您所在的位置: 上海有色 > 有色金属产品库 > 钴酸锂回收工艺 > 钴酸锂回收工艺百科

钴酸锂回收工艺百科

废铝回收工艺

2017-06-06 17:50:04

废铝回收工艺一直是许多工厂企业关注的问题,废铝回收工艺不仅是对废铝的再利用,也能有效地降低原料成本。废铝回收工艺一般经过以下四道基本工序。(1)废铝料的备制首先,对废铝进行初级分类,分级堆放,如纯铝、变形铝合金、铸造铝合金、混合料等。对于废铝制品,应进行拆解,去除与铝料连接的钢铁及其他 有色金属 件,再经清洗、破碎、磁选、烘干等工序制成废铝料。对于轻薄松散的片状废旧铝件,如汽车上的锁紧臂、速度齿轮轴套以及铝屑等,要用液压 金属 打包机打压成包。对于钢芯铝绞线,应先分离钢芯,然后将铝线绕成卷。(2)配料根据废铝料的备制及质量状况,按照再生产品的技术要求,选用搭配并计算出各类料的用量。配料应考虑 金属 的氧化烧损程度,硅、镁的氧化烧损较其他合金元素要大,各种合金元素的烧损率应事先通过实验确定之。废铝料的物理规格及表面洁净度将直接影响到再生成品质量及 金属 实收率,除油不干净的废铝,最高将有20%的有效成分进入熔渣。(3)再生变形铝合金用废铝合金可生产的变形铝合金有3003、3105、3004、3005、5050等,其中主要是生产3105合金。为保证合金材料的化学成分符合技术要求及压力加工的工艺需要,必要时应配加一部分原生铝锭。(4)再生铸造铝合金废铝料只有一小部分再生为变形铝合金,约1/4再生成炼钢用的脱氧剂,大部分用于再生铸造用铝合金。美、日等国广泛应用的压铸铝合金A380、ADCl0等基本上是用废铝再生的。更多关于废铝回收工艺的方法和 价格 都可以登陆上海 有色 网查询。 

铝屑的回收工艺

2019-01-02 09:41:15

1.铝屑的回收   铝铸件进行切削加工时,切屑约占铸件重量的20%,最高达30%左右。回收产品机加工过程中的铝屑可降低生产成本,具有良好的经济效益。铝屑回收工作应往意以下几点:(1)当某一材质牌号的工件加工完毕后,应及时国收,以防铝屑混号。回收时,应把参加切削的各种机床底盘中的铝屑圭部清理干净,(2)回收的铝屑应严格按牌号分类分号堆放于贮放场规定的格仓中,并标明铝屑的种类牌号,有条件时应及时重熔,避免混号。(3)应避免泥沙、棉纱等杂物混入铝屑。   1.1铝屑的预热烘烤   铝屑带有大量的油和水分。油和水分来自机加工过程,或其它工艺过程(如为了提高活塞零件的失效均匀程,采用的油溶炉棵温失效等工艺),氧化锈蚀严重,所以应及时进行预热烘烤.铝屑的烘烤温度必须根据各方面因素宋确定。温度过高,不仅热量损耗大,而且会造成铝屑的强烈氧化。所以一般烘烤温度应拄制在250~300C之间。   铝屑烘烤最简便方法是将铝屑放置在钢板上加热,烤到不冒烟为止。也可采用将铝屑放入"烤料车"中,推入烘干窑进行烘烤或将铝屑加入工频炉中,放入铸铁坊锅内烘烤,使油和永在高温下挥发和燃烧,然后进行熔炼(当然这种方法的缺点是劳动条件差,烟雾充满车间)J铝屑预热烘烤不但可去除铝屑中的油和水,而且可以缩短熔炼时间,在降低电耗的同时,可以提高熔炼设备的生产率,降低烙炼(重熔)成本。   l.2铝屑的筛分   铝屑在烘烤完毕后,最好进行筛分处理,以去除可能产生的氧化粉末或夹杂的泥砂及带入的钢屑。但如果铝屑很"新鲜"又干净,而且烘烤温度正常,则不必筛分。通过以上预处理的铝屑,就可以用来回炉重熔,浇注成再生锭,以供熔炼铝合金时使用。   2.铝屑在工频炉中的熔炼   铝屑的熔炼方法一般有二种:①两次熔炼法:第一次是将铝屑熔化成铸块(再生锭)后按其化学成份分类堆放;第二次熔炼时将再生锭搭配入炉熔炼出成品。(2)直接加入法:使用这种方法时,可直接在炉中对铝屑进行烘烤(利用余热或底温情况下),等铝屑烘干后,再升温使其熔化并加入各种主、辅料进行熔炼。   两种方法相比,两次熔炼,电耗及元素烧损较大.管理工作烦琐,浪费人力和物力。而第二种方法只适用于连续生产一种牌号的铝铸件时使用,同一时期生产多神牌号的铝件时,用第一种方法较为适用。

锗主要的回收工艺

2019-02-12 10:08:00

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:   GeO3+4HCl=GeCl4+2H2O   GeCl4经水解得纯GeO2,过程中发作下列反响:   GeCl4+2H2O=GeO2+4HCl   GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:   GeO2+2H2=Ge+2H2O       (1)优先蒸发法收回锗  先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。     (2)硫酸化-载体沉积法收回锗  此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。     (3)碱土金属氯化蒸馏法收回锗。     (4)烟化法收回锗。     (5)氧化复原焙烧收回锗。     (6)再次蒸发收回锗。     (7)萃取法收回锗  近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

钴的冶炼回收工艺

2019-01-07 17:37:56

加工生产金属钴和高纯度氧化钴的技术要求高,冶炼流程复杂,加上能耗高和污染等问题,一般不适合民间冶炼。根据不同炼钴原料主要有如下几种冶炼回收工艺。    1.钴土矿冶炼工艺    建国初期,钴土矿主要作为制取氧化钴的原料。工艺流程大体上是将钴土矿用鼓风炉或电弧炉还原熔炼成钴铁,经退火或焙烧后,用酸浸得到含钴溶液,再经净化处理,沉淀出亚硝酸钴钾,然后焙解和粉碎制得工业氧化钴粉。潮州冶炼厂和赣州钴冶炼厂等厂家曾采用此工艺回收过钴。现在已没有厂家利用这种原料生产钴产品了。    2.钴硫精矿的冶炼工艺    国内将含钴的黄铁矿和磁黄铁矿精矿通称钴硫精矿,是国内主要炼钴原料之一。南京钢厂、葫芦岛锌厂、湖北光化磷肥厂和山东淄博钴厂四个厂家利用这种原料。其中葫芦岛锌厂的产品是二号电钴,采用硫酸化焙烧→浸出→脂肪酸脱铁铜→沉钴→还原铸阳极→阳极液净化→隔膜电解的方法,因生产成本高,现已停产。南京钢厂曾采用氧化焙烧——烧渣中温氯化焙烧工艺,湖北光化磷肥厂采用氧化焙烧——烧渣硫酸化焙烧工艺。但由于钴硫精矿含钴太低,一般都小于0.3%,加上回收钴的工艺流程复杂,普遍无利可图,所以,这些厂在生产一段时间后,又停止了生产。山东淄博钴厂利用钴硫精矿和含钴原料生产硫化钴、氧化钴、氯化钴、硫酸钴等产品。    3.砷钴矿冶炼工艺    赣州钴冶炼厂是国内唯一使用这种原料的厂家,原料从摩洛哥进口,该厂采用电炉熔炼→脱砷焙烧→二段浸出除铁砷→Na2S2O3脱铜→沉钴→还原铸阳极→净化→隔膜电解法生产氧化钴和电钴。    4.冶炼副产品中提钴的冶炼工艺    镍电解液净化产出的钴渣为主要原料。甘肃金川有色金属公司的生产流程为钴渣→浸出除铁→二次沉钴→还原铸阳极→阳极液净化→隔膜电解。该公司在许多生产、设计和科研单位的协助下在大量试验研究基础上确定了转炉渣提钴新工艺,该工艺采用电炉贫化获得钴硫,转炉吹炼富钴硫,加压氧化浸出技术,镍、钴、铜的浸出率高,反应速度快,浸出渣沉降性能好,钴的冶炼回收率达50%左右。金川有色金属公司采用硫酸溶解法从镍电解系统净化钴渣中回收钴,钴的回收率达到85%以上,同时,硫酸溶解钴渣还生产纯氧化钴粉。    5.从含钴废料提钴的工艺    二次提钴的工艺较简单,原料便宜,又不一定非要产出金属钴,因此,国内一些厂家已经开始利用含钴废料生产钴产品了。镇江冶炼厂利用各种含钴工业废料及钴硫精矿生产各类钴盐,采用流程为钴原料→净化提纯→合成→各类钴盐。江苏阜宁化工厂利用磁钢熔渣和砂轮磨屑等废料生产钴盐,采用流程为钴原料→酸溶造液→除铁→萃取→结晶。另外,赣州钴冶炼厂处理过废触媒,葫芦岛锌厂处理过磁钢渣,上海和沈阳冶炼厂处理过高温合金。    目前,国内已能利用矿山生产的各种原料生产高纯度电解钴、氧化钴粉和钴盐,生产加工工艺也得到很大发展,溶剂萃取技术在湿法炼钴中普遍得到应用。

锗的主要回收工艺

2019-02-26 16:24:38

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:  GeCl4经水解得纯GeO2,过程中发作下列反响:  GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:  除此之外,锗的收回办法还有以下几种:   (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。   (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。   (3)碱土金属氯化蒸馏法收回锗。   (4)烟化法收回锗。   (5)氧化复原焙烧收回锗。   (6)再次蒸发收回锗。   (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

钛精矿综合回收工艺介绍

2019-01-24 09:37:16

随着现代工业钛的需求量不断增加,钛的回收也不断受到重视。我国钛回收技术从选别指标、选别装备上,均还处在一个中级阶段,有待吸收国内外的科技技术,促进钛精矿选别技术进步。 以攀枝花为例,现大多采用: 干燥-风力分级-电选的精选流程。 该流程存在着粉尘污染严重,细粒级钛矿物电选回收率低,电选机辊筒清洗频繁的问题。经矿物查定,粗钛精矿中细粒级(-0.074mm)含量占15%~22%,有时高达30%。这部分矿物颗粒在风力分级以及电选过程易飞扬成粉尘,同时这部分细颗粒还易吸附在电选机辊筒上,形成一层坚硬的膜,减弱了辊筒的导电性,恶化了选别效果。 经实验表明: 1、钛粗精矿筛分分级,粗粒电选,细粒浮选新工艺流程的工业实验取得钛精矿品位47.65%,精选作业回收率78.34%的指标。 2、实现钛粗精矿分级精选的技术关键,一是筛分分离粗细粒级;二是细粒级的回收。应采用高频振动细筛作钛粗精矿的分级设备,改性塔尔油作细粒级的浮选捕收剂。 3、浮钛药剂改性塔尔油来源广,对钛捕收能力较强,价格便宜,无毒,可常配制,常温浮选,是一种有效的钛捕收剂。 4、重选、强磁选、浮选、电选联合方法,从尾矿中回收钛铁矿。 5、根据原矿多元素分析,原矿铁物相、钛物相分析,选别尾矿中钛精矿也可采用:单一重选、单一高强磁磁选等简化流程。 根据具体原矿元素分析与实验,才可定位流程工艺。

钯、铂的回收工艺

2019-01-18 09:30:34

钯、铂的回收工艺 由于钯、铂的二次资源种类繁多,品位悬殊,杂质含量各异,需要根据不同二次资源原料特性制定合理回收工艺。 对于氧化铝载钯(铂)废催化剂、汽车废催化剂等废催化剂一般采取2种工艺路线,第1种是:选择性溶解载体→不溶渣→溶解贵金属→分离提纯。第2种是:溶解贵金属→分离提纯。 对于钯(铂)炭废催化剂、废电子浆料等废料的工艺路线是:焙烧→焙烧渣→溶解贵金属→分离提纯。 对于废钯(铂)电镀液的工艺路线是:置换→置换渣→溶解贵金属→分离提纯。 对于含钯(铂)废电子元器件(集成电路板、接点、触点)的工艺路线是:分类拆解→焙烧→焙烧渣→溶解贵金属→分离提纯。 需要指出的是,不论采取何种工艺,都必须要有完善的环保设施,例如焙烧炉要配备完善的收尘设施,废气、废水经过处理达到标准后排放。

砂金中片状金的回收工艺

2019-01-24 09:36:35

砂金矿中的金含量极低,且存在形态多种多样,其中以片状金居多,由于片状金的形态特殊,细粒片状金可漂浮在水面之上,因此利用普通的重选方法以及重选设备难以达到较好的处理效果,回收率也难以得到保证。 砂金矿的选矿方法主要是重选法,砂金矿的重选基本以水作为选矿的介质,因此对于可漂浮在水面上的片状金的回收,普通的重选设备难以发挥应用的效果,为了提高对片状金的回收率,在原有锯齿波跳汰机的基础上加以改进和创新,研发成功了新型的锯齿波跳汰机,该机采用与普通锯齿波跳汰机不同的凸轮结构,增强了垂直交变水流在下降过程中床层对重矿物的吸入作用,使可漂浮在水面上的片状金得以沉降并得到有效的回收,同时又可降低金精矿中杂质的含量,使片状金的回收不再是难题,据实践结果数据显示,该金对极细片状金的回收率可达75%以上,对较粗粒片状金的回收率更是达到85%以上的高度,大大降低了金的流失率,保证了砂金选矿的选矿和经济指标。

铂族金属综合回收工艺

2019-02-25 14:01:58

(1)一般选用重选或浮选,或重选—浮选联合流程处理。氧化矿石一般经破碎磨矿后用重选法得高档次铂精矿。氧化和硫化混合型矿石常选用重选一浮选流程处理。单一硫化型铂矿石适于用浮选工艺选收。 (2)铂族金属的提取从砂铂矿的重选精矿中提取铂族金属最有用的办法是混法。为促进混可参加锌片,混产品用硫酸或处理,便可取得含铂族金属近50%的粗铂产品。 脉铂矿的精矿需熔炼成高锍,然后提取伴生的铜镍,再将含铂族金属的富集物精粹别离和提纯。从铜镍硫化矿中产出的含铂族金属的铜镍精矿,铂族金属的含量低,铜镍精矿用电炉熔炼并经转炉吹炼后得到高铂。高铂经磨矿浮选选出硫化铜和硫化镍。铂族金属富集于镍铁合金中,镍铁合金用磁选法收回,取得富含铂族金属的镍铁合金再熔炼、别离和提纯。 (3)铂族金属的别离和提纯铂族金属的别离和提纯工艺流程因质料成分、含量的不同而异。将处理高冰镍磁选所得合金铸成阳极电解时,铂放金属即进人阳极泥,阳极泥经酸处理后,得到铂族全属精矿。 将用各种选别工艺得到的铂族金属精矿以及镍、铜等电解精粹得到的阳极泥用溶解,钯、铂、金均进入溶液。用处理以损坏亚硝酞化合物(赶硝),然后加硫酸亚铁堆积出金。加氯化铵,铂呈铵(NH4)2PtCl6堆积,锻烧铵可得含铂99.5%以上的海绵铂。别离铂后的滤液,加人过量的氢氧化铵再用酸化,堆积出二氯二络亚把Pd(NH3)2Cl2方式的钯,再在中加热煅烧可得纯度达99.7%以上的海绵钯。 经上述处理后的不溶物与碳酸钠、硼砂、PbO密陀僧和焦炭共熔,得贵铅。用灰吹法除掉大部分铅,再用硝酸溶解银和残留的铅,铑、铱、钌、锇富集于残渣中。将此残渣与熔融,铑转化为可溶性硫酸盐,用水浸出,加堆积氢氧化铑,再用溶解,得氯铑酸。溶液提纯后,加人氯化铵,浓缩,结晶出氯铑酸铵(NH4)3RhCl6。在中煅烧,可得海绵铑。 在熔融时,铱、锇、钌不反响,仍留于水浸残渣中,将残渣与和苛性钠一同熔融,用水浸出;向浸出液中通人并蒸馏,并用碱液吸收得锇酸钠。在吸收液中加氯化铵,则锇以铵盐方式堆积,在中缎烧,可得锇粉。在蒸出锇的残液中加氯化铵,可得钉的铵盐,再在中煅烧,可得钌粉。 浸出钌和锇后的残渣主要为氧化铱IrO2,用溶解,加氯化铵沉出粗氯铱酸铵(NH4)2lrCl6,经精制在中煅烧,可得铱粉。 将铂族金属粉末用粉末冶金办法或经过高频感应电炉熔化可制得金属锭。 近年来,用溶剂萃取法别离提纯铂族金属的工艺得到运用,常用的萃取剂有磷酸三丁酯(TBP)、三烷基氧膦(TRPO)、二丁基卡必醇(DBC)、烷基亚砜等。 制取高纯铂族金属,一般将金属溶解后,经重复提纯。精制办法有载体氧化水解、离子交换、溶剂萃取和重复堆积等,然后再以铁盐沉出,经煅烧可得相应的高纯金属。 (4)铂族金属矿产资源的归纳利用实例 下部是蚀变的纯橄揽岩、蛇纹岩和坚固的堆积岩层,含矿砂砾厚0.6-1.8m。运用尤巴(Yuba)采砂船发掘,发掘深度可到达水面以下15-。采砂船有94个发掘斗,每斗容量为225L,以每分钟31个斗的速度工作。每年(5-11月)大约发掘106m3矿砂,可生产466kg粗铂。 粗选在采砂船上完结。物料由发掘机铲斗倒人主漏斗,再给人直径2.3m、长11m的旋转圆筒洗矿筛筛孔直径9.5-16mm。+10mm物料作为尾矿抛弃.筛下物料给人双层溜槽(1.06m x6.3m)选别,溜槽尾矿进人6台跳汰机(双室1.06mx 1.06m)再选,跳汰尾矿丢掉,溜槽和跳汰粗精矿送岸上精选。采砂船产出的粗精矿含粗铂、部分金以及适当数量的磁铁矿、铬铁矿、钛铁矿等。船产粗精矿先经4台2.4m的威尔弗里(Wilfley)摇床选别,摇床精矿经磁选,除掉磁性矿藏,非磁性产品再经风力选矿除掉密度小的脉石矿藏,取得终究铂精矿。铂精矿含铂族金属达90%,其间铱的含量在4%-33%的范围内动摇。铂精矿再送约翰逊一马特(John-SonMattey)公司处理。 2)脉铂矿的选矿。南非吕斯腾堡(Rusrenburg)铂矿公司的脉铂矿选用重选和浮选联合流程处理。该脉铂矿有氧化矿和硫化矿两种矿石,氧化矿石含铂族金属7-15g/t,收回率在65%-85%之间;从硫化矿石中收回的铂族金属收回率为87%。脉铂矿选矿流程:原矿经一段磨矿后直接给人单槽浮选机,采纳这一办法的意图是在磨矿回路中尽快地收回易于解离的粗粒硫化物,单槽浮选作业的粗精矿经摇床精选得高档次精矿。二段磨矿的旋流器溢流(-0.075mm占30%-60%)进入浮选流程,浮选流程结构为一次粗选、二次扫选、中矿再选。浮选药剂:硫酸铜、黄药、酸、羟甲基纤维素等。 技术指标:浮选精矿产率4%--5%,铂族金属档次66 g/t,收回率82% -87%。 浮选铜镍混合精矿在巴特纳(Biittner)加热枯燥炉中枯燥,使水分从21%削减到7%。枯燥精矿磨成粉不增加粘结剂,置于直径3m的制粒盘造球产出直径巧mm、含水10%的球团矿,然后在旋转干操器中燥至水分小于2%。球团矿的熔炼用18.5MW的电炉。炉料由76%的球团矿、22%的石灰及2%的回炉料组成。电炉每月处理精矿12500t。炉渣接连水悴,在球磨与旋流器组成的回路中磨到60%-0.075mm,俘选收回其间的有价金属。电炉产出的锍(冰铜)进人3mX6 m的皮尔斯-史密斯转炉中吹炼,高锍经过缓冷、磨浮、磁选,得到磁性铜镍合金,再经过加压酸浸,产出含铂族金属60%(包含金)的产品。 3)铜镍硫化矿中铂族金属的收回。金川有色金属公司有两座镍选矿厂,一选厂于1965年投产,现生产规模为1600t/d,处理一矿区富矿石;二选厂于1967年投产,生产规模为6000t/d,处理一矿区贫矿声1983年二矿区富矿体出矿,二选厂改扩建后开端处理二矿区富矿石,现生产规模为9000t/d。此外,在冶炼厂区具有一座生产规模为210t/d的高锍磨浮选矿厂。 金川镍矿归于岩浆熔离型矿床,共有4个矿区。其间二矿区金属储量占全矿区地质储量76%,一矿区占总储量的16%。一、二选矿厂的选矿流程均为单一浮选流程。经过选矿,铂族金属富集于铜镍混合精矿中。铜镍混合精矿经熔炼得高冰镍,在高冰镍中含有的铂族金属及金、银绝大部分存在于合金中,然后再进一步从合金中别离出单一的铂族金属。 4)从浸出渣中收回铂族金属。金川铜镍矿选矿新工艺流程研讨中产出的含镍磁黄铁矿精矿。经氧压浸出提取镍、铜、镁后,浸出渣中含铂族金属及金、银和少数残留的镍、铜。选用浮选办法收回这些稀贵金属是可行的。选冶新工艺流程的扩展实验,取得了杰出的成果。稀贵金属、硫化物、元素硫及铁得到了归纳收回。 ①浸出渣的性质。浸出质料为含镍铜磁黄铁矿精矿,粒度82.3%-0.053mm。浸出进程中贵金属及少数铜镍呈微细粒堆积物(次生状况)和浸出剩余的硫化物(原生状况)存在于很多铁氧化物中。因为在酸和表面活性剂溶液中经过氧压浸出的物理化学进程,渣的性质很杂乱。浸出渣的主要成分是铁的氧化物、未分化的金属硫化物、元素硫、二氧化硅及少数的硫酸盐。 ②选矿工艺。原渣温水洗刷,扫除可溶性盐及硫酸根,以削减对浮选进程的搅扰及药剂消耗量;为改动氧压浸出进程中被污染的硫化物表面性质,增加适合的调整剂来进步浮游活性;加人涣散剂涣散细泥,再运用絮凝剂很多的氧化铁絮凝成团,净化浆液,以利于浮选药剂与铂族金属、贵金属及硫化物之间的相互作用。

国外铝灰铝资源回收工艺

2019-01-14 13:50:17

铝灰是铝工业一种重要的副产品,其中的铝含量约占铝生产使用过程中总损失量的1%~12%。回收铝灰中的铝资源能降低成本、保护环境、节约能源和提高资源利用率,有着巨大的经济和社会效益。20世纪末,针对盐浴回收法产生的盐饼处理费用较高的问题,人们开发出了少用或不用熔盐处理回收的工艺,省去了处理回收后的含盐废料环节,可以降低成本、能耗并减少环境压力。    ALUREC法由丹麦阿加公司(AGA)、霍戈文斯铝业公司(Hoogovens Aluminium)、曼公司(MAN)联合开发。熔化炉为回转式的,采用富氧天然气为燃料,可在短时间内达到很高温度,铝熔化聚集于炉底,而非金属渣则浮于熔体上面。此方法热效率高,耗能少,操作环境好。该法是目前大型企业处理铝灰较常见的方法。该法还使用纯氧作助燃剂,有效减少了燃烧过程中产生的有机气体(CnHm),烟罩可以有效地回收其它烟尘,所以具有效率高、机械化程度高和运行环境好的优点,但金属回收率93%~94%,且产生的残余铝灰还需进一步处理。    MRM(Metal Recycling Machine)法和改良的MRM法为日本企业多采用此法。该工艺是把从熔炉中取出的热铝渣直接送入带有搅拌装置的设备中,使铝液沉积于设备底部,这时要加入能产生放热反应的熔剂,使渣保持所需温度。剩下的铝渣还可进一步进行筛选、粉碎、熔化回收铝,进行二次回收处理。在改良的MRM法中,搅拌和铝回收的全过程在氩气保护下进行。处理结果显示,该法的铝烧损率降低到4%,回收率达91%。    “The Press”回收工艺由美国宾夕法尼亚州埃克斯顿市(Exton.PA)的阿尔特克国际公司(Altek International)开发。压头上施加15MPa的压力,炉渣内的液体金属在压力下流向下层容器,被压榨的炉渣氧化过程迅速终止,氧化物被裹在金属壳内。同时,炉渣的金属外壳迅速把热传至压头和渣盘上,压头中的冷却水将大部分热量带走。使炉渣温度由开始的800℃以上降低至450℃以下,防止金属因高温而发生氧化。“The Press”法铝的总回收率为62.5%。“ThePress”法不需要铝灰预先冷却工序,具有装备简单、投资少、操作与维护费用低、工作周期短、工作环境好、不需集尘系统、功能完善和自动化程度高等一系列优点。    我国的铝灰回收工艺仍还处于初级阶段,缺乏原创性工艺,这既是事实,也预示着其巨大的发展潜力。我国国情、应用前景广阔的铝灰回收工艺的研发,在实现铝灰处理行业的跨越式发展的同时,推动我国铝工业持续、健康、稳定地发展。

锗主要有哪些回收工艺

2019-02-26 09:00:22

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:GeCl4经水解得纯GeO2,过程中发作下列反响:GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

铋冰铜的回收工艺技术

2019-01-31 11:06:04

一、工艺流程 如图1所示。铋冰铜经浸洗、焙烧、硫酸浸铜、浸铋、铁屑置换等工序后,产出海绵铋熔铸成粗铋,然后从硫酸铜液中收回铜,从浸出渣中收回铅,银。图1  处理铋冰铜工艺流程 二、首要技能条件 (一)浸洗。将冰铜置于浸洗槽中,用水浸洗,风化呈粉状,用砂泵抽至离心机滤洗,至洗水呈中性,废碱液放入地下贮槽。 (二)焙烧。将粉末状冰铜装入焙烧炉内进行氧化焙烧脱砷、锑、硫,并使金属生成氧化物。操控进料温度低于550℃,焙烧温度600~700℃,每炉焙烧时刻6~8小时。 (三)硫酸浸出。选用两段逆流浸出: 一次浸出:始酸15~20克/升,终酸pH2.5;浸出温度85℃;浸出时刻1~2小时;液固比∶(5~8)∶1。 二次浸出:始酸65~70克/升,终酸45~50克/升;浸出温度95℃;浸出1~2小时,液固比3∶1。 洗刷:选用离心机滤洗,洗水併入浸出液。 (四)净化除铁。将浸出液加KMnO4氧化,使Fe2+氧化成Fe3+,生成Fe(OH)3沉积,净化后之溶液即硫酸铜电解液。 (五)电积。阳极用铅板,阴极用不锈钢板。 电解液成分(克∕升):Cu60~90,Fe5±,Mn0.5±,H2SO4 20~30;电解周期5~7天:室温;电流密度100~150安/米2;槽电压1.8~2伏。 (六)浸出。选用二段逆流浸出: 一次浸出:始酸HCl 15%:液固比3∶1;室温下拌和2小时。 二次浸出:始酸HCl 15%;液固比3∶1;加热至90℃拌和浸出2小时。滤渣去收回铅与银。 (七)铁屑置换。磨细铁屑,表面经酸化处理,耗酸量为理论核算量的1.3~1.5倍,在室温下拌和参加,要求操控浸出液酸度为pH0.5左右,置换时刻4~6小时。 置换后液经过滤后放入地下贮槽,与废碱液中和,至pH8排放。海绵铋在固碱液覆盖下熔化铸锭,送铋精粹处理。 三、首要设备 培烧炉一台。 浸洗槽一个;硫酸浸出罐、净化除铁罐,浸出罐、置换罐各一个,选用夹套珐琅反应釜,地下贮槽一个。 电积槽:选用硬聚乙烯塑料槽700×370×250毫米。 离心过滤机二台。

钴酸锂

2017-06-02 15:15:40

锂离子二次 电池 正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。  钴酸锂特点1、电化学性能优越  a.每循环一周期容量平均衰减﹤0.05%   b.首次放电比容量﹥135mAh/g   c.3.6V初次放电平台比率﹥85%   2、加工性能优异   3、振实密度大, 有助于提高电池体积比容量   4、产品性能稳定, 一致性好   产品型号   R747 振实密度2.4-3.0g/cm3, 典型值为2.5,粒度 D506.0-8.5um;  R757 振实密度2.4-3.2g/cm3, 典型值为2.6, 粒度D506.5-9.0um;   R767 振实密度2.3-3.0g/cm3, 典型值为2.5, 粒度D508-12um;   钴酸锂用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

五氧化二钒回收工艺

2019-02-25 14:01:58

五氧化二钒是氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸构成钒氧离子VO或VO3+。橙黄或砖赤色固体。无臭、无味、有毒性。微溶于水,生成淡黄色酸性溶液。热分化或三氯氧钒与水效果都可制得五氧化二钒。 2NH4VO3 V2O5+2NH3+H2O 2VOCl3+3HO2 V2O5+6HCl 五氧化二钒是钒氧化物中使用最广泛的产品,在钒资源勘探、出产和国际贸易中,一般都以五氧化二钒作为核算单位。 五氧化二钒是出产金属钒、钒铁合金、和其它钒基合金的中间产品,也是制作钒催化剂的质料,还可用于、邻二等有机组成的催化剂,还用于制作彩色玻璃和陶瓷。 五氧化二钒的收回工艺: (1)从钒渣中收回:钒渣是含钒较高的提钒质料,收回技能比较老练。现在通用的流程是钠化焙烧工艺,选用的设备不同,大型厂商一般都选用回转窑,而有些厂商则选用焙烧炉。工艺进程是将钒渣与钠盐(一般为碳酸钠或芒硝)混合,在必定的温度下焙烧,使钒转为可溶性的钠盐,焙砂再通过浸出,使钒酸盐进入溶液,溶液通过滤,滤出废渣,再通过沉积、精美等进程得到五氧化二钒。国外有的厂商直接使用含钒高的钒钛磁铁矿出产五氧化二钒,首先将矿石制成精矿,然后与熔剂混合,进入回转窑中焙烧,焙砂用水浸出,含钒溶液用铵盐处理,最终沉积。 (2)从石煤中收回:从石煤中提钒的工艺主要是钠化焙烧工艺,钠化氧化焙烧—水浸出—水解沉钒—碱溶铵盐沉钒—热解脱—精钒的工艺流程。该工艺是我国从石煤中提钒遍及选用的工艺,特点是工艺简略,而且充分使用了石煤的热能。缺陷是收回率较低,一般在60%以下。美国选用以上工艺,但选用稀硫酸浸出、溶剂萃取技能,收回率可达70%。 (3)从石油废催化剂中收回:美国、日本等国从上个世纪70年代就开端从石油含钒废催化剂中收回钒,技能现已老练,加工工艺许多,有许多工艺现已申报专利。国际上通用的技能是钠化焙烧法:配料→焙烧→磨碎→浸出过滤→沉钒→煅烧→五氧化二钒产品↓ 溶液→萃取收回钼→钼酸铵产品 ↓ 渣→进一步收回镍→金属镍。 各国收回工艺中的经济技能参数虽然不同,但根本上参照以上工艺,我国从石油工业废催化剂中收回钒的厂商选用的工艺也根本与其相同。 (4)从硫酸工业废催化剂中收回:从硫酸工业的废催化剂中收回五氧化二钒早已引起世界各国的注重,前苏联在此起步较早,技能比较老练,日本、美国也有许多专利报导。我国硫酸工业废钒催化剂中收回钒的作业展开较早,在上个世纪80年代,南化公司、成都工学院、北京矿业学院、镇江冶炼厂、平顶山987化工厂等都作过很多试验,其间平顶山987化工厂现已投入出产。现在选用的技能有火法—湿法联合工艺和全湿法工艺,后者使用比较广泛。工艺如下:废催化剂→破坏→浸出→过滤→加水解→沉钒→精粹→煅烧→产品。湿法流程工艺简略,出资少,总收回率在90%以上。缺陷是发生的废液量较大,不能作到平衡。现在我国从硫酸工业废钒催化剂中收回五氧化二钒的厂商都选用以上工艺,火法湿法联合工艺没有选用。   定论:从含钒物料中提炼钒的工艺有火法、湿法和火法、湿法联合流程,最老练的技能是:钠化焙烧、浸出、沉钒工艺,也是提钒技能的经典。从硫酸工业废钒催化剂中收回五氧化二钒一般都选用酸性直接浸出工艺。

钨渣中有价金属综合回收工艺

2019-01-31 11:06:17

我国的钨矿床具有多金属共生的特色,钨冶炼现行工艺以碱浸为主,简直一切的钨碱浸渣(以下称钨渣)中都含有少数的Ta,Nb,Sc等有价金属,国内钨渣中Ta2O5+Nb2O5总含量(质量分数,下同)达0.54%~0.65%,而钽铌矿中钽铌氧化物含量达0.02%以上便具有工业挖掘价值;一起,钨渣中WO3含量达4%~7%,Sc2O3含量达0.02%~0.04%,亦具有较大的归纳收回价值。但是,现在我国钨冶炼厂对钨渣的收回处理基本上还停留在简略收回钨、部分收回钪的阶段,而对钽铌均未进行收回。查询成果表明,我国钨冶炼厂近20年来产出的钨渣已高达60多万t,钨渣的堆存使有价金属资源未能充分利用,并对环境构成污染。因而,跟着矿产资源的不断耗费和对这些金属的需求不断增大,有必要对钨渣中有价金属进行归纳收回。在此,作者对钨渣中W,Ta,Nb和Sc的收回工艺进行研究。 一、试验办法 (一)试验质料 试验用钨渣试样由国内某钨冶炼厂供给,粒度小于180μm的钨渣占95%以上,其化学成分见表1。 表1  钨渣的元素分析w∕%(二)工艺流程 试验选用的工艺流程见图1。图1  钨渣中钽铌收回工艺流程图 (三)试验分析办法 试验进程中选用分光光度法分析钨含量,选用X射线荧光分析法分析钽、铌含量。 (四)工艺进程基本原理 1、焙烧水浸进程 钨渣中含有很多的铁、锰及少数的钨、锡、钽、铌、钪等。苏打焙烧时生成溶于水的钨酸钠、硅酸钠以及难溶于水的钽酸钠、铌酸钠,经水浸过滤后使钽、铌与钨、硅开始别离,钨以钨酸钠的方式进入溶液,钽、铌以钽酸钠、铌酸钠的方式进入渣中。但在水浸进程中,硅酸钠只要部分进入溶液,其余部分仍留在水浸渣中。 2、稀酸脱硅 若水浸渣直接经高酸浸出,则易呈现硅胶,下降杂质浸出率及浸出渣的过滤功能。因为硅酸在必定条件下可构成溶胶,溶胶中的溶质能穿过普通滤纸和滤布,当改动条件(如温度、酸度、时刻等)时又很简略聚合分出,因而,低温时可选用稀酸快速处理,在硅酸聚合沉积之前过滤,以除掉大部分硅。 3、高酸浸出 稀酸脱硅渣除掉了部分铁、锰、钙等杂质,但仍有大部分杂质留在渣中,可选用高酸浸出除掉。在高酸浸出时,钽酸钠、铌酸钠转化为溶解度小的钽酸和铌酸,绝大部分留在渣中,而大部分杂质铁、锰、钙等被浸出进入溶液,到达钽铌富集的意图。高酸浸出的首要反响如下: NaTaO3+HCl=HTaO3+NaCl, NaNbO3+HCl=HNbO3+NaCl。 高酸浸出时,酸度越大,杂质的浸出率越高,而钽铌的丢失也越大。 二、试验成果及评论 (一)苏打焙烧及水浸 选用正交试验调查了苏打焙烧水浸进程中苏打用量、焙烧温度、焙烧时刻、水浸液固比、水浸时刻、水浸温度等要素对钨浸出率的影响。成果表明,上述前3个要素对钨浸出率的影响顺次减小,后3个要素的影响不明显。苏打用量n、焙烧温度T、焙烧时刻t对钨浸出率的影响见图2~4。 归纳各要素的影响,断定本进程的最佳条件为: a.苏打用量为理论量的6.0倍; b.焙烧温度:850~950℃; c.焙烧时刻:50min; d.水浸液固比:6∶1; e.水浸时刻:90min; f.水浸温度:95~100℃。 在以上最佳条件下进行验证试验,成果表明,钨的浸出率可达80%。总的来说,钨浸出率不高,这首要是因为钨渣中存在CaO或CaCO3,进入浸出液中的WO42-与CaO等作用生成白钨。图2  苏打用量n对W浸出率η的影响图3  焙烧温度T对W浸出率η的影响图4  焙烧时刻t对W浸出率η的影响 (二)稀酸脱硅 将水浸渣在体积分数为7%~9%的稀中激烈拌和浸出1~2min,快速过滤、洗刷,本进程的脱硅率可达60%。试验成果表明,浓度过高时易构成硅胶,不光除硅作用差,且过滤难;而反响时刻过长或过滤速度慢均易构成溶胶聚合。因而,应当严格控制稀酸脱硅的操作条件。 (三)高酸浸出 选用正交试验调查了浓度、浸出液固比、浸出温度T、浸出时刻t对钽铌收回率和富集渣中钽铌含量的影响,成果见图5~8。其间,w(C)为钽、铌收回率。 依据试验成果得出高酸浸出的最佳条件为: a.浓度:20%; b.浸出液固比:6∶1; c.浸出时刻:60min; d.浸出温度:95~100℃。1-w(Ta2O5+Nb2O5)-w(HCl)曲线; 2-w(C)-w(HCl)曲线 图5  浓度对钽铌富集的影响1—w(Ta2O5+Nb2O5)-w(HCl)曲线; 2-w(C)-w(HCl)曲线 图6  酸浸液固比对钽铌富集的影响1-w(Ta2O5+Nb2O5)-w(HCl)曲线; 2-w(C)-w(HCl)曲线 图7  酸浸出温度T对钽铌富集的影响1-w(Ta2O5+Nb2O5)-w(HCl)曲线; 2-w(C)-w(HCl)曲线 图8  酸浸时刻t对钽铌富集的影响 依照以上最佳条件进行验证试验,取得钽铌富集渣的典型成分,见表2。 表2  钽铌富集渣成分及金属收回率w∕%依据现在钽铌工业生产实践,对含Ta2O5在3%以上的物料即可选用矿浆萃取处理。因而,对试验所得钽铌富集渣能够直接进入现有的钽铌生产流程进行处理终究取得和五氧化二铌产品。高酸浸出后所得废酸液能够回来稀酸脱硅工序质猜中的钪首要富集在脱硅废液与高酸浸出液中,能够选用溶剂萃取或离子交换、化学沉积等办法提取。 三、定论 (一)该工艺可处理含0.15%Ta2O5,0.46%Nb2O5的钨渣,并取得均匀含Ta2O5达4.06%,Nb2O5达11.83%的钽铌富集渣,金属收回率达79.46%,富集渣可直接用于钽铌工业生产。 (二)试验断定了从钨渣中归纳收回有价金属钽、铌的最佳工艺条件;即:苏打用量为理论量的6.0倍,焙烧温度为850~950℃,焙烧时刻为50min,水浸液固比为6∶1。 (三)工艺流程较简略,选用的质料价廉易得,生产成本较低。 (四)钨可在水浸液中选用离子交换法收回,而钪可在浸出液中选用萃取法收回。

铝合金型材模具废铝回收工艺

2019-01-02 09:41:28

铝合金型材模具废铝回收工艺,是将夹带有铝合金的模具置于碱洗槽中碱洗,待模具中的废铝被碱腐蚀掉约10%时,将模具从碱洗槽中吊起,分离上下模,用水冲洗下模待用;上模4碱洗约2小时后,舌芯4—2向下,置于油压机的模具支架2上,启动油压机,油压机的专用杆8对准上模模具孔4—2下压,模孔4—2内的铝合金被压出,掉落至出料口5。这种工艺,减少了碱洗时间,大大提高了工作效率,而且节省了大量的碱,同时使80%的铝合金得以回收,不仅经济效益好,而且避免了环境污染。

五氧化二钒的回收工艺

2019-02-22 15:05:31

五氧化二钒的收回工艺 (1)从钒渣中收回:钒渣是含钒较高的提钒质料,收回技能比较老练。现在通用的流程是钠化焙烧工艺,选用的设备不同,大型厂商一般都选用回转窑,而有些厂商则选用焙烧炉。工艺进程是将钒渣与钠盐(一般为碳酸钠或芒硝)混合,在必定的温度下焙烧,使钒转为可溶性的钠盐,焙砂再通过浸出,使钒酸盐进入溶液,溶液通过滤,滤出废渣,再通过沉积、精美等进程得到五氧化二钒。国外有的厂商直接使用含钒高的钒钛磁铁矿出产五氧化二钒,首先将矿石制成精矿,然后与熔剂混合,进入回转窑中焙烧,焙砂用水浸出,含钒溶液用铵盐处理,最终沉积。 (2)从石煤中收回:从石煤中提钒的工艺主要是钠化焙烧工艺,钠化氧化焙烧—水浸出—水解沉钒—碱溶铵盐沉钒—热解脱—精钒的工艺流程。该工艺是我国从石煤中提钒遍及选用的工艺,特点是工艺简略,而且充分使用了石煤的热能。缺陷是收回率较低,一般在60%以下。美国选用以上工艺,但选用稀硫酸浸出、溶剂萃取技能,收回率可达70%。 (3)从石油废催化剂中收回:美国、日本等国从上个世纪70年代就开端从石油含钒废催化剂中收回钒,技能现已老练,加工工艺许多,有许多工艺现已申报专利。国际上通用的技能是钠化焙烧法:配料→焙烧→磨碎→浸出过滤→沉钒→煅烧→五氧化二钒产品 ↓ 溶液→萃取收回钼→钼酸铵产品 ↓ 渣→进一步收回镍→金属镍。各国收回工艺中的经济技能参数虽然不同,但根本上参照以上工艺,我国从石油工业废催化剂中收回钒的厂商选用的工艺也根本与其相同。 (4)从硫酸工业废催化剂中收回:从硫酸工业的废催化剂中收回五氧化二钒早已引起世界各国的注重,前苏联在此起步较早,技能比较老练,日本、美国也有许多专利报导。我国硫酸工业废钒催化剂中收回钒的作业展开较早,在上个世纪80年代,南化公司、成都工学院、北京矿业学院、镇江冶炼厂、平顶山987化工厂等都作过很多试验,其间平顶山987化工厂现已投入出产。 现在选用的技能有火法—湿法联合工艺和全湿法工艺,后者使用比较广泛。 工艺如下: 废催化剂→破坏→浸出→过滤→加水解→沉钒→精粹→煅烧→产品。 湿法流程工艺简略,出资少,总收回率在90%以上。缺陷是发生的废液量较大,不能作到平衡。现在我国从硫酸工业废钒催化剂中收回五氧化二钒的厂商都选用以上工艺,火法湿法联合工艺没有选用。 定论: 从含钒物料中提炼钒的工艺有火法、湿法和火法、湿法联合流程,最老练的技能是:钠化焙烧、浸出、沉钒工艺,也是提钒技能的经典。从硫酸工业废钒催化剂中收回五氧化二钒一般都选用酸性直接浸出工艺。五氧化二钒是**氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸构成钒氧离子VO或VO3+。橙黄或砖赤色固体。无臭、无味、有毒性。微溶于水,生成淡黄色酸性溶液。热分化或三氯氧钒与水效果都可制得五氧化二钒。 2NH4VO3V2O5+2NH3+H2O 2VOCl3+3HO2 V2O5+6HCl五氧化二钒是钒氧化物中使用最广泛的产品,在钒资源勘探、出产和国际贸易中,一般都以五氧化二钒作为核算单位。五氧化二钒是出产金属钒、钒铁合金、和其它钒基合金的中间产品,也是制作钒催化剂的质料,还可用于、邻二等有机组成的催化剂,还用于制作彩色玻璃和陶瓷。

1月18日铝屑的回收工艺

2018-12-18 09:41:12

一、铝屑的回收、烘烤和筛分   1.铝屑的回收     铝铸件进行切削加工时,切屑约占铸件重量的20%,最高达30%左右。目前市场上铝价达15000元/吨左右,因此回收活塞系列产品机加工过程中的铝屑可降低生产成本,具有良好的经济效益。铝屑回收工作应往意以下几点:(1)当某一材质牌号的工件加工完毕后,应及时国收,以防铝屑混号。回收时,应把参加切削的各种机床底盘中的铝屑圭部清理干净,(2)回收的铝屑应严格按牌号分类分号堆放于贮放场规定的格仓中,并标明铝屑的种类牌号,有条件时应及时重熔,避免混号。(3)应避免泥沙、棉纱等杂物混入铝屑。   2.铝屑的预热烘烤   铝屑带有大量的油和水分。油和水分来自机加工过程,或其它工艺过程(如为了提高活塞零件的失效均匀程度,采用的油溶炉棵温失效等工艺),如果保存不善则氧化锈蚀严重,所以应及时进行预热烘烤.铝屑的烘烤温度必须根据各方面因素宋确定。温度过高,不仅热量损耗大,而且会造成铝屑的强烈氧化。所以一般烘烤温度应拄制在250~300C之间。铝屑烘烤最简便方法是将铝屑放置在钢板上加热,烤到不冒烟为止。也可采用将铝屑放入“烤料车”中,推入烘干窑进行烘烤或将铝屑加入工频炉中,放入铸铁坊锅内烘烤,使油和永在高温下挥发和燃烧,然后进行熔炼(当然这种方法的缺点是劳动条件差,烟雾充满车间)J铝屑预热烘烤不但可去除铝屑中的油和水,而且可以缩短熔炼时间,在降低电耗的同时,可以提高熔炼设备的生产率,降低烙炼(重熔)成本。    3 铝屑的筛分   铝屑在烘烤完毕后,最好进行筛分处理,以去除可能产生的氧化粉末或夹杂的泥砂及带入的钢屑。但如果铝屑很“新鲜”又干净,而且烘烤温度正常,则不必筛分。通过以上预处理的铝屑,就可以用来回炉重熔,浇注成再生锭,以供熔炼铝合金时使用。     二、铝屑在工频炉中的熔炼   铝屑的熔炼方法一般有二种:①两次熔炼法:第一次是将铝屑熔化成铸块(再生锭)后按其化学成份分类堆放;第二次熔炼时将再生锭搭配入炉熔炼出成品。(2)直接加入法:使用这种方法时,可直接在炉中对铝屑进行烘烤(利用余热或底温情况下),等铝屑烘干后,再升温使其熔化并加入各种主、辅料进行熔炼。两种方法相比,两次熔炼,电耗及元素烧损较大.管理工作烦琐,浪费人力和物力。而第二种方法只适用于连续生产一种牌号的铝铸件时使用,同一时期生产多神牌号的铝件时,用第一种方法较为适用。.

某金矿氰化尾矿浮选综合回收工艺研究

2019-02-20 15:16:12

近年来,为了充沛地运用国家名贵的矿产资源,削减环境污染,一起也增加厂商的经济效益,许多厂矿厂商都重视了化浸出渣中有用矿藏的归纳收回,其选矿工艺计有重选、浮选、磁选、重浮联合流程等。而以硫化矿为意图的浮选收回工艺占有很大份额,其间不乏成功收回的厂矿,但也有厂矿收回作用不尽人意,本文就此在理论上进行了分析讨论,找出了影响收回作用的首要原因,以便于采纳相应的应变措施,旨在能对出产有必定指导作用,为决策者和科技工作者进行理论分析和工艺规划之参阅。  1、影响要素的分析  1.1 薄膜的构成与影响 化法提金,一般运用石灰做为“维护碱”,矿浆pH值一般达11左右,一起,为了满意氧比需求,还需求往矿浆中压入空气、氧气或许增加过氧化物,以进步金银的浸出率。这样高碱度、富氧、长期浸泡将会在矿粒表面生成亲水性的薄膜(CaO2),并且这种薄膜的构成对矿粒是无挑选性的,因为矿浆中矿粒表面电性的不同,使得金属硫化矿比非金属脉石矿藏更简单构成。薄膜(CaO2)薄膜的构成,使捕收剂失掉了对各种矿藏捕收的挑选性,一起此薄膜也阻止捕收剂与矿粒表面的吸附。 Ca2++2OH → Ca(OH)2 Ca2++O2 → CaO2 为铲除CaO2薄膜的影响,常需清水再调浆,将pH值降至8~9,并进行激烈拌和,乃至再磨。  1.2化浸金进程是一个强氧化进程 化矿浆有必要是强碱性矿浆,pH=11左右,并且常往矿浆中充气,乃至是纯氧气,或许是增加强氧化剂,如H2O2、CaO2 、Na2O2 、BaO2 等等,在化尾矿脱氧净化进程中,常选用漂(CaOCl2),漂白精[Ca(OCl)2],次(NaOCl)来处理含尾矿,以到达环保要求。这些从浸出到污水处理的整个进程,都是在高碱度、强氧化条件下处理长达二、三十个小时,这关于化尾矿中可收回的硫化矿而言,都是一个绵长的强氧化进程,足以使其表面氧化,从而使可浮性下降。有时浮选收回黄铁矿都有困难,这是因为黄铁矿表面部分硫在高碱富氧条件下游离进入矿浆,进一步氧化则生成碱式硫酸盐,最终生成氢氧化铁薄膜[Fe(OH)3]覆盖于黄铁矿粒表面而致。因而,为消除此类影响,常需增加对应的活化剂,或再磨以露出矿藏新鲜表面。  1.3 化尾矿中残留的是硫化矿浮选的特效按捺剂 众所周知,石灰加是硫化矿浮选的特效按捺剂,常用来按捺黄铁矿、黄铜矿等,用量几克到几十克,而化浸金用量少则几百克/吨,多则公斤级,如此条件,足以按捺一切硫化矿。因而化尾矿浮选硫化矿时,应尽量削减化尾矿中剩余,如尾矿压滤等,最好在污水处理后进行归纳收回。  1.4 化尾矿中的化盐类是硫化矿浮选的按捺剂 在化进程中,金银矿伴生的矿藏也会与反响,生成金属化盐类,而这些络盐恰恰是硫化矿浮选时强有力的按捺剂。 1.4.1 铁矿藏与生成亚铁酸钠 黄铁矿:FeS2+NaCN==Fe S+NaCNS       磁黄铁矿:Fe5S6+NaCN==NaCNS+5FeS       硫化亚铁:Fe S+2O2==FeSO4 FeSO4+6NaCN==Na4[Fe(CN)6]+Na2SO4       金属铁屑:Fe+6NaCN+2H2O==Na4[Fe(CN)6]+2NaOH+H2↑ 1.4.2       铜矿藏与生成铜酸钠 胆矾:2CuSO4+4NaCN==Cu2(CN)2+2Na2SO4+(CN)2↑       蓝铜矿:2CuCO3+8NaCN==2Na2Cu(CN)3+2Na2CO3+(CN)2↑       孔雀石:2Cu(OH)2+8NaCN==2Na2Cu(CN)3+4NaOH+(CN)2↑       辉铜矿:2Cu2S+4NaCN+2H2O+O2==Cu2(CN)2+Cu2(CNS)2+4NaOH 1.4.3       锌矿藏与反响生成锌酸钠 闪锌矿:ZnS+4NaCN==Na2Zn(CN)4+Na2S       氧化锌:ZnO+4NaCN+H2O==Na2Zn(CN)4+2NaOH       菱锌矿:ZnCO3+4NaCN==Na2Zn(CN)4+Na2CO3 等等,这些金属络盐均可使矿藏表面构成亲水性薄膜,并阻止黄药分子的吸附而受按捺。  1.5 化尾矿中残留的很多金属离子耗费捕收剂 化尾矿中残留很多金属离子,特别是 Ca2+,Fe2+ , Cu2+ , Zn2+。 早在1782年就发现了黄药,但黄药的最早用处是化学分析,如可运用黄药与铜盐作用发生沉积的反响,定量分析铜。这些金属离子的存在,对黄药的分化具有催化作用,并生成很多难溶性的黄原酸金属盐类沉积,很多耗费黄药。 4ROCSSNa+2Me++==Me2(ROCSS)2↓+(ROCSS)2+2Na2SO4 因而,化尾矿浮选法归纳收回,捕收剂用量一般很大,就是这个原因。  1.6 化进程中发生的很多盐类恶化了浮选进程 如上所述:化尾矿中残藏着很多的碱和盐类,如Ca(OH)2 、CaO2 、Fe(OH)3、Mem (CN)n 、Ca(OCl)2 、 FeSO4、Na2S、Na2SO4、Na2CO3等等,这些盐类的很多存在,使化学反响进程变得非常复杂,难以预测。因为它们污染了矿粒表面,使矿粒表面改头换面,失掉了原表面的物理化学性质,增加了浮选别离的难度。  1.7 细磨化发生的泥化很多耗费浮选药剂损坏浮选的挑选性 为了进步金银的浸出率,拌和化一般磨矿细度都在90%-200目或90%-325目以上,因而不行避免地发生矿藏泥化,这些矿泥不只会吸附在矿粒表面,使其失掉原有的表面性质。一起,很多的矿泥因为其巨大的比表面积和表面能,会很多吸附浮选药剂,致使浮选药剂用量增大。  2、进步化尾矿浮选作用的技能措施  从以上分析能够看出,进步化尾矿浮选作用的技能道路应环绕脱药、脱泥进行。  2.1 机械脱药、脱泥 选用擦拭机激烈拌和擦拭,脱泥斗脱药脱泥,再用压滤机进一步脱水脱药后,用清水从头调浆浮选。  2.2 恰当增加脱药剂 如增加适量活性炭脱药,对尾矿中余,铜离子脱除作用较好,但有必要操控好脱药剂的增加量,不然用量过大,会导致浮选药剂用量大幅度增加。  2.3 恰当增加矿泥分散剂 如适量增加水玻璃,羧甲基纤维素,对进步别离作用是非常有利的。  2.4 对化尾矿进行再磨 对粒度较粗的化尾矿,如经济上合理,可选用再磨浮选别离,以达归纳收回之意图。  2.5 选用挑选性好的捕收剂 如铜硫别离时挑选Z—200 2.6 适量增加活化剂 为消除矿粒表面氧化的影响,适量加添活化剂,但要选用有挑选性的活化剂。  2.6 用重选预选抛尾后浮选 对低档次化尾矿,选用处理量大、出资少、成本低的螺旋选矿机进行初选富集,可丢掉绝大部分脉石矿泥剩余药剂。然后进行浮选别离。技能上更牢靠,经济上更合理。  3、化尾矿铅铜硫归纳收回出产使用  某化厂化尾矿中首要金属矿藏为黄铁矿、方铅矿、黄铜矿,别的有少数磁黄铁矿、磁铁矿、赤铁矿,脉石矿藏首要为石英,别的含少数绿泥石、高岭土等。含铅19.95%;含铜4.21%;含金5.00g/t;含银508.76g/t、含硫37.50%。 该厂化浸尾矿选用三段逆流洗刷后,经稠密机浓缩浓度为55~60%,放入缓冲拌和槽中进行高浓度长期(达1小时以上)拌和擦拭,以脱除矿粒表面的上述各种薄膜,然后以高浓度进入浮选优先选铅,该工艺充沛运用了化尾矿中剩余的C,等对黄铁矿、褐铁矿的按捺作用和方铅矿天然可浮性,削减了从头调浆从头加入黄铁矿和黄铜矿按捺剂的进程,降低了出产成本,简化了工艺流程。一起高浓度浮选有利于大比重铅矿的上浮,一起又增强矿粒间擦拭作用,有利于新鲜矿粒表面与捕收剂作用。药剂条件为:分散剂3000g/t,按捺剂80g/t,丁黄药300g/t,2号油120g/t。pH=10-11。 浮铅尾矿自流进入浮铜拌和槽,运用回水调浆,铜浮选浓度为30%,工艺流程为一粗、三扫、三精选,药剂条件为:分散剂 1500g/t,丁黄药1200g/t 2号油200g/tpH=10。 从出产分选作用来看,选矿技能指标较为抱负,铅收回率大于90%,铜收回率53.92%,金总收回率(可计价)86%,银总收回率(可计价)97.74%。充沛收回了金、银、铅,尤其是弥补了化银收回率低的缺点。硫精矿含硫35%以上。但因为回水中金属离子含量很高,形成捕收剂用量较大,仍有进一步改进的必要。  4、结语  (1)化尾矿归纳收回浮选的技能关键是铲除矿粒表面的各种薄膜,还矿藏本来面目。  (2)化尾矿浮选进程中,分散剂的运用是不行短少的,但用量必定要严格操控。  (3)选用铅、铜、硫优先次序浮选工艺,技能上可行,经济上合理,是化尾矿浮选的抱负工艺。  (4)因为化浸出渣粒度细,矿浆比严重,因而浮铅时选用高浓度、快速浮选有利于铅的收回。  (5)化尾矿归纳收回利国利民利环境,大有作为。该厂出产实践证明,化尾矿归纳收回不只技能上可行,并且每年可获赢利300余万元,还能够安顿60余名员工上岗,经济效益、社会效益非常明显。

湘西金矿含金尾矿资源综合回收工艺

2019-02-21 12:00:34

湘西金矿含金尾矿资源归纳收回工艺,对收回成份杂乱的含金矿石和含金尾矿具有很好的学习示范作用。     湘西金矿含金尾矿资源是国内外稀有的以微细粒及包裹金嵌布为主,成份杂乱。该工既可收回对化有害元素锑及包裹在硫化物中的微细粒金,又最大极限地完成了金的收回。使用冶炼厂排出的二氧化硫气体,对含尾矿水进行管理,以废治废,完成了合格排放,工艺流程和技术指标均到达国际先进水平。     湘西矿有着丰厚的尾矿资源,3个尾矿库总量近400万吨,其间1号库堆存的是1955年至1968年排放的老尾矿,经勘察,金、锑、钨均匀档次分别为4.18克/吨、0.174%、0.161%。该工艺经工业生产实验标明,当给矿档次到达均匀档次时,选用“浮选金锑+尾矿化”流程,选矿收回率金可达73.18%,锑可达30.5%;选冶总收回率金为69.9%,锑为24%,可年产黄金105公斤,2号精锑62吨,年经济效益可达340万元。

难选稀土矿物回收工艺技术

2019-01-24 17:45:39

对于氟碳柿矿和独居石的原生矿,工业品位指标一般要求含Ce2O3>1%;对于独居石砂矿要求含独居石矿物量大于300g/m3。氟碳柿矿主要用浮选法回收;独居石通常采用重选、磁选、电选联合流程回收,也有在工艺的个别环节采用的浮选的。磷钇矿是选钛、锆矿物时的副产品,通常采用重选、电选、强磁选联合流程进行分选,但这种方法对细粒物料不适用。近年来用浮选法回收钇精矿的工艺引起重视。离子吸附型稀土矿以离子状态吸附在高岭石、埃洛石、石英、蒙脱石和伊利石等粘土矿物中。离子吸附型稀土矿不需要破碎,采用化学选矿法回收稀土氧化物。20世纪70年代的生产工艺为食盐水渗浸-草酸沉淀稀土,母液用苛性钠中和处理后循环使用。80年代初,渗浸设施有所改进,母液回收改为石灰乳中和再生。硫酸铵溶液渗浸-草酸沉淀稀土-灼烧工艺流程是已成为主要的生产工艺。

石料生产线废水处理及水回收工艺

2019-01-17 10:51:29

废水处理工艺流程 石料加工系统产生的废水主要来自生产过程中产生的冲洗水,其主要成分为细砂及泥浆等悬浮物,有机污染物含量为零,因此,石料加工系统废水处理回收工艺和效果受废水含泥量和废水颗粒级配的影响很大。 石料加工系统的骨料经破碎筛分冲洗后为成品料,开挖、运输、破碎过程产生的废料经水冲洗后落入水中,废水中的主要杂质为泥渣和石粉。因此,石料加工系统废水处理系统主要构筑物的设计、设备选型的主要技术参数是依据废水量和水中含泥量来确定的。 沙沱水电站石料加工系统生产废水处理系统设计规模为1100m3/h,系统主要由螺旋分级机、链板式刮砂机、二级竖流沉淀池、斜管沉淀池、清水池等组成。 石料加工系统生产废水处理的核心是固体沉淀与固液分离,其中固体沉淀又是固液分离的前提,因此,废水处理工艺主要考虑固体沉淀。 工艺特点 沙沱水电站石料系统废水处理前期运行因设计数据及管道安装方面存在一些问题,系统没有达到预期的处理效果,在水回收利用及环保方面的效果不明显。2008年6月,经过改进后废水处理效果有了明显的改善,回收利用率大大提高,各个构筑物都发挥了最好的处理效果。该系统工艺特点如下: (1)三级沉淀,实现泥水分离。废水处理系统处理的废水大部分是来自一筛车间的冲洗水。一筛车间的废水经螺旋分级机处理后,其中砂粒用皮带运送至三筛车间进行回收,溢水流至刮砂机进行处理,沉淀的砂回收至三筛车间,处理后的废水到二级沉淀池再次沉淀,从二级沉淀池出来的水中悬浮物浓度已基本达标,这样再经斜管沉淀池进行最后一级沉淀后,悬浮物浓度小于150mg/L,直接排到清水池回收利用至石料生产系统,大大节约了生产成本。 (2)污水与污泥处理系统配合,提高了环保系数。系统处理后的清水直接回到石料生产系统,而经过螺旋分级机及刮砂机回收处理后,从二级沉淀池及斜管沉淀池沉淀的污泥中已基本不含砂粒,污泥经过泥浆泵提升至污泥干化车间,处理后的泥饼运到水淹坝渣场集中堆放,而污泥干化过程中产生的污水则排到二级沉淀池进行再处理,这样污泥和污水系统联合使用,石料加工系统基本达到废水零排放,完全达到了环保生产的要求。 (3)使用链板式刮砂机进行砂回收。根据设计计算数据及生产运行中的试验数据显示,经螺旋分级机处理后,回收的仅是粒径大于0.7mm的颗粒,回收率比较低。作为后续处理设备,链板式刮砂机完全解决了小粒径砂粒回收难的问题。 经链板式刮砂机处理后可回收粒径为0.08~0.7mm的砂粒,甚至可回收粒径小于0.08mm的砂粒。这不仅解决了砂的回收问题,节约了生产成本,而且大大提高了成品砂的石粉含量,满足了碾压混凝土对石粉含量的要求。

应该加紧废电池的回收工作

2019-02-11 14:05:30

对自然环境要挟最大的五种物质,电池里就包含了三种:、铅、镉。若将废旧电池混入日子废物一同填埋,渗出的及重金属物质就会浸透土壤、污染地下水,进而进入鱼类、农作物中,损坏人类的生存环境,直接要挟到人类的健康。而每节电池中含有 22%的锌、26%的锰、17%的铁,3000 吨废旧电池能够收回杂锌锭 141 吨、冶氧化锰 300 吨、铁皮 260 吨、电解锌 181 吨、电解二氧化锰 340吨、铁皮 500 吨,价值相当大。假如不处理就扔了,等于每年白白把几千万吨的有用质料都扔了。 跟着我国电动自行车的迅猛添加,废电池的污染危险也日益增大。电动自行车电池约有 70%是铅酸电池,30%是镍镉电池,使用寿命一般都很短,每年会发生很多废旧电池,构成严峻污染危险。而一块电动车电池构成的损害则不知要比普通干电池大多少倍。这些废电池大都由一些个体户、收荒匠或许修理厂私自收回。处理办法也十分简略:把电池里的酸液倒掉后,再取出电池里边的金属铅出售。这些倒掉的酸液里含有锌、锰、镉等多种重金属,这些含有重金属的有害酸液大多直接进入了下水道,再排放到废水处理厂,在乡村就有或许浸透到地下水中,构成较为严峻的结果。跟着经济的开展,乡村的废电池发生量也在日益增长。这些电池如不能得到及时的收回和处理,将对乡村的水、土地安全构成不可估量的损害。所以有必要赶紧废旧电池的收回,其详细施行办法:(一)政府部分要在这项工作中真实发挥效果,要对电池收回拟定翔实的细则,让收回与不收回没有奖赏、处分,有关职能部分不能对出产厂商、收回部分、个人做出有针对性的辅导等现象有一种根本性的改动。并活跃介入废旧电池的收回网络,并成为网络建造与办理的主导力气。(二)加大对电池收回的宣扬力度增强人们的环保知道。让大众知道废电池里边到底有哪些污染物。并简略知道各式电池。了解电池收回的重要性。清楚明晰废电池收回管道。知道哪些电池应该收回哪些电池不能收回。让我们更科学地知道废电池处理问题,让废旧电池的损害性家喻户晓,构成遍及的自觉搜集、自觉上交的知道,使越来越多的人树立废旧干电池有必要收回使用的观念,然后自觉参加收回活动。(三)应拟定相关的方针法规,规则废旧干电池有必要收回,制止将废旧干电池随意丢入日子废物之中。(四)对活跃参加废旧干电池收回使用的科研单位和厂商要给予方针和资金歪斜,保证投资者本钱的增值和处理单位产品的优先推行。鼓舞私营厂商收回废旧电池,政府采取了补助方针,并促进废电池处理厂的树立。 (五)要充分发挥固体废物收回处置中心的效果。实在办理好已设废旧电池搜集网点,并有规划地增设废旧电池搜集网点,加大废旧电池收回桶安顿。加速遍及废物的分类收回,在大中小城市和城镇各居民点遍及建立专门收回电池的废物桶。进一步完善收回系统,让收回网络以中心城市向周边城市扩张,中小城市向乡村扩张。并拟定出让广阔农人交出手中的废电池的有用办法。(六)为废旧干电池收回使用发明各种便当条件。比如在供应电池时,实施抵押金准则,或选用以旧换新准则,保证废旧干电池的收回率。(七)整合社区办理和社会各界的力气,让更多的人参加这项意国利民的环保工作之来。如让志愿者在各地开展活动;使用校园—家庭—社会的传递形式,更好发起和积累起青少年的力气等等。

含金尾矿资源综合回收工艺研究通过鉴定

2019-02-18 15:19:33

由长春黄金研讨院与湖南省湘西金矿承当的国家“九五”攻关项目——《含金尾矿资源归纳收回工艺研讨》,近来经过判定。    湘西金矿老尾矿资源是国内外稀有的以微细粒及包裹金嵌布为主的组份杂乱的含金物料。含有对化有害的元素锑。该专题经过选矿实验研讨,断定了“浮选金锑+尾矿化”的选冶工艺流程。并规划建立了100吨/日尾矿处理厂。经工业生产实验,实践生产能力达120吨/日。在处理金档次为1.8克/吨、锑为0.217%的老尾矿时,选矿收回率可达72.49%,锑可达41.33%。该项目取得了明显的经济效益和社会效益。

北坑钨矿选钨硫化矿尾矿综合回收工艺研究

2019-01-31 11:06:17

福建省钨矿资源丰富,三氧化钨总储量居全国第 4 位,并伴生有很多的钼、铋、铜等有用金属硫化矿藏。长期以来选矿厂只收回钨,对伴生硫化矿藏未采纳归纳收回办法。清流北坑钨矿,每年排出很多选钨硫化矿尾矿,在构成资源丢失的一起,又污染了环境。为了合理开发利用矿产资源,进步矿山的经济效益,削减环境污染,咱们对北坑钨矿的选钨硫化矿尾矿进行了归纳收回工艺研讨。经过对3 种流程计划的实验比较和药剂条件的实验,终究选用等可浮工艺流程,取得了杰出的选别目标。 一、原矿性质 (一)矿藏组成 原矿中的金属矿藏以黄铁矿、辉铋矿、辉钼矿、黄铜矿、黄铁矿形赤铁矿-褐铁矿为主,还有少数的黑铜矿、泡铋矿、磁黄铁矿-赤褐铁矿、闪锌矿、方铅矿、辉铜矿及微量的黑钨矿、毒砂等 。非金属矿藏以石英、钾长石、斜长石、白云母为主,萤石、绢云母、黝帘石、绿帘石等次之。原矿的多元素化学分析及矿藏含量见表 1、表 2。 表1 原矿多元素化学分析成果∕%表2   原矿的矿藏含量 ∕ %(二)首要矿藏特征及连生联系 1、辉铋矿。多呈半自形柱状晶体,部分出现细粒状集合体与石英、辉钼矿、黄铜矿连生。 2、泡铋矿。呈不规则他形粒状或集合体,系辉铋矿的表生产物,可见到两者严密伴生、表里相依现象,有的与石英及铁的氧化物连生。 3、黄铜矿。多呈近于等轴状的他形碎屑状,少部分为细粒细密状集合体,多与石英,黄铁矿共生,亦见其与闪锌矿共生,与辉铋矿连生。 4、黑铜矿。土状碎屑。常与黄铜矿相伴产出,有的散布在黄铜矿表面或其微裂隙中,属氧化带或地下水沿(微)裂隙体系作用于原生矿构成的表生矿藏。 5、辉铜矿。细密块状,有的与黄铜矿连生,可能是表生构成。 6、辉钼矿。出现六方板状片状。部分呈细鳞片状集合体,与辉铋矿共生,可见其部分包裹后者,与白云母连生。此外还与黄铁矿连生。 7、黄铁矿。呈六面体,十二面体及二者聚形的自形、半自形晶及其碎屑,简直与本矿样所见的各种硫化物共生或伴生。部分黄铁矿程度不同地转化为赤铁矿、褐铁矿。 二、选矿实验 (一)准则流程的断定 因为该硫化矿尾矿在选钨时已经过药剂处理,因而选用进行解吸、脱药,并进行一段磨矿至-74μm占80%。 从原矿性质的研讨中能够看出,该硫化矿尾矿中有用矿藏品种多,组成较杂乱,且铜、铋矿藏已有必定程度的氧化。依据矿藏的可浮性特色,辉钼矿的可浮性很好,应优先浮选。而铜与铋矿藏的可浮性相近,其间部分黄铜矿和辉铋矿也具有很好的可浮性,简单进入钼精矿产品中。假如选用单一优先浮选,需参加很多按捺剂,按捺铜、铋矿藏,然后又要参加很多的活化剂进行长期的活化。假如选用全混合浮选,混合精矿中铜、铋矿藏会因表面吸附了药剂而难以别离。为防止上述两种状况,决议进行钼、铋铜,钼、铜 铋及等可浮三种流程计划的比较实验。实验成果见表3。实验成果表明: 1、钼、铋铜浮选流程。在钼铋浮选时,尽管用了按捺铜,但仍是有56.73%的铜进入钼铋精矿。在选铜时尽管参加硫酸铜进行了活化,但仍有40.44% 的铜留在尾矿中。因而该流程难以得到独立铜精矿。 表3  准则流程实验成果2、钼、铜_ 铋浮选流程。在钼铜浮选时需选用钠按捺铋矿藏,但铋矿藏经按捺后难以活化,构成56.98% 的铋进入尾矿,无法收回。 3、等可浮流程。在钼铜浮选时,不加铋矿藏的按捺剂,让部分易浮的铋矿藏与钼铜精矿一起浮出后再进行别离,然后不影响后边难浮铋矿藏的浮选。该流程的各项目标均比前两个流程好,因而断定该流程为准则流程。 (二)浮选条件实验 1、钼铜粗选的药剂条件,经过正交实验断定为石灰800g∕t,火油450g∕t,丁胺黑药60g∕t 。钼_、铜 铋的别离选用钠作为铋矿藏的按捺剂,经实验断定为石灰800g∕t,钠3000g∕t。钼_铜别离选用作为铜矿藏的按捺剂,经实验断定用量为6000g∕t,钼精选时用量为3000g∕t。 2、铋粗选的药剂条件,经过正交实验断定为丁黄药300g∕t ,硫酸锌1200g∕t ,200g∕t ,2#油 30 g∕t,铋扫选时补加少数的丁黄药。 3、铋扫选后参加硫酸600 g∕t 调整pH值,参加硫酸铜800 g∕t,丁黄药300 g∕t,2#油24 g∕t,进行硫的浮选。 终究闭路实验流程见图1,实验成果见表4。图1  闭路实验流程 表4  闭路实验成果注:Ag的含量为×10-6。 三、定论 (一)关于象北坑钨矿选钨硫化矿尾矿这种杂乱多金属硫化矿的别离,选用等可浮工艺是一种较佳的计划。能够充分利用矿藏本身可浮性的差异,削减药剂用量,并能够削减因矿藏表面吸附药剂而难以按捺,或是按捺了今后难以活化的现象,取得杰出的选别目标。 (二)本工艺研讨是针对北坑钨矿选钨硫化矿尾矿的归纳收回,对省内其它矿山同类型矿石的归纳收回也具有必定的参阅和学习。

钴酸锂电池

2017-12-27 15:15:01

钴酸锂电池结构稳定、容量比高、综合性能突出、但是其安全性差、成本非常高,主要用于中小型号电芯,广泛应用于笔记本电脑、手机、MP3/4等小型电子设备中,标称电压3.7V。钴酸锂的用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。钴酸锂的技术标准1、名称: 钴酸锂 分子式: LiCoO2 分子量: 97.88 2、主要用途: 锂离子电池 3、外观要求: 灰黑色粉末, 无结块 4、X射线衍射: 对照JCDS标准( 16-427) , 无杂相存在 5、包 装: 铁桶内塑料袋包装 6、化学成分与物化性能指标: 镍 Ni 0.05% max (wt%) 锰 Mn 0.01% max (wt%) 铁 Fe 0.02% max (wt%) 钙 Ca 0.03% max (wt%) 钠 Na 0.01% max (wt%) 酸碱性 PH 9.5-11.5 含水量( 105ºC干燥失重量, %) Moisture (wt% loss at 105ºC) <0.05 比表面积( m2/g) BET surface Area (m2/g) 0.2-0.6 振实密度 (g/cm3) Tap Density (g/cm3) 1.7-2.9 粒径大小-D50 (μm) PSD- D50 (μm) 5-12 粒径大小-D10 (μm) PSD- D10 (μm) 1-5 粒径大小-D90 (μm) PSD-D90 (μm) 12-25钴酸锂电池的应用还是比较少的,小电池用钴锂的技术很成熟,但现在钴锂的成本太高,很多公司用锰锂来代替,有的全是锰锂的。钴酸锂性能稳定,目前应用于手机等的技术最为成熟,但应用的最大缺点就是成本高,钴是比较稀缺的战略性金属;另外应用于动力电池方面也有一定的难度。

钴酸锂价格

2017-06-02 15:15:12

钴酸锂价格受进来利好的影响,开始上涨。由于最近欧美经济数据利好于预期,LME基本 金属 连续上涨四个交易日。昨夜,伦敦钴市 现货 买价小幅上涨975美元/吨至38575美元/吨,卖价39575美元/吨上升975美元/吨;三月期买价上涨1000美元/吨至38000美元/吨,卖价39000美元/吨亦上涨1000美元/吨。国内氧化钴最低价从21.8万元/吨下滑至21.5万元/吨,最高报价22万元/吨维持不变,市场交易平淡。四氧化三钴报价在22.8-23.0万元/吨左右。虽然大厂今日都有成交,但由于下游钴酸锂厂交易平淡,四钴厂商已经采取减产措施。由于钴酸锂持市场持续冷清,今日钴酸锂最低价下滑0.1万元/吨至23.7万元/吨。    钴是一种化学元素,符号为Co,原子序数27,属过渡金属,具有磁性。钴的英文名称“Cobalt”来自于德文的Kobold,意为“坏精灵”,因为钴矿有毒,矿工、冶炼者常在工作时染病,钴还会污染别的金属,这些不良效果过去都被看作精灵的恶作剧。 钴矿主要为砷化物、氧化物和硫化物。此外,放射性的钴-60可进行癌症治疗。    在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。1735年瑞典化学家布兰特(G.Brandt)制出金属钴。1780年瑞典化学家伯格曼(T. Bergman)确定钴为元素。长期以来钴的矿物或钴的化合物一直用作陶瓷、玻璃、珐琅的釉料。到20世纪,钴及其合金在电机、机械、化工、航空和航天等工业部门得到广泛的应用,并成为一种重要的战略金属,消费量逐年增加。中国于50年代开始从钴土矿、镍矿和含钴黄铁矿中提钴。    钴酸锂价格走势需要看后市情况而定。目前从市场交易情况来看,国内钴市仍处消费淡季。近期商家纷纷拜访客户,欲了解市场。近期虽然大家情绪稍有平静,下游 电池 商频频询价,但对市场交易还是持谨慎态度,以致钴酸锂成交持续平淡。预计钴酸锂价格还有小幅下调空间,其他钴产品近期走势将平稳。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

一张图看懂钴酸锂

2019-01-03 15:20:52

三元材料取代钴酸锂任重而道远

2019-03-06 10:10:51

现在三元材料可谓是锂电池中的宠儿,开展速度十分快,在渐渐侵入整个使用商场。钴酸锂通过多年的开展,现已占有了锂电池商场的半壁河山。三元材料何时可以替代钴酸锂?       三元材料是镍钴锰酸锂Li(NiCoMn)O2,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为质料。钴酸锂一般使用作锂离子电池的正电极材料。电池结构安稳、容量比高、归纳功能杰出、可是其安全性差、本钱十分高。 从上以上两个图表可以看出,三元材料不管在性价比仍是在环保安全功能上远超钴酸锂。 三元材料替代钴酸锂之路依然负重致远? 三元首要冲击的是钴酸锂的中心使用范畴——数码产品商场。据工业研究所(GBII)数据显现,在2013年的正极材料商场,中国商场关于三元材料的需求,现已到达15600吨,其间80%用于笔记本电脑、平板电脑、手机等数码产品。三元材料如此大行动地进攻钴酸锂的“要害”,其来势汹汹的态势,不由让业内人士猜想技能路途风向正在反转。但需求留意的是,比较于三元材料,钴酸锂具有一系列功能与技能优势,更受商场喜爱。因而,大部分业内人士对现在的钴酸锂商场依然持积极态度,他们以为三元材料能否成功替代钴酸锂,商场取向起决定作用。三元材料中,钴的质量分数一般控制在20%左右。尽管三元材料到达“少钴化”的要求,本钱也得到明显的下降,可是其在压实密度、高电压、高容量、耐高温等功能方面仍与钴酸锂有必定的距离。数码设备日趋轻浮化规划,对电池容量的要求也日益提高。正极材料的压实密度作为影响锂电池容量的要素之一,钴酸锂的单晶颗粒状形状,现在可以做到4.2 g/cm3的压实密度,是作为小颗粒二次聚会体的三元材料无法幻想的高难度应战,成为三元材料拓宽蓝图的“硬伤”。事实上,现在可以满意移动设备待机要求的老练电池也只要钴酸锂电池,在消费类数码产品范畴,钴酸锂电池依然处于主导地位。尽管三元材料商场需求有所增加,但比起钴酸锂而言,其商场份额依然不可同日而语。何况三元材料在以下几个方面存在短板。      三元材料厂商多而不强。GGII计算,截止2016年末国内三元材料出货量逾越8000吨的厂商没有出现,各大厂商产品同质化严峻,均以523、111类型为主。一起受Tesla带动,国内三元动力电池掀起一场扩张高潮,材料厂商方面自2015下半年至今已新增一批三元材料厂商。未来跟着技能的不断进步,长续航路程电池需求加大,三元材料商场需求出现产销两旺时期,在利好布景下,商场将会出现一大批新进入者。中心专利缺失,低端产能重复建造。现在全球镍钴锰酸锂专利主要在美国3M及阿贡实验室手中,巴斯夫、美丽科、瑞翔等均有购买3M或阿贡实验室专利有用权,而国内专利一时相对单薄。未来大规模开展后,在出口商会发生专利胶葛。      现在国内三元材料类型以523为主。不管数码仍是动力电池用三元材料,使用量最多的仍为523类型。从电池形状上来看,国内原装三元电池遍及选用NCM523,选用叠片工艺的三源动力电池选用NCM111,其间三元圆柱的产值大于方形叠片电池。      从上图看出,三元材料未来商场中潜力巨大,现在处于上升期。跟着技能的开展,厂商的不断自我完善,未来商场用量也极有或许逾越钴酸锂。只能说逾越钴酸锂的路途比较绵长。

钴酸锂电池优劣势分析

2018-10-11 10:06:06

钴酸锂电池是以合成的钴酸锂(化学分子式LiCoO2)化合物作为正极材料活性物质的锂离子电池,在所有的充电锂电池中,钴酸锂是最早应用的正极材 料,钴酸锂电池也是循环性能最好的。一、钴酸锂电池的优势:钴酸锂电池是电化学性能优越的锂电池,容量衰减率小于0.05%,首次放电比容量大于135mAh/g,电池性能稳定,一致性好,另外,在工艺上容易合成 ,安全性能好。钴酸锂电池的工作温度为-20~55℃。二、钴酸锂电池的不足:1、钴的价格高,仅产于非洲的一部分地区,有地域纷争及价格变动的风险;2、LiCoO2的岩盐性结构,可去除的锂仅为原来比例的大约50%,就是说,过充时基本结构会发生破坏,失去可逆充放电循环,这使得钴酸锂电池存在过充安全隐患,需要附加电路保护板;3、热稳定性和毒性指标不够理想, 对策较为复杂。三、钴酸锂电池的制备,主要技术表现在锂粉的制造上:钴酸锂电池使用液相合成工艺,将锂盐、钴盐分别溶解在聚乙烯醇和聚乙二醇溶液中,混合 后的溶液经加热浓缩成凝胶,凝胶体在高温下煅烧形成的粉体碾磨过筛即得到钴酸锂粉。四、钴酸锂电池的应用:钴酸锂电池因具有容易合成、电压平台高、比能量适中,特别是循环性能优越,而成为锂离子电池的主流。但是钴储量的不 足和制备中对其毒性与过充的克服,加大了钴酸锂电池的成本,因而钴酸锂的市场一般定位于便携式设备而不适用于大型动力。