钴酸锂
2017-06-02 15:15:40
锂离子二次
电池
正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 钴酸锂特点1、电化学性能优越 a.每循环一周期容量平均衰减﹤0.05% b.首次放电比容量﹥135mAh/g c.3.6V初次放电平台比率﹥85% 2、加工性能优异 3、振实密度大, 有助于提高电池体积比容量 4、产品性能稳定, 一致性好 产品型号 R747 振实密度2.4-3.0g/cm3, 典型值为2.5,粒度 D506.0-8.5um; R757 振实密度2.4-3.2g/cm3, 典型值为2.6, 粒度D506.5-9.0um; R767 振实密度2.3-3.0g/cm3, 典型值为2.5, 粒度D508-12um; 钴酸锂用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
钴酸锂电池
2017-12-27 15:15:01
钴酸锂电池结构稳定、容量比高、综合性能突出、但是其安全性差、成本非常高,主要用于中小型号电芯,广泛应用于笔记本电脑、手机、MP3/4等小型电子设备中,标称电压3.7V。钴酸锂的用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。钴酸锂的技术标准1、名称: 钴酸锂 分子式: LiCoO2 分子量: 97.88 2、主要用途: 锂离子电池 3、外观要求: 灰黑色粉末, 无结块 4、X射线衍射: 对照JCDS标准( 16-427) , 无杂相存在 5、包 装: 铁桶内塑料袋包装 6、化学成分与物化性能指标: 镍 Ni 0.05% max (wt%) 锰 Mn 0.01% max (wt%) 铁 Fe 0.02% max (wt%) 钙 Ca 0.03% max (wt%) 钠 Na 0.01% max (wt%) 酸碱性 PH 9.5-11.5 含水量( 105&ordm;C干燥失重量, %) Moisture (wt% loss at 105&ordm;C) <0.05 比表面积( m2/g) BET surface Area (m2/g) 0.2-0.6 振实密度 (g/cm3) Tap Density (g/cm3) 1.7-2.9 粒径大小-D50 (μm) PSD- D50 (μm) 5-12 粒径大小-D10 (μm) PSD- D10 (μm) 1-5 粒径大小-D90 (μm) PSD-D90 (μm) 12-25钴酸锂电池的应用还是比较少的,小电池用钴锂的技术很成熟,但现在钴锂的成本太高,很多公司用锰锂来代替,有的全是锰锂的。钴酸锂性能稳定,目前应用于手机等的技术最为成熟,但应用的最大缺点就是成本高,钴是比较稀缺的战略性金属;另外应用于动力电池方面也有一定的难度。
钴酸锂价格
2017-06-02 15:15:12
钴酸锂价格受进来利好的影响,开始上涨。由于最近欧美经济数据利好于预期,LME基本
金属
连续上涨四个交易日。昨夜,伦敦钴市
现货
买价小幅上涨975美元/吨至38575美元/吨,卖价39575美元/吨上升975美元/吨;三月期买价上涨1000美元/吨至38000美元/吨,卖价39000美元/吨亦上涨1000美元/吨。国内氧化钴最低价从21.8万元/吨下滑至21.5万元/吨,最高报价22万元/吨维持不变,市场交易平淡。四氧化三钴报价在22.8-23.0万元/吨左右。虽然大厂今日都有成交,但由于下游钴酸锂厂交易平淡,四钴厂商已经采取减产措施。由于钴酸锂持市场持续冷清,今日钴酸锂最低价下滑0.1万元/吨至23.7万元/吨。 钴是一种化学元素,符号为Co,原子序数27,属过渡金属,具有磁性。钴的英文名称“Cobalt”来自于德文的Kobold,意为“坏精灵”,因为钴矿有毒,矿工、冶炼者常在工作时染病,钴还会污染别的金属,这些不良效果过去都被看作精灵的恶作剧。 钴矿主要为砷化物、氧化物和硫化物。此外,放射性的钴-60可进行癌症治疗。 在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。1735年瑞典化学家布兰特(G.Brandt)制出金属钴。1780年瑞典化学家伯格曼(T. Bergman)确定钴为元素。长期以来钴的矿物或钴的化合物一直用作陶瓷、玻璃、珐琅的釉料。到20世纪,钴及其合金在电机、机械、化工、航空和航天等工业部门得到广泛的应用,并成为一种重要的战略金属,消费量逐年增加。中国于50年代开始从钴土矿、镍矿和含钴黄铁矿中提钴。 钴酸锂价格走势需要看后市情况而定。目前从市场交易情况来看,国内钴市仍处消费淡季。近期商家纷纷拜访客户,欲了解市场。近期虽然大家情绪稍有平静,下游
电池
商频频询价,但对市场交易还是持谨慎态度,以致钴酸锂成交持续平淡。预计钴酸锂价格还有小幅下调空间,其他钴产品近期走势将平稳。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
一张图看懂钴酸锂
2019-01-03 15:20:52
三元材料取代钴酸锂任重而道远
2019-03-06 10:10:51
现在三元材料可谓是锂电池中的宠儿,开展速度十分快,在渐渐侵入整个使用商场。钴酸锂通过多年的开展,现已占有了锂电池商场的半壁河山。三元材料何时可以替代钴酸锂?
三元材料是镍钴锰酸锂Li(NiCoMn)O2,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为质料。钴酸锂一般使用作锂离子电池的正电极材料。电池结构安稳、容量比高、归纳功能杰出、可是其安全性差、本钱十分高。 从上以上两个图表可以看出,三元材料不管在性价比仍是在环保安全功能上远超钴酸锂。
三元材料替代钴酸锂之路依然负重致远?
三元首要冲击的是钴酸锂的中心使用范畴——数码产品商场。据工业研究所(GBII)数据显现,在2013年的正极材料商场,中国商场关于三元材料的需求,现已到达15600吨,其间80%用于笔记本电脑、平板电脑、手机等数码产品。三元材料如此大行动地进攻钴酸锂的“要害”,其来势汹汹的态势,不由让业内人士猜想技能路途风向正在反转。但需求留意的是,比较于三元材料,钴酸锂具有一系列功能与技能优势,更受商场喜爱。因而,大部分业内人士对现在的钴酸锂商场依然持积极态度,他们以为三元材料能否成功替代钴酸锂,商场取向起决定作用。三元材料中,钴的质量分数一般控制在20%左右。尽管三元材料到达“少钴化”的要求,本钱也得到明显的下降,可是其在压实密度、高电压、高容量、耐高温等功能方面仍与钴酸锂有必定的距离。数码设备日趋轻浮化规划,对电池容量的要求也日益提高。正极材料的压实密度作为影响锂电池容量的要素之一,钴酸锂的单晶颗粒状形状,现在可以做到4.2 g/cm3的压实密度,是作为小颗粒二次聚会体的三元材料无法幻想的高难度应战,成为三元材料拓宽蓝图的“硬伤”。事实上,现在可以满意移动设备待机要求的老练电池也只要钴酸锂电池,在消费类数码产品范畴,钴酸锂电池依然处于主导地位。尽管三元材料商场需求有所增加,但比起钴酸锂而言,其商场份额依然不可同日而语。何况三元材料在以下几个方面存在短板。 三元材料厂商多而不强。GGII计算,截止2016年末国内三元材料出货量逾越8000吨的厂商没有出现,各大厂商产品同质化严峻,均以523、111类型为主。一起受Tesla带动,国内三元动力电池掀起一场扩张高潮,材料厂商方面自2015下半年至今已新增一批三元材料厂商。未来跟着技能的不断进步,长续航路程电池需求加大,三元材料商场需求出现产销两旺时期,在利好布景下,商场将会出现一大批新进入者。中心专利缺失,低端产能重复建造。现在全球镍钴锰酸锂专利主要在美国3M及阿贡实验室手中,巴斯夫、美丽科、瑞翔等均有购买3M或阿贡实验室专利有用权,而国内专利一时相对单薄。未来大规模开展后,在出口商会发生专利胶葛。 现在国内三元材料类型以523为主。不管数码仍是动力电池用三元材料,使用量最多的仍为523类型。从电池形状上来看,国内原装三元电池遍及选用NCM523,选用叠片工艺的三源动力电池选用NCM111,其间三元圆柱的产值大于方形叠片电池。 从上图看出,三元材料未来商场中潜力巨大,现在处于上升期。跟着技能的开展,厂商的不断自我完善,未来商场用量也极有或许逾越钴酸锂。只能说逾越钴酸锂的路途比较绵长。
钴酸锂电池优劣势分析
2018-10-11 10:06:06
钴酸锂电池是以合成的钴酸锂(化学分子式LiCoO2)化合物作为正极材料活性物质的锂离子电池,在所有的充电锂电池中,钴酸锂是最早应用的正极材 料,钴酸锂电池也是循环性能最好的。一、钴酸锂电池的优势:钴酸锂电池是电化学性能优越的锂电池,容量衰减率小于0.05%,首次放电比容量大于135mAh/g,电池性能稳定,一致性好,另外,在工艺上容易合成 ,安全性能好。钴酸锂电池的工作温度为-20~55℃。二、钴酸锂电池的不足:1、钴的价格高,仅产于非洲的一部分地区,有地域纷争及价格变动的风险;2、LiCoO2的岩盐性结构,可去除的锂仅为原来比例的大约50%,就是说,过充时基本结构会发生破坏,失去可逆充放电循环,这使得钴酸锂电池存在过充安全隐患,需要附加电路保护板;3、热稳定性和毒性指标不够理想, 对策较为复杂。三、钴酸锂电池的制备,主要技术表现在锂粉的制造上:钴酸锂电池使用液相合成工艺,将锂盐、钴盐分别溶解在聚乙烯醇和聚乙二醇溶液中,混合 后的溶液经加热浓缩成凝胶,凝胶体在高温下煅烧形成的粉体碾磨过筛即得到钴酸锂粉。四、钴酸锂电池的应用:钴酸锂电池因具有容易合成、电压平台高、比能量适中,特别是循环性能优越,而成为锂离子电池的主流。但是钴储量的不 足和制备中对其毒性与过充的克服,加大了钴酸锂电池的成本,因而钴酸锂的市场一般定位于便携式设备而不适用于大型动力。
电极材料是粒径越小,导电性越好吗?
2019-01-03 09:36:42
2 3 4 5 6 7 8
粉体粒径对陶瓷烧结的致密化有什么影响?
2019-01-03 09:37:07
在2150 ℃烧结温度下,酚醛树脂2.0%+碳化硼2.5%,按配方依次选用A2 : A1(4 : 1)、A2、A3 : A1(4 :1)、A3四种粉体进行试验,平均粒径依次约为0.8 μm、1.0 μm、1.6 μm、2.0μm,研究粉体粒径对碳化硅陶瓷烧结致密化的影响。下面来为大家分析结论。
粗/细混合粉体烧结后SiC陶瓷颗粒结合相比单一粉体烧结而言晶粒细小,结合更加紧密,由于使用的粗、细粉体粒径差别适中,使细颗粒可以较好地填充至粗颗粒之间的孔隙处,故烧结后晶粒大小较为一致,碳和气孔分布较均匀,没有明显的聚集和异常晶粒长大;
使用的粗颗粒相比粒径较大,使细颗粒的填充不够充分,因此可以观察到烧结后存在晶粒结合不够紧密,尺寸大小不一,气孔分布不均等现象,使用单一粉体烧结时,粉体粒径较细的粉体烧结后晶粒交织生长,结合较为紧密,气孔分布较为均匀,而粉体粒径较粗的粉体烧结后存在部分晶粒生长大小不一,气孔分布不均且有增大的趋势。
采用粗/细混合粉体进行烧结的样品抗弯强度和密度均高于使用单一粉体烧结的样品,这一结果与显微结构相吻合。其中进行烧结的SiC陶瓷样品的密度和抗弯强度达到3.11g/cm3和428 Mpa,略大于使用单一粉体进行烧结后样品。
尽管它的力学性能距离单一粉体进行烧结的样品还存在较大的差距,但这依然可以为低成本常压烧结SiC陶瓷提供一个思路,表明若粗/细粉体的颗粒分布优化出合理的比例之后,将极有可能使用部分混合粉体替代全部为细颗粒的粉体实现SiC陶瓷常压致密化烧结。
如何有效提高三元材料的压实密度?
2019-01-03 09:36:39
影响正极极片压实密度的主要因素主要有以下四点:①材料真密度②材料形貌③材料粒度分布④极片工艺。1、材料真密度几种商业正极材料的真密度和目前所能达到的压实密度见表(表中所选三元材料为NCM111),可以看出,几种材料的真密度:钴酸锂>三元材料>锰酸锂>磷酸铁锂,这和压实密度的规律一致。需要指出的是,不同组分三元材料的真密度随组分的变化而变化。几种商业正极材料的真密度和压实密度范围2、材料形貌三元材料和钴酸锂的真密度差别并不大,从上表可以看出,NCM111和钴酸锂的真密度只差0.3g·cm-3,压实密度却比钴酸锂低0.5g·cm-3,甚至更高,导致这个结果的原因很多,但最主要的原因是钴酸锂和三元材料的形貌差别。目前商业化的钴酸锂是一次颗粒,单晶很大,三元材料则为细小单晶的二次团聚体,如图所示。从图中可看出,几百纳米的一次颗粒团聚成的三元材料二次球,本身就有很多空隙;而制备成极片后,球和球之间也会有大量的空隙。以上原因使三元材料的压实密度进一步降低。钴酸锂和三元材料SEM图3、材料粒度分布等径球在堆积时,球体和球体之间会有大量的空隙,若没有合适的小粒径球来填补这些空隙,堆积密度就会很低。所以合适的粒度分布能提高材料的压实密度,而不合理的粒度分布则造成压实密度显著降低。4、极片工艺极片的面密度,黏结剂和导电剂的用量都会影响压实密度。常见导电剂和黏结剂的真密度见如表。从表中可以看出,常见导电剂和黏结剂的真密度材料的真密度对压实密度的影响是无法改变的,但从压实密度和真密度的对比中可以看出,三元材料的压实密度还有很大的提升空间。如何提高压实密度目前提高压实密度的方法主要从材料形貌、材料粒度分布、极片工艺三方面入手。例如将三元材料的形貌制备成和钴酸锂类似的大单晶;优化三元材料粒度分布;极片制作时使用导电性好的导电剂以降低导电剂用量,调浆过程高速分散,使导电剂和黏结剂均匀分散等等。下面是从优化三元材料形貌和粒度方面来提升三元材料压实密度的实例。1、优化形貌常见几种三元材料的形貌及其极片(辊压后)的SEM图如图所示。其中(a)、(c)、(e)为三种不同形貌的三元材料的SEM图,放大倍数相同。(b)、(d)、(f)分别为(a)、(c)、(e)的辊压后极片低倍SEM图。(a)所示是最常见的三元材料形貌,即小单晶的二次团聚体,其辊压后的极片SEM图如(b)所示,二次颗粒之间有较大空隙,且部分二次颗粒已经被压碎,部分没有接触到黏结剂的小单晶已经脱落;(c)的形貌为一次单晶三元材料,但比(a)的单晶稍大一些,从其对应极片(d)可以看出,单晶颗粒之间有少量空隙,因为不存在二次颗粒破碎的问题,所以只要黏结剂分散均匀,便不存在单晶从极片脱落的问题;(e)虽然也是二次团聚体,但是单晶很大,单晶和单晶之间接触并不是很紧密,从其对应极片(f)可以看出,颗粒和颗粒之间的空隙很少,如果使用高速混合机来制备浆料,效果会更好。图中(a)、(c)、(e)三种形貌的材料对应的压实密度结果对应(g)中的a、c、e。从图中可以看出,(a)形貌的材料压实密度最低,但和(c)的压实密度相差不多,(e)的压实密度比(a)和(c)的高很多,已经达到3.9g·cm-3。不同形貌三元材料及其极片SEM图、压实密度对比2、优化粒度分布D50接近的材料,若D10、D90、Dmin、Dmax有差别,也会造成压实密度不同。粒度分布太窄或粒度分布太宽都会使材料压实密度降低。对于粒度分布的影响,有的电池厂家会对正极材料生产商提出要求,而有的电池厂家则通过混合不同粒度分布的产品来达到提高压实密度的目的,如图所示。
镍钴锰酸锂
2017-06-06 17:50:12
镍钴锰酸锂镍钴锰酸锂是一种电池材料,锂电池用正极材料--镍钴锰酸锂,俗称三元材料,化学成分Li1+zM1-x-yNixCoyO2,是由氢氧化镍钴锰和锂原材料混合均匀后经三温区烧结得到。该材料比容量高,循环特性好,晶体结构理想,且制备工艺简单,运行成本低,生产周期短,产品性能稳定,是一种更经济,更安全的锂离子电池的正极材料,必将取代其他锂离子电池正极材料。高密度锂离子电池正极材料镍钴锰酸锂的制备方法,一种高密度锂离子电池正极材料镍钴锰酸锂的制备方法,其特征在于:包括将镍化合物、钴化合物、锰化合物混合、造粒,以3~10℃/min的升温速率,通过在一定温度和一定时间下进行第一次烧结,得到中间产物镍钴锰的氧化物(Ni↓[1/3]Co↓[1/3]Mn↓[1/3])↓[3]O↓[4];然后将镍钴锰的氧化物与一定比例的锂化合物均匀混合,以3~10℃/min的升温速率,在高温下,通过一定时间进行第二次烧结,再将烧结产物经过粉碎、粒度分级后得到高密度的镍钴锰酸锂。镍钴锰酸锂在电池材料方面的应用十分广泛。锂离子电池是新一代的绿色高能电池,具有电压高、能量密度大、循环性能好、自放电小、无记忆效应等突出优点,广泛应用于各种便携式电动工具、电子仪表、移动电话、笔记本电脑、摄录机、武器装备等,在电动汽车中也具有良好的应用前景.正极材料是锂离子电池的重要组成部分,是目前锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模
产业
化并广泛应用于商品锂离子电池的正极材料,然钴酸锂的年需求量已超过1万吨,从而导致钴价大幅攀升,钴资源短缺已开始制约
产业
发展。新型锂离子正极材料----复合氧化物镍钴锰酸锂是一种容量比较高的材料,其比容量比钴酸锂高出30%以上,和钴酸锂有相同的上下限电压,而且安全性也相对较好,
价格
相对较低,与电解液的相容性好,循环性能优异,更为重要的是其成本仅为钴酸锂的一半,是非常有前途的正极材料。此材料正逐步取代钴酸锂而成为在小型通讯和小型动力领域应用的主流正极材料。复合氧化物镍钴锰酸锂材料制备的关键是保证镍、钴、锰三元素的分子级混合,并控制其合理的粒度大小和分布。
锂离子电池正极三元材料的研究进展及应用
2019-03-08 09:05:26
锂离子电池是20世纪90年代敏捷开展起来的新一代二次电池,广泛用于小型便携式电子通讯产品和电动交通工具。电池材料分为正极材料、负极材料、隔阂、电解液等。正极材料是制作锂离子电池的要害材料之一,占有电池本钱的25%以上,其功能直接影响了电池的各项功能指标,在锂离子电池中占有中心方位。
现在已产业化的锂离子电池用正极材料首要有钴酸锂、改性锰酸锂、三元材料、磷酸铁锂。研讨发现,以LiNi1/3Co1/3Mn1/3O2为代表的层状氧化镍钴锰系列材料(简称三元材料)较好地兼备了上述材料的长处,并在必定程度上补偿其缺乏,具有高比容量、循环功能安稳、本钱相对较低、安全功能较好等特色,被认为是用于混合型动力电源的抱负挑选,以及能替代LiCoO2的最佳正极材料。
三元材料的组成结构和特性
三元材料有着与LiCoO2类似的α-NaFeO2单相层状结构,其间,Li原子在3a方位,金属原子Ni、Co和Mn自在散布在金属层的3b方位,而O原子坐落6c位。
Ni是材料的首要活性物质之一,在充放电进程中,首要是Ni2+和Ni4+发作彼此转化。经过引进Ni,可进步材料的容量。
Co也是材料的首要活性物质之一,能很好地安稳材料的层状结构,一同Co3+的掺入能够按捺Ni2+进入Li+的3a方位,便于材料深度放电,然后进步了材料的放电容量。
Mn4+有着杰出的电化学慵懒,不同于Mn3+。Mn3+在材料充放电进程中会参加电极的氧化-复原反响,Mn4+在循环进程中不参加氧化-复原反响,使材料一直坚持着安稳的结构。
因而,层状结构的三元材料归纳了单一组分材料的长处,其功能优于单一组分,具有显着的三元协同效应。其根本物性和充放电渠道与LiCoO2附近,却又具有报价和环境友好优势,具有很好的市场前景。
三元材料的制备
三元材料中各元素的化学计量等到散布均匀程度是影响材料功能的要害因素,偏离了化学计量比或组成元素散布不均匀,都会导致材料中杂相的呈现。不同的制备办法对材料的功能影响较大。现在组成三元材料的办法首要有高温固相法、共沉积法、喷雾干燥法、水热法、溶胶凝胶法等。其间水热法和溶胶凝胶法因为受制备办法的约束,不适合于工业化出产。下面介绍完成产业化的几种制备办法。
高温固相法
高温固相法一般先将金属盐和锂盐按化学计量比以各种方式混合均匀,然后高温烧结直接得到产品。常用金属盐首要有金属氧化物、金属氢氧化物等。
共沉积法
共沉积法以沉积反响为根底,研讨证明,共沉积法是制备球形三元材料的最佳办法,也是现在工业化遍及选用的制备工艺。依据运用沉积剂的不同能够分为氢氧化物共沉积法、碳酸盐共沉积法。
喷雾干燥法
喷雾干燥法也是现在材料工业化制备比较看好的一种办法。该法制备的材料非常均匀,颗粒纤细,在材料的化学计量组成、描摹和粒径散布上具有优势,并且能够自动化操控,可连续出产,制备能力强。
三元材料的研讨现状
在曩昔的十几年间,镍钴锰三元材料已得到较为深入细致的研讨,功能水平不断进步。现在的研讨除了对镍钴锰三元材料动力电池的功能进行测验外,更多的是对镍钴锰三元材料进行改性,进一步进步材料的循环寿数和安全性。
不同组分的三元材料
除了LiNi1/3Co1/3Mn1/3O2正极材料的研讨外,该系统其他计量比的正极材料也有必定的研讨成果。国海鹏等[5]制备了正极材料LiNi1/2Co1/6Mn1/3O2并研讨了其功能,选用固相法得出了具有Co含量梯度的层状LiNi1/2Co1/6Mn1/3O2。
三元材料与其他材料的混粉
三元材料和LiMn2O4混合用于锂离子动力电池正极,在商业上已有使用。混合材料不只能够满意动力电池安全性的需求,并且碱性较强的三元材料还能按捺电解液中微量对LiMn2O4的溶解效果,改进正极材料的高温功能。
核 - 壳结构的三元材料
LiNi0.8Co0.1Mn0.1O2具有较高的比容量,而LiNi0.5Mn0.5O2具有很好的热安稳性。将两种材料掺合到一同,构成一种核(Li-Ni0.8Co0.1Mn0.1O2)-壳(LiNi0.5Mn0.5O2)结构的三元材料,归纳了两种材料的长处,能有效地按捺材料中Co的溶解,进步循环安稳性。该材料在1C、3.0~4.3V、600次充放电后容量坚持率为96%,一同具有杰出的热安稳性。
结语
现有产业化的钴酸锂、改性锰酸锂和磷酸铁锂在根底研讨方面现已没有技能打破,其能量密度和各种首要技能指标现已挨近其使用极限,三元材料是未来研制和产业化的干流,依据其使用范畴的不同,分别向高密度化和高电压化开展。未来的开展方针是将三元材料的压实密度进步到3.9g/cm3以上,充电电压到达4.5V,可逆比容量到达200 mAh/g,电极能量密度比钴酸锂高25%,然后全面替代钴酸锂,成为小型通讯和小型动力范畴使用的干流正极材料。
锂电正极材料磷酸铁锂的制备方法简述
2019-01-04 17:20:18
一、磷酸铁锂简介 磷酸铁锂的晶格结构图
磷酸铁锂在自然界中以磷铁锂矿的形式存在,具有有序的橄榄石结构。磷酸锂铁化学分子式为:LiMPO4,其中锂为正一价;中心金属铁为正二价;磷酸根为负三价,常用作锂电池正极材料。磷酸铁锂电池的应用领域有:储能设备、电动工具类、轻型电动车辆、大型电动车辆、小型设备和移动电源,其中新能源电动车用磷酸铁锂约占磷酸铁锂总量的45%。
二、磷酸铁锂作锂电正极材料与其他锂电池正极材料相比,橄榄石结构的磷酸铁锂更具有安全、环保、廉价、循环寿命长、高温性能好等优点,是最具潜力的锂离子电池正极材料之一。
安全性能高
磷酸铁锂晶体中有稳固的P-O键,难以分解,在过充和高温时不会结构崩塌发热或生成强氧化物,过充安全性较高。
循环寿命长
铅酸电池的循环寿命在300次左右,使用寿命在1~1.5年之间。而磷酸铁锂电池循环次数可达2000以上,理论上使用寿命能达7~8年。
高温性能好
磷酸铁锂电热峰值可达350℃-500℃,而锰酸锂和钴酸锂只有200℃左右。
环保
磷酸铁锂电池一般被认为不含重金属和稀有金属,无毒,无污染,是绝对的绿色环保电池。
磷酸铁锂作为正极材料的充放电作用机理不同于其他传统材料,其充放电参与电化学反映的是磷酸铁锂的磷酸铁两相,充放电反应如下:
充电反应:放电反应:充电时,Li+ 从LiFePO4中脱离出来,Fe2+ 失去一个电子变成Fe3+;放电时,Li+ 嵌入磷酸铁中变成LiFePO4 。Li+的变化发生在LiFePO4 / FePO4 界面,因此其充放电曲线非常平坦,电位也较稳定,适合做电极材料。
三、磷酸铁锂的制备
制备磷酸铁锂的原料丰富。部分常见锂源、铁源、碳源、磷源如下:
磷酸铁锂粉体的制备在一定程度上会影响其作为正极材料的性能。目前制备磷酸铁锂的方法很多,如高温固相反应法、碳热还原法以及尚未规模化的水热法、喷雾热解法、溶胶-凝胶法、共沉淀法等。
1.高温固相反应法
高温固相反应法是制备磷酸铁锂是目前发展最为成熟也是使用最广泛的方法。将铁源、锂源、磷源按化学计量比均匀混合干燥后,在惰性气氛下,首先在较低温度(300~350℃)下烧结5~10h,使原材料初步分解,然后再在高温(600~800℃)下烧结10~20h得到橄榄石型磷酸铁锂。高温固相法合成磷酸铁锂工艺简单,制备条件容易控制,缺点是晶体尺寸较大,粒径不易控制、分布不均匀,形貌也不规则,产品倍率特性差。
2.碳热还原法
碳热还原法是在原材料混合中加入碳源(淀粉、蔗糖等)做还原剂,通常和高温固相法一起使用,碳源在高温煅烧中可以将Fe3+ 还原为Fe2+,避免了反应过程中Fe2+变成Fe3+,使合成过程更加合理,但是反应时间相对较长,对条件的控制更为严苛。
3.喷雾热解法
喷雾热解法是一种得到均匀粒径和规则形状的磷酸铁锂粉体的有效手段。前驱体随载气喷入450~650℃的反应器中,高温反应后得到磷酸铁锂。喷雾热解法制备的前驱体雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂。磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量。
4.水热法
水热法属于液相合成法,是指在密封的压力容器中以水为溶剂,通过原料在高温高压的条件下进行化学反应,经过滤洗涤、烘干后得到纳米前驱体,最后经高温煅烧后即可得到磷酸铁锂。水热法制备磷酸铁锂具有容易控制晶型和粒径,物相均一,粉体粒径小,过程简单等优点,但需要高温高压设备,成本高,工艺比较复杂。
除上述方法外还有共沉淀法、溶胶-凝胶法、氧化-还原法、乳化干燥法、微波烧结法等多种方法。
四、总结
尽管磷酸铁锂的制备方法较多,但是除高温固相反应法得以工业化应用以外,大都处于实验室研究阶段。随着对磷酸铁锂制备及改性等技术研究的不断深入,磷酸铁锂作正极材料的产业化速度也会不断加快
镍钴锰酸锂
2017-06-02 15:14:45
锂
电池
的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。近年来,中国锂电池产量已大幅提升,锂电池正极材料也已经从单一的钴酸锂材料,发展到钴酸锂、锰酸锂、镍钴酸锂、镍钴锰酸锂、磷酸铁锂等材料齐头并进的阶段。 金瑞科技作为国内最专业的
电解锰
生产企业,拥有电解锰产能4万吨,2008年产量约占全球市场份额的3%;四氧化三锰年产能2万吨左右,市场占有率50%以上。近年来公司通过金丰锰业、获得松桃金瑞矿业和黔东锰矿各50%股权等方式以提高产能及矿山自给率。目前电解锰行业需求出现积极信号。我们预计,未来两年在政府淘汰落后产能的治理中,公司有望进一步扩大市场份额。 公司控股的子公司金天能源材料于2005年12月率先在国内自主研发出了覆钴氧化型氢氧化镍新产品,并建成了1000吨/年的主要用于制作高品质镍氢二次电池以及动力电池产品生产线。目前金天能源主要为比亚迪和日本汤浅供应镍氢电池正极,经过近两年的发展,覆钴氧化型氢氧化镍新产品已经打入了日本电池企业在国内的合资电池厂等高端市场;同时,公司项目系列产品中的动力型氢氧化镍品种已通过了日本松下电池企业的性能检测。目前国内氢氧化镍总需求量约为16000吨/年,其中,高品质的覆钴氧化型氢氧化镍产品仅有不到2000吨/年的生产规模,而金天能源目前拥有氢氧化镍产能2000吨,覆钴氧化型氢氧化镍产能1000吨/年,预计公司能充分享受到行业成长的前景。 此外,公司开展了磷酸亚铁锂制备技术的研究和镍钴锰酸锂三元材料的研究,其中磷酸亚铁锂项目已取得了良好的结果,镍钴锰酸锂三元材料的开发也取得了较好的结果,并获得了科技部75万元的院所基金资助。随着国家鼓励发展电动汽车,大力提倡开发锂离子动力电池,公司电源材料必将受益。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
钴简介以及应用领域
2018-08-29 09:50:00
一、基本介绍钴是银白色的金属。钴在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。 。钴一种非常稀缺的小金属资源,素有“工业味精”和“工业牙齿”之称,是重要的战略资源之一。钴资源多伴生于铜钴矿、镍钴矿、砷钴矿和黄铁矿矿床中,独立钴矿物极少,陆地资源储量较少,海底锰结核是钴重要的远景资源。二、钴的用途及应用领域目前,钴主要用于电池材料、高温合金、硬质合金、催化剂等领域。电池行业和高温合金行业是最大的两块用钴领域,电池行业用钴量占比约为59%,其次是高温合金用钴量所占比约为 15%,硬质合金和金刚石工具行业、硬面材料、陶瓷和催化剂行业分别占比约为7%、 3%、 4%和 4%。(一)电池材料目前钴的消耗量近40%用于充电电池材料,如用于锂离子电池的钴酸锂,用于镍氢电池的氧化亚钴等。钴最主要的用途是用于锂电池,锂离子电池的核心之一是它的正极材料,其中要用到钴酸锂(LiCoO2), 钴酸锂属于固体电解质,具有高能量密度和高的环保安全性。锂电池的优势在于电压范围宽,高能量密度,环保(和Ni-Cd、Ni-Mn相比较)。作为锂电池主要材料的钴酸锂的世界需求量2008年为3.29万吨(折合金属钴为1.97万吨),产锂电池的主要国家集中在亚洲,分别是日本占40%(32%)、韩国占到30%(22%)中国占到28%(44%),其中括号内为实际生产份额因为不少贴牌日本、韩国产的、实际产地在中国。(二)磁性材料钴是磁化一次就能保持磁性的少数金属之一。在热作用下,失去磁性的温度叫居里点。铁的居里点为769℃,镍为358℃,而钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。振动环境下,一般磁性钢失去差不多1/3的磁性。而钴钢仅失去2%-3.5%的磁性。由于钴优越的磁特性,被大量应用于高性能磁性材料的制造。磁性材料是重要的功能材料,在电子工业和高科技领域起着非常重要的作用。钴在磁性材料领域应用分布如下:70%用于Alnico 永磁合金,20%用于Smco合金,10%用于其他稀土永磁材料。近几年来,不仅磁性材料的产量增加了很多,而且磁体市场的结构也发生了很大的变化。从世界范围来看,铝镍钴磁体的产量呈下降趋势,但近几年来我国进行的大规模电网改造使铝镍钴磁体的产量维持在2000吨左右,而衫钴合金的产量有逐年上升的势头。(三)硬质合金与超级合金含有一定量钴的刀具钢可以显著提高钢耐磨性和切削性能,钴将合金组成中其他金属碳化物晶粒结合在一起,使合金具更高的韧性,并减少对冲击的敏感性能,这种合金熔焊在零件表面,可使零件的寿命提高3-7倍。含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度。温度在1038℃以上时,钴基合金的优越性就显露无遗,特别适合用于制作高效率的高温发动机和汽轮机等,因此钴基合金被广泛地应用在航空航天和现代军事领域中。在航空涡轮发动机的结构材料中使用含20%-27%铬的钴基合金 可在不使用任何保护涂层的条件下 材料达到很高的抗氧化性。核反应堆供热工作室热介质涡轮发动机可以不检修而连续运转一年以上。
锰酸锂
2017-06-06 17:50:13
锰酸锂,合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其
产业
化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的
金属
离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是
价格
便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。 锰酸锂-特点:锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是
价格
便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),不太好压.是钴酸锂和三元材料的过渡产品.锰酸锂比表面积研究是非常重要的,锰酸锂的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器
行业
的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。F-Sorb2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。 锰酸锂主要为尖晶石型锰酸锂,尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有
价格
低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。 锰酸锂的生产目前
市场
上主要的锰酸锂有AB两类,A类是指动力电池用的材料,其特点主要是考虑安全性及循环性。B类是指手机电池类的替代品,其特点主要是高容量。 锰酸锂的生产主要以EMD和碳酸锂为原料,配合相应的添加物,经过混料,烧成,后期处理等步骤而生产的。从原材料及生产工艺的特点来考虑,生产本身无毒害,对环境友好。不产生废水废气,生产中的粉末可以回收利用。因此对环境没有影响。
电池材料(钴)中的铅含量测
2018-12-07 10:47:19
当下主流的手机,平板电脑,笔记本等电子设备使用的电池材料主成分为钴酸锂类。然而,高含量钴溶液基体的情况下测量铅元素,由于受到了光谱之间的相互干扰,然而使分析变得困难。日立ICP(型号PS3520UVDD)拥有真空紫外波长的观察区域,可从不同波长分析线的区分来改善诸如此类的干扰情况。
1. PS3520UVDD拥有130nm处波长的对应可能。(普通分光器一般只能达到160nm的短波长)
2. 因此,铅元素在短波长143.396nm处不受钴元素特征波长的干扰影响。
3.铅143.396nm波长的检测下限值(DL)可达8ppb,使钴基体下的铅痕量分析成为可能。
镍钴锰酸锂
2017-06-06 17:50:13
锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与
价格
。近年来,中国锂电池
产量
已大幅提升,锂电池正极材料也已经从单一的钴酸锂材料,发展到钴酸锂、锰酸锂、镍钴酸锂、镍钴锰酸锂、磷酸铁锂等材料齐头并进的阶段。 金瑞科技作为国内最专业的电解锰生产企业,拥有电解锰产能4万吨,2008年
产量
约占全球
市场
份额的3%;四氧化三锰年产能2万吨左右,
市场
占有率50%以上。近年来公司通过金丰锰业、获得松桃金瑞矿业和黔东锰矿各50%股权等方式以提高产能及矿山自给率。目前电解锰
行业
需求出现积极信号。我们预计,未来两年在政府淘汰落后产能的治理中,公司有望进一步扩大
市场
份额。 公司控股的子公司金天能源材料于2005年12月率先在国内自主研发出了覆钴氧化型氢氧化镍新产品,并建成了1000吨/年的主要用于制作高品质镍氢二次电池以及动力电池产品生产线。目前金天能源主要为比亚迪和日本汤浅供应镍氢电池正极,经过近两年的发展,覆钴氧化型氢氧化镍新产品已经打入了日本电池企业在国内的合资电池厂等高端
市场
;同时,公司项目系列产品中的动力型氢氧化镍品种已通过了日本松下电池企业的性能检测。目前国内氢氧化镍总需求量约为16000吨/年,其中,高品质的覆钴氧化型氢氧化镍产品仅有不到2000吨/年的生产规模,而金天能源目前拥有氢氧化镍产能2000吨,覆钴氧化型氢氧化镍产能1000吨/年,预计公司能充分享受到
行业
成长的前景。 此外,公司开展了磷酸亚铁锂制备技术的研究和镍钴锰酸锂三元材料的研究,其中磷酸亚铁锂项目已取得了良好的结果,镍钴锰酸锂三元材料的开发也取得了较好的结果,并获得了科技部75万元的院所基金资助。随着国家鼓励发展电动汽车,大力提倡开发锂离子动力电池,公司电源材料必将受益。
锰酸锂电池
2017-06-06 17:50:13
锰酸锂主要为尖晶石型锰酸锂 尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有
价格
低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。 合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其
产业
化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的
金属
离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是
价格
便宜,最大的缺点是容 锰酸锂量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。 锰酸锂结构:LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。 市场
人士表示,锰酸锂和锰酸锂电池
行业
的发展前景广阔。
钴的用途
2019-03-07 10:03:00
1,钴首要用于制取合金。含有一定量钴的刀具钢能够显着地进步钢的耐磨性和切削性能。
2,航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金,但两种合金的“强度机制”不同。在温度在1038℃以上时,钴基合金的优越性显现无遗。关于制作高效率的高温发动机,钴基合金适可而止。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。
3, 钴金属在电镀、玻璃、染色、医药医疗等方面也有广泛运用
4, 用碳酸锂与氧化钴制成的钴酸锂是现代运用最遍及的高能电池正极材料。
5,钴还可能用来制作,一种理论上的***或,装于钴壳内,爆破后可使钴变成丧命的放射性尘土。
锂离子电池磷酸铁锂正极材料的研究进展
2019-01-04 13:39:36
锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》
作者:张克宇,姚耀春
锰酸锂电池
2017-06-02 15:08:17
锰酸锂主要为尖晶石型锰酸锂 尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有价格低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子
电池
的正极材料。 合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池[有色商机
:
铅酸蓄电池]电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其产业化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的
金属
离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是价格便宜,最大的缺点是容 锰酸锂量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。 锰酸锂结构:LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。 市场人士表示,锰酸锂和锰酸锂电池行业的发展前景广阔。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
中国钴行业振兴计划(二)
2018-12-10 14:19:22
支持中国钴行业振兴的可行性
2.1 中国钴行业处在历史发展的关键时期
中国钴行业因发展较晚,在总体规模上刚刚具备了与世界巨头美国OMG、比利时UMICORE竞争的实力,中国钴产品,特别是钴高科技材料产品(如钴酸锂、四氧化三钴、钴粉、高纯钴盐等)近二年开始大规模出口。但资源控制水平、科技水平、环保水平等方面还有一定的差距。估计还有5-10年,中国钴行业可以诞生1-2家世界领先的钴企业,在综合竞争力位居位居全球前三位。
由于2008年中国钴行业在金融风暴中损失惨重,特别是率先走出国门,在非洲开拓资源的行业领军企业。由于从非洲(特别是从刚果)进口矿石到中国陆路与海路行程非常长,导致原料周转周期长,库存原料与产品跌价损失特别严重,企业实力受到严重削弱,急需国家政策的扶持与关怀。否则有可能这批领军企业2-3年内都走不出困境,更不用论与跨国巨头在国际市场的竞争了。
2.2 中国钴行业具备了可持续发展的资源储量
中国钴企业从2006年开始陆续在刚果、赞比亚等国家争取钴资源,而且中国中铁等央企也在2007年开始进入了刚果争取钴资源,并且成立了华刚矿业股份有限公司(掌握了约63万吨钴储量),轰动了世界。中冶、湖南有色、江业钨业等企业也在菲律宾、澳大利亚、新喀里多利亚等地掌握了不少钴资源,据不完全统计,掌握在中国企业手中的钴储量约150万吨,可保证中国钴行业进行20-30年的开发建设,使中国钴行业具备了可持续发展的基础。
2.3 中国钴行业具备了可持续发展的关键技术
中国钴行业的发展得益于老一辈科技工作者的勤劳智慧,他们把稀土的萃取技术应用到了钴的冶炼上,正是以萃取为核心的钴湿法冶炼技术,使得中国钴行业走在了当今世界的前列。钴的湿法冶炼技术使得原来钴矿经过火法制成金属钴再溶解制成钴盐,进成制成钴材料的传统工艺路线,缩短为直接将钴矿制成钴盐,进而制做钴材料,大大了成本,而且解决了火法冶炼中的废气治理问题。
中国钴新材料的技术在中南大学、北京大学等学校与科研院所的支持下,近年来也得到了飞速的发展,北京当升、湖南瑞翔的钴酸锂,浙江华友、甘肃金川的四氧化三钴已经达到世界先进水平,实现了连续批量出口。
因此中国钴行业无论是在钴冶炼,还是在钴新材料的技术上基本做到了与世界同步,有的技术已经达到了世界领先水平,具备了促使中国钴行业可持续发展的核心技术。
2.4 中国钴行业在规模上已经位处全球行业的领头地位
目前中国钴行业在产能规模、企业数量上已经居世界第一位,从2006年开始,世界钴发展协会每年的年会上都会邀请中国代表进行发言,极为重视中国的行业动态。
中国去年对钴产品关税政策的调整引起了世界钴市场的动荡。可以说,中国已经成为世界钴行业最重要的一环之一。
2.5 支持钴行业,可以带动铜、镍行业的发展
由于钴一般与铜、镍伴生,特别是大型矿山,因此钴的采、选、冶往往是与铜或镍同步进行,可以说,支持钴行业的发展,可以更好支持铜、镍行业的发展。
2.6 支持钴行业可以扶持航空工业、军事工业的发展
由于钴行业是重要的战略物资,在关键时候,钴的储备可以决定了航空工业、军事工业企业的命运。美国战略储备局在钴价高企时抛出钴金属平抑钴价,但是其低价抛出的钴产品只给美国企业,特别是航空、军事工业企业。
2.7 支持钴行业可以帮助新型可充电电池行业,特别是动力电池行业的发展,从而支持电动汽车工业的发展
由于锂离子电池是今后动力电池最可能成为主流方向,而锂离子电池中钴又是最重要的的金属,因此支持钴行业可以帮助新型可充电电池行业,特别是动力电池行业的发展,从而支持电动汽车工业的发展。
2.8 支持钴行业可以帮助锂离子电池工业的发展,从而扶持移动电器行业的发展
支持钴行业可以帮助锂离子电池工业的发展,从而扶持移动电器行业的发展,特别是手机、笔记本电脑、数码相机、数码摄像机等产品的发展,从而带动3G在中国的应用于发展。
攀枝花铁矿密地选矿厂(一)
2019-01-25 10:18:52
密地选矿厂是由长沙黑色冶金矿山设计研究院于1965年设计的,1970年部分建成投产,设计规模为年处理原矿1350万t/a。 (1) 矿石性质:攀枝花矿区钒钛磁铁矿属晚期岩浆矿床,矿石产于辉长岩岩体中。矿石结构主要分为海绵陨铁结构、粒状镶嵌结构、文象与似文象结构三种。矿石构造:富矿(TFe≥45%)为致密块状及准块状构造;中矿(TFe=30~45%)为准块状及稠密浸染状构造;贫矿(TFe=20~30%)多呈稀疏浸染构造;表外矿(TFe=15~20%)主要呈星散浸染状构造。 主要金属矿物有钛磁铁矿、钛铁矿,另有少量的赤铁矿、褐铁矿、针铁矿及次生磁铁矿。硫化物以磁黄铁矿为主,另有少量的钴镍黄铁矿、硫钴矿、硫镍钴矿、黄铜矿及墨铜矿。脉石矿物以钛普通辉石、斜长石为主,其次有橄榄石、钛闪石,另有少量的绿泥石、蛇纹石、绢云母、黝帘石、黑云母、柘榴子石、磷灰石、方解石等。 攀枝花矿区各品级矿石多元素分析及各品级矿石要矿物分别见下表: 主要矿物的嵌布粒度及特征: 1) 钛磁铁矿具有强磁性,它是由磁铁矿、钛铁晶石、镁铝尖晶石及少量钛铁矿片晶组成的复合矿物,其中以磁铁矿为主体。钛磁铁矿在矿石中的含量、粒径及自形程度,随矿石品级的不同而显著变化,总的情况是由富到贫含量逐渐减少,粒径变细,自形程度降低。在富矿和中矿中,一般多呈自形、半自形,粒径0.5 ~ 1.5mm,大者可达3mm;而贫矿、表外矿及岩石中,则多呈不规则状,最大粒径1.5mm,一般为0.1~1.0mm,在伟晶状的岩矿中,粒么都显著变粗。 2) 钛铁矿产出形式有粒状、片晶状和不规则状三种,而以前者为主。粒状钛铁矿一般为半自形,分布于氧化物与硅酸盐矿物之间,粒径一般为0.1~1.0mm;片晶状和不规则状钛铁矿都赋存于钛磁铁矿石中,片晶宽度一般为0.005~0.01mm.因此,用机械选矿方法选出的钛精矿主要是粒状钛铁矿。 3) 矿石中普遍含有硫化矿物。磁黄铁矿是主要的硫化矿物,其颗粒呈浸染状嵌布,粒径0.1~0.5mm;镍黄铁矿是主要的含Ni、Co矿物,分布较普遍,主要赋存于磁黄铁矿中,一般为自形或半自形,粒径为0.01 ~ 0.03mm;硫钴矿是含钴矿物,全部赋存于磁黄铁矿中,均为细小颗粒,粒径0.005mm左右。 4) 矿石中的硅酸盐矿物主要有斜长石和钛普通辉石,前者的粒径约0.2mm,后者为0.05~5mm;其次为角闪石、粒径为0.05~0.2mm、橄榄石粒径为0.1~0.25mm。 矿石的普氏硬度为10~16。矿石密度3.4t/m3。
粉体填料粒度对涂料光学性能的影响
2019-03-07 09:03:45
在常态下,大多数粉体都是在干态下存在的,称为干粉体。可是,含有粉体颗粒的各种液态涣散体如悬浮液等,也是粉体,称为湿粉体。现代涂料的开展,要求越来越多地选用便于泵送和无尘化作业的湿粉体作质料。
1 导言
在工程技能中,人们往往用肉眼定性地将许多的散状固体物料(简称散料)分为块状体、粒状体和粉状体。在涂料产品中,作为颜料、填料和其他功用性添加剂而含有的首要是粉状体,简称粉体。
在常态下,大多数粉体都是在干态下存在的,称为干粉体。可是,含有粉体颗粒的各种液态涣散体如悬浮液等,也是粉体,称为湿粉体。现代涂料的开展,要求越来越多地选用便于泵送和无尘化作业的湿粉体作质料。
从微观和有用视点动身,颗粒是粉体的最小构成单元。颗料的巨细、散布、形状、表面状况、本体(内部)结构和晶粒安排,以及颗粒的各种机械强度,对粉体自身特别是对其二次加工产品如涂料的功用,影响颇大。其间,最具影响力的是粉体的粒径和粒度散布。本文概要地谈谈粉体粒度对涂料和涂层功用的影响。
2 对光学功用的影响
涂料用的粉体特别是颜料和填料,其粒度对涂层的光学功用影响颇大。所谓光学功用,就是指含有粉体的涂层在入射光(特别是可见光)照射下所发作的各种光学效应,如光的散射(漫反射)、吸收、折射、反射和透射等,它们可分别用散射系数、吸收系数、折射率(折光指数)、反射率和透射率等参数表明。
光学功用是颜料粉体和涂层(特别是装饰性涂层)的重要功用,首要包含五颜六色颜料的上色力、白色颜料的消色力、色五颜六色光及明度、通明度和光泽度等。
2.1 上色力和消色力
五颜六色颜料的上色力是指这种颜料给白色颜料以上色的才能,而白色颜料的消色力(曾经也称上色力),则指这种白色颜料使五颜六色颜料的色彩变浅的才能。上色力和消色力的强弱与多种要素有关,例如与颜料的折射率、粒度、粒度散布、颗粒形状、在涂料基猜中的涣散均匀程度、颜料B基料的合作方式、涂料的颜料体积浓度、颜料自身的杂质含量等要素有关。
许多学者的研讨结果表明,在这些许多的影响要素中,颜料粒度占有第二位,而占首位的是颜料的折射率。例如,在必定的粒度规模内,普通组成氧化铁赤色彩的上色力,随其原级粒径变小而增大:当原级粒径处于0.09-0.22μm时,其上色力是适当高的,被称为高上色力氧化铁红。当原级粒径处于0.3-0.7μm时,其上色力相对变弱,被称为低上色力氧化铁红。组成氧化铁黄、组成氧化铁黑、组成氧化铁棕等组成氧化铁系颜料,也因原级粒径的巨细不同而在上色力上发作差异。
再如,在必定的粒径规模内,金红石型二氧化钛的消色力随其原级粒径的变大而下降显着:当粒径处于0.15μm邻近时,消色力到达最大值,而当粒径增大到约0.4μm时,消色力大约下降40%。不同折射率的各种颜料的上色力或消色力与颜料原级粒径的联系如图1所示。2.2 隐瞒力
隐瞒力又称不通明度,是颜料的最重要功用之一,关于白色颜料而言,它是与填料相差异的最首要的标志。涂层发作隐瞒力的必要条件是隐瞒型颜料的折射率大于涂料基料的折射率。决议隐瞒力巨细的榜首要素是颜料折射率与基料折射率之差值的巨细,其次为颜料粒度、粒度散布、颗粒形状、涣散程度、颜料基料的合作方式、颜料体积浓度等。
颜料粒度对隐瞒力的影响很大。对白色颜料而言,一般地说,当颜料颗粒处于可见光波长(380-760nm)的0.4-0.5倍时,颗粒关于入射光的散射才能最大,这时颜料便能使涂层具有较高的隐瞒力。
例如,当二氧化钛颜料的原级粒径处于0.15-0.5μm时,其隐瞒力较高。在这一粒径规模内,粒径小者隐瞒力相对较低,而粒径大者隐瞒力相对较高。
所以,在以隐瞒力为根本质量要求的情况下,例如建筑涂料和要求只涂覆一次便能到达适宜不通明度的印铁涂料,都要求选用粒径在0.4-0.5μm的大粒径二氧化钛,而在高装饰性场合,为统筹隐瞒力、消色力和光泽度等要素,则一般要选用粒径相对较小(0.15-0.25μm)的二氧化钛。二氧化钛颜料出产商一般都出产大粒径、中等粒径和小粒径+种粒径的二氧化钛,供涂料出产商选用。
2.3 通明度
含有颜料的涂层的通明度与颜料的原级粒径联系极大。能使涂层通明的颜料,称为通明颜料。显着,这种颜料是没有隐瞒力的。
当颜料的原级粒径远远小于可见光波长的0.4-0.5倍时,因入射光发作衍射和透射,隐瞒力大大下降,涂层的通明度增大。从理论上讲,当具有隐瞒力的颜料粒径小于100nm,即处于纳米规模(1-100nm)时,颜料便不存在隐瞒力。但实际上,因为颜料颗粒不可能100%)地涣散成单个存在的原级颗粒,总有一部分颗粒发作集合,所以通明颜料的最佳粒径都远小于100nm,一般只要10-50nm,归于纳米粉体。
例如,20世纪80年代开发成功并完成商业化出产的超细二氧化钛,原级粒径一般多为10-50nm,大约为普通隐瞒型二氧化钛粒径的1/10,不只通明度十分高,而且还因这种纳米级尺度具有更高的屏蔽紫外线的才能,已被广泛用于能发作显着的随角异色效应的轿车车身通明涂料、高档木器涂料(木材上色剂)和高档防晒化妆品等。
相同具有很高通明度和屏蔽紫外线才能的组成通明氧化铁红、通明氧化铁黄、通明氧化铁黑、通明氧化铁棕等,其原级粒径为7-15nm,并具有更强的屏蔽紫外线才能,它们也被更早地广泛用于轿车通明面漆、木材上色剂等,以其较低的本钱,替代部分贵重的纳米级高档有机通明颜料。
近年来开发而且投产的纳米级活性氧化锌颜料,粒径为50-60nm,通明且防紫外线,还具有吸收红外线才能,而且具有灭菌功用,已用于防晒化妆品和橡胶中,还可用于专用涂料和塑猜中,如各种抗紫外线的涂料、灭菌防霉涂料和隐形飞机用的特种涂料等。
2.4 色五颜六色光和明度
涂料用粉体的粒度对粉体自身和涂层的色五颜六色光和明度等都有很大影响。五颜六色颜料如氧化铁颜料,在必定的粒径规模内,粒径越细,其色彩越浅;反之,则色彩越深。例如,某出产商出产的组成氧化铁红五颜六色颜料的原级粒径由0.7μm逐步改变到0.09μm,其色彩逐步由深向浅改变。
还有一家公司出产的3种所谓涣散型氧化铁红颜料,一种粒径为0.11μm,其色彩为带黄相的赤色,色彩较浅;一种粒径为0.22μm者,为中性赤色;一种粒径为0.4μm者,为带蓝相的赤色,色彩较深。白色颜料二氧化钛的色相也随其粒度不同有某种程度的改变:粒径小者,色彩带蓝相;粒径大者,色彩带黄相。
白色颜料和填料的明度即白度是一项很重要的技能质量指标,现代许多高档次的淡色涂料,要求非金属矿藏填料有必要具有很高(90以上)的明度,这就要求它们有必要具有微细化的粒径,一般要求粒径约为2μm的颗粒数在90%以上,其均匀粒径为亚微米。
2.5 光泽度
现代许多涂层都要求具有很高的光泽,特别是高档轿车面漆,要求涂层的鲜映性到达镜子般的水平。国外有的文献称卖轿车卖的就是光泽。
涂层的光泽度与涂层表面的平整度即光洁度有关。而这种平整度又与涂层中涣散的颜料和填料等粉体的粒度有关。关于高光泽度涂层,即便表面含有极个别的粗大颗粒,也会影响对入射光的定向反射,然后影响光泽度。高光泽面漆,要求颜填料等粉体粒径有必要在0.3μm以下。
影响涂层表面光泽的其他要素也许多,如涂料的颜料体积浓度、涣散程度、流变性(流平性)以及涂装技能等。
高档卷烟纸专用PCC沉降体积控制技术
2019-03-08 09:05:26
依照一般的观念,PCC粒度越小,其沉降体积越大,反之亦然。但事实上,PCC均匀粒度与沉降体积并不是一种一一对应联系,由于沉降体积除了与结晶粒子巨细有关之外,还与粒度散布和结晶形状等要素密切相关。因而,出产进程中往往存在均匀粒径巨细与沉降体积巨细之间的对立,当均匀粒径合格时沉降体积却偏大;反之,当沉降体积合格时,均匀粒径又偏大。
高级卷烟纸专用PCC除了要满意高透气量、高强度的基本要求之外,还要求能进步卷烟纸的不透明度、白度,改善手感和柔软性,有较高的藏着率以及能调理卷烟纸焚烧速度等功能。高级卷烟纸对专用PCC的晶形、均匀粒径巨细与粒度散布、游离碱含量、白度等有严格要求,对沉降体积要求并不清晰。依照一般的观念,PCC粒度越小,其沉降体积越大,反之亦然。但事实上,PCC均匀粒度与沉降体积并不是一种一一对应联系,由于沉降体积除了与结晶粒子巨细有关之外,还与粒度散布和结晶形状等要素密切相关。因而,出产进程中往往存在均匀粒径巨细与沉降体积巨细之间的对立,当均匀粒径合格时沉降体积却偏大;反之,当沉降体积合格时,均匀粒径又偏大。
牡丹江恒丰纸业的出产实践标明:高级卷烟纸专用PCC 均匀粒径最好处于3.2~3.8 μm 之间,d50:3.5 μm,比表面积2~3m2·g-1,沉降体积3.5mL·g-1,假如沉降体积偏大将影响纸张的透气功能。本文从调理均匀粒径巨细与粒度散布、石灰活性、石灰消化水温度、碳化温度,安稳进行窑气净化和熟浆陈化等工艺条件讨论完成沉降体积的可控性。
1 不同粒径与粒度PCC的性质
咱们用Mastersizer2000 激光粒度分析仪对不同试样的粒度巨细、粒度散布状况与沉降体积进行了比照分析,别离如图1(a)、图1(b) 和图1(c)所示。由图1(a)可知,试样1 在0.2~1.2μm 之间有一个显着的小峰,主峰现已显着深化10~15μm之间,阐明该试样中既显着存在部分微细PCC,一起又存在大于10μm的普通PCC,整体的均匀粒径较大,比表面积较小,粒径散布较宽,且峰高较矮,尽管其沉降体积适中,但不契合产品的粒度散布要求,使用效果欠安。由图1(b)看出,其峰形与图1(a) 类似,不同的是试样2 的均匀粒径看起来十分契合要求,但粒度散布更宽,微细PCC含量更多,比表面积较大、沉降体积显着偏大,使用效果仍不抱负。图1(c)只要一个主峰,且粒度散布较窄,峰高较大,峰宽较小,比表面积适中,峰形对称漂亮,其均匀粒径和沉降体积都契合产品要求,使用效果很好。可见,PCC的均匀粒径和粒度散布是两个影响沉降体积的重要要素,在均匀粒径相差无几的状况下,粒度散布是一个更重要的影响要素,只要当产品的均匀粒径、粒度散布和沉降体积一起契合要求时才干算是合格的产品。依据斯托克斯规律,由于微细PCC悬浮粒子发生的轻度布朗运动,对粒子的下沉发生阻滞效果,这是均匀粒径较小、粒度散布较宽、沉降体积却更大的原因。因而,在高级卷烟纸填料专用PCC出产进程中要着力防止粒径小于1 μm 的微细PCC 的呈现,一起也要防止粒径大于10 μm 的普通PCC 的呈现,这是操控产品沉降体积的重要措施。
2 PCC 的性质操控
2.1 调理石灰活性
生石灰的出产是PCC的龙头,只要先出产出了优质的生石灰,才或许终究出产出合格的PCC产品。活性石灰是一种优质轻烧石灰,它具有晶粒细微(0.1~3μm)、气孔率高(50%)、体积密度小(1.5~1.7 g·cm-3)、比表面积大(1.5~2.0 m2·g-1)、活性度高( ≥ 300 mL)、剩余CO2含量少( ≤ 2 %)等长处。石灰活性越好,越简单消化,消化后的氢氧化钙粒子越小,出产出来的PCC均匀粒径就越小,其沉降体积值就越大。但粒径巨细与沉降体积巨细并不是一一对应联系,在其他工艺参数答应的条件下,在产品均匀粒径合格的前提下,进步石灰活性可加大产品的沉降体积;反之,下降石灰活性可减小产品的沉降体积,石灰活性对轻钙沉降体积的影响如表2。实践标明,高级卷烟纸填料专用PCC 要求中等活性的石灰,石灰活性度大于300 mL 或小于200 mL都不合适。而石灰活性巨细的操控可经过操控燃煤增加份额来操控煅烧温度,经过操控煅烧时刻来操控石灰石的分化程度来完成。
2.2 窑气净化与熟浆陈化
现在行业界广泛选用的窑气净化系统是由旋风分离器、喷淋除尘器或泡沫洗刷塔、吸附过滤塔等设备组成。其间旋风分离器、喷淋除尘器或泡沫洗刷塔能够很好地起到脱除窑尘、降温、脱硫等效果,能够长时刻安稳运转;其间吸附过滤塔为要害设备,吸附过滤塔一般都内装焦炭或分子筛,首要起到吸附脱除窑气中等有机成分的效果,而吸附过滤塔能否有用运转正是窑气净化对PCC沉降体积发生影响的要害所在。由于焦炭或分子筛都存在一个有用容量,一旦超越吸附介质的有用容量,吸附塔将完全不能起到脱除等有机成分的效果,而这些进入碳化阶段的有机成分简单吸附在产品表面,相当于对产品进行了部分的表面改性效果,从而使产品沉降体积发生“虚高”现象,即导致产品沉降体积偏大。因而,每班都要测定净化窑气中的含量,定时替换吸附介质,确保吸附过滤塔的有用运转是确保产品沉降体积安稳的根底。
沉降体积与熟浆的陈化时刻成反比,即陈化时刻越长,沉降体积越小。但随着陈化时刻的延伸,陈化对沉降体积的影响越小,当陈化时刻超越24 h之后,沉降体积趋于安稳。这是由于不经陈化处理的PCC 结晶是不完好的、亚稳态的微细结晶,其粒度散布较宽,沉降体积较大;反之,经过陈化处理的PCC结晶完好、形状安稳、粒度散布较窄、沉降体积较小。碳化熟浆经24 h 的陈化处理是安稳产品沉降体积的重要措施。
2.3 消化温度和浆液浓度
石灰乳活性与消化进程中的拌和强度、石灰粒径、消化水温度、m(H2O)/m(CaO)等操作条件有关。在消化设备、石灰质量、灰水比必定的条件下,消化水温度是决议消化质量的要害。消化反响是放热反响,反响系统的温度取决于生石灰的温度和消化用水的温度及数量。依据出产经历,一般消化温度比消化用水温度高20~40℃,当用热水(50~80℃)进行消化反响时,反响特别剧烈,可使反响温度到达100℃以上,从而使溶液欢腾,一起发生很多蒸汽,使消化反响速度更快,反响也更为完全,Ca(OH)2颗粒也更为细腻,终究所产PCC的沉降体积也更大。
可见,假如产品的沉降体积偏大,则能够恰当调低消化水温度,反之亦然。当所选石灰质量、数量和消化水量都相同,消化水温别离为30℃、50℃、70℃时,别离测定3个试样的石灰乳沉降体积和相应的PCC 沉降体积,其成果如表3。浆液浓度是影响轻钙均匀粒径和沉降体积的首要要素之一。进步浆液浓度可增大产品的均匀粒径和下降沉降体积;反之,下降浆液浓度可减小产品的均匀粒径和增大产品的沉降体积。纳米PCC的生浆浓度一般操控在8%~12%,普通PCC一般操控在16%~18%,高级卷烟纸专用PCC 的均匀粒径介于普通PCC 和纳米PCC 之间,其生浆浓度应操控在12%~16%。
2.4 碳化开始温度和进程最高温度
生浆的开始反响温度、碳化进程最高温度的操控,也是影响PCC 均匀粒径的重要要素之一。众所周知,普通PCC出产进程是几乎不操控生浆的开始反响温度和碳化进程温度,这是由于普通PCC 也几乎不操控产品的粒径;而纳米PCC出产进程则需求经过制冷来严格操控生浆的开始反响温度和碳化进程温度,这源于氢氧化钙粒子在水中的溶解度与温度成反比,即温度越低,其溶解度越大,反响的推动力越大,越有利于碳化反响初期构成很多晶核,有利于粒子超细化。而高级卷烟纸专用PCC的粒径介于普通PCC 和纳米PCC之间,一般来说,浆液的开始反响温度可操控在20~30℃,碳化进程最高温度可相应地操控在45~55℃之间。因而,碳化温度最好能完成可控。假如产品的沉降体积偏大,可恰当调高碳化开始温度或碳化进程温度;反之亦然,但这或许带来产品均匀粒径的改动。
3 结语
(1)在均匀粒径相差无几的状况下,粒度散布是一个影响产品沉降体积更重要的要素,在高级卷烟纸填料专用PCC 出产进程中要着力防止粒径小于1 μm的微细PCC 和大于10 μm 的普通PCC。
(2)进步石灰活性可加大产品的沉降体积,反之,下降石灰活性可减小产品的沉降体积。高级卷烟纸填料专用PCC 要求中等活性的石灰,石灰活性度大于300 mL或小于200 mL 都不合适。
(3)吸附过滤塔是窑气净化的要害设备,一旦超越其吸附介质的有用容量,将不能起到脱除等有机成分的效果,将使产品沉降体积发生“虚高”,导致产品沉降体积偏大。因而,确保吸附过滤塔的有用运转是确保产品沉降体积安稳的根底。
(4)消化水温度是决议消化质量的要害,消化水温一般操控在50~80℃。消化水温越高,消化反响速度越快,反响也越完全,Ca(OH)2颗粒也更为细腻,终究所产PCC 的沉降体积也更大。因而,假如产品的沉降体积偏大,则能够恰当调低消化水温度,反之亦然。
(5)碳化温度最好能完成可控,开始反响温度可操控在20~30℃,最高温度操控在45~55℃之间。假如产品的沉降体积偏大,可恰当调高碳化开始温度或碳化进程温度,反之亦然。
(6)经陈化处理的PCC 结晶完好、形状安稳,应防止呈现微细PCC、粒度散布较窄、沉降体积较小的现象发生。碳化熟浆经24 h的陈化处理是安稳产品沉降体积的重要措施。
超细粉体的概念
2019-01-03 09:36:49
超细粉体技术是20 世纪70年代中期发展起来的新兴学科,超细粉体几乎应用于国民经济的所有行业。它是改造和促进油漆涂料、信息记录介质、精细陶瓷、电子技术、新材料和生物技术等新兴产业发展的基础,是现代高新技术的起点。
对于超细粉体尚无一个严格的定义,目前比较一致认同和较合理的划分为细粉体:粒径为10~45μm;微米粉体:粒径为1~10μm;亚微米粉体:粒径为0.1~1μm;纳米粉体:粒径为0.001~0.1μm。对于金属或非金属矿物加工而言,一般认为粒径D97≤10μm的粉体为超细粉体。
随着矿业开发的程度进一步加深,目前选矿作业所面临的矿物性质更加复杂、难选。其中一部分矿山因为嵌布粒度过细,无法解决矿物解离的问题而延缓开发,针对此现象有必要对超细粉体技术做出进一步探讨研究。
什么碳酸钙最适合卷烟纸?比比就知道了!
2019-01-03 14:43:30
卷烟纸是专供包卷烟草制作香烟的薄页型纸,定量为25g/m2~40g/m2,纸质洁白,紧密、柔软细腻,具有较高的纵向抗张强度和一定的透气性,透气度为30CU~70CU。
碳酸钙是生产卷烟纸的重要原料之一,其用量占卷烟纸质量的40-50%,在成品纸中含量为25%-30%,即卷烟纸三分之一是由碳酸钙组成。
1、碳酸钙在卷烟纸中的作用
碳酸钙的质量直接影响卷烟纸的抗张强度、不透明度、透气度、变异系数、燃烧速度等性能。
提高折光率,使烟丝不露色,这是卷烟的重要指标;
调节燃烧速度,保持卷烟燃烧而不熄火;
使卷烟纸的灰分能牢固的粘结在烟丝上,包灰好;
增加卷烟纸白度,提高卷烟纸透气性;
降低焦油含量,减少对人体有害物质;
可节约纤维原料,降低生产成本。
碳酸钙有重钙、轻钙之分,其粒径、颗粒形貌、沉降速度等性质又各不相同,那么,什么样的碳酸钙最适合卷烟纸呢?本文采用不同种类的碳酸钙在28g/m2、70CU卷烟纸产品上进行试用,其打浆工艺、灰分、各种助剂浓度、流量和纸机参数保持一致,然后进行综合对比分析,从而确定最适合的碳酸钙种类。
2、重钙与轻钙使用对比
重钙为江西生产,轻钙为广西生产,其检测指标对比如下:
通过上面对比重钙和轻钙的指标对比,其检测项目略有不同,但相同检测项目数据比较接近,所以可以进行对比使用。
将重钙和轻钙分别在纸机上进行试验,并取上网浆、白水和成纸进行分析检测,然后进行对比分析。
生产情况:使用重钙后与轻钙相比,网部脱水速度快,成纸匀度变差。
根据生产情况分析:
由于重钙粒径一致性差,导致透气度及其变异系数明显偏大;
由于重钙的晶型呈块状,与纤维间的结合力差,导致抗张强度偏低;
由于重钙粒径大,折光率低,导致纸页不透明度低;
由于重钙密度大、沉降速度快,导致网部脱水快,纸页匀度差;
由于上述原因导致成纸在灰分、定量接近的情况下,其各项物理指标,均未达到预期,同时对上网浓度、白水浓度、填料留着率和匀度指数等数据分析,与生产现象相一致。
小结:在生产卷烟纸时,轻质碳酸钙优于重钙。
3、轻钙不同晶型使用对比
生产情况:使用两种轻钙相比,网部没有明显变化,但纺锤状轻钙匀度较好。
根据生产情况分析:层状轻钙透气度及其变异系数低于球状轻钙;由于纺锤型轻钙与纤维间的结合力好于球状轻钙,所以其抗张强度略高;
由于纺锤型轻钙的晶型呈纺锤状,与纤维更容易发生交联,导致网部脱水变缓,纸页匀度好;
在成纸在灰分、定量接近的情况下,其各项物理指标接近,但纸页的透气度及其变异系数,球状轻钙明显偏高。
小结:在生产卷烟纸时,纺锤状轻质碳酸钙优于球状轻质碳酸钙。
4、轻钙粒径不同使用对比
使用同一厂家生产的轻钙,其晶型一致,均为纺锤状,但粒径不同的轻钙进行对比分析。
生产情况:使用两种不同粒径轻钙相比,网部没有明显变化,但粒径小轻钙匀度较好。
根据生产情况分析:粒径小轻钙透气度及其变异系数低于粒径大轻钙;
粒径小轻钙,折光率高,纸页不透明度高;
粒径小轻钙由于沉降速度慢、视比容大,导致网部脱水速度慢,成纸匀度好;
在成纸在灰分、定量接近的情况下,其各项物理指标接近,但纸页的透气度及其变异系数,粒径大轻钙明显偏高,同时不透明度偏低。
小结:在生产卷烟纸时,粒径小轻质碳酸钙优于粒径大轻质碳酸钙 。
5、综合对比
通过进行一系列的对比试验以及综合评价,适合在卷烟纸中使用的碳酸钙为纺锤状、小粒径轻钙,使用该种碳酸钙各项物理指标稳定,特别是卷烟纸的重点控制指标,透气度及其变异系数(%)效果最好,但粒径小的轻钙价格相对较高,所以卷烟纸生产厂家将根据成本、客户使用等情况,确定最适合种类的碳酸钙。
锰酸锂价格
2017-06-06 17:50:13
目前
市场
上比较常见的正极材料有钴酸锂、锰酸锂、磷酸铁锂、三元材料,而最被看好的则是磷酸铁锂和三元材料这两种,因为目前这两种材料的性价比,以及技术实现难度等都较为适合作为汽车用动力锂电池的正极材料,相较于磷酸铁锂和三元材料,锰酸锂
价格
相对较便宜。但是从更为长远的角度来看,对普通锰酸锂材料进行改良后生产出的尖晶石结构的锰酸锂,可能更适合用作动力锂电池的正极材料。 首先,从能量密度来看,尖晶石结构的锰酸锂电池要优于磷酸铁锂电池。由于受到空间和车重的限制,汽车用动力电池必须要非常轻巧,而且储能量要尽可能大,这就需要动力电池的能量密度要高。目前磷酸铁锂电池的充放电电压在3.7V左右,但是尖晶石结构的锰酸锂可以达到4.2V左右,而锂电池充放电电压高低与其能量密度大小有着正相关的关系,所以从能量密度方面来说,尖晶石结构的锰酸锂电池要更胜一筹。 其次,从使用电池时的安全性来说,锰酸锂电池也有一定优势。正极材料的导电性能与其充放电时释放的热量大小直接相关,即正极材料导电性越好,电池充放电时释放的热量越小。由于磷酸铁锂材料的导电性不如锰酸锂,所以磷酸铁锂电池在充放电会释放出大量的热量,使动力电池组内部的温度急剧升高,这是非常不安全的。 中投顾问研究总监张砚霖也指出,从汽车用锂电池制造成本方面来说,尖晶石结构的锰酸锂电池也具有一定的优势。近年来,磷酸铁锂正极材料的
市场价格
徘徊在15-20万元/吨间,而锰酸锂正极材料的
价格
则处在9-15万元/吨的区间,显然使用锰酸锂作为动力锂电池的正极材料更加有利于降低汽车用动力电池的生产成本。
非金属矿物填料对改性聚丙烯熔接痕强度的影响
2019-03-06 10:10:51
滑石粉、碳酸钙、硅灰石、云母粉、硫酸等是聚(PP)填充改性常用的无机填料,其形状首要有颗粒状、纤维状、片层状等,非金属矿藏含量、粒径、类型等对填充PP复合材料熔接痕强度具有重要影响。
1、矿藏填充PP复合材料实验
(1)质料
滑石粉:粒径800目、1250目、3000目、5000目、8000目,编号分别为TALC-1、TALC-2、TALC-3、TALC-4、TALC-5;
碳酸钙:粒径1250目、3000目、5000目,编号分别为CC-1、CC-2、CC-3;
硅灰石:粒径400目、1250目,编号分别为WS-1和WS-2;
云母粉:粒径325目、800目,编号分别为MICA-1和MICA-2;
硫酸:粒径1250目、3000目,编号分别为BAS-1和BAS-2;
玻璃纤维:单丝直径13μm、直径10μm,编号分别为GF-1和GF-2。
(2)实验办法
将各种原材料混合均匀后经过双螺杆挤出机挤出造粒,挤出造粒的加工条件为:各区加工温度180-210℃之间,主机转速650r/min,真空度为-0.08-0.04MPa。考虑到实践使用状况,硅灰石和玻璃纤维加料从挤出机的侧喂料口参加。
将上述挤出粒料在注塑机上注塑成契合ISO527-1/2 Type1A标准的普通哑铃型拉伸和带熔接痕的哑铃型拉伸试样,并测验普通拉伸样条功能、熔接痕强度功能和微外观测验。
2、矿藏品种及粒径对PP填充材料的影响
熔接痕的强度取决于界面处高分子链是否有满足的时刻和能量来进行分散,以构成分子链的环绕。
表1 矿藏品种及粒径对PP复合材料熔接痕强度的影响表2 矿藏品种及粒径对PP复合材料熔接痕强度的影响由表1和表2可知:
(1)球型矿藏对熔接痕的影响小于片层矿藏,针状矿藏介于两者之间,但增加玻璃纤维的熔接痕强度坚持率是最小的。
首要原因是两股料流对冲时球型结构矿藏对两股料流前端的分子链彼此环绕影响小,而片层结构矿藏在两股料流对冲时前端的片层很难彼此嵌插然后导致分子链环绕困难,针状矿藏对两股料流前端分子链环绕的影响介于球型结构与片层结构。
如增加球型结构的碳酸钙或硫酸其熔接痕强度坚持率在84%以上,而增加片层结构的滑石粉或云母粉其熔接痕强度依据粒径巨细不同在72%-84%不等。
(2)小粒径的矿藏对熔接痕的影响小于大粒径。
首要原因是粒径越小对两股料流前端的分子链彼此环绕影响越小。
如增加片层结构的滑石粉其粒径从800目到8000目不断増加时,其熔接痕强度坚持率从73.8%上升至84.6%,增加球型结构的碳酸钙其粒径从1250目到5000目不断増加时,其熔接痕强度坚持率从84.5%上升至87.1%。
(3)在所有的矿藏填充PP中玻璃纤维对熔接痕的影响最大,熔接痕强度坚持率下降至60%以下。
首要原因一方面是玻璃纤维在PP中的保存长度很大严峻影响了两股料流前端分子链的彼此环绕,另一方面玻璃纤维的参加使得全体流动性变差,这在相同的注塑工艺下两股料流彼此触摸所用时刻比其他矿藏要长,耗时越长最前端的熔体温度也会越低,进而阻止了分子链的彼此环绕。
3、矿藏含量对熔接痕强度的影响
表3-8 滑石粉、碳酸钙、硅灰石、云母、硫酸、玻璃纤维的含量对熔接痕强度的影响。由表3-8可看知:不论矿藏品种怎么,复合材料的熔接痕强度都跟着矿藏含量的増加不断下降。首要原因是跟着矿藏含量的増加,矿藏对整个系统的粘度影响也増加。系统粘度越大在两股料流对冲时所耗费的时刻较长以及系统粘度越大影响分子链彼此环绕越严峻。
4、不同品种矿藏在PP系统中的分散性表征由图1-A和图1-D所示,滑石粉和云母的片层结构显着,此类结构在两股料流对冲时嵌入滑石粉片层的高分子链环绕困难,然后熔接痕强度偏低。
图1-B和图1-E分别为碳酸钙和硫酸,都为球状结构,两者的熔接痕坚持率也比较挨近且比片层结构填充系统高。
图1-C和图1-F分别为针状结构的硅灰石和玻璃纤维,玻璃纤维尺度较大,但由于形状类似,熔接痕坚持率也较挨近。
比三种结构的微观描摹和检测成果能够看出,矿藏的微观形状对熔接痕强度有重要的影响。
5、定论
(1)填充聚复合材料的熔接痕强度与填充的矿藏品种、粒径以及含量有着亲近的联系。
(2)球型结构矿藏填充PP的熔接痕强度坚持率比片层矿藏填充PP的熔接痕强度坚持率高。
(3)相同矿藏品种,不同的粒径对PP复合材料的熔接痕强度坚持率影响不同,矿藏粒径越小熔接痕强度坚持率越高。
(4)相同矿藏品种、相同的粒径,不同的矿藏含量对PP复合材料的熔接痕强度坚持率影响不同,矿藏含量越高熔接痕强度坚持率越低。
我是纳米碳酸钙,我为自己代言
2019-03-07 11:06:31
因为纳米碳酸钙的晶型可控、半补强和补强效果等优异的纳米材料的特性,是现在重钙不具备的,因而,尽管其报价远高于重钙,出产技能也杂乱的多,可是用作许多中高档产品的功用性填料方面是重钙所无法代替的,也是超细轻钙的研制技能方兴未已的本源地点。
1 什么是碳酸钙
碳酸钙在自然界中随处可见如以上所列钟乳石、石灰石、大理石、汉白玉、冰洲石、珍珠、贝壳、蛋壳等的首要成分都是碳酸钙。
碳酸钙是一种化学性质较为安稳的微碱性物质。在石灰岩里边,含有二氧化碳的水,进入石灰岩缝隙中,会溶解其间的碳酸钙。因而构成了钟乳石。
碳酸钙遇酸会分化,因而碳酸体在运送中应该要避免雨淋、受潮,不得与酸混运;储存于枯燥、阴凉通风的仓库内。
2 碳酸钙的分类
按制备办法不同可分为重质碳酸钙、轻质碳酸钙。
碳化法制得的碳酸钙称为轻质碳酸钙(简称轻钙,LCC)或沉积碳酸钙(简称PCC)。
轻钙的粉体特色是:
(1) 粒度小,一般均匀粒径在数微米以下;
(2) 粒度散布窄,可视为单涣散粉体;
(3) 粒子晶型多样化,运用于不同职业需求不同的晶型。
普通轻钙粒径为1~10 μm,比表面积为5 m2/g左右,一般以为只要填充功用;微细碳酸钙的粒径为0.1~1μm,比表面积为10~20m2/g左右,具有半补强效能;超细活性碳酸钙粒径为0.01~0.1μm,比表面积为20~80 m2/g左右,具有较高的补强效能。
天然矿藏直接经由机械破坏(研磨法)所得产品,因其比重大于轻钙,故名重质碳酸钙(简称重钙,GCC )。
重钙的粉体特色是:
(1)粒子形状不规则;
(2)粒度散布比较宽,是多涣散体;
(3)粒度比轻钙要粗,同样是超细钙,超细重钙的粒度比超细轻钙的粒度等级要相差一级,即超细重钙的粒度只相当于微细轻钙的粒度。此外,重钙还具有报价低廉、简单制取、工厂出资仅为轻钙的1/4~1/3等特色。
活性钙、胶质碳酸钙有什么不同?
活性钙:又称改性碳酸钙、表面处理碳酸钙、胶质碳酸钙。用碳酸钙的亲水性和疏水性来判别是否活化。
活性碳酸钙的特色:粒径小、吸油值低、涣散性好、能补强等。
3 什么是纳米碳酸钙
国内碳酸钙职业是以均匀粒径为根底把轻质碳酸钙产品划分为以下五个粒度等级:
微粒碳酸钙,粒径 > 5000 nm;
微粉碳酸钙,粒径规模为1000~5000 nm;
微细碳酸钙,粒径规模为100~1000 nm;
超细碳酸钙,粒径规模为20~100 nm;
超微细碳酸钙,粒径超细碳酸钙和超微细碳酸钙(合称纳米碳酸钙)的粒径在1~100 nm规模内。纳米碳酸钙(又称超细碳酸钙)粉体的特色是:
(1) 粒子细:均匀粒径为10~100 nm;
(2) 比表面积大:比普通轻质碳酸钙大近8倍;
(3) 表面通过活化处理,活化率较高,具有不同的功用和用处;
(4) 白度较高,合适作淡色制品,pH值呈弱碱性;
(5) 晶型多样化,运用于不同职业需求不同的晶型。
因为纳米碳酸钙的晶型可控、半补强和补强效果等优异的纳米材料的特性,是现在重钙不具备的,因而,尽管其报价远高于重钙,出产技能也杂乱的多,可是用作许多中高档产品的功用性填料方面是重钙所无法代替的,也是超细轻钙的研制技能方兴未已的本源地点。
4 纳米碳酸钙是怎样出产出来的
出产流程如下(1) 煅烧
石灰石通过预处理,同煤按必定份额混合均匀后经混料竖窑(如左图)煅烧,发生氧化钙(石灰)、二氧化碳。
(2) 消化
煅烧得到的石灰除渣后送消化池(如右图)与水进行消化反响生成石灰乳。
(3) 碳化
石灰乳经除渣精制后的精浆液,依据碳化要求操控到必定温度、必定浓度送往碳化反响设备(碳化塔)与窑气进行碳化反响。
(4) 改性
纳米碳酸钙属无机材料,与高聚物相容性差,有必要对碳酸钙进行表面改性,改性剂有脂肪酸、树脂酸、偶联剂等类型。
(5) 压滤
改性结束的纳米碳酸钙为浆料,为了取得纳米碳酸钙产品,需用压滤机对其进行压滤进行脱水。
(6) 枯燥分级包装
压滤后的纳米碳酸钙依然含有很多水分,为了便于包装、运送、储藏和运用,需进行枯燥、分级和包装。
5 纳米碳酸钙产品的首要技能目标
碳酸钙的主含量
碳酸钙的主含量多少:普通轻钙>活性轻钙>专用纳米钙。纳米碳酸钙的主含量要求较低,而有害杂质含量要求微量。
晶型
晶型与粒径有联络,一般粒径大于200 nm时,晶型多为不对称形,如纺锤形、棒状等;当粒径在50~120nm之间时,一般为对称形,如立方体、球形等;当粒径小于30 nm时,多为立方体和颗粒状,且晶体简单连接成链状。沉降体积
沉降体积是单位质量的产品碳酸钙在100 m1水中震动并静置3h后所具有的体积(ml)。沉降体积越大,阐明产品粒度越小、比重越轻、产品层次越高。
吸油值
关于活性钙来说,随碳酸钙表面吸附的活性含量的添加,吸油值呈下降趋势。
活化与否
普通碳酸钙未经活化处理,呈亲水性,与水可以按不同份额混合,经拌和之后,静置几小时皆沉积在水中;经活化处理后的碳酸钙一般呈疏水性,一再拌和之后,碳酸钙一直漂浮在水面上。
比表面积判别是否微细
碳酸钙的均匀粒径与其比表面积有着内涵的联络,可以通过其比表面积的巨细来较精确地判别均匀粒径的巨细。
以下是经验值:
普通重质碳酸钙比表面积为1 m2/g左右。
重质微细碳酸钙比表面积为1.45~2.1 m2/g。
普通轻质碳酸钙比表面积为5 m2/g左右。
轻质微细碳酸钙比表面积为27~87 m2/g左右。
轻质超细碳酸钙比表面积为60~100 m2/g。
碳酸钙产品的体系命名办法
为了便于碳酸钙产品的开发、推行、运用和差异,碳酸钙职业制定了如下体系命名办法。命名由三项组成,第一项为汉语拼音字母;第二项由阿拉伯数字组成;第三项为拼音字母。
其含义为:第一项表明加工办法,用Z, Q表明。其间,
Z——表明非化学办法加工的重质碳酸钙。
Q——表明化学办法加工过的轻质碳酸钙。
第二项表明产品的均匀粒径规模。其间:
1:d> 5μm
2:lμm
3:0.1μm
4:0.02μm5:d
第三项表明产品改性处理与否。其间:
B—表明未经改性;
G—表明经表面活性剂处理。6 纳米碳酸钙(NPCC)与其它碳酸钙的比较7 纳米碳酸钙的运用
纳米碳酸钙作为一种无机化工产品,经表面改性处理而成为一种功用性的填充材料,广泛运用于塑料、橡胶、油墨、涂料、造纸、胶粘剂、密封胶等工业,还运用于食物、医药、饲料、建材、化纤等职业。
(1)在橡胶中的运用碳酸钙是橡胶工业中运用最早,用量最大的填料,碳酸钙首要运用于轮胎、胶鞋、电线电缆,橡胶密封制品等,它不只可以添加产品体积,节省高价的天然橡胶和下降本钱,还可以改善橡胶的功用。纳米碳酸钙在橡胶工业中多用于内胎和外胎特殊部位,胶带、胶管、胶布等橡胶制品。添加了纳米碳酸钙的橡胶制品其硫化胶拉长率、抗撕裂功用、紧缩变形和耐屈绕功用,都显着好于添加一般碳酸钙的产品。在橡胶制品中添加立方体纳米碳酸钙可以使制品具有补强性,因为在橡胶制品中具有杰出的涣散性,可制得通明和半通明的橡胶制品。
纳米碳酸钙运用于橡胶中的几个技能要素
晶型:不同晶型中立方体部分呈链锁状的晶型合适用于橡胶。
粒径:以80~120 nm为宜,粒径太小。
水分:为了利于进步硫化速度,一般要求小于0.5%。
吸油值:橡胶用纳米碳酸钙的吸油值越大,对橡胶的浸润性和补强性越好。
pH值:橡胶运用中的pH首要是影响其硫化速度,一般纳米碳酸钙的pH值在9~10.5之间。
表面改性:挑选合适的涣散剂和改性剂(脂肪酸或偶联剂)等。
(2) 在塑猜中的运用
对塑料说来,普通碳酸钙只能起到填充剂的效果,只要改性纳米碳酸钙填充在塑料制品中才干有除填充之外的活性剂和补强剂的效果。改性纳米碳酸钙可以添加产品体积、下降本钱、进步硬度和耐热性以及刚度、改善加工功用、进步擦伤性和滑润度,还可以进步薄膜的通明性、耐性、开口性、抗老化功用等,对冲击强度有增韧效果,也对共混中的黏盛行具有效果。纳米碳酸钙还可以进步塑料制品的曲折强度、拉伸强度、热变形温度和尺度安稳性。
纳米碳酸钙已广泛运用于通用塑猜中,如聚氯乙烯(PolyVinylChloride),简称PVC,聚(Polypropylene),简称PP,聚乙烯(Polystyrene),简称PS;在工程塑猜中也有部分运用,如聚酰胺(Polyamide),简称PA,腈-丁二烯-乙烯简称ABS。
纳米碳酸钙运用于塑猜中的几个技能要素
晶型:以立方体和球形的晶型为宜。
粒径:以80~120 nm为宜。
水分:一般要求小于0.5%。
吸油值:此值以低为宜,一般在25~60 m2/g之间。
pH值:此值尽可能低一些。
涣散性:用于塑料的纳米碳酸钙需求在塑料体系中具有杰出涣散性,避免颗粒的二次凝集。
重金属的含量:此含量越低越好。
不溶物:首要是指纳米碳酸钙中的黑点和黄点等杂质,有必要严格操控。
(3)纳米碳酸钙在涂猜中的运用
纳米碳酸钙在涂猜中不只作为优质增白的颜料,下降本钱,进步涂料的光泽度,枯燥性和掩盖力,还有通明性、安稳性、补强效果、快干等特色。在汽车涂料、粉末涂料、建筑涂猜中,可以部分或悉数代替钛,完全可以到达相同的效果。粒径小于80nm的纳米碳酸钙具有杰出的触变性,可运用于汽车底盘防石击涂料和面漆。纳米碳酸钙运用于涂猜中的几个技能要素
杰出的剪切稀化效应:该效应可以确保施工喷涂中下降黏度,具有杰出的活动性不把喷口阻塞。
杰出的触变功用:粒径以30~80 nm为宜。
(4) 纳米碳酸钙在油墨中的运用
印刷油墨商场要求高功用的纳米碳酸钙。纳米碳酸钙用于油墨产品中表现出优异的涣散性、通明性、极好的光泽和优异的油墨吸收性以及枯燥性。用于油墨的纳米碳酸钙有必要通过活性处理,晶型以立方体和球形为主。纳米碳酸钙运用于油墨中的几个技能要素
晶型:立方体纳米碳酸钙具有活动性好和吸油值低以及涣散性好等长处,很合适用于油墨中的填料。
通明度:它与粒径和晶型以及涣散性有关。
细度:它是反映纳米碳酸钙及其它颜料的研墨程度和涣散情况的目标。碳酸钙应尽可能让不溶物越低越好,这样能使涣散性好。
黏度:它与纳米碳酸钙的用量和涣散性以及粒径有关。
活动度:油墨的活动度是黏度的倒数,表明油墨的稀稠程度。
光泽度:它是大多数油墨的一项首要的特性目标。
白度:白度一般大于80%,假如太高将影响其它颜料的遮盖力。
水分:油墨对水分的要求不高,小于3%即可。
(5) 纳米碳酸钙在胶黏剂中的运用
胶黏剂(adhesive) :又称粘合剂、粘接剂,简称胶。它是一种可以把两种同类或不同类材料严密地结合在一起的物质。
纳米碳酸钙运用于胶黏剂中的几个技能要素
晶型:立方体、菱形六面体、立方体部分呈链锁状的晶型比较合适用于胶黏剂。 16
粒径:以60~100 nm为宜。
水分:纳米碳酸钙的水分含量低为宜,一般小于0.5%。
pH值:此值偏低为宜。
吸油值:它是影响碳酸钙在胶中浸润性的要素。
比表面积:纳米碳酸钙的比表面积在20~25m2/g为宜。
表面改性:纳米碳酸钙表面改性效果的好坏将影响其颗粒对胶体的掺合效果,影响胶体的触变性。
(6) 纳米碳酸钙在造纸中的运用
在造纸填料方面,纳米碳酸钙现在首要用于特殊纸制品,如尿不湿、卫生巾等。其高避光性、高亮度,可进步纸品的白度和避光性;其高胀大性,能使造纸厂运用更多的填料而少用纸浆,大幅度下降原材料本钱;纳米碳酸钙粒度细微、均匀、对纸机的磨损小,并使出产的纸制品愈加均匀、平坦;其高吸油值,能进步彩色纸的颜料结实性,还赋予纸张杰出的折曲性、柔软性,以及对油墨和水杰出的吸收性。
(7) 纳米碳酸钙在化装品中的运用
碳酸钙在化装品中的运用在很早以前就有人运用,如用珍珠粉进行化装或用温泉的碳酸钙泥浆进行化装等。工业界在精研天然碳酸泉的根底上,仿照天然碳酸温泉效果和有利化学成分,辅之具有美白和保湿成效成分,现已制备出人工碳酸泉制剂。
(8) 在其他方面的运用
食物
食物专用纳米碳酸钙以其纯度高、涣散性好、抗沉降功用优越、溶解性好、简单吸收、口感好、超低杂质含量等特性广泛运用于食物范畴;作碱性剂、养分弥补剂、面团调节剂、固化剂、酵母养料、抗结块剂、疏松剂、胶姆糖助剂、改性剂,特别适应于钙养分强化保健食物、钙片、胶囊、面制品、谷物早餐、饼干、乳制品、豆粉、软饮料、藕粉等。
医药
纳米碳酸钙在药品中有着极其重要的用处。普通碳酸钙因为粒径大,不易被人体吸收,所以补钙药品大多是选用有机钙,有利于人体吸收,补钙效果好,但本钱较高,报价昂贵。纳米碳酸钙的粒径比普通碳酸钙小得多,以无机钙的方式人体极易吸收,本钱比有机钙低得多,比糖尿患者、尿毒症患者选用有机钙补钙带来的副效应少得多。
医药级碳酸钙在药品配方中作中和剂、助滤剂、缓冲剂和溶解剂以及作填料和钙源弥补剂。钙是保持人体神经、肌肉、骨骼体系、细胞膜和毛细血管通透性正常功用所必需。用于妊娠、哺乳妇女、更年期妇女、老年人等的钙弥补,也可用于防治骨质疏松症。
农业
运用纳米碳酸钙对农膜改性处理可解决本钱、功用与报价的对立。尽管无机纳米碳酸钙与普通填料相同,不能起到对农膜的直接降解效果,但因为纳米碳酸钙特有的功用,使其能大份额均匀地填充于农膜中,使产品在成型和施行二次拉伸时,表面和内部构成很多细小缝隙,协助并加快光/生物助剂对农膜的降解,制成的农膜既能确保质量和运用功用,又不添加出产本钱,还可完成快速降解。