×10-3g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿93 70.54 6.5852.02 47.987.65低硫铝土矿 高硫尾矿96 40.44 13.4444 5615.30低硫铝土矿 高硫尾矿95.34 4.660.48 10.7947.68 52.32       由表4可知,跟着六偏碳酸钠用量的添加,高硫尾矿中硫的档次先进步然后下降,硫的收回率也是先进步后下降,低硫铝土矿的产率在小起伏规模内改变。六偏碳酸钠用量以7.65×10-3g/L为宜。       (三)活化剂用量的影响       活化剂的效果是在矿藏表面生成促进捕收剂效果的薄膜。浮选电化学以为,某些硫化矿藏具有半导体性质和必定的电子传导才能,表面的静电位是HS-离子能否在其表面氧化生成元素S0的要害,当表面静电位Ems高于HS-氧化成S0的平衡电位时,则这种氧化在热力学上能够完成。黄铁矿表面静电位Ems高于HS-氧化成S0的平衡电位,因而HS-可能在黄铁矿表面氧化成元素(S0)。王淀佐等人测定了黄铁矿的表面静电位,在pH>8今后一直高于EHS-/S0,所以HS-能够在其表面氧化。Na2S参加矿浆中后,矿浆中存在许多的HS-离子,黄铁矿因为表面静电位较高,对HS-离子有较强的电催化效果,HS-在其表面有如下反响:   HS(aq)-→HS(ad)-     HS(aq)-→H++S(ad)0+2e-       S0吸附于黄铁矿表面使其变得疏水,因而黄铁矿具有杰出的诱导可浮性。       当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿品质中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。铜离子比较简略进入黄铁矿的晶格,铜和硫的亲和性比铁和硫的亲和性更大,使黄铁矿表面构成铜膜,铜离子不影响矿藏晶格深处,在黄铁矿表面上掩盖铜相当于分散处理黄铁矿表面,即影响到黄铁矿表面的导电类型。黄铁矿为电子型半导体,晶格表面层上富集电子的表面,因而不能安稳的吸附黄药。一些二价Cu2+从其表面取得电子,Cu2+浓度下降为Cu2+,使黄铁矿表面层电子浓度下降。黄铁矿表面导电性的转化,这时能安稳地吸附黄药。       综上所述,首要对黄铁矿起到诱导浮选效果,但因为黄铁矿镶嵌于结构杂乱的铝土矿中,且黄铁矿的含量小,尤其是当黄铁矿表面氧化较深时,对黄铁矿就起不了诱导浮选效果,而Cu2+能够进入黄铁矿晶格中替代Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。因而和硫酸铜均可起到活化效果,其用量多少对硫档次影响很大。按表2所示条件,别离进行了和硫酸铜用量对脱硫效果的影响研讨,成果别离见表5和表6。   表5  用量条件实验成果用量/(×10-4g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿95.25 4.750.50 10.1649.73 50.272低硫铝土矿 高硫尾矿94.12 5.880.48 8.5747.51 52.494低硫铝土矿 高硫尾矿96 40.44 13.4444 5610低硫铝土矿 高硫尾矿96.62 3.380.61 1161.27 38.73   表6  硫酸铜用量条件实验成果硫酸铜用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿92.89 7.110.48 7.2348.59 51.411.88低硫铝土矿 高硫尾矿96 40.44 13.4444 563.75低硫铝土矿 高硫尾矿93.20 6.800.55 6.5553.6 46.4       由表5可知,跟着用量的添加,高硫尾矿中硫的档次先下降后升高,随后又下降,硫的收回首先升高后下降,低硫铝土矿的产率改变不大。用量以4×10-4g/L为宜。       由表6可知,跟着硫酸铜用量的添加,高硫尾矿中硫的档次先升高后下降,改变的起伏比较大,硫的收回首先逐步升高然后较大起伏的下降,低硫铝土矿的产率改变不大。硫酸铜用量以1.88×10-2g/L为宜。       (四)捕收剂用量及其品种的影响       在浮选中运用捕收剂,能够进步有用矿藏表面的疏水性。黄铁矿捕收剂首要是黄药类等捕收剂。在许多情况下,已成功地运用单一种捕收剂。但混合运用多种硫代捕收剂可大大进步硫化矿浮选目标。按表2所示条件,丁基黄药及戊基黄药用量对脱硫效果的影响成果别离见表7和表8。   表7  丁基黄药用量条件实验成果丁基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿94.29 5.710.55 7.8253.49 46.511.56低硫铝土矿 高硫尾矿95.10 4.900.57 8.5456.41 43.593.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿97.06 3.740.50 12.9251.68 48.32   表8  戊基黄药用量条件实验成果戊基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿96.62 3.380.56 12.4556.17 43.831.56低硫铝土矿 高硫尾矿95.69 4.310.45 12.344.78 55.223.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿96.5 3.50.57 11.5957.74 42.26       由表7可知,跟着丁基黄药用量的添加,高硫尾矿中硫的档次和收回率都随之添加,然后下降,低硫铝土矿的产率在小规模内增大。丁基黄药对浮选效果具有较大影响。丁基黄药用量以3.13×10-2g/L为宜。       由表8可知,跟着戊基黄药用量的添加,高硫尾矿中硫的档次在小起伏内先升高后下降,硫的收回率在较大起伏内先升高后下降,低硫铝土矿的产率改变不大。戊基黄药对硫的收回率影响较大。戊基黄药用量以3.13×10-2g/L为宜。       三、优化条件的浮选成果       通过以上各条件实验的影响,得出高硫铝土矿一段浮选除硫的最佳条件实验为:碳酸钠用量2.5g/L,六偏磷酸钠用量为7.65×10-3g/L,拌和1min,用量为4.0×10-4g/L,拌和1min,硫酸铜用量为1.88×10-2g/L,拌和2min,丁基黄药用量为3.13×10-2g/L,拌和1min,戊基黄药用量为3.13×10-2g/L,拌和2min,松醇油用量为0.125g/L,拌和1min,实验成果见表9。   表9  原矿一段浮选实验成果产品称号产率/%S档次/%S收回率/%低硫铝土矿 高硫尾矿 原矿96 4 1000.44 13.44 0.9644 56 100       由表9可知,在优化的浮选条件下,原矿通过一段浮选即可取得硫档次高达的13.44%,收回率56%,而产率仅为4%的高硫尾矿;一起取得产率为96%,硫档次为0.44%的低硫铝土矿。这一成果比前苏联研讨人员浮选高硫铝土矿一段浮选尾矿含硫达9%的工艺目标还好。       对浮选所得低硫铝土矿和高硫尾矿进行化学分析,分析成果见表10。为了便于对照,将原矿相应数据也列于表10中。   表10  浮选产品化学分析成果(质量分数)/%产品称号Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST1)低硫铝土矿 高硫尾矿 原矿62.10 51.96 61.6212.83 8.18 12.654.17 14.94 4.602.95 4.71 3.003.07 1.43 3.001.85 0.95 1.810.08 0.11 0.080.42 0.40 0.420.44 13.44 0.96        1) 此为化学分析成果,不是荧光分析成果       由表10可知,一段浮选高硫尾矿的A/S比为6.35,与A/S比为4.87的原矿比较,高硫尾矿的A/S比高,这是因为铝比硅更简略浮选,成果导致高硫尾矿中A/S比稍高。因为被浮选的高硫尾矿产率不大,因而对低硫铝土矿的A/S比的影响不大。高硫尾矿中硫和铁含量比原矿明显进步,铁略有进步,其它元素含量都偏低。而低硫铝土矿与原矿比较,除了铝,硅以及钾比原矿略低高外,其它元素都有所下降。       四、结语       (一)选用浮选的办法,以碳酸钠为pH调整剂,六偏磷酸钠为按捺剂,和硫酸铜为活化剂,丁基黄药和戊基黄药为捕收剂,松醇油为起泡剂,进行高硫铝土矿的一段反浮选,取得硫含量高达13.44%,收回率56%,氧化铝含量为51.96%,而产率仅为4%的高硫尾矿,一起取得产率为96%,氧化铝含量为62.10%,硫档次为0.44%的低硫铝土矿。因为铝比硅更简略浮选,高硫尾矿的A/S比升高,但因为高硫尾矿的产率低,仅为4%,因而对低硫铝土矿的A/S比影响不大。       (二)对原矿进行一段浮选的最佳条件是:碳酸钠用量为2.50g/L,六偏磷酸钠用量为7.65×10-3g/L,用量为4.00×10-4g/L,硫酸铜用量为1.88×10-2g/L,丁基黄药用量为3.13×10-2g/L,戊基黄药用量为3.13×10-2g/L,松醇油用量为1.25×10-1g/L。矿浆最佳浮选pH值规模是10.4~10.5左右。       (三)本研讨测验一起运用2种活化剂,即和硫酸铜,活化的效果大于单一活化剂的效果,进步硫的浮选收回率。丁基黄药与戊基黄药2种捕收剂按份额混合运用可进步硫的档次及收回率。

锂矿

2019-02-11 14:05:30

锂(Li)是自然界中最轻的金属。银白色,比重0.534,熔点180℃,沸点1342℃。锂是由瑞典化学家贝齐里乌斯(J.J.Berzelius)的学生瑞典人阿尔费德松(J.A.Arfvedson)于1817在分析研讨从攸桃岛(Uto¨)采得透锂长石时初次发现的,贝齐里乌斯把这种新金属称为Lithium。1818年英国人戴维(H.Davy)经过电解碳酸锂制得小量金属锂。1855年德国人本生(R.W.Bunsen)和马提生(A.Matthiessen)经过电解熔融氯化锂制得较很多的金属锂,并较具体地研讨了它的性质。1923年德国开端锂的工业出产。 一、锂的性质和用处 锂是生动金属,很柔软,在氧和空气中能自燃。锂也是一种重要的动力金属,它在高能锂电池、受控热核反应中的使用使锂成为处理人类长时间动力供应的重要质料。锂工业的开展和军事工业的开展密切相关。50年代,因为研发需求提取核聚变用同位素6Li,因此锂工业得到了迅速开展,锂则成为出产、中、质的重要质料。锂的化合物还广泛用于玻璃陶瓷工业、炼铝工业、锂基润滑脂以及空调、医药、有机组成等工业。锂系列产品广泛使用于冶炼、制冷、原子能、航天和陶瓷、玻璃、润滑脂、橡胶、焊接、医药、电池等职业。全世界有锂矿资源的国家缺乏十家,亚洲我国独有。 二、矿石质料特色 锂为稀碱元素之一,在自然界散布比较广泛,在地壳中均匀含量为20×10-6(泰勒,1964),在首要类型岩浆岩和首要类型沉积岩中均有不同程度的散布,其间在花岗岩中含量较高,均匀含量达40×10-6(维诺格拉多夫,1962)。在自然界中现在已发现锂矿藏和含锂矿有150多种,其间锂的独立矿藏有30多种,大部分是硅酸盐(占67%)及磷酸盐(占21.2%),其他则很少。作为制取锂的矿藏质料首要是锂辉石(含Li2O5.8%~8.1%)、锂云母(含Li2O3.2%~6.45%)、磷锂铝石(含Li2O7.1%~10.1%)、透锂长石(含Li2O2.9%~4.8%)及铁锂云母(含Li2O1.1%~5%),其间前3个矿藏最为重要。

锂云母

2019-01-24 09:37:11

一、组成与结构       K(LiAl)3[AlSi4O10](OHF)2,常含Na及Rb、Cs等稀碱金属元素。辽宁阜新花岗伟晶岩中产出的锂云母含Li2O4.51%,SiO250.40%,Al2O323.22%,K2O10.33%,Rb2O1.57%,Cs2O0.08%,MnO2.17%,F7.51%。矿物属单斜晶系。       二、物化性质       晶体沿(001)呈板状,具假六方形轮廓,常为鳞片状或叶片状集合体。解锂(001)极完全,薄片具弹性,硬度2~3,相对密度2.8~2.9,玫瑰色、浅紫色、白色,有时无色,玻璃光泽,解理面显珍珠光泽。矿物溶于H3PO4,在HCl、HNO3、H2SO4中溶解不完全。因含Li,吹管焰染火呈红色。       三、鉴别特征       锂云母以其颜色、片状晶形和矿物共生易于识别。浅色锂云母与白云母相似,借助焰色反应可准确鉴别。       四、产状与产地       锂云母主要产花岗伟晶岩中,与石英、长石、白云母、锂辉石、绿柱石、电气石等共生。锂云母也产于富Li、Rb、Cs、Nb、Ta的花岗岩中,与石英、钠长石、黄玉、黑钨矿、铌钽铁矿等共生。锂云母细粒集合体-锂云母岩,称丁香紫玉,是20世纪70年代在我国发现的玉石新品种。含锂云母的花岗伟晶岩产地有新疆阿尔泰、河南官坡,含锂云母花岗岩产地有江西宜春。

硅酸锂

2017-06-06 17:50:13

硅酸锂是 金属 锂与硅酸反应时生成的一系列的化合物。已知的硅酸锂有以下几种:   一硅酸锂:   Li8SiO6或者 4Li2O·SiO2;   Li4SiO4或者2Li2O·SiO2(正硅酸盐);   Li2SiO3或者Li2O·SiO2(偏硅酸盐)。   二硅酸锂:   Li6Si2O7或者3Li2O·2SiO2;   Li2Si2O5或者Li2O·2SiO2。   五硅酸锂:   Li2Si5O11或者Li2O·5SiO2。   这里专门介绍多硅酸锂。因为多硅酸锂的水溶液相对应于钠水玻璃,所以也叫锂水玻璃,简称硅酸锂。由于它具有一些特殊的性质,所以近二、三十年来越来越受到各国的重视。美国是最早研究硅酸锂制造的国家,生产技术几乎为其垄断。到了80年代,日本对硅酸锂的研究不论是质量,还是应用范围都有超美之势。我国在这方面的研究才刚刚起步。1.硅酸锂水溶液的性质   硅酸锂水溶液为无色透明或呈微乳白色的液体,无臭、无毒、不燃、呈碱性(pH=11~12)。硅酸锂水溶液和硅酸钠一样,加入酸性物质后容易胶凝。但由于锂离子半径比钠、钾离子半径小得多,因而硅酸锂水溶液还具有一些独特的性能:硅酸锂水溶液的性能与二氧化硅胶粒大小密切相关,如SiO2粒子为1mμ左右,则产品清晰透明、粘度低、贮存和使用性能(耐水性、耐火性、耐侯性等)均十分优异;而当SiO2粒子约3mμ时,溶液呈微胶体状,粘度高,存放稳定性差,使用性能差。硅酸锂水溶液允许模数高达8,SiO2含量20%,仍然粘度低,稳定性好。硅酸锂水溶液具有自干性,且能生成不溶于水的干膜,耐干湿交替性极好。硅酸锂水溶液在受热时析出沉淀,但如沉淀不过热、不脱水,则在冷却后还能重新溶解。硅酸锂水溶液有和具有亲水表面的玻璃、钢铁、铝及纤维等的表面反应成膜的特性,60℃以上即可进行,温度愈高,反应愈快。由于制法不同,硅酸锂水溶液中的SiO2可呈结晶态或胶态,而通常稳定胶体SiO2溶液中很少或没有结晶态SiO2;而作为涂料使用时,采用SiO2呈结晶态的硅酸盐制成的涂膜其性能却显著优于胶态硅酸盐制成的涂膜。值得注意的是硅酸锂水溶液在光洁表面上( 金属 、玻璃等)形成的干膜不连续、附着力差、起皮、掉粉。然而,硅酸锂和硅酸钠或钾混合使用,不仅能降低成本,还可改善硅酸锂的成膜反应。   2.硅酸锂水溶液的用途   由于硅酸锂水溶液的独特性能,因而有其广泛的用途。作为涂料基料,可用水作溶剂,形成的涂膜,除具有无机涂料的耐热、不燃、耐辐射、无毒等一般性能外,还具有自干,耐热可达1000℃,耐磨性、耐湿性、耐侯性、耐干湿交替性佳,耐水性优异等特点。可用于海上工程、石油管道、船舶、桥梁以及建筑涂料和建筑材料用涂料,如浴室、厨房、卫生间、大厦、各种构件,以及水泥、混凝土、石棉瓦、铝、铁、木质材料、合成树脂、陶瓷等的涂装,尤其适宜用于潮湿环境和耐水性装饰涂料。   作为粘合剂,可使用于木材、纸张、塑料、玻璃、 金属 、混凝土、砖瓦、石棉,以及瓦楞纸箱、纤维板、绝缘板、电视荧光粉、汽车制动器和离合器等等。   作为表面处理剂,可直接涂于 金属 表面,用作钢铁表面防锈液,手风琴、收音机、仪表仪器等 金属 元件的防蚀剂和使用于 有色金属 装饰品、日用品、工艺品的保光、保色;涂覆于玻璃,可形成透光性优良、反光度低的表面涂层;涂覆于镀锌铁皮,在盐水中不腐蚀;涂覆于塑料薄膜,可提高其隔湿性和阻气性等等。   3.制法   因为碳酸锂和石英砂熔融而制成的硅酸锂玻璃,在水中不溶解。因此,常规的可溶性硅酸盐制造方法不能制得硅酸锂水溶液,必须寻求其它制造方法。   文献报导的制造方法虽然不少,但都存在一些缺点或不足之处。如采用较多的硅溶胶法,原料成本太高;硅胶法,虽可使用便宜原料,但要求高温高压设备;硅粉法;原料也不便宜,而且成品外观和反应收率都有问题;离子交换法可以用各种可溶性锂盐,但树脂床在我国投资费用较高,而且处理树脂后的废酸、废水量大,从生产成本和环境保护考虑似乎也不宜选用。在较多的方法中,目前认为较好的方法是活性硅酸——氢氧化锂法。    活性硅酸——氢氧化锂法是利用将水玻璃溶液按阳离子交换法制得的具有一定浓度的活性硅酸溶液与氢氧化锂粉末或水溶液反应而制成。可以得到具有透明性、长期贮存稳定性以及粘结力优良的硅酸锂水溶液。    另据文献报导,我国化工部天津化工研究院硅酸锂试制组,在全面分析比较了国外发表的各种方法后,经反复试验,研究出一条独特的制造工艺路线,即常温常压反应法,其优点能利用廉价原料、简单设备、常温常压反应、直接制造高浓度、高模数的硅酸锂水溶液。

硫的知识

2019-03-12 11:03:26

元素称号:硫俗称:元素符号:S元素原子量:32.066晶体结构:晶胞为正交晶胞。 莫氏硬度:2.0 元素类型:非金属发现进程:古代人类已认识了天然硫。硫散布较广。单质物理性质:一般为淡黄色晶体,它的元素名来历于拉丁文,本意是鲜黄色。单质硫有几种同素异形体,菱形硫(斜方硫)和单斜硫是现在已知最重要的晶状硫。它们都是由S8环状分子组成。 密度 熔点 沸点 存在条件 菱形硫(S8) 2.07克/厘米3 112.8℃444.674℃ 200℃以下 单斜硫(S8) 1.96克/厘米3 119.0℃444.6℃ 200℃以上 硫单质导热性和导电性都差。性松脆,不溶于水,易溶于(弹性硫只能部分溶解)。无定形硫主要有弹性硫,是由熔态硫敏捷倾倒在冰水中所得。不安稳,可转变为晶状硫(正交硫),正交硫是室温下仅有安稳的硫的存在方式。化学性质: 化合价为-2、+2、+4和+6。榜首电离能10.360电子伏特。化学性质比较生动,能与氧、金属、、卤素(除碘外)及已知的大多数元素化合。还可以与强氧化性的酸、盐、氧化物,浓的强碱溶液反响。它存在正氧化态,也存在负氧化态,可构成离子化合物、共价化合成物和配位共价化合物。元素来历:重要的硫化物是黄铁矿,其次是有色金属元素(Cu、Pb、Zn等)的硫化物矿。天然的硫酸盐中以石膏CaSO4·2H2O和芒硝Na2SO4·10H2O为最丰厚。可从它的天然矿石或化合物中制取。火山口处存在许多。元素用处:大部分用于制作硫酸。橡胶制品工业、火柴、焰火、硫酸盐、盐、硫化物等产品中也需求许多。部分用于制作药物、虫剂以及漂染剂等。元素辅佐材料:硫在自然界中存在有单质状况,每一次火山爆发都会把许多地下的硫带到地上。硫还和多种金属构成硫化物和各种硫酸盐,广泛存在于自然界中。单质硫具有明显的橙黄色,焚烧时构成激烈有刺激性的气味。金属硫化物在焚烧时发生的气味可以断语,硫在远古时代就被人们发现并使用了。在西方,古代人们以为硫焚烧时所构成的浓烟和激烈的气味能驱除魔鬼。在古罗马博物学家普林尼的作品中写到:硫用来打扫住屋,由于许多人以为,硫焚烧所构成的气味可以消除全部妖魔和全部凶恶的实力,大约4000年前,埃及人现已用硫焚烧所构成的二氧化硫漂白布疋。在古罗马闻名诗人荷马的作品里也讲到硫焚烧有消毒和漂白效果。中西方炼金术士都很注重硫,他们把硫看作是可燃性的化身,以为它是组成全部物体的要素之一。我国炼丹家们用硫、硝石的混合物制成黑色。不管在西方仍是我国,古医药学家都把硫用于医药中,我国闻名医师李时珍编著的《本草纲目》中,将到硫在医药中的运用:治腰久冷,除凉风顽痹寒热,生用治疥廯。的广泛应用促进了的提取和精粹,跟着工业的开展,硫在制取硫酸中起着关键效果,而硫酸就是工业之母,无处不需求它。1894年出生在德国的美国工业化学家弗拉施发明用过热水的办法,将硫从地下深处直接提取出来。世界上每年耗费许多的硫,其间一部分用于制作硫酸,另一部分用于橡胶制品、纸张、硫酸盐、硫化物等的出产,还有一部分硫用于农业和漂染、医药等。1789年法国化学家拉瓦锡宣布近代榜首张元素表,把硫列入表中,断定硫的不可分割性。18世纪后半页,德国化学家米切里希和法国化学家波美等人发现硫具有不同的晶形,提出硫的同素异形体。硫在地壳中的含量为0.048%

锂辉石(Spodumene)

2019-01-21 10:39:06

LiAl[Si2O6] 【化学组成】锂辉石化学组成较稳定,可含有稀有元素、稀土元素混入物。 【晶体结构】单斜晶系;也有资料认为空间群为C2/c;a0=0.946nm,b0=0.839nm,c0=0.522nm;β=110°11′;Z=4。晶体结构见辉石族概述。锂辉石(即α锂辉石)还有另外两个同质多像变体;β锂辉石为四方晶系,与凯石英(也称重石英)同结构;γ锂辉石为六方晶系,与β石英同结构。 【形态】常呈柱状晶体,柱面常具纵纹。有时可见巨大晶体(长达16m)。双晶依(100)生成。集合体呈(100)发育的板柱状、棒状,也可成致密隐晶块状。 【物理性质】灰白色,烟灰色,灰绿色。翠绿色的锂辉石称为翠绿锂辉石,是成分中含Cr所致,成分中含Mn呈紫色称紫色锂辉石;玻璃光泽,解理面微显珍珠光泽。{110}解理完全,夹角87°;具{100}、{010}裂开。硬度6.5~7。相对密度3.03~3.23。 【成因及产状】是富Li花岗伟晶岩中的特征矿物。 【鉴定特征】颜色,晶形及其产状。吹管火焰烧之膨胀,并染火焰成浅红色(Li),与CaF2+KHSO4合熔后,染火焰成鲜红色(Li)。 【主要用途】与锂云母一起用作提取Li的原料。Li用于原子工业、医药、焰火、照相、玻璃、伦琴照相等方面。透明而色泽美丽者可作宝石。此外,与锂云母、锂霞石一样,具有一般原料所没有的负膨胀性,故可与其它正膨胀性的矿物一起制成高温下膨胀系数接近于零的特殊陶瓷、微晶玻璃等,提高制品的抗热冲击性能和机械强度。