您所在的位置: 上海有色 > 有色金属产品库 > 还原钛工艺

还原钛工艺

抱歉!您想要的信息未找到。

还原钛工艺百科

更多

钒钛磁铁矿转底炉煤基直接还原-—电炉深还原、熔分新工艺

2019-01-04 11:57:12

2010年7月3日,由四川龙蟒集团开发的“钒钛磁铁矿转底炉煤基直接还原-—电炉深还原、熔分新工艺”通过了工业化试验研究成果鉴定。本次鉴定会由四川省科技厅组织,由来自北京科技大学、东北大学、北京有色金属研究总院等国内从事资源综合利用的知名院士、专家组成了权威的鉴定委员会,并由中国金属学会理事长、工程院院士翁宇庆担任鉴定委员会主任。鉴定委员会专家通过现场实地考察、认真审阅技术研究和工业化试验报告、第三方检测报告,通过严格的技术答辩,对该成果给予充分肯定与高度评价。鉴定委员会专家一致认为,四川龙蟒集团开发的“钒钛磁铁矿转底炉煤基直接还原-—电炉深还原、熔分”工艺路线,优化了还原控制参数,从根本上解决了现有高炉流程无法回收钒钛铁精矿中钛资源的难题,实现了从钒钛磁铁矿中全面回收铁、钒、钛、铬的目标,全流程回收率达到钒86%、钛99%、铁97%、铬80%的水平,属于钒钛磁铁矿综合利用领域的重大突破性创新技术,对转底炉直接还原应用于复合矿综合回收有益元素提出了方向,具有广泛的推广价值,项目成果达到了国际先进水平。       我国攀枝花—西昌地区蕴藏有丰富的钒钛磁铁矿资源,其中钛资源占全国储量的93%,居世界第一位;钒资源储量占全国储量的63%,居世界第三位。但是,高炉冶炼作为目前国内处理钒钛磁铁矿唯一产业化技术,能回收利用的仅是钒钛铁精矿(钛磁铁矿)中的铁、钒,对其中的钛只能丢弃。而国外目前处理钒钛铁精矿的工艺也无法实现对铁、钒、钛的同时利用。从七十年代起,就如何合理开发利用这一宝贵资源,人们一直没有停止探索和试验研究。以我国为例,在方毅副总理的关心支持下,在上个世纪60~80年代,我国曾组织全国的科技力量进行攻关,但由于钒钛磁铁矿的矿物结构非常复杂,造成与与高炉流程相比,经济上不合算,经过几十年的攻关,最终都无法实现产业化。

钛矿选矿工艺

2019-02-25 09:35:32

钒钛磁铁矿:这是我国钛铁矿岩矿床的首要矿石类型。依据攀枝花矿山公司的选矿研讨和出产实践,其钛铁矿精矿的选矿是在对钒钛磁铁矿石经一段磨矿(-0.4mm),一粗、一精、一扫的磁选流程磁选出磁铁矿精矿(Fe51%~52%,TiO212.6%~13.4%,V2O50.5%~0.6%)之后的磁尾(矿)进行。 钒钛磁铁矿石以Fe与Ti方式细密共生赋存在钛磁铁矿中的TiO2(约占攀西区域TiO2总储量的53%),因为赋存状况、粒度,以及在高炉冶炼绝大部分没有被复原而以TiO2方式进入炉渣的化学反应特性等要素,现在还难以用机械选矿办法收回使用。 可是,跟着攀枝花钢铁研讨所和北京钢铁研讨总院对钛磁铁矿的铁、钛、钒归纳收回而对冶炼工艺和技能的改善与进步,现已基本上打通流程,取得了活跃的效果。此外,还展开了复原磨选制取铁粉和归纳收回钒钛的实验。其流程是: 钒钛铁精矿—铁粉燧道窑 碳复原—V2O5 破碎磨矿— 富钒钛料—湿法别离—TiO2 重磁选别离 钛铁矿、金红石砂矿:这是我国现在出产钛铁矿和金红石精矿的首要矿石类型。依据海南中兴精密陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜(铺前)、乌场(保定)4个国有钛(砂)矿的出产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技能指标如图3.5.10。采矿的回采率>95%,贫化率 为了进步资源的使用率和经济效益,削减中矿、尾矿的积压和对环境的污染,广州有色金属研讨院曾专题研讨了“海南岛海边砂矿难选中矿钛元素赋存状况及归纳收回途径”(第三届全国矿产资源归纳使用学术会议论文集,1990年)。该研讨、实验标明: ①钛元素首要赋存在以Ti4+与Fe2+呈类质同象置换而构成的钛-铁矿系列中;其间钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的份额达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。 ②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿藏,矿藏粒度0.2~0.08mm(属可选粒度);选用二介质作“沉浮”选矿,比重 3.3的有用重矿藏下沉产率达73.5%。 ③在下沉的重矿藏中,除主收钛铁矿外,可归纳收回锆石、独居石、富钛钛铁矿和金红石;其有用的选矿流程有二:其一是有用重矿藏经电磁选场强6000Oe分选出占钛铁矿矿藏份额88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最终经场强650Oe弱磁选,在磁选产品中可取得TiO250%~51%的钛铁矿精矿产品;其二是有用重矿藏(钛铁矿粗精矿,含TiO243%~46%)经电选(2.1kV,120r/min),在导体产品中可取得TiO251%~53%的钛铁矿精矿产品。 ④在经场强8000—12000Oe磁选的尾矿中,再选用浮选,可取得合格的独居石精矿;再对其经场强>20000Oe磁选的非电磁性重矿藏尾矿中,选用电选,可在非导体性产品中取得合格的锆石精矿,在导体性产品中取得合格的金红石精矿。 国内外钛矿资源的90%以上用于出产钛白,钛白的出产工艺流程,首要有先进的氯化法、法和传统的硫酸法。

钛材生产工艺

2019-01-25 13:37:03

目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为:钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。  上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。    钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。  故钛和钛合金的加工工艺必须考虑它们的这些特点。  钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。  针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。  钛材生产的原则流程  钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等

硅热还原法生产工艺

2019-03-04 16:12:50

流程概述     硅热复原法是以白云鄂博的稀土富渣、稀土精矿渣或稀土精矿等为稀土质料,75硅铁为复原剂,石灰为熔剂,当炉渣含氟量最低时,也参加萤石为辅佐熔剂,在电弧炉内制备稀土硅铁合金的办法。     国外多选用稀土氧化物、氢氧化物、稀土精矿球团[16,17]等为质料,复原剂有硅铁、、硅锰、铝粉或其他复合硅合金,也有参加的,熔剂是碱金属和碱土金属的盐类或氧化物。     图1扼要描绘了我国硅热法出产稀土硅铁合金的工艺流程。     表1列出了当时我国稀土硅铁合金的国家标准。   表1 稀土硅铁合金化学成分要求(GB4137-84)牌   号化学成分/%RESiMnCaTiFe不 大 于FeSiRE21 FeSiRE24 FeSiRE27 FeSiRE30 FeSiRE33-A FeSiRE33-B FeSiRE36-A FeSiRE36-B FeSiRE39 FeSiRE42 FeSiRE4520.0~<23.0 23.0~<26.0 26.0~<29.0 29.0~<32.0 32.0~<35.0 32.0~<35.0 35.0~<38.0 35.0~<38.0 38.0~<41.0 41.0~<44.0 44.0~<47.040.0 45.0 43.0 40.0 40.0 40.0 39.0 39.0 39.0 37.0 35.04.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.05.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.03.5 3.5 3.5 3.5 3.5 1.0 3.0 1.0 3.0 3.0 3.0余量 余量 余量 余量 余量 余量 余量 余量 余量 余量 余量       钇基重稀土硅铁合金是我国20世纪70年代初开发的一个种类。钇基重稀土硅铁合金作为铸铁球化剂,也和轻稀土元素相同,除了具有激烈的脱氧脱硫作业外,还能使石墨化,进步铸铁的耐性与延展性。钇基重稀土的抗球化阑珊才能特别强,它在大断面铸铁件、稀土耐热钢以及铸铁焊条等范畴运用,弥补了轻稀土球化剂功能的缺乏。  稀土富渣石灰75硅铁       ↓  电弧炉  ↓  别离罐              冷却  ↓ ↓ 二次渣 稀土硅铁合金↓ ↓渣场 破碎包装  ↓  入库     (1)对原材料的要求     稀土富渣  为进步稀土收率和产值,要求REO≥12%,MnO≤2%,Fe≤1%,P2O5<1%,碱度为1.0±0.2,不得有显着的铁皮搀杂及砂土等,粒度为10~250mm。     石灰  要求CaO>85%,其他按炼钢用材料要求,粒度大于50mm,禁止粉石灰入炉。     硅铁  按国家标准75硅铁,含硅量大于75%,块度不大于150mm。     (2)配料  按所要求出产的稀土硅铁合金的化学成分,以炉料的化学成分为根据,按炉装入量核算出稀土富渣、硅铁、石灰量组成批量。炉料间的相对配比,随各种因素(如合金档次,各质料成分改变等)的改变而改变。经过长时刻的出产实践,现已总结出来几个经历公式。     ①稀土富渣与复原剂比(简称渣剂比)是断定稀土富渣配比的主要参数,可按下式核算:                                                 A·(R)·f=C·[R]·g                     [1] 这一公式可写成:                                                  A/C=g·[R]/f·(R)                        [2] 式中  A——稀土富渣量,kg;       C——含硅量,kg;      [R]——合金中稀土金属含量,%;      (R)——富渣中稀土氧化物含量,%,换算成稀土金属需乘以0.835;       g——合金率,即产出的合金与参加的硅铁质量比,可根据经历断定,%;       f——稀土回收率,%。     ②碱度与石灰。出产实践证明,按式(1)表明的配料碱度保持在3.0~3.5,出炉前的终渣碱度应在2.0~2.5为宜。  SiO2+2 C ==== Si+2CO        (1)  碱度=A[CaO]-1.47[F2]+B[CaO′][3]A[SiO2]+B[SiO′2]    式中  A——稀土富渣量,kg;       B——石灰量,kg;     [CaO]、[F2]、[SiO2]——CaO、F2、SiO2、在稀土富渣中的含量,%;     [CaO′]、[SiO′2]——CaO、SiO2、在石灰中的含量,%。    3MgO+2Si(1)====Mg2Si(1)+MgO·SiO2(1)              (2)        由式(2)可核算出石灰参加量。此公式适用于稀土富渣,假如运用稀土精矿渣为质料时,因为稀土氧化物也是碱性氧化物,当其含量大于30%,应对式[3]进行恰当批改,出产一一般选用的渣灰比经历公式是:                    B=(0.5~1.0)A                     [4]       稀土精矿渣宜选用低限,稀土富渣运用高限。     (3)冶炼工艺操作     ①加料熔化  送电前,应查看炉子机电设备、炉衬等是否正常,必要时要进行处理和修补。用大电压小电流送电起弧,当3个电极均有电流时即可进行加料。稀土富渣和石灰可由炉顶部两个加料漏斗参加,富渣和石灰替换进行放料;也可手艺参加。新炉壳容积小,可分两批放料,直到把悉数配料加完。石灰应尽量加在炉子中心区。电流一般安稳5min左右,即可将电流增加到变压器的答应值,以加快熔化。在熔化过程中,要勤推料,不断将炉内四周的未熔料,面向炉子中心的高温区。     ②复原  当炉料熔化约70%~80%时,即可停电抬起电极(也可不停电操作),将炉内四周未熔料面向中间,将凝结的大块打碎,最好拌和一下,使炉温各部成分均匀。然后,向炉心参加硅铁,尽量把硅铁加到高温三角区。如有硅铁显露液面,要及时把它压下,以削减硅铁烧损。此刻,可以用低电压大电流送电,使硅铁快速熔化,但应留意不要形成渣下金属过热。     在升温过程中,要留意炉顶逸出炉气的色彩和浓度改变及熔体液面状况。假如炉气由黄褐色,逐步变成灰白色,最终为蓝色,并观察到电极周围的渣面触摸处不断翻滚时,表明硅铁现已化完。渣温达1350~1400℃时,即可停电。抬起电极将炉体后倾必定视点,向炉内刺进中性气体管进行拌和,气体压力0.2~0.4MPa。开始时送风量要小,把风管刺进上部渣层试搅,以防俄然激烈拌和形成跑炉。逐步加大压力,把拌和管下插,视炉内反响欢腾状况前后倾动炉体,拌和方位随时改变,不留死角,要求炉内一直激烈欢腾而不溢渣。在拌和过程中炉内反响生成的气体很多逸出,焚烧旺盛,火焰由黄褐色变为灰白色,最终变成白色。一般火舌从电极孔穿出很高,当火焰下降欢腾削弱即可完毕拌和。拌和时刻一般为5~15min,长短由熔体量决议。取样分析后,决议是否持续拌和或出炉。     ③出炉  当炉前分析合金中稀土含量到达要求档次时,选用高电压中级电流提温至1350℃。出炉前先把门坎用石灰和焦粉垫起,使炉体趋于水平,停电3~5min,使渣铁很好别离。翻开出铁口,先将大部分炉渣放入渣罐,此刻,倾炉有必要缓慢,避免带出合金,然后将剩下炉渣和合金放入另一罐中,将合金彻底放出。出炉后将罐吊至规则地址冷却。冷却时刻表为4~6h。当合金冷至400~600℃时,即可翻罐。放完合金后把炉子康复到正常方位,进行下炉的送电起弧加料。    参 考 文 献    16、B.п.зaйko дp.,CMaль.1983,6:37    17、л.B.Cлeпobaдp.,CMaль.1983,1:25

非高炉炼铁工艺—Hlsmelt熔融还原炼铁工艺

2019-03-07 11:06:31

由澳大利亚的力拓矿业集团开发的HIsmelt熔融复原炼铁工艺,选用了铁矿粉及钢厂废料和非炼焦煤直接熔融的复原技能出产高质量的铁产品,可直接用于炼钢或铸成生铁。还能够循环运用热能,以到达下降本钱和削减污染的意图。从不断优化高炉炼铁和开发新式非高炉炼铁工艺考虑,可对炼铁出产完结节能减排和保护环境起到活跃的效果。HIsmelt熔融复原炼铁工艺作为习惯钢铁工业开展的需求而开发的熔融复原炼铁的出产工艺,可为炼铁出产供给了一种新的挑选。钢铁出产工艺包含传统的高炉—氧气顶吹转炉的长流程和依据电弧炉的短流程。近年来,受环保等方面要素的影响,短流程工艺遭到越来越多的重视。1996年以来,国际规划内有很多短流程优质扁平材出产厂投产。这些短流程钢厂仅承当较低的折旧费用,还能运用废钢来削减出产本钱。因而,短流程钢厂的热轧出产本钱要比钢铁联合厂商的低。推进这种趋势开展的首要原因有以下几个方面:高炉出产对质料的规格要求较严厉,质料预加工(焦化、球团和烧结厂)使高炉出产成为环境污染的首要排放源,新建或改造高炉的出资额巨大,国际规划内的焦炉遍及呈老化状况,也需求很多出资。正常状况下,为了取得规划经济效益,钢铁联合厂商的缔造规划都很大,因而,温室气体排放和环境污染的问题比较严重。电炉炼钢厂的状况则有所不同,与钢铁联合厂商比较,其竞争力相对较强。关于电炉炼钢厂来说,优质、安稳的铁直销可显着进步电炉炼钢的出产率,下降出产本钱。因而,在炉猜中调配铁水就具有较高的运用价值。在此条件下,开发具有动力运用率高、质料及炉料习惯性强、出资本钱低、操作灵敏等特色的炼铁工艺,已成为钢铁联合厂商重视的课题之一。 首要,HIsmelt工艺将金属熔池作为根本的反响前言,炉料直接注入到金属中,熔炼进程首要经过熔解碳进行。而其他熔融复原炼铁的出产工艺一般都选用顶装矿石和煤炭工艺,经过渣层中的碳化物(及少数金属)进行熔炼。与渣中的碳比较,金属中的熔解碳作为复原剂的反响功率更高,其原因首要是因为渣中的碳需求转换为气相复原介质。也就是说,HIsmelt工艺是经过运用更具活性的碳(溶解碳)取得了更快的熔炼速率。其次,HIsmelt工艺中熔体的混合度与其他工艺不同。在HIsmelt工艺中,将炉料直接注人到金属中,发生很多的“深层”气体,这会构成一个微弱的上浮气流,导致熔液快速翻转。核算标明,翻转的流量到达每秒数吨的等级。在这种条件下,在液相中构成实质性温度梯度(大于20~30℃)的可能性很小,体系实质上以等温熔体的方式作业。此外,熔体的快速翻转促进了从炉顶空间到熔池的热传递,一起杜绝了单一液滴显着过热的现象。这关于渣区的炉膛耐火材料的保护含义严重,因为熔体的杰出混合可使耐火砖仅露出于低FeO含量及温度较低的介质中。 在熔炼中,经过运用大规划的煤种、矿石和典型的钢厂废料(回炉料),HIsmelt工艺的适用性得到了充沛证明。试用煤种的规划广泛,使其对工艺性能的影响能够被量化。因为汽化和蒸发割裂解效果导致的热能丢失,高蒸发分(最高达38%)煤对HIsmelt炼铁工艺具有负面影响。煤中氧、水分和灰分的含量对出产也有潜在影响。实验标明,该工艺中间实验用的一切煤种均可用于实践出产,在煤种的挑选上,仅需从经济方面的考虑。对选用各种矿石炉料复原水平的产能进行评价,包含赤铁矿、赤铁矿/针铁矿、针铁矿和直接复原铁。对矿粉/直接复原铁混合料进行了预复原的中间实验。此外,运用热风氧富集(最高含氧量达30%)成功地进步了熔炉的作业功率。收回料包含高炉和氧气转炉的粉尘、泥渣、铁鳞等。因为收回猜中的碳得到充沛的运用,可使全体煤耗量大幅下降。此外,因为炉猜中铁的预复原水平较高,出产功率得到进步。与铁矿石冶炼比较,收回料无须额定进行处理和加工。表1示出了对高炉和HIsmelt炼铁体系的出资进行比照的研究结果。从表1可看出,HIsmelt工艺的吨钢出产本钱为180~310美元,而钢铁联合厂商的典型吨钢出产本钱为320~450美元。此外,HIsmelt工艺还具有以下特色:质料要求的预处理量很小,熔炼前无须选矿;具有较高灵敏性,能够依据钢厂的出产进行大幅度的调整;可出产质量优异且安稳的铁水;炉料的反响时刻以毫秒核算,温度操控优于高炉;具有高度集成的在线工艺操控体系,设备运转和操作简略,全体设备保护量小;具有显着的环保优势。与高炉炼铁工艺比较,一座装备了矿石加热体系的HIsmelt炼铁厂有望将每吨铁水的二氧化碳排放量削减约20%,并能够有用地操控二口恶英的生成。因为在HIsmelt工艺中能够撤销焦化和烧结工序,因而较为环保。此外,很多运用钢厂废料的潜力可进一步稳固HIsmelt工艺的环保优势。 表1典型的Hismelt和高炉工艺的出资和出产本钱项目产值,万吨出产本钱,美元/吨出资,百万美元高炉1109326355高炉2236373880高炉3109356388高炉42434481088Hlsmelt 1(冷矿)50310155Hlsmelt 2(冷矿及废料)58259150Hlsmelt 3(预加热)63286180Hlsmelt 4(预复原)150191286Hlsmelt 5(预加热)110181200表2 不同工艺出产铁水的化学成分比较表项目高炉HIsmeltCorexC, %4.54.3±0.24.5~4.7Si, %0.5±0.300.6±0.2P, %0.09±0.020.0±0.0<0.10S, %0.04±0.020.1±0.10.01±0.02温度,℃1430~15001480±151490~15203 Hlsmelt工艺的铁水质量除出产本钱外,对不同工艺出产铁水的化学成分进行了比较。表2列出了高炉、HIsmelt以及Corex工艺出产铁水的化学成分。各种铁水的化学成分首要存在3方面差异。(1)硅(Si)含量。炼钢厂能够运用HIsmelt出产的铁水不含硅这一特色进行低硅铁水操作,可削减造渣量,并下降造渣剂的消耗量。事实上,为了进步氧气转炉的出产率,下些钢厂一般需求对高炉出产的铁水进行脱硅处理。(2)磷(P)含量。在HIsmelt工艺中,能够运用高磷铁矿粉(磷含量0.12%)进行出产。铁矿中的磷大部分被氧化转变成炉渣,使铁水中的磷含量低于0.04%。与此构成鲜明比照的是,高炉和Corex工艺中,铁矿石中的磷含量均彻底进入到铁水中,给后续的炼钢出产带来不必要的费事。因而,高磷矿一般不适用于高炉和Corex工艺。(3)硫(S)含量。HIsmelt工艺出产铁水的硫含量高于高炉和Corex工艺。但现有的铁水脱硫技能能有用地处理HIsmelt工艺出产的铁水,且不会发生剩余的费用。4 Hlsmelt工艺的含义 1)关于短流程钢厂的含义。电炉炼钢厂运用的炉猜中可增加30%~50%的铁水。HIsmelt工艺出产的铁水能够作为生铁、直接复原铁和高档次废钢的优质替代品,在炉猜中供给很高的运用价值。其长处首要包含:进步出产率,缩短炼钢周期,削减吨钢能耗;下降制品钢中的剩余搀杂含量,产品质量愈加安稳;有用削减造渣剂的消耗量和吨钢耐火材料的消耗量。此外,HIsmelt工艺的开炉、停炉、停产等操作均十分简略易行,这关于电炉炼钢厂来说是至关重要的。HIsmelt工艺能够使炼铁和炼钢工序有用地结合起来,无须为保存和处理剩余铁水而额定建造贵重、且运用率较低的配套设备。(2)关于钢铁联合厂商的含义。关于钢铁联合厂商来说,HIsmelt工艺的首要价值在于不需求焦化厂和烧结厂所带来的流程缩短。HIsmelt工艺能运用低档次铁矿粉,无须预处理,大大增加了钢厂质料直销的灵敏性,使钢铁产品的本钱更具竞争力。别的,与运用优质炼焦煤比较,运用气煤也能大幅下降出产本钱。Hismelt炼铁厂的设备大多与高炉相同,因而,HIsmelt工艺的设备也极易融人到钢铁联合厂商的全体布局中。HIsmelt工艺可随时调整操作参数(如热风速率及氧富集水相等)和质料挑选,能够高效地习惯后续炼钢工艺改变带来的灵敏性要求。此外,HIsmelt工艺可轻易地开炉、停炉或停产,为钢铁联合厂商的出产操作供给了极大的挑选空间。即便产能较低的HIsmelt设备也可发生经济效益,因而钢角联合厂商可选用多座HIsmelt炉。这样做能够大幅下降停产检修或出产调整所带来的负面影响。此外,HIsmelt工艺出产的铁水可直接与高炉铁水混合运用,为氧气转炉供给精确硅含量的铁水。在日本,“无渣炼钢”工艺被广泛选用。高炉铁水在进入氧气转炉之前必须先进行脱硅、脱磷和脱硫处理,而运用Hismelt工艺出产的铁水能够革除脱硅处理,有用下降了处理本钱。Hismelt工艺还具有以下特色:削减复吹,削减造渣剂的消耗量,削减耐火材料的消耗量;削减铁合金的消耗量,进步铁水收率;吹炼时刻削减,出产率进步,可出产优质的高档(低磷)钢号,也可出产超洁净钢。 相关链接: ★1982~1984年期间: (1)HIsmelt工艺最早能够追溯到开端由德国KlocknerWerke公司在其Maxhütte工厂开发的底吹氧气转炉工艺(OBM)和随后不断开展的顶底复合吹炼工艺。 (2)1981年,CRA公司(现为力拓集团,RioTinto)认识到,Klöckner的转炉技能能够用于冶炼铁矿石,而不仅仅是废钢。因而,CRA公司与KlöcknerWerke公司组建了合资公司,一起开发炼钢和熔融复原技能。运用60吨的OBM转炉进行的测验证明了熔融复原工艺根本原理的合理性和可行性。 ★1984~1990年期间: (1)熔融复原工艺概念测验成功后,在KlöcknerWerke公司的Maxhütte钢厂建造了一座小型实验工厂(SSPP)。该厂规划能力年产1.2万吨,选用卧式可旋转的复原炉方式(SRV)。煤、溶剂和铁矿石均经过炉底喷喷入炉内。(2)SSPP工厂的实验出产从1984年持续到1990年,期间证明了该技能的工艺可行性。但出产规划问题依然没有得到解决。(3)在此期间,协作出资方发生了改变。1987年,Klöckner公司撤出了该项目,两年后CRA公司与Midrex公司按照50:50的份额组成了合资公司,持续一起开发该技能。(4)实验工厂取得成功后,协作两边认为有必要在更大的出产规划上对该工艺进行测验。(5)两边经洽谈后决议,在西澳大利亚奎那那区域建造HIsmelt工艺研制的工厂设备(HRDF)。 ★1991年期间: (1)年产能10万吨的HIsmelt研制工厂设备在奎那那建成。(2)建造HRDF研制工厂设备的意图是进一步证明规划扩展后该工艺的可行性,一起为终究的商业化出产供给操作数据。(3)奎那那工厂最早规划的复原炉方式是直接把SSPP小型实验厂的炉型扩展,即按照可按90度角旋转的卧式炉炉型进行建造。 ★1993~1996年期间: (1)奎那那工厂卧式炉的出产从1993年10月持续到1996年8月。(2)尽管工艺规划的扩展得到了成功验证,可是卧式炉规划杂乱, 对进一步商业化造成了困难。为战胜卧式炉的缺乏,合资公司开发出了水冷管结构的立式炉。(3)立式熔融复原炉(SRV)的工程规划于1996年完结。首要的改善包含固定的立式炉体,设置在上部的炉料喷,简略的热风喷,用于接连出铁的外置出铁炉,以及用以战胜耐材腐蚀的水冷管结构。(4)1994年,Midrex公司撤出合资项目,CRA公司进入单独开发阶段。 ★1997~1999年期间:(1)1997年上半年对HRDF立式炉进行了调试,随后的出产一向持续到1999年5月份。与卧式炉比较,立式炉在耐材损耗、可靠性、作业率、产值和规划简化等方面都有很大的改善。(2)HRDF立式炉的出产指标成功证明了熔融复原炼铁技能的可行性、工程概念的合理性以及工厂技能的简化。(3)立式炉出产状况证明,该工艺能够进一步扩展规划,建成商业化工厂。 ★2002年期间:(1)2002年,由力拓集团(出资份额60%)、纽柯公司(出资份额25%)、三菱公司(出资份额10%)和首钢集团(出资份额5%)一起出资,成立了不合法人性质的合营公司——HIsmelt公司。其意图是建造并实验年产能80万吨的HIsmelt工厂。该工厂坐落西澳大利亚的奎那那工业区,出发生铁的设备是一座炉缸内径为6米的熔融复原炉。 ★2003~2004年期间: (1)HIsmelt工厂于2003年1月开端建造,并于2004年下半年开端调试。 ★2005~2006年期间: (1)HIsmelt奎那那工厂的铁水热调试作业于2005年第二季度开端。(2)榜首船由HIsmelt奎那那合资工厂出产的生铁产品(约4万吨)于2006年6月外运。(3)HIsmelt公司仍在持续优化该技能,以期为商场供给产能更大、灵敏性更强且出产功率更高的HIsmelt工艺技能。

软锰矿悬浮还原焙烧工艺技术

2019-01-24 17:45:48

软锰矿不溶于硫酸,必须把它还原成一氧化锰(MnO),才能和硫酸反应制得硫酸锰。因此,软锰矿的还原效果,将直接决定整个工艺过程中锰的利用率。回转窑、反射炉、固定床煤还原焙烧-硫酸浸出工艺,已有半个多世纪的历史,是传统而实用的工艺,但存在着热耗高、操作条件差等缺点。通过对堆积与悬浮软锰矿还原工艺的研究,探索最佳反应条件,提高锰利用率;同时,也可以为工业化进行最优设计和最优控制,从而为生产提供理论指导。     一、 试验原料 本次试验所用矿石由广西新振锰业集团有限责任公司提供。表1、表2分别为原矿的成分分析和粒度组成。 表1  新振锰矿石多元素分析结果/(wt,%)试样MnMnO2MnOTFeSiO2Al2O3CaOMgOSPLOi粗样24.9836.022.838.2134.348.410.642.380.0370.1612.43 表2  新振锰矿粒度筛析/(wt,%)粒级/mm+0.0740.074~0.041-0.041含量/%10.049.6480.32     将块样和粉样分别磨制光片和薄片,对其矿石的矿物组成进行观察和分析。根据块样矿石的结构构造,锰矿石可归纳为两类:角砾状锰矿石和条带状锰矿石。     角砾状锰矿石:矿石呈褐色一黑褐色,角砾状构造,黏土矿物、石英和锰矿物组成角砾,被赤铁矿(褐铁矿)胶结。     锰矿物(复水锰矿):复水锰矿颗粒细小,不透明,和细粒的石英、绢云母(伊利石)交织在一起,分布在角砾内。不规则的锰矿物的集合体一般6~31μm,最小1~2μm。可能还有少量的其他锰矿物,镜下不易区别。     脉石矿物:赤铁矿(褐铁矿):呈网脉状分布,以胶结物或团块的形式存在,把锰矿物、石英、黏土矿物等组成的角砾胶结在一起。网脉宽15~48μm,团块状的可达103μm 。     条带状的锰矿石:矿石呈褐黑色,染手,微细粒结构,条带状构造。条带由深浅不同的颜色显示,条带的宽窄不同,主要是因为不透明矿物含量不同造成。颜色较深的条带富含锰矿物和赤褐铁矿,条带浅的部分富含石英、绢云母(伊利石)等脉石矿物。     锰矿物:根据下述的探针及镜下鉴定,主要是复水锰矿。锰矿物和黏土矿物(高岭石、伊利石等)、石英交织在一起,颗粒一般10~34)μm,最小1~2μm。     脉石矿物:主要是石英、赤褐铁矿、绢云母、粘土矿物等,特征同角砾状矿石中的脉石的特征。     根据显微镜下观察、化学分析、XRD衍射分析和探针分析,原矿石平均样的矿物含量是:复水锰矿40%;石英25%;绢云母(伊利石)5%;黏土矿物10%;方解石5%;长石3%;赤铁矿(褐铁矿)10%;其他2%。     对锰矿原矿的矿物工艺学研究表明,锰矿石可归纳为两类:角砾状锰矿石和条带状锰矿石。原矿石平均样的矿物,主要是复水锰矿、石英、赤铁矿(褐铁矿)10%;次要矿物是绢云母(伊利石)5%、黏土矿物、方解石、长石等。锰矿物少量呈单体存在,85%的锰矿物和脉石矿物交织在一起。     试验用固体燃料-煤粉为武钢乌龙泉矿水泥厂普通燃煤,其主要指标见表3。 表3  试验用煤粉工业分析结果/%煤粉种类水分挥发分灰分固定碳硫热值/(kj·kg-1)燃煤4.018.831.2955.400.4927181     二、马弗炉焙烧试验     对于还原焙烧工艺,影响还原效率的主要工艺参数为:①还原剂用量;②温度、③反应时间。为此,针对不同工艺参数,进行矿石焙烧条件试验,再用磁选管对焙烧产品进行磁性物分离除铁试验。     为了研究氧化锰矿的悬浮态焙烧效果和工艺条件,先在马弗炉进行还原焙烧。焙烧是在高温箱式电阻炉(12kW)内进行的,每次装矿量为50g,通过调节温度、焙烧时间和粉煤配比来考查焙烧效果。焙烧后的产物,直接进水冷却,然后进行脱水干燥、缩分、磨矿、磁选。弱磁选试验是使用天津矿山仪器厂生产的XCGS-73型磁选管上完成。磁选管弱磁选试验激磁电流为1.5A,磁场强度为119.4kA/m。     (一)焙烧温度试验     马弗炉焙烧温度试验条件为:煤粉用量10%,焙烧时间50min,试验结果见表4。当温度在800℃以上时,M02转化为MO的转化率在90%以上,还原反应比较充分。当温度达到900℃,Mn02全部转化为MnO。试验选择反应温度800~850℃作为马弗炉焙烧最佳温度条件。 表4  焙烧温度试验结果温度/℃Mn/%MnO/%MnO2/%转化率/%75022.5625.324.6686.9580021.1024.143.8188.6085022.9328.211.7195.2990022.6129.190100.0095020.2926.200100.00     (二)焙烧时间及磁选试验     焙烧时间试验及磁选试验的目的,主要是考察焙烧时间对还原转化率和磁选除铁的影响。考虑到能源消耗问题,锰矿还原温度为750℃左右,试验温度选定为750℃,煤粉用量l0%。试验结果见表5。 表5  马弗炉焙烧时间试验结果/%时间/min产品产率TFe铁回收率MnMnOMnO2转化率30磁精17.2013.9830.1723.9621.528.1476.43磁尾82.806.7269.8321.81合计100.007.97100.0022.1850磁精17.8814.0030.9824.9722.716.6380.77磁尾82.126.7969.0221.78合计100.008.08100.0022.3580磁精12.0916.9624.0923.7920.688.2075.57磁尾87.917.0475.9121.20合计100.008.24100.0021.51     由表5可知,焙烧时间在30~50min,无论是MnO2还原转化率和磁选除铁效果均比较稳定,可以丢掉30%左右的铁金属量,但铁的品位降低不多,因此,确定马弗炉焙烧时间为50min较为合理。     煤粉用量试验条件及结果见表6。由表6可知,在850~900℃温度条件下,煤粉用量在5%~15%的范围内,MnO2还原转化率均可达到90%以上。因此,的确定合适的还原剂用量为煤粉用量10%。 表6  马弗炉焙烧煤粉用量试验温度/℃时间/min煤粉用量/%Mn/%MnO/%MnO2/%转化率/%90050823.0429.75010090050522.7329.270.199.72850501520.6924.522.6991.79850801022.4127.082.2893.58     以上试验表明,广西新振锰业集团有限公司的锰矿,经过马弗炉堆积态还原焙烧,在温度为800~950℃的温度范围内,可以实现氧化锰转化率大于90%,原矿还原焙烧弱磁选除铁率达到30%,而Mn、Mn0的损失率不足3%的较好指标。因此,采用还原焙烧是实现对该类氧化锰矿资源利用的有效办法。但是,由于常规焙烧需要的时间长、生产效率低,要真正实现对该矿石的利用,需进行更深入的研究。研发新的还愿焙烧方法及装置,简化工艺流程,缩短焙烧时间。     三、悬浮态还原焙烧半工业试验研究     在实验室型悬浮还原焙烧试验结果的基础上,设计了多级悬浮还原焙烧反应半工业试验装置,由预热器、多级悬浮反应炉、风管及热风炉等组成。对于“多级悬浮还原焙烧反应-磁选”新工艺,在气固流场稳定的情况下,影响MnO2快速还原转化为Mn0的主要工艺参数为: CO浓度、温度、固气比、矿石粒度。为此,针对不同工艺参数,在图1所示的半工业试验装置中,进行矿石焙烧条件试验和连续试验。 图1  多级悬浮还原焙烧半工业试验工艺流程图    物料分散悬浮在气流中,气流对物料传热所需时间很短,其实际传热速率是很高的。气固相间的传热系数为较传统的回转窑,传热系数提高了3000倍以上,气固接触面积增加了数万倍。多级悬浮还原焙烧试验,采用悬浮预热及反应炉技术,物料在悬浮预热器预热,在反应炉内反应,部分细粒级在三级旋风筒提前发生了快速还原焙烧反应。对三级筒下料口取样分析表明,氧化锰 (MnO2·n H2o)转化成Mn0的转化率为70%左右。     多级悬浮还原焙烧系统,由四级旋风筒和一级反应炉组成。为了提高热效率及收尘效率(气固分离效率),极大限度地减少跑料、掉料(短路),首先进行冷态试验,寻找避免跑料、掉料(短路)最少的压力风量工艺参数,为确定热模装置的设计参数及工艺参数提供数据。     根据小试试验结果,半工业多级悬浮焙烧试验,改变气氛条件,选定其他条件在较小范围内变化,多级悬浮反应炉温度在1000~1050℃范围,处理量约500kg/h,试验条件和结果见表7。 表7  软锰矿悬浮还原焙烧半工业试验试验结果试验 编号反应炉/℃上部温度/℃反应炉 进口CO/℃尾气 进口CO/℃Mn/%MnO/%MnO2/%转化率/%1202B-110339606.962.4622.8829.5401001202B-24.8527.2733.442.1795.401202A10429583.501.6021.1327.020.3299.491202D10239622.780.625.4827.736.3484.671202E10389722.780.624.9228.104.9987.72     气氛条件试验结果表明,在反应炉温度为1050℃左右,上部温度达到958~972℃,当CO含量在3.5%以上,Mn02转化率达到了99%以上,效果比较理想。但由于原矿粉粒度偏细,目前的半工业实验炉在处理此类物料时,在收尘率设计上尚有待完善。     四、氧化锰悬浮还原焙烧能耗分析     为了确定氧化锰悬浮还原焙烧工艺的技术经济指标,以连续试验为例,进行了系统的热平衡能耗分析(表8),基本原始数据如下: 表8  氧化锰悬浮还原焙烧半工业试验热平衡表热收入项热支出项序号项目×103kj/kg%序号项目×103kj/kg%1LPG燃烧热1.43274.161出炉物料带出热0.97650.542化学反应热0.0693.572尾气带走热0.41921.703回风带入热0.43022.273CO损失热0.0251.294物料水分蒸发热0.26013.465窑壁散热0.25113.00合计1.931100.00合计1.931100.00     锰矿粉比热为1.22kj/kg·℃;CO热值为1.18MJ/kg,消耗量按气体体积的3%计算;废气比热为1.424kJ/标m3·℃;烧失热量消耗为260kj/kg,锰矿烧失12.43%。     根据半工业试验焙烧生产装置计算的热平衡,见表8。     反应MnO2+CO  Mn0+C02热效应:15.123 kj/mol(放热),4.54kj/kg;     回风量:50%;筒体散热:10%;处理量: 500 kg/h;固气比:0. 5kg/标m3;成品温度:800℃;废气排放温度:150℃。     据热平衡表计算可得,焙烧1t原矿需要补充的热耗为:1.432×106kJ/t(原矿),折合标煤,氧化锰悬浮还原半工业试验能耗:48.94kg(标煤)/t(原矿)。     五、结  语     (一)软锰矿经过堆积态还原焙烧,在温度为800~950℃的温度范围内,软锰矿转化率(二氧化锰转化为一氧化锰)大于90%,原矿还原焙烧弱磁选除铁率达到30%,Mn、Mn0的损失率不足3%o。     (二)通过处理量500kg/h级的多级悬浮还原焙烧半工业实验研究,物料在系统中的停留时间仅为数秒钟。根据连续试验结果,对新振锰矿进行悬浮还原焙烧,合适的操作参数为:多级悬浮反应炉温度1050~950℃,在半工业试验时,多级悬浮反应炉人口气体CO浓度4.5%~7.5%,多级悬浮反应炉中固气比0.5~0.8kg/Nm3,二氧化锰的转化率达到了90%以上。    (三)试验表明,悬浮还原焙烧工艺具有较宽温度、气氛、固气比的操作范围,操作方便,系统运行稳定可控。据热平衡计算可得,焙烧1t原矿需要补充的热耗为:2.010×l06kj/t(原矿),折合标煤,氧化锰悬浮还原半工业试验能耗:48.94kg(标煤)/t(原矿)。

铝型材镀钛金工艺

2019-03-01 09:02:05

铝型材镀钛金工艺,归于镀膜技能,它是在惯例镀钛工艺基础上添加预镀和电镀工艺过程,预镀工艺是将活化后的镀件置于食盐和的水溶液中进行化学处理;电镀工艺的镀液成分包含硫酸镍、氯化镍、、十二烷基硫酸钠、糖精、亮光剂,本工艺具有简略、有用、作用佳等长处,本工艺制得的钛金铝型材其膜层硬度HV≈1500、平等条件下比镀22K金耐磨150倍,可加工成各种形状的金色、五颜六色,黑色等亮光的多种系列铝型材产品。    铝型材镀钛金工艺,包含选材、抛光、化学除油、清水冲刷、活化、真空镀钛工艺过程,其特征在于它还包含:    a、预镀工艺,该工艺是将活化后并经清水冲刷的钛金铝型材置于由食盐、和水组成的液体中进行化学处理,处理温度为常温,处理时刻至液体发作剧烈化学反应停止;    b、电镀工艺,该工艺中镀液成份包含硫酸镍、氯化镍、、十二烷基硫酸钠、糖精、亮光剂,工艺条件:电流3-4A/dm2阴极移动、5-7A/dm2空气拌和,镀液温度50-60℃,PH值3.9-4.2,电镀时刻15分钟。

金属镁还原炉———传统还原炉

2019-01-07 07:51:16

金属镁还原炉是镁生产的核心设备,国内外普遍采用的是外加热卧式还原罐还原炉。目前,国内应用的金属镁还原炉的炉型较多,根据所用燃料的不同,大体上可分为两类:用煤气或重油加热的还原炉与以煤为燃料的还原炉。   用煤气或者重油为燃料的还原炉用煤气或者重油作为燃料的还原炉,通常是16个横罐的还原炉,其规格为10.54×3.59×2.94(m)。这种还原炉为矩形炉膛,还原罐间中心距约为600mm,罐呈单面单排排列,炉子背面一般分布有多支低压烧嘴。火焰从燃烧室进入炉膛空间,绕过还原罐周边,靠烟囱抽力将燃烧后的烟气抽入炉底部支烟道,经烟道与烟道闸门后进入烟囱。二次风由二次风管再通过炉底第二层二次风道送入炉内。   还原炉底部两个还原罐中间设有燃烧室或烟室。还原炉既是一个倒焰炉又是一个贮热炉。炉膛内一般装有16支镍铬合金钢制的还原罐。16个还原罐分成四组,即4个还原罐组成一组,与一个真空机组相连接(真空机组由滑阀泵和罗茨泵组成),每台还原炉还设有一个备用真空机组,因此一台还原炉一般有5个真空机组,每台还原炉设有一个水环泵作为预抽泵。   以煤为燃料的还原炉在我国,金属镁还原炉以燃煤为主,随着镁冶炼工艺的不断发展与进步,出现过多种燃煤还原炉,典型的有下面几种。   1.单火室单面单排罐还原炉该炉型与燃煤气、重油还原炉炉型相似,单面单排布置还原罐。燃烧室设置在后面,炉内装有14~16支还原罐,在两支还原罐中间设置一过火孔。该炉型由于只有单排罐,又是单面布置,故操作十分方便,车间布置便于机械化,但其产量和热效率都低。该炉型属于矩形倒焰窑,火焰从燃烧室通过挡火板反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经过火孔,支烟道至主烟道排出。   2.双火室双面双排还原罐该炉型也是矩形倒焰窑,装有10支还原罐,在长度方向分两端各装5支上、下排列。炉型设置了四个对称分布在两侧面的燃烧室(每面两个),燃烧室内有倾斜15°的梁式炉栅,火焰从窑两侧燃烧室翻过挡火墙,流向炉膛中心窑顶,然后火焰倒流向炉底吸火孔、支烟道再由一端的主烟道排入烟囱。该炉的优点是炉子结构简单,罐子排列较紧凑,炉膛空间利用率较高,其缺点在于炉子四面均为操作面,加煤烧火与还原出镁、扒渣、装料互有干扰,操作条件差,车间布置困难。该炉型也有炉膛空间扩大而布置14~22支罐的。   3.单火室双面双排罐还原炉该炉型是两端面双排布罐,单火室烧火的还原炉。在两个端面各分上、下排装6支罐,共布罐12支,在一个侧面设多个燃烧室,这样燃煤操作比较方便,空间利用率也较高,但还原罐数量有限,产量小。   4.国内应用最为广泛的单火室单面双排罐还原炉该炉型也属于外加热火焰反射炉(俗称倒焰炉)。炉内还原罐上下错开上牌布置,空间利用率较高;炉长方向没有限制,故可以布置较多的还原罐,一般有30~40支;还原罐单面开口,与真空机组的连接较方便;燃烧室设置在炉膛后面,由挡火墙隔开,火焰从燃烧室通过挡火墙反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经炉底过火孔、支烟道至主烟道排出。相对于上述其他炉型,该炉型产量大、空间利用率较高、能源消耗较低、经济性好,因此在国内得到了广泛的应用。

还原铅价

2017-06-06 17:49:51

经了解,山东地区还原铅价近日上涨较快,有厂家表示昨天14400的成交价,今日已经14550成交了,几乎每天都有150-200元的涨幅,而且现在市场成交情况也很好,很多临沂地区的小厂每天都是全负荷生产,不过这有可能是安徽地区多数厂家停产整改,而增加了山东还原铅厂家的客户群;今日安徽地区还原铅市场交易情况有所好转,因界首停产导致当地还原铅产量有所削弱,另外受废电瓶的高价推动,还原铅厂家报价都比较坚持。此外还原铅的生产企业以中小型企业居多,还原铅价格较低企业亏损时,更多是惜售保价,避免亏损,除非企业面临非常大的资金压力,否则很难让其赔本销售,这种心理在一定程度上维持还原铅价格不跌反涨。 还原铅价由于受到经济危机的影响,汽车、电动自行车蓄电池更换的频率下降,也导致了还原铅的原料废电瓶供应减少,广东、广西地区海关在09年开始严格检查,国外进口的废电瓶数量大幅下降,尽管目前有很多私人手中仍存有大量的高价废电瓶(相关调查数据见表-2),但以目前价格其很难进入市场流通环节,所以废电瓶的价格出现上涨,原料价的格高启使得还原铅生产成本也居高不下。  

氢还原钨氧化物制取钨粉的工艺

2019-03-05 09:04:34

金属钨粉是制取碳化钨基硬质合金及金属钨材的首要质料,当时制取金属钨粉的首要办法为钨氧化物氢复原法,WO3氢复原制取钨粉的反响为:有关进程的热力学和动力学原理,前人已进行了全面的研讨,积累了很多研讨成果,但考虑到当时钨粉的粒度和描摹是生产中的关键问题,为确保必定的粒度,复原进程往往是在远离平衡的条件下、依据制备特定粒度的要求,以操控工艺参数,因而这儿侧重介绍影响钨粉粒度的要素及其操控,有关热力学和动力学原理可参阅有关教科书。 一、钨氧化物复原进程中影响粒度的要素 (一)复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 1、化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 2、氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 (二)影响粉末粒度和粒形改变的首要要素 1、温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 2、水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度3、质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 4、杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 5、操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,必定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。 二、氢复原钨氧化物制取钨粉的工艺 现在复原进程通常在回转式管状炉、四管马弗炉及多管炉中进行,相对而言,后者的温度均匀,产品粒度简单操控,且粒度均匀。 详细工艺有: (一)黄钨工艺,即以WO3为复原的质料。 (二)蓝钨工艺,即以蓝色氧化钨为质料。蓝色氧化钨是指WO3或APT在300~420℃下,在转炉内部分复原所得的产品,它的成分首要为WO2.9或铵钨青铜(ATB),亦或许含少数WO2.72乃至钨酸盐,用蓝色氧化钨作质料的特电是其粒度较黄钨易于操控。 (三)紫钨工艺,即用WO2.72(W18O49)为质料进行复原,用以制取超细颗粒钨粉,其实质是首要将APT在回转炉内、在必定温度和弱复原气氛下制备W18O49,此刻,在原APT晶粒内构成W18O49的棒状晶体的集合物,当原APT晶粒为50~60μm时,则晶粒中构成的W18O4,棒状晶体直径小于2μm,这种W18O49进一步在四管复原炉中复原,得超细钨粉,其BET直径约0.08~0.9  μm,这些超细钨粉的粒度远比黄色WO3或蓝钨复原的产品粒度细,且均匀。一起它们在进一步碳化制取WC的进程中亦小易长大,例如用其制备的钨粉其BET粒往为0.084μm。在1460℃下碳化2h,所得的超细碳化钨粉的BET粒径仅0.214μm,与国外的先进水平适当。碳化进程中颗粒长大的趋势远小于从蓝钨复原的产品。 唐新和展开的从有机胺钨酸盐热分化制得钨及碳化钨超细粉末。获得非常有意义的成果。这种从所谓“自复原钨酸盐”制得的粉末,功能优秀,现已获得国家专利。