您所在的位置: 上海有色 > 有色金属产品库 > 四氯化钛水解 > 四氯化钛水解百科

四氯化钛水解百科

四氯化钛中杂质及其性质(一)

2019-02-15 14:21:16

(一)中杂质及其分类    无论是熔盐氯化仍是欢腾氯化工艺制取的粗都会有必定的杂质,包含气体、液体、固体杂质,不能直接用于出产钛白,有必要经精制处理,除掉有害杂质,使红棕色的污浊液变成无色通明的液体,才干满足下道工序的要求。    粗TiC14液的大致成分见表1。    这些杂质对钛出产发生的损害可分为两类:一类是影响产品白度的杂质,如钒、锰、铁、铬等;另一类是影响氧化半成品的晶型转化率的,如SiC14。当TiC14中的SiC14含量≥0.10%(质量)时,就会发生显着的影响效果,所以有害杂质有必要除掉。    粗TiC14液中杂质的分类及特征见表2。    关于氯化法钛白来讲,精制工序最主要的使命是除掉溶于TiC14之中的VOC13、VCl4,使之到达    VOC13的蒸气压(p)随温度的升高而增大,可按下面的经历式核算:                lgp=-2.5×105T-1+1.02×103    蒸气压的核算值和实测值见表4。粗TiC14和杂质氯化物蒸气压与温度的联系见表5。

氯化法制取粗四氯化钛的工艺流程

2019-02-15 14:21:16

富钛料与反响制取粗工艺流程如图1所示。    熔盐氯化与欢腾床氯化TiCl2淋洗、冷凝体系底子相同,最底子的差异在于氯化炉和收尘器体系。    1.熔盐氯化工艺流程    熔盐氯化工艺流程如图2所示。    熔盐氯化工艺经历最丰厚的厂商应属哈萨克斯坦共和国乌兹基市镁钛联合厂商。该厂商共有6台熔盐氯化炉,每年能够出产海绵钛3.0万吨。相当于年产8.0万吨的氯化法钛厂的出产才能,可是单台氯化炉的出产才能不高,为日产100-120吨粗TiCl4的水平。[next]    2.熔盐氯化工艺首要设备    (1)熔盐氯化炉的结构熔盐氯化炉的结构如图3所示。熔盐氯化炉发动比较费事,首要应把炉外熔融的NaCI-MgCI2混合熔盐压人炉内,吞没电极,送电升温。不断加人枯燥的NaCl盐直到反响要求的高度,提温到750℃以上能够加料进行反响。     由加料孔向炉内加人配好的混合料,由通氯管通人或氧化循环尾气开端反响。[next]    生成的TiCI4、FeCI2、FeCI3、AICI3、C02、CO等进人扩大段,炉气带出粗颗粒炉料及熔盐颗粒沉下降人熔盐中,炉气经出口进入收尘器。反响开端需送电提温,因反响放热,反响正常后完全能够自热。反响区温度到达750℃稳定一段时间后,就能够中止送电。炉盖、扩大段、过渡段、炉缸都有冷却水套,在正常反响时通水移出反响热,维护炉衬,下降炉内温度,避免反响区温度过高构成很多熔盐进步恶化操控条件。    (2)收尘器因熔盐氯化,氯化炉出口炉气压力为微正压,收尘器底子选用重力沉降收尘器。收尘器的首要效果是经过大的表面积散热,使750℃左右的炉气冷却;而且使炉气下降流速,使炉气中固相FeCl2、气相FeCI3、AICI3结晶长大沉下来,用桶装送到处理工序。    收尘器可为多级。强化散热榜首级收尘器表面焊有散热片,内衬有耐酸混凝土层,避免在较高的温度下,金属壳体被炉气中的剩余腐蚀。第二级壳体无内衬,加强散热。一般在内壁上结有FeCl3,AICI3黄色渣层,阻挠金属筒体被氯化,可运用多年,可是也下降了散热才能。    熔盐氯化工艺中当炉温较高常常有NaFeCI4, NaAICI4低熔点物生成,简单构成炉气出口、收尘器筒壁、顶盖结疤。当长大受冲击,振荡易掉下,时有堵住出渣口、料桶口的现象发作。因而操作中要严格操控氯化炉温不要太高,削减低熔点NaFeCl4、NaAICI4生成,避免上述的事情发作,一起也可削减粗TiCI4中的泥浆量。      NaCl十FeCl3===NaFeCI4      NaCl+AIC13===NaAICI4    NaFeCl4、NaAICI4被称为低沸点的“固体”,熔点一般在188-430℃之间。    其他氯化物的沸点见下表。    含有AICI3、FeCI3的TiCI4泥浆料返回到氯化炉体系(包含烟道、收尘器),每l000kg料浆气化后可从氯化炉中带走380-420MJ的热量。有利于操控炉温,简化氯化炉的结构。一起发作的反响其反响式如下:      3Ti02(s)+4AICI3(g)===3TiCI4(g)+2 AI2O3(s)↓TiO2(s)+4FeCI3(g)+C(s)===TiCI4(g)+4FeCI2(s)↓+CO2↑    这样能够有效地除掉泥浆中的AICI3、FeCI3,使其变成高熔点、高沸点的杂质从体系中除掉,一起又进步了氯的利用率。一般向氯化炉内返泥浆愈平稳接连,除杂质的效果愈好,愈能削减TiCI4中的泥浆含量,愈有利于进步的利用率。此项技能锦州厂已获专利权。    (3) TiCI4淋洗塔其效果是被降温到250℃以下的TiCI4炉气,在淋洗塔顶用TiCI4淋洗进行充沛换热,使90%左右的TiCI4被吸收,由气相转为液相而搜集下来。一般TiCl4淋洗塔为逆流操作;选用文丘里洗涤器的为顺流操作。淋洗塔如图3所示。[next]    (4)冷凝设备选用常温或低于65℃ TiC14淋洗吸收的方法是不能把一切TiCl4淋洗(冷凝)吸收下来的。由于正常状况淋洗用的TiCI4尽管经过冷却到50-65℃,淋洗后的TiCl4料液一般在90℃左右有较高的蒸气压20kPa。为进一步使TiCI4冷凝下来,进步钛的收回率,一般选用冷冻盐水冷却到-20℃下的TiCl4料液去冷凝气相TiCl4。冷凝设备有喷淋塔和膜式冷凝器。膜式冷凝器是在换热器中壳程走冷冻盐水,管程中经过TiCl4气体,在管程上冷凝构成TiCl4液膜并吸收TiCl4气体的设备(见图4)。为使98%以上的TiCl4收回下来,淋洗、冷凝设备选用多级吸收的工艺。 [next]    (5)气液别离器TiCl4经过淋洗、冷凝后)98%被搜集下来,但随不凝性气体(CO, C02、N2等)夹藏的TiCl4液滴,经过别离器别离液相进步收回率。    前两组淋洗单元淋洗进程运用蛇形管换热器,用工业水冷却换热;后两组用冷冻盐水换热,冷却TiCl4流体使温度到达-15℃以下,与炉气中的TiCl4触摸,使炉气中的TiCl4悉数冷凝下来,进步收回率。由于TiCl4中会有一定量的泥浆,首要是FeCl2 ,FeCl3、AICl3等杂质,在炉气温度较高的状况下很简单构成结垢,阻塞淋洗塔的栅板和挡板塔的挡板,所以在氯化用料杂质较高时一般不选用上述两种类型的淋洗、冷凝设备。    为了避免泥浆料的泵罐中淤积,一般选用如下方法。    ①操控榜首、二级淋洗槽TiCl4料浆的温度≥90℃,使固体颗粒处于悬浮状况,不易堆积。    ②在容器内加拌和,使固体颗粒在机械力的效果下无法堆积。    ③经过泵循环冲击TiCI4浆料,使固体颗粒难以堆积。    ④塔下部规划成瀑布式,用淋洗液从高处落下以很大的能量冲击泵槽底部,使固体颗粒不易堆积并节能。例如,哈萨克斯坦乌兹基工厂就是这样做的。    3.熔盐氯化的工艺参数    (1)最佳熔盐的组成Ti02 1.5%-5.0%;C 2%- 5%;NaCl 15%-20%;KCl 30%-40%;MgCI2 10%-20%;CaCI2<10%;FeCl2+FeCI3<10%;Si02<6.0%;Al203<6.0%。    当Ti02<1.0%时,其他杂质被氯化下降了氯的利用率,一起也使TiCI4中杂质升高。    在实践中因KCl较贵,能够恰当削减KCl的配人量。当熔盐组分中Ti02外的其他氧化物组成增高时,熔盐的物理性质变坏,黏度添加,熔点升高影响氯化功率,有必要周期性地排出废盐并弥补新盐(首要是NaCl、KCl)。    (2)炉气的组成(炉温较低时)    TiCI4 63.8%;SiCI4 1.0%;AICI3 1.9%;FeCI3 0.5%;FeCl2 0.3%;N2 9.4%;C02 21.0%;CO 0.37%;固体成分1.73%;FeCI3、FeCl2的含量首要与高钛渣中的铁含量有关。    (3)首要工艺参数    ①反响温度700-800℃。    ②用于熔盐氯化最低浓度(体积)70%。    ③作业熔盐中组分Ti02 1.5%-5.5%;C 2%一5%;Si02<10%。    ④盐层高度<5. 5m.    ⑤排放废盐中Ti02 <2. 0%。    ⑥废气中游离量<3. 2mg/L[2%(体积)〕。    ⑦氯化炉炉气压力1470Pa。    ⑧氯化炉炉气出口温度700℃。    ⑨进人淋洗塔炉气温度<250℃。    ⑩淋洗塔循环泵槽中TiCI4温度≥90℃。    ⑾冷冻盐水的温度<-20.0℃。    ⑿捕集器(气液别离器)<-5℃。[next]    4.熔盐氯化工艺现在的首要问题    熔盐氯化工艺最大的长处如下:①用料比较广泛,欢腾氯化运用困难的CaO, MgO高的钛渣,熔盐氯化都能够运用;②熔盐欢腾层的操控较气固流化床简单。    现在影响熔盐氯化开展的有下面几方面的问题。    ①每吨TiCI4大约产出200kg的废盐;年产6.0万吨的氯化法钛白工厂将产出12000吨废盐,处理较困难。综合利用有待进一步研讨。    ②熔盐氯化炉现在规划距大型氯化法钛白要求距离较大。出产才能偏小,匹配困难。最大的熔盐氯化炉日产TiCI4只要130吨,相当于年产1.5万吨钛白才能。更高出产才能熔炉开发有待证明。    ③熔盐组成中含有很多NaCl, KCI,极易同FeCI3、AICI3构成低熔点“液体”。黏附在炉壁、收尘器上,使设备结疤,易掉下阻塞出料口。一起构成固体颗粒在TiCl4中堆积,使之循环运用困难,要定时整理槽子。    ④熔盐炉发动烘炉,化盐十分费事,需求的附属设备如化盐炉等较多;日常还要常常加人新盐调整熔盐成分,工序较为烦琐。    ⑤多台熔盐炉与氧化炉对接困难;各炉的工艺技能参数难以平衡,操控十分困难。    ⑥氯化炉排盐操作较风险,环境恶劣,不如流化床排层床料易操作。

四氯化钛精制原理及设备

2019-02-15 14:21:16

粗TiC14中含有固体、液体和气体杂质,特别是与TiC14别离系数较小的液体杂质VOC13对钛的白度影响很大;SiC14在氧化进程中对晶型转化率影响较大。针对杂质在粗TiC14中的不同特性,其详细的别离办法如下。    (一)高沸点和低沸点杂质    首要根据它们与TiCl4沸点及蒸气压差异狠大,选用物理办法—蒸馏式精馏法除掉。高沸点杂质富集在蒸馏釜内;气体杂质在加热时经过精馏塔逸出;而与TiC14互溶的低沸点液体杂质SiCI4经过精馏塔除掉。精制设备流程如图所示。    精制除高沸点、低沸点杂质的详细操作如下:粗TiCl4由粗TiC14罐计量加到粗TiC14高位槽中,经计量从塔中上部加人浮阀塔,当TiC14流人蒸馏釜中,送电加热到TiC14的沸点(约140-145℃),发作的TiC14-SiCl4混合蒸气从浮阀塔下部进入塔中,经过浮阀逐步向上移动,冷却下来的TiC14沿溢流孔向下活动,根据SiC14-TiC14的沸点相差较大及蒸气压的不同进行别离。因SiC14沸点低,越向上,气相和液相中的SiC14浓度越高,愈向下液相中的TiC14浓度愈来愈纯,塔顶部操控57一60℃,高于SiC14的沸点;仅含有少数的TiC14而绝大部分为SiC14的气体进人冷凝器中,被冷凝下来。尾气中含有、等经过液封罐排出,进人洗刷体系。冷凝下来的SiCI4为进一步精馏提纯,经计量从塔顶部加人即回流,而经过精馏提纯的不含气体杂质和SiCl4的TiC14从塔底部排到TiC14贮罐,待下一步去除钒。溶于TiCl4中的高沸点杂质富集在蒸馏釜中,定时排放到粗TiCl4罐中,最终回来氯化处理。[next]    在精馏除掉SiC14的进程中,除硅作用首要依靠浮阀塔的级数,每层塔板都相当于一个蒸馏器,串联的级数越多,精馏的作用就越好。浮阀塔占地面积小、节能、简略、操作高效。按国内粗TiC14的状况,浮阀塔可选27层塔板,提馏段18层塔板,精馏段9层塔板,原料为不锈钢。    塔径和板距离同产值、操作弹性、塔板功率有关。盘式浮阀塔主张选用的塔径和塔板距离见下表。    (二)粗除钒    粗TiC14中的钒首要是以VOC13方式溶于TiC14之中,使粗TiCl4呈黄色。在氯化法钛白工艺中,钒对发作的白度影响极大,所以有必要除掉。    TiC14与VOC13的沸点附近,仅差10℃,别离系数a为1.22,用简略的物理办法别离是十分困难的,因而常用化学法除钒。其机理是加人还原剂,使VOC13转压为VOC12,使其沸点升高且不溶于TiC14,这样经过蒸馏办法到达把钒除掉。    详细的化学法除钒办法如下。    (1)办法1  铜除钒法。铜以铜粉或铜丝方式加人TiCl4之中,发作如下反响:                    TiC14+Cu===CuCl·TiCl3            CuCl·TiCl3+VOC13===VOC12↓+CuCl+TiC14    当TiC14中溶解的AICl3的浓度大于0.1%时,会使铜表面钝化,阻止除钒反响的进行,所以应该在加铜除钒之间把去除。而在氯化法钛白的出产中需求AIC13作晶型转化剂,有利无害,所以氯化法钛白的工艺中不必铜除钒。    (2)办法2  铝粉除钒。哈萨克斯坦乌兹基镁钛联合厂商出产海绵钛时,精制选用铝粉除钒工艺,且经验丰富。国内东北大学从前进行铝粉除钒的小型实验,但至今国内涵工业上没有施行。    其反响机理是在有AIC13作催化剂的条件下,把铝粉加人到TiCl4之中,发作如下反响:               TiC13+VOC13===VOC12↓+TiC14    AIC13可将溶于TiC14之中的TiOC12转化为TiC14。其反响式如下:              AIC13+TiOCl2===TiC14+AIOCI↓    即便AIC13没有反响,它在TiCl4中有余量,对氯化法钛白氧化制取金红石型Ti02是有利而无害的。    小型实验进程:先把定量的AIC13晶体加人到TiC14之中,再加人需求量的铝粉,摇摆,溶液显紫色(TiC13生成)之后,铝粉剧烈发作反响,反响器内有亮光发作,完毕后溶液变为无色,TiC13消失,转变为TiC14。反响发作许多的热,较风险。[next]    铝粉较铜粉经济,除钒进程可接连,但制备含有AIC13的TiC14浆液是不接连的,AIC13简单吸潮,发作沉积。向TiC14加人铝粉,通人制取AIC13进行除钒的进程安全性较差,宜慎重进行。    (3)办法3  除钒法。是一种强还原剂,它将VOC13还原成VOC12沉积,可经过沉积和过滤,将其与TiC14别离。其反响式如下:            2VOC13+H2S===2VOC12↓+2HCl+s↓    除钒作用好,并能够一同除掉TiC14中的铁、铬、铝等有色金属杂质和细涣散的悬浮固体物,在过滤时与VOC12一同被除掉。除钒成本低,但是一种有恶臭味、剧毒和易爆破的气体,恶化劳作环境。只要工厂附近H2S产品资源丰富且很廉价时,才有或许选取这种办法,综合利用。国外海绵钛厂和氯化法钛白厂曾选用这种除钒办法。    (4)办法4  有机物除钒法。能够用作除钒的有机物许多,常用有植物油、矿物油,硬脂酸钠等。有机物根据粗TiC14中含钒量加人,正常少于TiC14总量5%。混合均匀,并加热至136-142℃,使其炭化,重生的活性炭将VOC13还原成VOCl2,沉积除掉。    该工艺特点是全进程接连,出产能力大,除钒兼有除低沸点、高沸点杂质的功用,一步完结。如对精TiC14质量要求不特别严厉时,能够一次完结到达用于氯化法钛白、电子级钛白的精TiCl4合格的标准,工艺简化。矿物油直销资源广泛,除钒成本低,操作安全。国内外大型氯化法钛厂都选用此工艺精制TiC14。    缺陷是有机物除钒进程中易发作浮渣,易阻塞管线、阀门和外表传感元件,给操作带来不方便,产品含碳有所增加,在出产海绵钛时需求进一步除掉。

四氯化钛中杂质及其性质(二)

2019-02-15 14:21:16

粗TiC14的沸点随溶解杂质的特性和含量而异。一般说来,高沸点杂质的溶解可使其沸点升高。相反,低沸点杂质的溶解可使其沸点下降。    在0.1MPa压力下测得粗TiC14中杂质与TiC14的别离系数a见表6。    SiC14-TiC14相图和VOC13-TiC14相图别离如图1,图2所示。    (二)杂质在四氛化钛中的溶解度[next]    1.气体杂质的溶解度    大部分气体杂质的TiCl4中的溶解度都不大,而且随温度的升高而下降,在欢腾时易于从中逸出,因而简单除掉这些杂质。其间在TiCl4冷凝过程中吸收适当数量的,在受热后放出,易对设备发生腐蚀。    在TiCl4中的溶解度见表7。表7  在0.1MP 压力下在TiCl4中的溶解度温度/℃020406080100136溶解度/%11.57.64.12.41.81.10.03     2.液体杂质的溶解度    TiC14中液体杂质SiC14, CC14. VOC13. CS2, SOC12,CH2CICOC1, S2C12,可按恣意份额与TiC14互溶,因而这些杂质是较难别离的。其间SiC14、VOC13在氯化法钛白出产时,因为影响晶型转化率和产品白度而有必要除掉。    3.固体杂质的溶解度    TiC14中的悬浮物杂质几乎不溶于TiCl4,大多数固体杂质的溶解度尽管随温度升高而升高,但其值比较小。因而,经蒸馏比较简单除掉,都留在蒸馏釜中。    一些固体杂质在TiCl4中的溶解度见表8.

含钒四氯化钛泥浆的处理技术

2019-02-15 14:21:16

不管哪一种方法,在精制除钒进程中都发生含钒(VOCI2)、高沸点杂质的TiCl4泥浆,其处理难度较大。    铝粉除钒的TiCl4泥浆按国外熔盐氯化的经历,是返回到独立的熔盐炉中处理。首要收回TiC14,之后通人C12,使VOC12从头转变成VOC13、VC14,经冷却、冷凝、收回,再制成V2O5,做到综合利用,变废为宝。    国内铜丝球除钒工艺,因铜复原后生成的VOCI2被吸附在铜丝球上,定时用HCI,清水清洗,没有办法收回钒,操作环境恶劣,影响环境。法除钒的泥浆需求独自的蒸腾设备收回TiCl4,其固体杂质弃去处理。有机物除钒的TiC14泥浆选用接连返氯化炉处理的工艺收回TiC14,钒渣(VOC12)落人氯化钒渣桶中一块被净化处理。工艺简略接连,处理才能大,节能作用非常好。含钒泥浆的处理工艺流程如图所示。    该技能已由锦州钛厂申获发明专利。    几种除钒工艺比较见下表。

氯化法生产四氯化钛的反应原理—加碳氯化反应

2019-01-25 13:37:59

无论是氯化法钛白生产还是海绵钛生产过程中,粗TiCI4的制取工艺基本相同。以氯化炉为主体设备可分为以下几种。    ①固定床氯化随着技术的进步已经被淘汰。    ②熔盐氯化哈萨克斯坦、中国锦州正在应用。    ③流化床氯化流化床氯化被普遍采用,快速循环流化床氯化正处于开发阶段。                      Ti02+2CI2===TiCI4+02         △G0T=184300-58T(T为409一1940K)    该反应即使T=2000K, △G0T>0由此可见,在标准状态下不能自发进行氯化反应。    只有在加碳的情况下,钛铁矿、金红石才能正常反应。其反应式如下:        Ti02(s)+2C(s)+2CI2(g)===TiCI4(g)+2C0(g)            △G2=48000-266T(T为409一1940K)        Ti02(s)+C(s)+2CI2(g)===TiCI4(g)+C02(g)            △G3=210000-58T(T为409一1940K)    在正常情况下以上两反应△G pco;当T>980K时,pco2Mn0>Mg0>Fe203>Fe0>Ti02>A1203>Si02。其中钛的低价物氯化优于Ti02,其顺序为:Ti0>Ti203>Ti305>Ti02。    各物质在800℃时的氯化率见下表。    由此可以看出,在沸腾炉未被氯化的床层料和熔盐氯化排出废盐之中以Si02、A1203为主,其次为CaO, MgO.因CaO, MgO熔点低,沸点高,可被氯化成CaCI2、MgCl2且挥发度低,所以在沸腾炉氯化床层料中的比例大时最易造成烧结,黏附在筛板上造成筛板堵塞,影响氯化炉正常运行,因此要求原料中CaO, MgO含量要低。

四氯化钛气相氧化工艺设备(一)

2019-02-15 14:21:16

国内1000吨/年、3000吨/年的工业实验配备是在常压下进行的设备,出产能力小,特别是氧化炉除疤体系很杂乱,作业率低。只要在锦州引入1. 5万吨/年氯化法技能并攻关成功后才使我国氯化法钛白的中心技能—气相氧化技能有了腾跃,设备水平挨近国外先进水平。    (一)四氛化钛预热器    预热器的效果是把精TiCl4气化并预热到450-550℃,其设备与炼油厂的原油加热炉类似(见图1)。    (二)氧气预热器    TiCl4气相氧化工艺要求是将氧气加热至1800℃后,再与450-550℃的TiC14气体均匀混合进行反响。一般选用两段式加热:榜首段预热器先把氧气预热到850-920℃;第二段在氧化炉内用焚烧发作的热量再把流人的热氧流加热到1800℃。氧气预热器的结构如图2所示。    (三)三发作器    TiC14气相氧化进程中晶型转化剂AIC13的参加和发作的工艺有以下几种。    (1)溶解法。把AIC13溶解在TiC14中,这种办法工艺进程杂乱,设备多,加人量难以操控得精确,需求定时除掉水解的AIC13,操作条件恶劣,环境很差。这种办法现已被筛选。    (2) AIC13提高法。国内3000吨/年的工艺中曾选用。因AIC13装料条件差、蒸发量操控困难等要素,没有构成产业化设备。    (3)用铝粉与反响直接发作AIC13,一起与TiC14气体均匀混合后进人氧化炉进行反响。这种办法发作的AIC13活性强,反响热得到充沛使用,工艺进程简略,可控性强。现在国外大型设备都选用这种办法出产。    该办法又分为两种工艺:一种为熔融铝法,国外有K. M公司选用;另一种为流化床法发作AIC13,许多大公司选用。流化床发作器的结构如图3所示。[next]    作业原理:参加慵懒填料的发作器经过预热到200℃以上。按产能要求,加人过量铝粒的一起别离通人TiC14和定量的C12,使慵懒物床流化的一起,铝粒与反响生成AIC13并放出很多的热,与同步导人的TiC14进行热交换并混合。炉气上升到扩大段,铝粉颗粒沉下去,炉气净化后由出口进人氧化炉。因为慵懒填料丢失由慵懒物加人体系补加新的填料。填料的效果是避免铝粒彼此触摸,在高温下熔结在一块,一起也有强化传热、传质的功用。停产时可由放料管放出床中的慵懒填料和残留的铝粒。    这种工艺设备体积小,出产能力大,传质、传热效果好,结构简略,安全可靠,悉数参数由DCS操控。其反响式如下:                  2A1(s)+3C12(g)===AIC13(g)                      △H0=-584.5048kJ/mol              △G0=-99000+16. 4T(500~932K)    国外大型设备根本都选用此办法。    国外加人碱金属盐的流化床AIC13发作器流程如图4所示。 [next]     该设备在用铝粉与反响生成AIC13的一起,也在流化床内加人定量的碱金属盐(一般可以加人无水油酸钾),并随气流一块进人反响区,既有促进晶型转化的效果,又有促进晶粒细化的效果,一箭双雕。    (四)氧化反响器    氧化反响器的方法多种多样,按氧化加热方法分为焚烧二次提温型、CO作燃料反响器、等离子加热等多种方法。最为遍及的是焚烧二次加热使氧气提温到1800℃的方法。按除疤方法分为喷砂除疤式、喷盐除疤式、喷盐和气流维护式、高速气流和气膜维护相结合等多种方法。而最为遍及、先进的为高速气流、加盐除疤的方法。按TiC14喷人方法分为单狭缝和双狭缝喷人节能型。    氧化反响器是TiC14气相氧化技能的中心设备,它关系到氧化产品是否具有杰出的颜料功能,高的使用价值。氧化反响器的除疤体系关系到全体系的安稳运转,设备耐高温、耐腐蚀功能关系到全体系的安全可靠性,它是氯化法钛白出产厂和工程技能人员最为重视的关键设备。    在这里需求着重指出,TiC14气相氧化进程是在高温、高压、强腐蚀介质下进行的,简略手工操作现已不能满意安全出产和出产出高品质产品的需求,所以不管是国内、国外,都彻底是计算机自动操控,即我们常说的DCS操控体系。这样的DCS操控体系曩昔需求进口,现在国内现已彻底可以出产,满意各种杂乱工艺的要求。    下面要点介绍几种用户反响器。    (1) CO作燃料的氧化反响器。CO和氧气从反响器炉头进入,经散布板整流,轴向喷入焚烧室焚烧,温度达2000℃(见图5)。下流榜首环慵懒气体沿切向多孔喷人,意图方法旋转气幕(膜),维护第二环TiCl4喷人环不过热,喷口不结疤和反响高温胀大气流不返混。第二环为TiCl4喷入环,TiC14沿环进人流道,经缓冲稳压室稳压之后,又经过均布分配孔沿径向喷人反响器内与高温(≥18000C)的热氧正交混合,并瞬间发作反响。因发作很多的热量和,极易被氧化的反响器内层表面经过冷却剂冷却。第三环为气膜有防结疤的效果,慵懒气体在此环沿切线快速喷入构成气膜,使新生成的Ti02粒子无法与反响器内壁触摸,避免结疤。又因旋转气速较快对器壁有必定的吹扫效果,减平缓冲刷去结疤,延伸反响器的作业时间。一起对体系轴向气流和器壁有冷却效果,操控Ti02长大和避免内层被热腐蚀。TiCl4与O2充沛反响的反响室,此处温度可达1400℃,器壁有水冷维护。反响后混合气流温度可达1400℃,反响器出口规划有混合气流骤冷设备。该反响器反响室为价200mm*1500mm,反响室各部件用镍制成,水冷,出产能力为5.0吨/h TiO2。 [next]     这套氧化反响器简直与锦州的结构十分类似,区别只在于锦州厂是用加热。锦州厂的实践证明,这种三环式结构杂乱,各喷孔易热腐蚀烧坏,特别在预热500℃的TiC14气体中搀杂没有彻底反响完的铝粉时,第二环即TiC14喷入孔十分易被烧损变形,影响TiC14和O2的充沛混合,反响导致TiO2的粒子不能满意颜料的要求。    (2)多孔壁反响器。多孔壁反响器的结构如图6所示。热氧与TiCl4气流笔直穿插混合后进入反响区,反响区圆筒壁有小孔以高速喷人C12或慵懒气体,冷却反响壁不被腐蚀的一起构成气幕阻隔新生成TiO2粒子不与反响器壁触摸,完成避免结疤。多孔壁开孔率为0.1%-0.6%,清洁气体的用量为TiC14的1/20-1/3(质量比)。孔壁原料以镍质为最好。内径305mm,每平方英寸①(lin2=6.4516*10-4m2)开有一个直径1.6mm小孔,600-700℃的TiC14以18t/h的速度加人,1400℃的氧气以2260m3/h的速度加人,枯燥的室温C12以1130-1360kg/h的速度送人穿过多孔镍壁,使壁温在300℃以下,长期反响后多孔壁不结疤,清洁润滑。    特色:进人冷风量比较小,当出产能力较大的反响器引人的气量占炉气中份额很小,对氧化反响的搅扰和对浓度的冲稀效果都是很小的。这种氧化反响器的改进型正在线上运转。    (3)固体颗粒冲刷法除疤的氧化反响器。选用喷砂或粗粒子的Ti02使用高速运动固体颗粒的冲刷效果,处理喷口及反响器壁结疤的问题。选用喷砂法要求后处理严格操控,喷砂不能进人包膜罐,否则会影响产品质量。而Ti02的颗粒会使后边处理工艺简略化,较为适用。典型的喷砂除疤反响器如图7所示。

四氯化钛气相氧化工艺设备(二)

2019-02-15 14:21:16

经预热的氧气夹藏石英砂,以15.24m/s(最好为30. 48m/s)的速度从给料导管轴向喷入。高速冲刷O2和TiC14成夹角穿插射流混合喷口处及反响区扩展管壁的疤料,Kerr-McGee公司运用这种技能。石英砂的粒度为10-40目(0.4-1.7mm),在氧气悬浮气流中浓度为0.1-v2.16g/ft3②(Ift3=0.0283168m3)。    (4)高速气流再配以加盐除疤式的氧化炉。这种氧化炉的结构更为简略(见图8)。TiC14与Oz成90度穿插混合,因为推动力压力很大,在氧化炉高温区停留时间很短(≥0. l0s),形成很高的流速(10-15m/s)。反响新生态的TiO2粒子还来不及在器壁上结疤,就进人骤冷段;与此同时,以N2作载体加人岩盐冲刷器壁上结疤,完结长周期安稳运转,现在国外大公司产能高的设备简直都选用这种办法。[next]    (5) TIC14双喷口节能型氧化反响器,其结构如图9所示。 [next]     作业原理:通过预热并按份额混有AIC13的TiC14气体,份额占TiCl4加人总量的约50%-60%,喷人与总量的热氧反响放出很多的热量;混合气流极快地流到TiC14喷口Ⅱ,与TiC14气流第2次穿插混合。第二孔喷人的TiCl4吸收部分反响热,升温很快,又开端同热氧反响。反响热并同上游混合流一并进人反响段完结悉数反响。    特色:喷口n喷出的TiC14吸收喷口Ⅰ下流的反响热,首要,可适当下降氧气的预热温度,节省了动力并有利于氧气预热量安全运转;其次,可使反响温度控制在1450℃,不至于过高;第三,因喷口Ⅱ的TiC14升温耗费了部分热焓,能够削减急剧骤冷通人的冷却气体量。这是现在最为先进的技能。此款设备的生产才能可到达年产10万吨钛。    国内20世纪开发的刮刀式氧化炉是比较落后的设备。现在氧化反响器朝着结构简略、高速(150m/s)、高压(0.4MPa)、气膜和加盐相结合除疤方法为主的方向开展。    (五)悬浮气流冷却、气固别离和制浆设备    从氧化炉移出的悬浮气流Ti02固相的浓度约为33%(质量),浓度达≥68%(体积)需求突然冷却到700℃以下,一般工艺上采纳的办法如下:①喷入冷却枯燥的循环尾气或,氮气直接冷却降温;②把冷却导筒浸人水中强化移热;③为加温传热,导游管内加人固体颗粒多为岩盐烧结的Ti02颗粒,冲刷管壁上的结垢,进步传热才能。    冷却导管的长度应满意在进人脉冲袋滤器前的悬浮气流的温度要低于275℃,以利于延伸滤袋的运用寿命。    气固别离设备可分为两级:榜首级旋风收尘器;第二级为脉冲布袋收尘器;也有一级脉冲布袋进行别离的,但粉尘浓度高所需求的布袋面积较大。布袋一般选用美国GORE-TEX、BH的公司全四氟乙烯、覆膜滤袋,也能够用覆四氟乙烯膜的玻璃纤维布袋,造价廉价一些。GORE-TEX公司的覆膜滤袋具有一种强韧而柔软的纤维结构,有满足的力学强度、杰出的清灰性,在低而稳的压力丢失下能长期运用,比普通的滤袋寿命长并能完结零排放。    制浆设备,布袋设备搜集下来的热Ti02粉料,经旋转阀加到制浆罐中,用去离子水稀释制浆并下降物料温度,发生的水蒸气和释放出的HC1、C12排到稀碱液脱氯罐中去脱氯后外排。    对设备的技能要求见表1。

四氯化钛气相氧化的热力学(一)

2019-01-25 13:37:59

(1)气相氧化反应及热力学数据    TiC14气相氧化过程的反应式如下:              TiC14(g)+O2(g)===Ti02(R)+C12(g)    反应热效应为:△H0=-181. 5856kJ/mol(为放热反应)。    不同温度下的反应热按基尔霍夫公式计算:    各种物质的热容见表1。不同温度下反应热焓值见表2。    从表2中可以看出气相反应是放热反应,其热烩值变化不大,随着反应温度升高,热焙值略有降低。其反应热不足以维持反应在高温下进行。为保证反应的同步、快速进行,在工业实践中通常把TiC14、Oz预热到一定温度再进行反应。这样就使气相氧化装置略显复杂一些。    (2) TiC14气相反应的动力学    TiC14气相氧化生成Ti02是多相复杂反应,其特征是在相变过程中成核。反应大致包括下列步骤。    ①气相反应物在极短时间内相互扩散和接触。    ②加人晶型转化剂兼成核剂AIC13 ,首先与氧反应生成Al203,并成核。    ③TiC14与O2反应生成TiO2,并附着在A1203核上长大。    ④TiO2晶核长大,并转化为金红石型。表示为:[next]                      nTiO2(s)→(Ti02)n(s)                      nTiO2(A)→(Ti02)n(R)    ⑤生成物被快速降温并移出反应区,控制晶体颗粒长大,防止失去颜料性能。    通常认为,TiCl4气相氧化反应是非均相成核的典型例子,优先在反应器壁上成核。随着反应进行,新相Ti02颗粒不断黏附在反应器壁上,Ti02产物不断长大形成疤层。实际也是如此,在反应器壁表面形成黏软的疤层又被气流冲刷不断去除,反复进行,周而复始。在没有有效驱除疤层的情况下,疤层就会逐渐加厚、烧硬,最终会影响反应正常进行,这就是通常讲的氧化炉结疤。

四氯化钛气相氧化工艺设备(三)

2019-02-15 14:21:16

(六)二氧化钛(中间半成品)脱氛    从布袋搜集下来的半成品二氧化钛吸附必定量的(0.1%一0.5%)的游离氯,微量的TiC14氯氧化物如TiOC12、Ti2O3C13等。这些杂质不脱除带人后处理会影响产品的白度,制漆时氯与树脂反响影响漆用功用,产品吸潮变黄,使设备的腐蚀严峻。工艺要求脱出二氧化钛粒子吸附的及其他氯化物。    脱氯的办法首要分为干法脱氯和湿法脱氯。    1.干法脱氯    干法脱氯首要为沸腾床脱氯。干法脱氯工艺流程如图10所示。    流化床通电加热,温度控制在400-500℃,吸附的氧化半成品从炉中间加人,炉底筛板吹入枯燥空气,使Ti02粉料流化被空气从Ti02粒子表面脱出进人空气中,稀释从气固混合流经旋风、布袋收尘器别离,气相进人碱淋洗塔净化。    脱氯后的料制浆经泵送到后处理涣散后砂磨。也有的把干料送入粉磨机磨成细粉。    这种办法工艺杂乱,设备繁复,耗能多,现在氯化法生产工艺已被筛选。    2.湿法脱氯    现在大型氯化法钛白的设备基本上都选用湿法脱氯。湿法脱氯工艺流程如图11所示。[next]     一般用的脱氯剂有焦钠(Na2S2O5),硫代硫酸钠(Na2S2O3)、(H202),脱氯反响式如下:    (1)H202脱氯反响            2HC1(g)+H202(I)===C12(g)+2H2O(1)          NaC1O(1)+H202(1)===NaCl(1)+O2(g)+H20(1)    (2)焦钠、硫代硫酸钠反响                    C12+H2O===HC1O(1)+HCl                    NaOH+HC1O===NaCIO+H20    Na2S2O3(1)+4C12(g)+5H2O(1)===                                    Na2SO4(1)+H2SO4(1)+8HC1                  NaOH+HCl===NaCl+H2O              H2S04+2NaOH===Na2S04+2H20    Na2S203+NaCIO十H2O===Na2S404+2NaOH+NaCl    (3)Na2S03脱氯:                    Na2S205===Na2S03十S02                Na2S03+Cl2===Na2S04+2NaCl    脱氯反响首要是把具有较强氧化性的游离氯、次氯酸、次氯酸盐还原成安稳的氯化物如氯化钠,而钠、硫代硫酸钠、焦钠等脱氯剂被氧化成硫酸盐在后处理时很简略被洗去,不影响产品漆用功用。    (七)氧化尾气的循环运用    经过脉冲布袋别离后的氧化尾气大致成分见表2。表2  氧化尾气成分成分Cl2COCO2O2HClN2含量/%68~790.8~1.64~64~81~310~13     浓度很高一般回来氯化运用。回来运用最简洁的办法是直接运送到氯化工序运用,杜邦、美礼联等一些公司都是这样做的。条件是氧化炉的工作压力高,从氧化运送到氯化进程中通导才能大,阻力丢失小,无需加压可直接运用。因氧化尾气中含有4%-8%的氧气在氯化炉与碳反响放出热量,使氯化炉气的温度给后边TiC14的冷凝带来更多的困难。    此外,为防止氧化尾气直接用于氯化带来的热量、废气量大的缺陷,国外某公司运用低温TiCl4吸收氯的特色,运用TiC14在低温下吸收把与其他无用成分的气体分隔,然后将TiC14加热后吸收的释放出来,再经过加压以较纯的循环运用。    在TiCl4中的溶解度见表3.[next]表3  在TiCl4中的溶解度温度t/℃-2020406080100120含量/%56.728.116.310.16.754.713.272.27     尽管这样的工艺较为杂乱,但送到氯化工序的纯,不含氧气,能够进步氯化率,削减反响热,使TiCl4冷凝的工艺得到简化。    氧化尾气直接运送的管道因压力较高,其含HCl很简略液化腐蚀管线,在生产中运用衬四氟乙烯的钢管作用很好。    (八)晶粒细化剂参加    在氧化反响进程中为了得到产品均匀粒径0.25μm且粒径散布窄的产品,实验证明,必需要加人晶粒细化剂。细化剂多为碱金属盐类的水溶液。其中最经济、作用也非常好的晶粒细化剂是KCl。    晶粒细化剂加人流程如图12所示。     经过实践人们认识到氧化反响器首要应具有以下功用。    ①使与TiC14反响的氧气被加热到≥1180℃,并能完成使其气流成平稳轴向脉冲流。    ②使被加热到420一500℃的TiCl4气体能均匀、接连地径向喷人反响器内。    ③使轴向高温氧流与沿必定视点径向喷人的TiC14气流穿插,快速混合完成传热、传质同步开端反响,该视点与轴向成60°-90°角。    ④具有穿插混合气流升温胀大不向燃烧室返混的办法。    ⑤有牢靠的使TiC14喷口邻近及喷口下流反响器不结疤,及时冲刷除疤,确保反响器长周期运转的功用。    ⑥反响器中温度高达1450℃以上,有强腐蚀介质热氧及浓度≥65%(体积)的流,设备材料应具有耐腐蚀、耐高温的牲能和保护办法。    ⑦反响器结构上易腐蚀件易替换保护,结构简略。    ⑧反响器结构有利于高温悬浮气流快速脱离反响区进人冷却区。    依据以上功用的要求,氧化反响器的开发阅历了不断创新的进程,因此为满意反响器首要功用,各氯化法钛白生产厂研发了多种多样的氧化反响器,其技术创新推进着氯化法钛白的技术进步。

四氯化钛气相氧化的热力学(二)

2019-02-15 14:21:16

式中,OST为反响温度为T时嫡的改变。    常压不同反响温度时自由能、平衡常数、平衡转化率见上表3。    使用上边的计算结果绘成标明TiC14转化率X与热力学温度T的联系图1。氧化反响热力学计算结果通知咱们在氧化反响器及流场规划中,不但要考虑产能、质量、热平衡等问题,还要统筹TiCl4平衡的转化率问题,这样才干辅导咱们正确地设定氧化的操作参数。    实践中TiC14气相氧化反响是在高温下进行的(≥1300℃),Ti02的粒子受反响温度、反响区的逗留时刻和加人的成核剂影响很大,欲制得均匀粒度为0. 2μm的高档颜料用Ti02是很不简单的事。下面临影响反响和产品功能的首要因素反响温度、反响时刻、成核剂、晶型转化剂及从反响区移出的时刻进行评论。    (一)反响温度    TIC14和氧在500-600℃就能够缓慢进行,700℃时就可显着察觉到TiO2气溶胶存在。跟着反响温度的进步,反响速率呈幂次函数添加。在600-1100℃温度范围内反响从受化学反响操控变为受动力学操控。在高于1100℃时,已到达很高的反响速率,反响时刻小于0.01s,反响的活化能为138kJ/ mol。    NB安基波夫等在电阻丝加热的石英管反响器中测定了TiC14氧化反响的动力学数据(见图2)。    从图2中能够看出,当反响温度>900℃时,反响速率进步是十分快的。依此看,氧化操作中TiCl4和O2混合后的温度>900℃是十分必要的。    研讨标明,该反响产品的晶型结构首要取决于反响物的开始温度(即反响的引发温度)和化学反响时刻。当反响温度为500-1100℃时,反响产品首要是锐钛型Ti02;当引发温度进步到1200-1300℃时,反响产品的金红石率可达65%-70%。因为由锐钛型Ti02转化为金红石型Ti02的活化能较高(460 kJ/mol),特别是在反响区高温下逗留时刻极短的情况下,反响的开始温度就更显得更重要一些。实践证明,即便温度进步到1300℃,假如不加晶型转化促进剂也无法完成金红石型Ti02的转化率≥98%的目标。    (二)反响时刻    TiC14气相氧化反响需求在高温下进行,反响温度的进步尽管有利于生成粒子长大,可是生成粒子在高温区逗留时刻过长会使其过火长大,难以获得颜料用的Ti02产品。为了避免其过火长大,有必要操控生成粒子在高温区的逗留时刻。    从反响进程看,反响逗留时刻应包含TiC14与02混合成核时刻、化学反响时刻、晶粒长大和晶型转化时刻。一些研讨者经过对试验数据的数理统计处理,得出了Ti02均匀粒度与微观逗留时刻的联系,经历公式如下:[next]    结合温度操控有人曾绘出一条曲线来标明反响物和产品的温度改变(见图3)。    (三)晶型转化剂的效果    锐钛型Ti02在高温条件下能够向金红石型Ti02转化,在转化过程中自由能下降,晶体表面缩短,体积缩小,结构细密,稳定性好。应提出,因为晶型转化所需求的活化能高,晶型转化的动力学速度是缓慢的。即便在很高的温度>1300℃下,逗留数秒钟其转化率也不够大。在较低的温度≥850℃,要经20-30min才干使转化率到达抱负的程度。

粗四氯化钛制取工艺及设备--流态化氯化实验1

2019-02-15 14:21:16

流态化氯化又称欢腾氯化。流态化简称流化,是使用流体的效果,将固体颗粒群悬浮起来,而使固体颗粒具有某些流体的表观特征,因而强化了气一固间、液一固间、气一液一固间的触摸进程。这种使固体颗粒具有某些流体特征的技能被称为流态化技能。使用于氯化工艺进程被称之为流态化氯化。如金红石流态化氯化制取TiCl4、锆英砂流态化氯化制取ZrC14等都归于这类氯化工艺。    在流化床中床层压降△p,流体流速u和物料颗粒空地度之间有必定的联系(见图1)。    ①在气体低流速时(u ut),固体颗粒开端带出容器,并处于悬浮情况,床层自在面消失,床层压降(△p)跟着固体颗粒带出量添加而下降,此称为带出速度或逸出速度,此刻称为稀相流化或气体运送阶段。    当然这是一种颗粒均匀,液固系散式流态化的一般规则,在实践使用进程中往往杂乱一些。气固系在做流化试验时能够看出,当气体流速u略大于umf之后,在流化试验管内的颗粒散布呈不同情况。在散布板上必定高度为密相段。轴向高度之上颗粒散布逐突变稀,其两相间有较显着的流化界面(见图2)。 [next]    在密相段颗粒湍动返混处于悬浮情况与流体充沛触摸;在稀相段有少数颗粒在悬浮,并看得见有少量极细微的颗粒被气流带出。    流化床的压力降△p可按下式核算:                    △p=Lmf(1一εmf)(ρS-ρt)    式中,△p为流化床压降;Lmf、εmf为床层颗粒开端流化时的床层高度和空地度;ρS为固体颗粒密度;ρt为流体密度。    从以上公式能够看出,当εm、ρS、ρt必定的情况下,△p取决于料层的高度Lm。实践在流态化氯化操作中最主要是操控流化操作速度u和床层压降△p来完成平衡操控的。    常用弗劳德准数Fr来判别流化类型,其公式如下:    式中,u为流体流速或称空塔流速;g为重力加速度;dp为固体颗粒均匀直径。    当Fr     正是因为床内气体和颗粒的剧烈运动,使床内温度均匀,这是流化床的一个主要特色,传热系数比较大。正常流化暗示如图4所示。    当床层直径小而气速不高时,床层大部分颗粒向上运动,近壁处则向下运动,然后构成颗粒的循环运动。    当床层直径较大而气速又高时,则床层中可存在多少颗粒循环运动区。    一般用床层压降的动摇、流化层密度的改变、温度的散布、气体停留时间的散布等参数来点评流化床的好坏。    因为物料粒度、配料以及操作参数的失控,流化床常有不正常的现象呈现(见图5)。[next]     ①沟流。当物料颗粒间黏结,使气体在床层的固体黏结块旁经过。或者说很多气体短路在空地度大的部分穿过,在床层内构成一些狭隘的通道,而其他的物料并未流化。仅床层内流道周围部分流化,称为沟流。此刻床层压降远比物料浮力小,一起上下动摇。呈现孔道时,压降下降;孔渠崩塌时,压降上升。发生沟流时,床层径向温度差较大,传热功率下降,未流化的物料易烧结,气体使用率低,反响尾氯中游离氯显着增高;生产率下降,直至床温不能坚持停止。    一起,过细微的颗粒、没有必定份额的颗粒物料或湿度大的物料,选用高度一直径比大的反响器都易构成沟流。    ②腾涌(时令)。当流化床内气泡逐步会集长大,乃至气泡直径可挨近小反响器直径时,床层上部的物料呈活塞状向上运动,相似脉冲送料,料层到达某一高度的气泡崩裂又坠下,称为腾涌。    发生腾涌时,床层压降急剧动摇,料层不均匀,气固系触摸不良,不少物料被吹跑,气体使用率下降,炉衬因剧烈冲击易磨损掉落。实践中尾气中含气量上升,收尘器料量添加,生产能力下降。    过大的固体颗粒或过大的气体速度及欢腾床直径过小(<0. 5 m)都是发生腾涌的原因。    在流化操作中,应防止发生不正常流化。一旦呈现,有必要针对发生原因,采纳恰当办法加以克服。    金红石或高钛渣流态化氯化进程具有如下特色。    ①气体介质具有强腐蚀性。流态化的气体介质及反响生成物TiCl4、SiC14、FeC14、FeC13、AIC13等氯化物都具有强腐蚀功能。特别是氯化高温下简直与一切的物质反响。因而炉衬有必要耐腐蚀、耐冲刷;要求密封材料功能高;与氯化炉、收尘器相匹配的设备及构件要求选用耐高温、耐腐蚀的金属材料、非金属陶瓷材料。    ②反响温度高。正常反响温度在950-1000℃之间,当选用CaO、MgO偏高的物料时,要求更高的温度把CaCl2、MgCl2带出氯化炉,为此给设备制作带来更大的难度。    ③炉气中含粉尘多。流化态氯化的进程中物料不断地被破坏、磨损、反响而粒度变细发生粉尘被反响发生的炉气带出炉外,使物料使用率下降。特别是一些高沸点的氯化物,在氯化炉高温下升华为气态,而脱离氯化炉经换热降温,又冷却结晶为固体分出,加大了尘量。这是氯化进程所期望的,但加大了废渣处理的难度。    ④在加碳反响制取TiC14的进程中,两种固体反响物料的密度相差约为2.5-3.0倍。为使两种物料在流态化氯化时坚持杰出的流化情况,在同一气速下,都能很好地触摸不分层,顺畅彻底反响,要求各自要有严厉的均匀粒度,一般石油焦的均匀粒度大于金红石(或高钛渣)的粒度,大约为1.4倍。可用下面的理论公式核算:

四氯化钛气相氧化的热力学(三)

2019-02-15 14:21:16

从上表4中能够看到,晶型转化率受温度影响很大。在1500K时晶型转化所需的时刻与反响所需的时刻在数量级上大体一致,可同步完结。    实践中证明,单一TiCl4与O2反响的金红石型转化率只要30%-65%,为取得金红石型产品含量≥98. 0%需求加人晶型转化剂。我国在开发氯化法钛白技能中从前做过很多晶型转化剂的挑选实验,终究以为AIC13是最经济、作用较好的晶型转化剂。氧化产品中A1203含量达0.9%-1.2%时,产品中金红石型的含量就完全能够完成)98.0%的要求。    实践也证明,TiCl4气相氧化反响过程中没有引人成核剂,产品的均匀粒度粗、粒度散布宽,很难得到优秀的颜料级Ti02粒子。一般的成核剂有水蒸气及元素周期表中榜首主族元素、第二主族元素及镧系元素的盐类,如锉、钠、钾、钙、、铈的各种盐类,它们在高温下很简单生成氧化物。一般把它们按必定份额溶解在水中,使用氮气或许氧气作载体把它们压送到氧化反响器中,最好加人到热氧气流中。    经过实验,以为最好的成核剂为。当加人KC1量为(90-110)×10-6时,产品的CBU(炭黑底彩值表明产品消色力)进步5-6,到达12.4。满意颜料对氧化半成品的要求。    各种碱金属氯化物作成核剂的挑选性实验见下表5。美国专利2791490、5201949、3208866较具体地叙说了加人晶粒细化剂对炭黑底调的影响。炭黑底调是Ti02粒子巨细和粒子巨细均匀度的一种测量方法的衡量单位,值愈大,其粒子愈细,散布愈会集。其反响条件氧气过量系数为1.10,预热到1000℃,TiC14蒸气预热到800℃,反响区温度在1000-1400℃之间,把盐溶液喷到紧靠反响区的热氧流之中。

粗四氯化钛制取工艺及设备--流态化氯化实验2

2019-02-15 14:21:16

式中,dp碳为碳颗粒的均匀粒径;ρ钛料为钛料的密度;ρ碳为碳颗粒的密度;dp钛料为钛料的均匀粒径。    杰出流化态氯化首要条件如下。    ①流化速度(u)。挑选适合的流化速度(u)是树立杰出流化的要害。    实测的空气为流体,钛渣和石油焦不同粒径在常温下与临界流速的联系如图6所示。它标明两种物料在同一流速(u)下相比较,石油焦粒径要大一些,与经历公式相符。在实践使用中流化时一般气流速度较大,物料混合激烈,虽然两种物料密度相差较大,但因粒度也相差较多,彼此有必定份额,而且粒度也有必定规模,所以床层中分层现象并不显着。    按界说umft,事实上ut与umf之比值约为50-100,规模适当宽。有必要根据冷模试验确定好的空塔流速(u)。当流化速度低时,氯化速度低,生产率也低;当流化速度高时,细粉料被带出炉外的量大;下降了在炉内的停留时间,尾氯中含氯量增加对氯化进程是晦气的,增加了环保处理费用。适合的流化速度u是umf的5-10倍。[next]    ②炉体的结构。流态化氯化炉的炉体结构对构成杰出流化有很大影响。常见的为分散型,首要参数有流态化段高度-直径比、扩大段直径一流化态段直径比等。结构简略的分散型流态化氯化炉首要由炉体、气流散布器、加料器、排渣器、气固分离器和丈量外表组成。炉体按部位由炉顶、炉身和炉底三部分组成。按结构,外层是钢材焊接而成的炉壳,炉壳内层是密封和融热材料,最里层是炉壁。炉壁可由数层耐火和保温材料砌成,或用耐高温、耐腐蚀、耐冲刷、气密性好的料捣固而成。常选用酸性或半酸性耐火材料作炉衬材料,如石英砂、炭砖等。特别是流态化段,温度高、浓度大、含碳量高,易被反响熔融。物料对炉壁冲刷严峻加剧损坏,为提高炉龄常把炉壁加厚。为避免渗漏内衬砌筑最好趁热打铁,避免在续接处渗氯。    炉壁结构举例:外层为捣固层,用矾土骨料混凝土或磷酸盐捣固材料捣固而成。厚度185mm。第二层为耐火砖,用豁土砖或其他半酸性耐火砖砌成。流态化段厚度为165mm,扩大段厚度为120mm,过渡段用异型砖。流态化段加厚两层。第三层为熔铸层,用电极糊熔铸而成。厚度200mm。流态化段内层为预制圈层,它用磷酸铝矾土骨料混凝土捣固预制的。便于损坏时替换。厚度约为300mm。    炉体首要参数及生产能力见表1。     ③的浓度和流量的影响。一般的浓度越高越好,一般最低浓度>70%(体积),浓度太低影响反响速率,生产能力下降,带人其他成分的气体对TiC14的冷凝晦气。流量操控在u答应规模内,u大一点,氯化反响速率高,生产能力高。    ④反响温度。在温度升高时流态化氯化速度跟着加速。在流态化炉高钛渣加碳氯化试验标明,在低温(300-700℃)区,化学反响是操控过程;在高温区,即温度大于700℃时,分散为操控过程。在实践中流态化氯化的操作温度都在比较高的温度下进行,便于取得高的氯化速度。因为氯化高温下的腐蚀性强,为使工艺安全,给设备制作带来许多困难,也使造价升高。较适合的温度为900~1000℃。    氯化工艺特色比较见表2。[next] [next]     一般操作中常用普通外表粗略地判别流化情况,富钛料流态化氯化常用的判别根据如下。    ①床层压降的脉动振幅小,频率高,流化质量好。    ②流态化层中轴向和径向温度越均匀共同,温度误差越小,流化质量越好;测点上温度安稳,反映流化床层波。    ③排渣困难,炉渣流动性差;流化质量差。    ④炉气中游离氯<1.0%,标明床层中与物料触摸充沛、氯化彻底,流化质量好。    流态化氯化炉呈现异常现象的判别和处理见表3。

精四氯化钛制取工艺技术--精制系统的尾氯处理

2019-02-15 14:21:16

粗TiC14精制的尾气中首要含有释出的C12、COC12, HCl及没有彻底冷凝下来的TiC14、SlC14的气体,精制体系的尾氯处理工艺流程如图所示。    (1)用H2O吸收SiC14和TiC14                  SiC14十3H2O===H2SiO3十4HC1                  TiC14十3H2O===H2TiO3+4HC1    HCl溶于水中,H2SiO3构成胶冻,易阻塞管线和阀门,H2TiO3为乳白色的水合物。    (2)用NaOH碱液吸收              2NaOH十C12===NaC1O+NaCl+H2O    (3)总污水用Ca(OH)2处理酸性水,消除酸性                2HC1+Ca(OH)2===CaC12+H2O    (4)用Na2S2O3去除废酸液中的NaC1O            NaC1O+2HCl===2NaC1+H2O+C12↑    当还原剂Na2S2O3缺乏或在废水聚集的中途遇酸反响,逸出Cl2形成二次污染。    当出产中有TiC14气体排放时,能够经过部分排风把TiCl4、HCl等有毒、有害气体吸人淋洗塔进行处理。    有机物除钒的现场操作为DCS自动控制进程。其液位计、压力计(一次元件)的挑选非常重要,决议体系安全运转的可靠性。一般吹气式液位计、雷达、超声波等料(液)位计都不太好使。而选用插人式隔阂压力计外表测定液位较适用。    精的运送选用磁力泵较好没有走漏;含钒泥浆泵宜选用慢转速、半开式大叶轮,带有气体密封环的泵比较适用。    精制的设备特别是精TiC14的贮罐、中间罐等宜选用不锈钢原料较为适宜。

粗四氯化钛制取工艺及设备--流化床氯化工艺

2019-02-15 14:21:16

(一)流态化氯化工艺及设备    现在,无论是钛厂的氯化工艺仍是海绵钛厂的氯化工艺,多选用流化床氯化工艺技术,其流化床氯化设备流程如图1所示。    国内流化床氯化工艺技术是在前苏联竖式氯化炉基础上开展起来的,所以,收尘器、淋洗冷凝体系的设备,依然保持着前苏联老工艺设备的面貌,没有大的改动。    国外流化床氯化设备流程如图2所示。 [next]     该流程的特点是设备简化,没有熔盐氯化工艺中巨大且很多的除尘设备;代之为旋风收尘器;主TiCl4喷淋吸收塔工作功率较高,喷淋量大,一般喷淋量与产出TiCl4之比为(6-10):1;到达充沛传热、传质,湿式除掉固体夹藏物的意图;该体系中的热量彻底经过功率较高的换热器带出体系之外,防止热量堆集,确保体系内的热平衡。    (二)流态化氯化的设备出产才能    现在国内流态化氯化的设备才能与海绵钛出产才能匹配规划比较小,一般在Φ1000-1400mm,产能日产20-25吨粗TiCl4。根本都是无筛板的。为习惯海绵钛出产的大型化开展,遵义钛厂正在建造Φ2400mm流态化氯化炉。    国外无论是海绵钛出产仍是氯化法钛出产,流化床氯化炉的规划都很大,一般以年产6.0万吨钛计,每天约产粗TiC14550吨。流化床氯化炉的直径可达Φ5000mm以上。    (三)流化床首要工艺技术指标    ①钛质料的利用率96%-98%。    ②氯的利用率92%-94%。    ③单位面积出产才能15-30吨粗TiC14/(m2·天)。    ④氯化尾气含氯量≥l0lb/h①(① 116=0. 45359237kg。)(以100%C12计)。    ⑤氧化循环尾气中C12浓度)70%(体积);海绵钛出产镁氯循环的工艺Cl2浓度)90%;哈萨克斯坦乌兹基厂Cl2浓度≥92%,能够循环运用。    (四)流化床别离固体氯化物的方法    ①用满足量的TiC14液体冷却,淋洗使FeC12、FeC13悬浮在TiC14的液体中。收尘器温度操控要高于FeC13沸点20℃。    ②把炉气激冷至400℃,防止FeC12分解成FeCl3,然后用TiCl4喷淋换热到200-210℃,持续用TiC14淋洗使TiC14、SiC14、Vocl3一块冷凝下来。可防止FeCl3在器壁上结垢。    ③悬浮在TiC14之中的FeC13、AIC13等固体颗粒在向氯化炉或蒸腾降温烟道中喷发时可发作反响,生成FeC12、A1203在旋风收尘器中被除掉,以防止恶性循环,添加TiCl4之中的含固量。    ④流化床层料的处理。排出的床层猜中首要成分为Si02、C、CaC12、MgC12等,被放出可用水洗去可溶性CaC12、MgC12等杂质,烘干后可回来从头配料运用(美国专利419118)。国内一般也采纳这样方法收回有价值成分。

粗四氯化钛制取工艺及设备--氯化工艺技术发展

2019-02-15 14:21:16

富钛料制取的工艺技能有如下几个阶段。竖式炉团球固定床氯化现已被筛选;代之以发展起来的是沸腾床氯化技能。有两种工艺:其一以哈萨克斯坦、乌克兰等国家为代表(前苏联)的熔盐氯化技能;其二是以美国、日本等国家为代表的沸腾床氯化技能。沸腾床氯化设备规划大,自动化程度高,不仅在氯化法钛白生产上使用,在海绵钛生产上也使用。现在,具有发展前途的循环床氯化技能正处在小型工业实验的研制阶段。其工艺特色首要会集在氯化炉上:①氯化炉气流带出的物料搜集下来与加人的新料充沛混合预热,进步传热的功率重新人炉;②从旋风收尘器收下的料能够直接进人体系进行循环使用参加反响,处理工艺简略;③循环床的操作速度高于正常流化床的操作速度,反响强度大,产能高。    循环床氯化实验工艺流程如下图所示。

从四氯化锗水解母液中回收锗

2019-02-11 14:05:44

高纯二氧化锗(GeO2)是将高纯(GeCl4)参加去离子水分化而成的。经过过滤使固体GeO2与水解液别离,水解液中的锗含量一般为2~4g/L。现在,一般选用直接往水解液中加氯盐法或参加等质量的进行蒸馏的办法收回其间的锗,锗以GeCl4的方式得到收回。驰宏公司选用第二种办法收回水解液中的锗,需耗费30%的工业约110t/a,发生H+浓度为6.5mol/L的蒸馏残液约200m3/a,环保处理时困难比较大。本研讨就是为了寻觅一个成本低和残液发生量较少的环境友好型锗收回新工艺。       一、试验部分       (一)质料       试验所用水解液是从高纯GeCl4水解生成GeO2后的水解上清液,为淡黄色的酸性溶液,悬浮有少数白色漂浮物,其化学组成见表1。此外,试验所用试剂MgCl2·6H2O,MgSO4·7H2O,MgO均为分析纯(广东省汕头市达濠精密化学品有限公司出产);NaOH,NH3·H2O为分析纯(上海化学试剂有限公司出产)。   表1  水解液首要化学组成水解母液c(H+)/(mol·L-1)ρ(Ge)/(g·L-1)1#4.513.402#4.822.753#5.032.12       (二)试验原理       高纯GeCl4水解成高纯GeO2的化学反应式为: GeCl4+2H2O=GeO2+4HCl   或:GeCl4+(x+2)H2O=GeO2·xH2O+4HCl       水解生成的GeO2具有必定的溶解度(0.004mol/L),是一种可溶性的结晶氧化物。       向水解液中参加与氯化镁,首要生成溶于水的锗酸钠,后生成不溶性的锗酸镁,此进程的化学反应式为:   GeO2+2NaOH=Na2GeO3+H2O   Na2GeO3+MgCl2=MgGeO3↓+2NaCl       过滤枯燥后将锗酸镁与按1∶6(质量比)参加到蒸馏釜中一起蒸馏,运用GeCl4沸点低(83.1℃)的性质,锗便以GeCl4的方式得到收回,此进程的化学反应式为:   MgGeO3+6HCl=MgCl2+GeCl4+3H2O       (三)试验办法       试验在室温下(25℃)进行,锗收回首要包含以下几步(图1):图1  从水解母液中收回锗的工艺流程   (因故图件不清,需求者可来电免费讨取)       过程1:选用NaOH与NH3·H2O调理水解液的pH值为7.0~8.0,参加MgCl2、MgSO4和MgO作为沉积剂,使锗生成不溶于水的锗酸镁(MgGeO3)。       过程2:将过程1所得溶液过滤,得到含锗滤饼。       过程3:将含锗滤饼进行枯燥,能够削减滤饼40%~60%的含水量,以便蒸馏。       过程4:将枯燥脱水后的滤饼与一起蒸馏,在大约70~100℃使锗以GeCl4的方式蒸发,用分析纯吸收蒸馏出来的GeCl4。       二、成果与评论       试验发现,选用NaOH或NH3·H2O来调理水解液的pH值,对锗收回率几乎没有影响。运用NH3·H2O调理水解液的pH值时,会有必定量的NH3冒出,因而从往后的工业使用考虑,试验选用NaOH来调理水解液的pH值。       (一)Mg/Ge摩尔比对锗收回率的影响       试验中选用MgCl2作为沉积剂,沉积时刻为24h,Mg/Ge摩尔比对锗收回率的影响见表2。由表2能够看到随Mg/Ge摩尔比的添加,锗的收回率也是不断添加的。含锗量高的水解液,锗的收回率也比较高,但锗沉积后的上清液中含锗量根本一起。当Mg/Ge摩尔比到达1.5时,锗的收回率比较抱负,持续添加Mg/Ge摩尔比对锗收回率的影响不是十分显着。因而,将Mg/Ge摩尔比确定为1.5。   表2  不同Mg/Ge摩尔比条件下的锗收回率/%水解母液n(Mg)/n(Ge)00.511.522.51#65.392.495.998.599.199.12#57.190.594.998.298.898.93#41.687.193.197.598.598.5       (二)不同镁化合物对锗收回率的影响       试验中选用MgCl2、MgSO4或MgO作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻24h,锗收回率见表3。由表3可知,MgCl2与MgSO4作为沉积剂,锗的收回率都比较抱负,而MgO的沉积作用不抱负,这可能是因为MgCl2与MgSO4在水溶液中都能够电离出Mg2+,而MgO则不能。   表3  不同镁化合物对锗收回率的影响镁化合物收回率/%MgCl298.3MgSO498.2MgO85.3       (三)氯化铵对锗收回率的影响       据有的材料介绍,溶液中若有NH4+存在时,水解液中的锗更简单沉积分出。试验中选用MgCl2作为沉积剂,沉积时刻为24h,参加不同量的NH4Cl,锗收回率见表4。由表4成果能够看到,NH4Cl的参加量对锗收回率几乎没有影响。   表4  氯化铵对锗收回率的影响n(NH4Cl)/n(Ge)收回率/%098.20.598.5197.81.597.1296.82.595.6       (四)沉积时刻对锗收回率的影响       试验中选用MgCl2作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻对锗收回率的影响见表5。试验发现,参加MgCl2后,能够在4h内根本完成沉积。   表5  沉积时刻对锗收回率的影响沉积时刻/h收回率/%292.5498.11298.0       (五)蒸馏法收回锗沉积中的锗       将枯燥后的锗沉积滤饼均匀混合后,锗的档次测定为31.55%。试验时每次称取1000g锗沉积滤饼,参加6000g工业一起蒸馏,锗以GeCl4的方式得到收回。依据公司多年的出产经历,1kg的锗能够出产GeCl4为1576mL,蒸馏工艺锗的收回率见表6。   表6  蒸馏工艺锗的收回率水解母液GeCl4理论产值/mLGeCl4实践产值/mL收回率/%1#497.2491.598.852#497.2489.598.453#497.2488.598.25均匀497.2489.598.52       三、结语       本研讨获得了一种新的从水解母液中收回锗的工艺,此工艺首要包含用NaOH或调理水解液的pH值,参加镁化合物生成锗酸镁沉积,过滤得到锗沉积并烘干,再用传统的蒸馏工艺收回锗。选用此工艺能够使锗的收回率到达98%以上,最佳试验条件为:选用NaOH来调理水解液的pH值至7~8,MgCl2或MgSO4作为沉积剂,Mg/Ge(摩尔比)为1.5∶1,沉积时刻为4h。       驰宏公司水解母液的发生量为110m3/a,含锗均匀为3g/L,选用此工艺发生档次为31.55%的锗沉积约为1046kg,需求30%的工业约6.5t/a,选用新工艺比选用旧收回工艺每年可节省工业100t左右,而锗总的收回率根本一起。

四氯化锡 价格

2017-06-06 17:49:51

四氯化锡 价格是消费者会关注的话题,下面我们就来看一下这个问题。性状一四氯化锡工业品为无色或淡黄色的液体,b.p.142℃,相对密度2.3021,暴露于空气中与空气中水分反应生成白烟,有强烈的刺激性,遇水分解,生成盐酸及正锡酸。性状二无色液体或无色立方结晶。熔点-33℃。沸点114.1℃。液体相对密度2.226。溶于冷水并放出大量的热,溶于乙醇、乙醚、苯、甲苯、四氯化碳。遇热水则分解。在湿空气中吸水生成为三水物。进一步加水,生成5、8、9等不同数量的结晶水的化合物。无水氯化锡在低温下能吸收大量的氯气,同时体积形成膨胀和冰点下降;能与氨反应生成复盐;与碱金属作用生成锡酸盐。有强腐蚀性。所属类别一农药中间体: 杀螨剂中间体所属类别二无机化工产品: 无机盐: Ce液化物及氯酸盐用途与作用一四氯化锡是合成杀螨剂三环锡、苯丁锡和三唑锡的中间体。用途与作用二用于合成有机锡化合物的原料,染色的媒染剂,制造蓝晒纸和感光纸、润滑油添加剂,玻璃表面处理以形成导电涂层和提高抗磨性。用作异丁烯、&alpha;-甲基苯乙烯等的阳离子聚合催化剂。合成工艺与制法一金属锡氯化法 将金属锡熔融,然后泼入冷水,激成锡花,加入反应器中,通入干燥氯气进行反应,生成四氯化锡。由于产物中有过量的游离氯而呈黄色。可加入几片锡薄片,加热蒸馏,用干燥容器接收105~120℃的馏分,制得无水氯化锡成品。其反应式如下:Sn+2C12&rarr;SnCl4合成工艺与制法二四氯化锡是由锡和氯气为原料制成。参考质量标准参考标准指标名称 指标四氯化锡(SnCl4)/%> 99游离氯/%< 0.005锑(Sb)/%< 0.006铅(Pb)/%< 0.002铁(Fe)/%< 0.005铜(Cu)/%< 0.001砷(As)/%< 0.10如果你对四氯化锡 价格感兴趣,你可以登陆上海有色网进行查询,寻找更详细的信息。

四氯化钛气相氧化制取金红石型二氧化钛

2019-01-25 13:37:59

用TiCl4制造钛白的研究工作开展得比较早,曾出现过三种方法,即液相水解法、气相水解法、气相氧化法。    液相水解法的工艺与传统的硫酸法相似。主要工艺过程为:TiCl4主要采用稀释法或中和法水解制备晶种→TiC14液相水解→制成偏钛酸H2Ti03→锻烧→制成金红石型钛白。在水解过程中产生大量的稀HCl难以循环利用。    气相水解法是TiC14蒸气与水蒸气在400℃温度下进行水解反应,制成颜料用的钛白,副产品为HCI.该法同样存在HCI利用问题,另外在高温下HC1的腐蚀性较为严重,耐腐蚀性的材料难以解决。这样该法必然存在着对产品的污染,因此该法没有形成工业化。    TiCl4气相氧化法同样经历了严峻的考验,闯过工艺、设备材料关,其工业化的进程比普通化工要慢一些。经过多个资深公司的开发使工艺成熟,并实现生产装置简单,生产能力大,自动化程度高,产品质量优良的特点,使之得到快速发展。

四氯化锆镁还原

2019-03-04 16:12:50

于氩气气氛中,用金属镁复原制取海绵锆的出产办法,又称克劳尔法。复原产品经锆真空蒸馏别离除掉其他组分后即可取得海绵锆。 此法于1944年由美国矿务局(U.S.BureauofMine!)的克劳尔(w.J.Kroll)首要研讨成功,1950年用于工业出产。我国于1957年初次用这种办法制得,1964年用它出产原子能级的锆厂投产。这种办法仍是世界各国如今出产海绵锆的重要办法,一般出产规模为年产海绵锆2000~3000t。 原理 镁复原是在多元系ZrCl4-Mg-zr-MgCl2-ZrCl3-ZrCl2中进行的,为多相反响,复原进程和镁热复原法出产海绵钛类似。其总反响式为:ZrCl4(g)+2Mg(1)→Zr(s)+2MgCl2(1)反响伴跟着物料的熔融、蒸发、传热、传质、滋润等的进行,海绵锆的生成可分为三个阶段。在第一阶段中,与镁液反响,生成和MgCl2,使镁液的湿润性进步,镁液不断显露自由面而进行气(ZrCl4)一液(Mg)反响。生成的锆沉入反响器底部,随后生成的锆在其熔体表面集合长大。因为镁液沿器壁上匍匐,生成的锆都粘结在器壁表面上。在第二阶段中,足量的镁使反响速度加速,反响区温度增高,此刻主要在熔体表面进行气(ZrCl4)一液(Mg)和气(ZrCl4)一气(Mg)反响。跟着镁液的耗费,镁液自由面消失,反响进入第三阶段。到第三阶段时,生成的锆占有反响器的大部分容积,剩下的镁液经过海绵锆的毛细孔上移而与气态ZrCl4持续反响,MgCI。顺毛细孔流下,海绵锆成为金属镁和MgCl2的搬迁载体。因为镁的削减和它在毛细孔中分散速度的下降,反响速度变慢。当镁耗费65%~70%时复原反响结束。在反响后期,常会呈现因为镁直销缺乏,ZrCl4被复原成活性大而易燃的贱价氯化物(ZrCl2和ZrCl3)的状况,这些锆的贱价氯化物俗称黑粉。 设备 复原炉是一个不锈钢板焊成的柱式圆筒,按ZrCl4参加方法可分为一次性加料和接连加料两种不同的炉型。一次性加料复原炉(图)由复原炉和用法兰与之相连的蒸发炉组成。镁锭预先装好在复原炉内的反响坩埚内,坩埚上方的套筒中心为ZrCl4气体导管。装有ZrCl4的蒸发炉放置在复原炉上。炉盖与真空体系、充氩体系相通。反响生成的MgCl2熔体从溢流管定时从炉内排出。复原结束时所剩的MgCl2可从排放管放尽。产品冷却后连同反响坩埚同时取出送真空蒸馏。这种复原炉的单炉出产能力为700~800kg海绵锆,作业周期48h,镁利用率68%~72%。接连加料复原炉按参加的ZrCI4是固体或气体分为两种炉型。加固体ZrCl4的复原炉的MgCl2排放设备坐落罐身底部,罐盖与ZrCl4料仓相连,ZrCl4经螺旋加料机计量参加。加气体ZrCl4的复原炉分为可拆装的上下两部分,下部是反响坩埚,上部旁侧设MgCl2排放管,顶盖有多路管道,别离与真空体系、加料体系和氩气体系衔接。反响进程中的压力用压力调理管调理。 工艺 一次性加料复原炉开端工作时,先将镁锭放入坩埚,再将蒸发炉连同ZrCl4冷凝器移到复原炉上。两台炉子经过法兰密封对接,抽真空后充入氩气。准备工作结束后,把复原炉升温到1023K熔化镁锭。然后把蒸发炉加热至573~633K温度使ZrCl4逐步蒸发,气体从导管进入复原炉开端反响。反响温度一般为1053~1173K,炉压1.1~1.8×105Pa,反响速度与氩气和ZrCl4的分压比有关。ZrCl4蒸发快,浓度高,反响加速;反之,反响变慢。正确地调理温度和压力就可使复原作业平稳进行。当ZrCl4耗尽时,炉压会急剧下降,标明反响现已完结。 一次性加料复原炉示意图 1-复原炉;2-炉胆;3-坩埚;4-套筒;5-导管;6-蒸发炉; 7-炉盖;8-溢流管;9-MgCl2排放管;10-法兰;11-ZrCl4

硫酸法钛白粉的生产--钛液的水解(四)

2019-02-15 14:21:24

十八、选用加压法水解时,操控钛液F值偏大能够进步产品质量    有些钛厂,在偏钛酸的水洗时,后期恰当地参加少数硫酸,使洗水坚持在pH值≥1.5,这对避免铁离子的水解、进步水洗功率和进步产品白度都有优点。有材料标明,用倾泻法水洗5次,干基偏钛酸仍含Fe203 5%,而用含1%硫酸的水洗4次,其Fe203含量就下降到2%,可见酸性水能够加速水洗。而操控钛液F值偏大,会使钛液的酸度增大,本身就起到了不用外加酸而又相当于加了硫酸的效果,到达了像外加酸相同的效果,使偏钛酸的水洗速度加速,然后使制品白度进步。    要是钛液的F值低,钛液的稳定性差,胶体杂质多,不只沉降困难,并且一些胶体杂质在水解前本身已成了结晶中心,在水解时这些不规矩的结晶中心起到不良效果,使得到的偏钛酸粒子不均匀,简单吸附较多的杂质,不只使偏钛酸的水洗时刻延伸,在缎烧时粒子还会简单烧结,使终究产品的白度、消色力和涣散功能下降。而F值操控偏大,钛液的稳定性进步,这样就不简单呈现前期水解现象,钛液中胶质少,到水解时构成不规矩的结晶中心少,制得不均匀的偏钛酸粒子少,吸附的杂质少,乃至由于F值偏,其酸度较大,还能溶解偏钛酸中的一些非钛杂质,而其偏钛酸粒子的粒度并不细。这样不只水洗简单,并且在锻烧时也没有呈现过粒子烧结的现象。使制得的钛的功能比较好。这样就有利于钛质量的进步。表2中的有关数据也能够阐明操控钛液F值偏大,钛液的有用酸偏高,游离酸偏高产品的消色力会大大进步。表2  游离酸、硫酸亚铁和消色力的联系TiO2含量/(g/L)207.7207.7207.7H2SO4含量/(g/L)19.6127127FeSO4含量/(g/L)00167消色力(标定单位)20012001670     十九、加压水解时操控钛液F值偏大能够进步收回率    由于加压法水解F值能够偏大,这样浓废酸就能够悉数返还运用。由于浓废酸悉数用于酸解和浸取,浓废酸就能够替代一部分硫酸,使酸解时能够少加一些硫酸,然后能够节省硫酸。浓废酸中还含有3%-4%的未水解的钛,浓废酸悉数返还运用了,这3%一4%的钛就转移到下一周期的钛液中去,使下一批钛液的总TiO2浓度得到进步,以至于收回率到达80%以上。[next]    二十、常压法水解与加压法水解钛液操控F值的不同之处    常压法水解钛液操控F值与加压法天壤之别,一般加压法水解钛液的F值操控能够放宽到2.2,而常压法钛液F值的操控若大于1.95,其水解状况就欠好,所得钛的消色力都低于100。因而选用常压水解时,有必要操控钛液的F值在1. 75-1. 95之间。一般常压法水解运用钛液的浓度为220-230g/L,其F值可操控在1. 85-1. 95之间,而自生晶种的常压水解运用钛液的浓度为250-260g/L,则其F值要操控在1. 75-1. 85之间。F值的操控不只与浓度有关,还与铁钛比和三价钛含量有关(见表1)。为了操控好钛液的这些目标,以便确保水解的质量,现代大型钛厂,水解前增设了一个钛液分配工序,把钛液分配到契合各项目标要求今后才用于水解。由于常压法水解操控的F值较低,即酸度较小,因而酸解用酸较少,应该在下限,酸解和浸取都不能加废酸太多。这样,浓废酸就不或许用完,只能用一部分。    二十一、晶种的活性及参加量对水解和产品质量的影响    晶种是以它规矩的结晶中心来诱导水解进行的。因而晶种的活性和数量对热水解的速度、水解率、收回率、偏钛酸粒子巨细、制品均匀粒度和消色力都有很大的影响。    晶种的活性是由晶种的制备条件而定。晶种活性好,水解率就高,偏钛酸粒子均匀,制品消色力也高。    从图6可知,晶种加人量添加,水解率升高。但晶种加人量大于2%时,水解率的升高就不显着了。    从图7可知,晶种加人量为。0.6%-2%时,消色力最好。晶种小于0.6%时,因结晶中心缺乏,要靠本身构成的一些不规矩的结晶中心,因而消色力急剧下降。晶种加人量大于2%时,消色力也缓慢下降。    从图8可知,晶种加人量添加,制品均匀粒度增大。由于其结晶中心的量添加,偏钛酸原始胶粒的粒度变细,而凝集成颗粒更大的凝集体。在锻烧时易烧结。当晶种大于2%时,产品粒度显着增大。 [next]    二十二、钛液中三价钛浓度的巨细对水解的影响    由于三价钛的被氧化势比二价铁的被氧化势大,在钛液中既有三价钛存在,也有二价铁存在。因而若有氧化的或许,三价钛先被氧化完,才轮到二价铁被氧化。要是二价铁被氧化成三价铁的话,则三价铁很简单发作水解而生成红棕色的氢氧化铁混在偏钛酸中,使终究制出的钛不行纯白。因而,钛液中存在必定的三价钛,能够避免二价铁的被氧化。可是三价钛很简单被氧化成四价钛。钛液在放置、运送和水解时,就有或许被氧化。所以水解前钛液有必要坚持在水解后的母液里仍含有必定量的三价钛,来按捺全进程不让二价铁被氧化成三价铁。一般水解后三价钛在0. 5g/L左右为宜。三价钛存在得过多也欠好,由于它对钛液的热水解有按捺效果,一起三价铁是不发作热水解反响的,会留在母液中而下降水解率和收回率。不过在加压水解时,三价钛偏高一点也影响不大,由于它仍留在母液中,而母液还进行收回运用,钛仍是跑不掉。    二十三、水解温度的凹凸对水解和产品质量的影响    在水解进程中,温度的凹凸对水解的速度和偏钛酸的粒度都有较大的影响。    钛液的热水解是吸热反响,进步温度能加速水解速度。钛液在较低温度下水解,要沉积出偏钛酸是较困难的。在90℃时水解反响才开端弱小地进行,到100℃时反响才显着加速,但仍需较长的时刻才干进行得较彻底。只要在欢腾的温度下,水解速度才干契合工业生产的需求,操作操控也最为简单。    若温度过高,会发作以下几个坏处:①糟蹋蒸汽;②剧烈欢腾会损坏偏钛酸一次粒子向二次粒子的絮凝,使过滤困难;③水分蒸腾快,影响钛液浓度;④水解速度过快,偏钛酸粒子巨细不均匀。一般要求在微沸状况下进行水解。为了坚持微沸,常常选用微压来调查。    在低温下长时刻水解,所得偏钛酸颗粒极细,这样媛烧后得到的制品呈角质状,颜料功能很差。所以在工业生产上为了避免这种偏钛酸的发作,要求尽量缩短从80℃到欢腾的时刻。[next]    国外有些研究者以为,在100℃时热水解生成的偏钛酸质量较优,若在欢腾温度下水解,则生成的偏钛酸颗粒较粗,使消色力稍有下降(见上图9),可是在100℃时水解生成的偏钛酸过滤和水洗困难。所以工业生产上仍选用欢腾温度进行水解,尽管消色力等颜料功能稍逊,但能够经过调整其他条件予以补偿。现在不少供应商选用微沸状况进行水解。    二十四、水解时刻的长短对水解和产品质量的影响    水解时刻的长短能决议水解进程进行的彻底程度。水解时刻长,能进步水解率,但对偏钛酸粒子的巨细和均匀度有显着的不良影响。从图10中能够看出水解时刻对水解率和消色力的影响,诱导期开端时,水解比较敏捷,但在3h后便渐趋平衡,尔后再延伸时刻,其水解率的进步便不显着,跟着水解时刻的延伸,由于偏钛酸粒度的变粗,时刻超越4h后,消色力有所下降,一般常压水解时刻(指欢腾变白后,坚持欢腾状况)以2-4h为宜,加压水解以到达压力19.6*104 Pa后坚持15-30min。    二十五、外加晶种、直接蒸汽加热的加压水解的操作    这种办法适用于一般制取细度和涣散性好的颜料钛。其操作进程如下:先以锅容积的85%计,经过计量把钛液加人到加压水解锅内,开动拌和器,以蒸汽蛇形管或蒸汽夹套加热至60-80℃,然后按Ti02计加人1%的晶种(也有在室温下加人的)。封闭加料口并密封,以防漏气,继续进行加热,蒸汽的压力应到达(49-58.8)*104Pa,当锅内钛液升温至欢腾时,发作的二次蒸汽使内压敏捷上升。要求自加人晶种封闭加料口起,在30-40min内升至19.6*104Pa,保压15-30min,水解完毕。然后缓慢翻开放空阀,让锅内缓缓降压,最后放料。[next]    二十六、外加晶种和自生晶种的常压法水解的操作    将浓缩后的钛液,加人用钢壳衬两层耐酸瓷砖的敞口常压水解锅中,开动拌和,若选用外加晶种水解,则用直接蒸汽加热(也有用直接蒸汽加热的),当温度升到晶种酸溶的温度时,参加计量的晶种;若选用自生晶种水解,则在晶种发作乳白时,当即加人待水解的经过预热到90-100℃的主体钛液中。至于水解进程的操控,两法迥然不同,各厂的生产条件不同,其水解办法和操控的目标亦不尽相同。    当晶种参加后,约加热20min,铁液呈现微沸,溶液便由黑蓝色变为暗灰色,若F值和三价钛含量偏高,则变色时刻或许要延伸。这个显着的变色转折点称为临界点。这段时刻工业上称为水解的诱导期。诱导期完毕,即水解到达临界点时,中止拌和和加热。此刻偏钛酸粒子仍在增加,仅仅增加得比较温文、均匀。这样做能够显着地改动偏钛酸的过滤和水洗功能,使过滤和水洗速度进步50%。    大约经过停止30min,又从头拌和和加热,直到欢腾后坚持微沸状况。大型水解锅为了操控参加的蒸汽不能过大,常运用微压计来调理。为了使水解尽或许以固定的速度进行,加热有时在低于沸点的温度下,还有时在沸点的温度下进行,主要是依据水解速度的快慢来调理。水解速度快时要下降温度,水解速度慢时,要进步温度。当反响处于欢腾状况,水解速度仍不能过高时,水解主要靠加水稀释来进步水解速度。由于水是水解反响的反响物,添加水(反响物),有利于水解反响的进行。加水稀释,下降游离酸的浓度,亦有利于水解反响的进行。一般欢腾后20min即开端以15L/min左右的速度加人稀释水。加稀释水除了调理水解速度外,更重要的是使TiO2含量到达160g/L,得到较高的水解率。当加完水后再坚持微沸状况至查验沉降率和水解率到达要求后,水解反响即完毕。一般从欢腾至完毕需求4h左右。    放料后必定要用水洗净水解锅,避免残留物在下次水解时成为不良的结晶中心。    现代改善的水解钛液浓度可操控在≤210g/L,并恰当进步铁钛比,这样能够减轻浓缩的担负,一起能够缩短水洗时刻;现代加热改用直接蒸汽加热和坚持微沸状况水解。在钛液欢腾前用大流量的蒸汽直接加热,钛液欢腾今后,用小流量蒸汽直接加热,坚持微沸状况。水解锅有敞口的,也有密封的,密封水解锅的盖经过液封技能避免蒸汽走漏,整个水解进程不用加人稀释水。    二十七、水解率及其测定和核算    水解率是反映水解完结程度的一个值。即液相Ti02转变成固相Ti02的百分比。水解的凹凸,表明钛液中Ti02转变成固相Ti02的转化率的凹凸。    取水解前的浓钛液及水解后的母液样品各一份,按钛液中总钛和总亚铁的测定办法,别离测出其总Ti02和总亚铁的含量,然后按下列公式核算水解率:

氯化亚锡水解

2017-06-06 17:50:00

氯化亚锡水解是很多人都会关心的问题,因为格影响着锡的价格,下文中就会有这方面的知识。一般讲四氯化锡比二氯化锡更容易水解,而二氯化锡保存不慎往往因为氧化而变成四氯化锡和氧化锡或者锡酸(水合物)溶于水而发生浑浊,且锡的氢氧化物碱性弱,难以吸收二氧化碳。从你的现象来看,的确比较可疑,加入盐酸,澄清溶液还放出气体。如果你确信原来的物质的确是二氯化锡水合物,而释放的气体又是无味的,那么我想可能是这样的,二氯化锡被大量的碱污染,或者你所用的水是碱溶液,我们知道锡的氢氧化物具有两性,可以溶解于强碱中。如果这碱是烧碱或者氢氧化钾,则其含有碳酸根的可能性还是很大的,因此加入盐酸放出气体便容易解释了。我想你用ph试纸检测溶剂和溶质就可以得出结论。溶于水、乙醇和乙醚。易水解生成Sn(OH)Cl,为防水解,先将固体SnCl2溶于浓盐酸,再加水稀释。物化性质: 无色或白色斜晶系结晶。相对密度2.710。熔点37.7℃。在熔点下分解为盐酸和碱式盐。在空气中逐渐被氧化成不溶性氯氧化物。溶于醇、乙醚、丙酮、冰醋酸中,在浓盐酸中 溶解度大大增加。遇水则分解。中性的水溶液易分解生成沉淀,酸性溶液有强还原性,能将氧化铬(六价)还原为Cr3+,Cu2+还原为Cu+,Hg2+还原为Hg+和Hg,Ag+还原为Ag,Fe3+还原为F2+;能将硝基化合物还原为胺类。与碱作用生成水和氧化物沉淀,但碱量过剩时,生成能溶解的亚锡酸盐。&nbsp;如果你想了解氯化亚锡水解等更多关于锡的信息,你可以登陆上海有色网中的锡专区进行查询和访问。

钛白的水解沉淀

2019-03-05 09:04:34

钛液的水解是硫酸法从钛铁矿出产钛白(二氧化钛)的重要进程。钛铁矿经酸免除杂后得到净化的钛液,再经热水解得到偏钛酸(水合二氧化钛),煅烧后得到钛白。 与—般盐类水解不同,钛液的水解没有固定的pH值,稀释或加热都能分出氢氧化钛的水合物沉积。甚至在高达400~500kg∕m3硫酸的条件下长期煮沸也能水解分出沉积。常温下稀释分出的是胶体氢氧化钛,不能满意钛白出产的要求。工业上是加热钛液并保持欢腾水解分出水合二氧化钛,化学计量式可表示为:    (1) 关于钛液热水解的精确机理尚不彻底清楚,一般认为是H+离子的搬运进程和胶体的凝集进程。其离子搬运进程大致如下。 钛离子在溶液中为6配位水和配离子[Ti(H2O)6]4+,其水解进程大致分为3个阶段:晶核构成,晶核生长与沉积构成,水解作用进一步使沉积物及溶液组成改动。水解成核的第一步是从一个H2O分子中脱去1个H+离子而下降了钛的水合高子的电荷:    (2) 此羟基水合钛离子在溶液中发作二聚,构成二核钛离子-八水合二羟基钛配离子:    (3) 放置时该钛的羟桥配离子中H2O分子上的H+持续搬运,构成更安稳的氧桥配离子    (4) 钛氧桥配离子中H2O分子上的H+离子再搬运,进一步离解成羟桥配离子,再搬运成氧桥,就可能结组成四钛合作物:[(H2O)4Ti(O)2Ti(H2O)2(O)2Ti(H2O)2Ti(O)2(H2O)4]4+。这种H+离子的搬运跟着水解进程持续发展,便逐步构成多核合作物。多核合作物中H+离子的不断搬运直至电中性而成为直径3~10nm的水合二氧化钛。该水合二氧化钛为无定型或具有不显着的锐钛型微晶结构,它们按必定方向20~30个聚组成胶粒,胶粒加快凝集至>10μm则开端沉积分出。跟着水解的发展,溶液中TiO2的含量逐步下降,而游离酸浓度不断进步。这样能使沉积的少数粒子部分溶解,而后又从头分出新组成的沉积。这个进程不断持续,直至只剩下极少数钛及较浓的硫酸。 钛液热水解时其组成和质量,尤其是钛含量、F值(酸度系数)、铁钛比、三价钛含量、弄清度和安稳性等,对水解产品水合二氧化钛的纯度、微晶的结构和胶粒的巨细影响很大。安稳性差的钛液在贮存和放置进程中有陈化而逐步分出胶状污浊或沉积倾向,用而在水解前自身即已发生某些胶性结晶中心,使水解产品粒子不均,且易吸附较多杂质使终究颜料产品的白度、上色力和分散性都显着下降。 钛液浓度太低,例如TiO2小于150kg∕m3时,水解产品煅烧后转化成粗粒型二氧化钛,其颜料功能极差。钛液浓度进步可促进终究产品上色力进步,但水解速度会减慢。而当钛液TiO2浓度>200kg∕m3时浓度的进步对产品上色力的进步已不显着。因而,对非颜料用钛白出产多选用低浓度水解以取得较高水解率并简单水洗,对颜料用钛白出产需在TiO2为190~230kg∕m3下水解以发生契合质量要求的颜料钛白。 钛液中含硫酸亚铁高会使水解速度减慢、水解产品过细,一起母液黏度和比重添加,水解产品洗刷速度减慢。但硫酸亚铁含量过低会添加冷冻结晶硫酸亚铁工序的担负、水解产品颗粒也变粗。出产中Fe∕TiO2一般操控在0.2~0.3之间。 在水解操作中,晶种、水解温度、时刻、加热方法、拌和速度是重要的操作参数。晶种活性和数量都对钛液热水解有很大影响。晶种活性取决于其制备条件。晶种的制备归纳起来有稀释法(自生晶种)和中和法(外加晶种)两大类,其实质都是先制得一种正钛酸肢体,然后在稀硫酸或稀中加热胶溶、熟化,在TiO(OH)2颗粒表面吸附具有必定电荷的TiO2+和Ti4+,构成不溶于稀酸的胶体溶液(晶种)。晶种可正确诱导热水解的进行,不光影响水解速度、收率和水解产品粒子巨细,并且可决定产品的晶型(锐钛型或金红石型)。一般来说,晶种参加量0.6%~2%时产品上色力最好。 水解温度对水解速度及产品粒度也很有影响。欢腾温度下水解速度最能契合工业出产要求,操作也最易操控。一般常压下水解以2~4h为宜。

钛液水解的方法

2019-02-13 10:12:33

有关钛液水解方法的专利和报导许多,但只需2种方法现在仍在各国广泛运用。一种是法国人约瑟夫·布鲁门菲尔德(Joseph Blu-menfeld)在1923年研讨成功的自生晶种稀释法水解工艺,又称布鲁门菲尔德法;另一种方法是麦克伦堡(Meklenberg)在1930年开发成功的,选用以碱中和钛液制备晶种的外加晶种工艺,又称麦克伦堡法或沉积法。几十年来这2种方法的操作细节尽管做了不少改动,但根本原理和根本操作方法简直和本来相同。2种方法所得到的产品质量没有在何显着差异,2种方法都不具有显着优于对方的长处,在操作时外加晶种法水解时对钛液的浓度比较灵敏,而自生晶种稀释法水解工艺对钛液的F值比较灵敏;自生晶种稀释法水解一般选用直接蒸汽加热,外加晶种大部分选用直接蒸汽加热,也有少量用直接蒸汽;自生晶种稀释法水解操作操控比较杂乱,外加晶种尽管操控相对比较简略,但要增加一套制备晶种的设备。       (1)自生晶种稀释法水解     该方法是在严厉规则的条件下,把浓钛液稀释使其在溶液中先构成一批符合要求的结晶中心(晶核或晶种),然后持续再参加待水解的钛液,在它的沸点左右进行加热水解。用这种方法能够运用更浓的硫酸氧钛溶液(TiO2:240~260g/L,有用酸为480~520/L),以保证水解初期自生晶种的数量,防止钛液在预热期间水解,在大型工业化出产中设备简略比较经济。     这种方法钛液和水都要事前预熟,按必定的热钛液和热水的份额;把钛液按必定的速率在规则的时刻内加到热水中,这一步操作是该水解工艺的中心部分,只需这样才干构成必定数量和质量的晶种,然后在拌和和加热的状况下持续参加其他钛液进行热水解操作。   但榜首批钛液参加热水中时,会呈现细微的混浊,谁续参加钛液,混合物敏捷溶解又出规相对通明,这种溶解进程仅仅是表面规象,事实上该胶体沉积物被涣散到钛液中,起着晶种和结晶中心的效果,而在今后的水解进程中、水合二氧化钛就堆积在这些晶种或结晶中心上。大约20min后溶液从黑色变为橄榄绿色,继而又变成钢灰色,此刻应当即中止加热和拌和,使水合二氧化钛粒子在比较温文、均匀的状况下增加。数分钟后色彩牙良快由棕褐色转为乳白色,中止加热和拌和的期间,工业上称为水解“诱导期”,通过中止加热、中止拌和的水解产品的过滤速度要比不断拌和接连加热的水解产品的过滤速度快50%;在这个期间内尽管未加热,但水解产品的粒子仍在不断增加,整个水解进程粒子生长改动的状况如下:      在溶液变白时,实践上水解已完结60%~70%,可是在钛液参加热水中开端几分钟的反响是十分重要的,它根本断定了该批水解反响的速率和水解产品的质量,有的工艺明确规则了一分钟后的离子浓度(80~120g/L)。停正加热、拌和的时刻一般操控在20~60min左右,然后从头加热拌和,水解时的速率一般先快后慢,但水解挨近结尾,持续加热不再有新的沉积分出时,加水稀释能够加快水解反响使水解更趋彻底,以进步水解得率。稀释一般运用热水,这是一项看起来简略,实践上技能性很强的作业,不能不屑一顾,不然会呈现许多的细粒子,使水解物料呈牛奶状,粒径散布变差,使水合二氧化钛的过滤和洗刷变得好不简单。[next]     有的工厂把加稀释水的时刻,改在水解诱导期完毕,从头加热拌时,把稀释水不间断的在整个煮沸期间均匀地加到水解物猜中,他们以为这样能够坚持整个水解期间的酸度相对安稳,使水解沉积颗粒比较均匀。     自生晶种稀释法水解最难操作的当地是榜首怎么操控钛液的加量和参加的速率,特别是前4min的加量和速率。由于钛液参加快度过快,由于来不及生成满足的胶体二氧化钛(晶种),会构成水解率偏低,而参加快度过慢,或温度过高,乃至或许呈现在悉数钛液加完之前呈现许多不规则的沉积,不只水解率差,过滤功能也欠好。关于这一点现代计量和自动操控技能已能根本解决这一难题;第二是怎么调查变色断定中止加热、拌和的时刻,一般操作是肉眼调查为主、时刻和温度把握为辅,但这样在大型工业化出产中,多少带有人为的主观性。英国专利No.1335537和美国专利USP3706829中都提出,通过测定水解钛液的反射率的方法,来断定中止加热、拌和时刻的临界点。他们运用一种色差仪(Colormaster),选用绿色滤光镜,在水解罐壁的视镜上接连进行检测,当水解钛液变色到达某一临界值时,发现反射率曲线呈现转折点,这一点就是中止加热,中止拌和最理想的时刻。但由于视镜的污染、钛液色彩的深浅影响调查成果,实践出产中运用的不多,首要仍是靠把握温度、时刻加上肉眼调查来决议。表1为布鲁门菲尔德法水解产品数据的实例。 表1    稀释法水解初期钛液的组成时刻/min溶液状况二氧化钛浓度/g/L溶解状况胶体方法沉积4 5 6 7 8 9 10 11 12 13通明 通明 通明 细微混浊 细微混浊 显着混浊 混浊 严峻混浊 白色 白色104 97 92 84 78 70 71 88 45 4321.1 28.2 33.0 40.8 46.8 55.0 53.6 41.9 31.6 26.60 0 0 0 0 0 0 0 48.2 55.2         美国专利USP3706829、4014977曾对自生晶种稀释法水解有比较具体的介绍。在上述专利中,要求钛液中的TiO2浓度为230~260g/L、F值1.75~1.85,并以为1.8时最好。水解开端前钛液和水都要求预热到88~98℃,最好是96℃,钛液与水的份额为3.5~4.5:1,最好是4:1.     水解操作时,先把热水放入水解罐中,然后在16~20min内将热钛液按必定速率参加水解罐中,在拌和下用直接蒸汽加热,大约20min后钛液欢腾(108℃左右),称榜首沸点。但到达水解临界点时,即在钛液由黑刚刚发现变白时(此刻水解率约有15%~25%),当即中止加热和拌和保温45min左右,然后再开动拌和和蒸汽,持续加热至再次欢腾(约112℃左右),称第二沸点,然后坚持欢腾3h,接着参加热水稀释至TiO2浓度为155~175g/L,再拌和10~30min即可冷却放料。     放料后水解罐必定要清洗洁净,不留任何水解残留物,不然这些产品在下次水解时,会起到不良结晶中心的效果。在用大型水解罐(100m3以上)水解时,有时只停蒸汽不断拌和,由于在中止拌和期间分出的水合二氧化钛粒子生长变大,溶液的粘度也急剧上升,再次发动拌和时电机需求的发动功率太大。钛液在水解时要坚持必定的速率,在常压下加大直接蒸汽的通入量,不只不会使反响温度很快升高,反而糟蹋燕汽,许多的直接蒸汽引起剧烈拌和,会损坏水合二氧化钛粒子的絮凝,因而只需坚持微沸即可,大型水解罐为了便于调查操控,运用微压计指示来调理蒸汽的参加量。[next]     在别的一篇专利中以为实践出产中所供给的钛液F值动摇规模较大,一般在1.7~1.9之间,有时更高,由于F值的改动构成水解成果不同,因而该专利中设法把待水解的钛液分为2部分,前lmin先参加的钛液(占总钛液的3%~12%)F值有必要精确地操控在1.75~1.85之间,然后将总钛浓度相同,但F值能够偏高(可高达2.1~2.4)的第二份钛液参加水解罐中水解。其他钛液与水的预热温度、欢腾时刻、中止拌和和加热的时刻、保温欢腾的时刻和稀释浓度等都和上面介绍的水解方法根本相同。此法水解产品的消色力比较高,一般要比上面一种的水解方法的雷诺数高100左右(1750~1850)。这种方法的另一个长处是能够通过调整榜首份低F值钛液的参加量,来操控水解出来的水合二氧化钛的粒径,一般加量多粒径偏小,加量少粒径相对偏大。     自生晶种稀释法水解与外加晶种水解法比较,具有操作简略、设备少、不需求装备专门的晶种制作设备、能够节约制备晶种时的原材料和动力费用。自生晶种稀释法水解时,直接蒸汽所发作的冷凝水,能够起到缓解水解进程中有用酸进步对水解进程的抑制效果,也相当于水解后期增加稀释水的效果,并且选用直接蒸汽加热,水解罐内没有加热盘管,便于清洗水解罐防止盘管腐蚀对产品质量的影响。可是自生晶种稀释法水解,钛液开端参加构成晶种以及钛液变色时的临界那一时刻短的时刻很难操控,为了战胜这一缺陷,近年来又开发1种水解方法,这种方法在钛液水解前参加晶种,其他水和钛液的预热、停拌和、停蒸汽、再欢腾和保温时刻等操作进程和自生晶种稀释法水解分样,它实践上归纳了2种方法的长处,操作操控比较简洁,产品质量也较好,就是多了一套晶种的制备设备和晶种制备进程。     (2)外加晶种水解法(麦克伦堡法)     外加晶种水解法的操作进程比较简略,其工艺关键是制备晶种的方法和晶种的质量。自生晶种稀释法水解的操作进程数十年来改动不大,而外加晶种水解法晶种制备方法改动较多,水解时对钛液的浓度改动较灵敏。     首先要介绍的是晶种及晶种的制备方法。所谓晶种就是硫酸氧钛溶液经不彻底中和而制得的一种胶体氢氧化钛溶液,它在水解时起着水合二氧化钛结晶中心的效果,它不只能加快水解反响、缩短水解周期,并且对水解沉积产品的粒径、粒径散布和终究产品质量都有较大的影响。工业出产中要制取粒径巨细均匀,并且具有必定组成的水合二氧化钛,就有必要使钛液在热水解前,事前参加(外加晶种法)或先培育(自生晶种法)出必定数量、必定组成的杰出结晶中心,以便正确引导热水解的进行。假如晶种质量差或彻底没有晶种存在,水解操作不正常,得到的产品往往是粒子既细又不均匀“牛奶”状的悬浮物,这种水解产品不沉积,很难过滤和水洗,并且出产出来的钛颜料功能差。     水解进程中硫酸氧钛在加热和晶种的诱导效果下发作水解,所生成的水合二氧化钛就沉析在这些晶种的表面,只需钛液中有满足数量的晶种,且升温速率、拌和速度、稀释妥当,那么所生成的水合二氧化钛都沉析在这些结晶中心上,不会发作新的结晶中心,这样不只水解能进行得更彻底,水合二氧化钛的粒径比较均匀,并且能够获得颜料功能优越的二氧化钛,过滤水洗也比较简单,穿滤丢失少。     晶种的质量(活性)直接影响水解率,晶种的数量直接影响水合二氧化钛的原级粒子巨细,而晶种自身胶粒的均匀程度又直接影响水合二氧化钛的粒子散布。     晶种加量多时,水解所生成的水合二氧化钛粒子细、比表面积大,因而表面自由能也大,简单凝集成大颗粒的偏钛酸;晶种加量少时,其成果则相反,会影响过滤和水洗的速度。假如晶种数量太少,水解时短少满足的结晶中心,硫酸氧钛在加热和稀释的状况下会发作新的结晶中心,这种不受控的结晶中心的结构、组成、数量改动较大,会构成水解产品粒子不均匀,导致过滤水洗很困难。运用晶种加量多少来调整、操控水合二氧化钛原级粒子巨细,是钛产品品种的工艺规划手法之一。     许多化合物都能够作为晶种,可是用碱中和的胶体氢氧化钛溶液是钛液热水解的最有用晶种,有关晶种制备的专利许多,但一般说来它们都是一种悬浮的正钛酸胶体,然后在稀的硫酸或中酸溶,构成一种带正电荷的二氧化钛胶体溶液,所不同的是用碱的品种(、碳酸钠、等)、制备方法、晶种浓度、F值、加量及参加的方法各有不同,实践证明,质量好的晶种既使加量少效果也十分显着。     碱中和晶种(通常是锐钛型晶种)是外加晶种水解法运用最遍及的晶种,它的制备方法通常是取出一部分待水解的钛液,在拌和下坚持必定温度用稀碱液中和至必定pH值,中和反响所生成的正钛酸沉积,经机械拌和而涣散到溶液中,在与溶液中剩下的游离酸一道加热热化(酸溶)后,构成带电的微晶化胶粒。钛液与碱中和制备晶种时发作的首要化学反响如下:                                   H2SO4+2NaOH→Na2SO4+2H2O     钛液中的硫酸氧钛与碱效果生成正钛酸沉积。                                  TiOSO4+2NaOH+H2O→Ti(OH)4↓Na2SO4     钛液中的三价钛在用碱中和后的低酸度下,发作水解生成蓝色的氢氧化亚钛沉积,所以晶种的胶体溶液一般呈蓝色,且钛液中的三价钛含量越高,色彩越深乃至皇蓝紫色。                                 Ti2(SO4)3+6H2O→2Ti(OH)3↓+3H2SO4     经中和制得的正钛酸在加热熟化酸溶时发作化学反响生成带有必定电荷的TiO2+和SO42-,它们吸附在水合二氧化钛的表面使其带有正电荷而成为不溶于稀酸的胶体溶液(晶种)。                                Ti(OH)4+H2SO4→TiOSO4+3H2O                                TiOSO4===TiO2++SO42-     溶液中的Ti(OH)3在熟化酸溶进程中,因溶液的酸度不高,不参加酸溶反响。经加热熟化后的胶体晶种溶液,如不立刻运用,应当即冷却至室温备用。[next]     外加晶种水解时钛液一般不用事前预热,但对晶种参加的时刻和参加时的温度有规则,通常在待水解的钛液温度加热到晶种酸溶温度邻近,或略高于酸溶温度时参加晶种比较好,晶种的加量依据产品品种和水解工艺的不同,按TiO2计参加0.6%~2%,很少有超越5%的实例,不合格的晶种宁可抛弃也不能运用。     由于外加晶种水解法对水解时的钛液浓度要求很严,一般晶种参加后要调整待水解的钛液浓度坚持在200g/L左右,这样水解出来的产品质量和水解率都比较好。为了防止直接蒸汽带进去的水使钛液浓度变稀,所以大部分外加晶种都选用直接蒸汽加热。     外加晶种水解法的钛液变色没有自生晶种稀释法水解那么显着,它首要操控晶种参加后钛液升温至欢腾的时刻不宜过长,一般不能超越1h,所以平常在规划水解罐盘管的加热面积时,要充分考虑这一特色。它与自生晶种稀释法水解相同,在水解挨近完毕时、相同要参加热水稀释以利进步水解率。     由于外加晶种水解法涉及到晶种参加钛液中要尽或许地涣散均匀,并且大部分都是选用询接加热;因而外加晶种法的拌和速度要比自生晶种水解法的拌和速度快一些。在水解完毕冷却放料后,相同要用清水冲刷水解罐,不得残留未放洁净的偏钛酸在罐内。     水解完毕后检测水解产品的质量好坏,从水合二氧化钛粒子制备的视点来讲,应该用电子显微镜调查和粒度分析仪来测定水合二氧化钛的粒子巨细及粒径散布,可是这些仪器不只报价昂贵,并且测验时刻较长,工业出产中一般用下述方法来辨别水解操作的质量:     a.水解率即水解前液相(钛液)中的二氧化钛转变成固相二氧化钛的比值,以百分数表明,这是查看水解完结程度的一个目标,具有重要的经济价值,一般水解率应不低于95%。化验时别离取水解前钛液和水解后的偏钛酸浆液各1份,别离测定其间的TiO2含量,或直接测定水解后母液(水解废酸)中的TiO2含量.     b.粒子沉降速度这是一种直接调查水解后水合二氧化钛粒子巨细的方法,通常是取100mL水解后的浆液,在一个1000mL的量筒内,用水稀释至1000mL,摇匀后静置沉降0.5h,测其固液分界处的刻度,能够用毫升数(或毫米数)核算。     c.过滤速度这种方法不只能够直接估量水解后水合二氧化钛的粒子巨细和粒子均匀程度,并且能够直接通过过滤速度来把握今后水洗操作的难易程度,通常是取必定量的水解后浆液在布氏漏斗中抽滤,测其抽干后的时刻,以秒核算。     以上3种方法合适各种不同水解工艺。     (3)晶种的制备方法     a.锐钛型晶种的制备     取必定量的清钛液(操控过滤后未浓缩的钛液),二氧化钛含量约130~170g/L,三价钛含量约2~5g/L,用浓度为100g/L左石的稀碱液(NaOH),在坚持中和温度不超越45℃,井、并有杰出的拌和状况下,缓慢发参加稀钛液中进行中和,碱液参加的速度先快后慢,中和结尾时的pH值为2~3,酸度系数0.26~0.30,TiO2浓度50~60g/L,在挨近结尾时要取样预分析,如达不到上述目标可调整水、钛液和碱的份额,然后用直接蒸汽在l0min内升温至60℃,保温30min进行酸溶熟化,生成蓝色带乳光的胶体晶种溶液,随即急冷至室温备用。     另一种锐钛型晶种的制法是选用水解前的浓钛液,用脱盐水稀释至30g/L,在拌和下用浓度为100g/L的碱液(NaOH)中和,操控整个中和时刻在30min内,先快后慢并坚持中和温度在60~65℃,中和结尾pH为3.3~3.7, TiO2浓度为18~22g/L,然后急冷至30℃以下备用。该法的特色是中和时的温度坐落酸溶温度区间,晶种的外观污浊不清,TiO2浓度较低。依据胶体化学的一般原理,当下降电解质浓度时,胶体溶液的安稳性增大,并且由于酸度的下降,晶种活性得到进步。可是晶种浓度过稀加量会太多,会下降水解开始时的钛液浓度,因而该法首要适用于水解前要求钛液浓度较高(215~230g/L)的外加晶种水解法,不然就不能保证200g/L的水解开始浓度。[next]     最近有不少工厂选用一种称为“快速晶种”的碱中和锐钛型晶种。它的制法是在拌和下把净化后的钛液一次性敏捷参加80~100g/L的碱液中,坚持中和期间的温度在50℃以下,中和结尾时的酸度系数在0.42~0.50之间,然后以2℃/min的速度升温酸溶,但发现正钛酸颗粒已显着胶溶澄清时,保温5min,接着再以2℃/min的速度升至70℃,保温熟化15min后急冷备用。该法的特色是中和结尾的酸度系数,不是在中和期间用试纸或酸度计测定,而是事前核算好钛液和碱液的加量1次性参加,因而比较简洁、操作时还能够预留一部分脱盐水在急冷时加到晶种中,既可做稀释用水,又可协助降温。核算公式如下:         式中  v钛——依据需求制造晶种量所需求的钛液体积,L;             v晶——需求制造的晶种量,L;             c钛——制备晶种用钛液的TiO2浓度,g/L;            c晶——晶种浓度(按30g/L计);           v碱——所用碱液的体积,L;            c钛酸—一制备晶种用钛液的有用酸含量,g/L;            c晶酸——晶种有用酸含量(g/L,以0.48计);            c碱——已溶解好备用的碱液浓度,g/L;            v′水——把碱液稀释至100g/L所需求的水量,L;            v水——酸溶后急冷时所需补加的冷却水量,L;            0.815——酸碱中和常数(NNaOH/NH2SO4=40/49);            0.9——经历常数。     这种晶种运用时能够在钛液欢腾时参加。     b.金红石型晶种的制备方法     并流晶种:在我国前期金红石型钛出产中,曾广泛运用过这种并流晶种。它的制备方法是将核算好的清钛液和稀碱液(Na2CO3、NaOH),选用并流法中和,在整个中和期间坚持pH3.8~4.5,然后水洗除掉正钛酸中的硫酸根离子,再用加热酸溶,使正钛酸转化成溶胶,当溶液变得通明转而污浊发作乳光时,中止加热急冷后备用。这种晶种的活性较高,也比较安稳,但中和时pH操控很严厉,正钛酸水洗时很费时费事,假如硫酸根洗不净,得到的是混晶型晶种,现在已很少选用。     晶种:晶种过去在国外选用的较多,该晶种的活性高,制备方法是先把溶于水中,制形成475g/L的溶液,另将制形成67g/L的碱液,把核算好的溶液和碱液放入晶种制备罐中(搪瓷罐),在拌和下进行部分中和,保存一部分过剩的供酸溶时运用,中和温度坚持10℃以下,中和结尾操控酸度系数为0.7~0.8(HCl/TiO2),然后在30min内升温至80℃进行酸溶熟化,接着急冷至室温后备用。该法由于的储存、运送、稀释时很费事,一旦走漏会有许多氯化体溢出污染环境,国内很少选用。     煅烧晶种:煅烧晶种又称二次晶种,是现在遍及运用的一种金红石型晶种。前面两种金红石型晶种,归于水解晶种(在水解时参加),现代金红石型钛出产中,水解时不需求增加金红石型水解晶种,而是选用普通的锐钛型水解晶种,然后在漂白或盐处理时参加煅烧晶种,因而又称二次晶种。[next]     煅烧晶种的制法大致为将漂白水洗合格后的偏钛酸与碱(NaOH)在高温下煮沸碱溶,两者的份额为NaOH:H2TiO3=2.3:1,偏钛酸的浆液浓度≥300g/L,碱液浓度≥42%,碱溶温度为110~115℃,保沸4h,使偏钛酸生成偏钛酸钠,反响式如下:                                         H2TiO3+2NaOH→Na2TiO3+2H2O     反响物在夹套冷却水的冷却下,于60℃放入水洗罐,首要洗掉游离碱和硫酸根,除掉钠离子和硫酸根能进步晶种的活性,偏钛酸钠在水洗时有部分会水解生成正钛酸。     然后用中和至pH3.5,使一切Na2TiO3生成H4TiO4沉积下来。     接着把沉积物再水洗2次,洗去氯根后进行酸溶,酸溶温度110℃,保沸2h后急冷至40℃备用。制得的煅烧晶种浓度60~70g/L,金红石型转化率98%~100%,电镜照片晶种呈杰出涣散状况的柳叶形颗粒,煅烧晶种的加量一般为2.5%~5%。     用也能制备煅烧晶种,它比用偏钛酸制成的煅烧晶种在煅烧时晶型转化的温度更低,但操作杂乱,收购运送比较困难,用偏钛酸为质料,能够直接运用出产中的半制品来制备比较便利。       (4)制备晶种时的注意事项     a.中和操作     硫酸氧钛与的中和反响是一个放热反响,因而要操控加碱的速度和时刻,防止中和时温度过高部分发作硫酸氧和正钛酸热水解生成偏钛酸而下降晶种的活性,反响式如下:      可是中和温度也不能过低(低于30℃),过低会影响碱的涣散使反响不均匀,乃至部分发作过中和而下降产品质量。由于当中和过量时,钛液中的铁会生成氢氧化铁沉积而污染产品,反响式如下:                                                    FeSO4+2NaOH→Fe(OH)2↓+Na2SO4    因而中和结尾时的pH一般不超越4,相反假如中和度缺乏,会使生成的晶种中晶核数量削减,会在水解时由于结晶中心数量缺乏构成水解率下降,水解颗粒细而难水洗。     中和结尾时的pH凹凸直接影响酸溶时的温度和时刻,当中和pH值低时,正钛酸的沉积在酸性介质中完结,部分TiO22+呈游离状况吸附在沉积物的表面,带有正电荷,酸溶时耗费的也少,晶种安稳性好。假如中和时pH过高,沉积物在中性(pH=7)条件下完结,其颗粒不带电,TiO22+离子会与OH-离子结合,使溶液中不存在TiO22+,晶种安稳性低、活性差,酸溶时耗费的也多。     大多数的状况下,中和时都是选用把碱加到钛液中的方法,由于当钛液做为涣散相时,能够防止钛液中的铁进入晶格中。中和时的拌和速度也很重要,一般操控在60r/min左右,过于剧烈的拌和会下降晶种的安稳性。[next]     b.酸溶操作     中和所生成的正钛酸沉积是无定型的涣散体,只需通过酸溶才干生成锐钛型或金红石型晶种。未酸溶的正钛酸有被钛液中的游离酸溶解的倾向,并且寄存时刻过长有改动其结构的风险,通过加热酸溶熟化使胶粒微晶化,生成不溶于稀酸的胶体颗粒,并不能用普通的过滤方法使它别离,此胶体溶液带有细微的乳光而不发作沉积,操作时能够从乳光的呈现来判别酸溶的结尾。     酸溶的温度与酸溶的时刻有必定的依存关系,一般温度高、时刻短;温度低则时刻长。由于晶种的热安稳性比钛液还要差,故酸溶时的温度不能高,时刻也不能长,过高的温度和过长的时刻都会引起晶种的水解而下降活性。     酸溶后的急冷是很重要的,由于在此温度下的胶体二氧化钛含量最高,一起也极不安稳,有必要敏捷冷却后才干保证它的活性和安稳性。     当用一价阴离子的强酸(HCl、HNO3、HF等)来酸溶时,水合二氧化钛吸附一价阴离子,因一价阴离子的半径较小,不会阻止锐钛型的微晶向金红石晶型转化,所以制得的是金红石型晶种。而二价以上的阴离子(SO42-、PO43-等)会阻止锐钛型向金红石型转化,在制备锐钛型晶种时,酸溶时运用的酸是钛液中的有用酸(H2SO4),因而制得的晶种是锐钛型。     C.制品晶种的浓度     许多研讨资料都证明晶种中胶体二氧化钛含量的多少是晶种活性凹凸的首要标志,可是晶种中胶体二氧化钛含量越高越不安稳,实验证明当晶种二氧化钛浓度为84.8g/L时,寄存72h即发作污浊,当晶种浓度稀释1倍(42.4g/L)后,放置148h后才发作污浊。可是晶种浓度太低会减弱水解钛液的浓度,一般金红石型晶种的TiO2浓度偏高,能够使水解时水合二氧化钛的粒子较细,对产品的消色力、遮盖力等有长处,而锐钛型晶种由于它自身的结晶中心较细,故不用再进步它的浓度。并流法晶种之所以安稳性好,是由于它的正钛酸在酸溶前要通过洗刷,正钛酸的纯度比较高所以安稳性好。     晶种的质量首要取决于晶种的活性、安稳性和胶粒的均匀程度,现在还没有比较好的分析方法。有人用电位滴定法来测定聚合离子的多少和聚合度的凹凸来表明溶液中活性二氧化钛含量的凹凸;有人以为晶种在水解时的结晶中心靠羟桥(OH-)和氧桥(O2-)来诱导水解,因而能够用测定羟络基的含量或羟络基团和氧络基团的比值[(OH-)/(TiO22+)]来表明晶种的活性凹凸,可是以上方法在工业出产中都未正式采用,仅有保证晶种质量的方法,就是按工艺要求仔细一丝不苟地操作。     d.晶种的储存     一次晶种(水解晶种)安稳性都不太好,一般只能寄存24h,所以工厂操作时都是现配现用,最好1次用完,也不允许用不完剩下的部分与下一批晶种混在一重用,而二次晶种(煅烧晶种)安稳性较好,能够长时间寄存不蜕变。

铋精矿新氯化-水解沉铋法

2019-01-31 11:06:04

唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大提高了铋的浸出回收率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大提高,后续工序的生产能力相应得以扩展。准则工艺流程见图1。图1  新氯化水解法准则工艺流程图 由所以在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反应将导致氧气的消耗量增大。

铋矿三氯化铁浸出-水解沉铋法

2019-01-31 11:06:04

此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉淀物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般控制在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋回收率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋回收率为60%~70%。

氯化法钛白的原料(二)

2019-02-15 14:21:16

3. CP-A质料主要是天然金红石和人工金红石    天然金红石是挖掘金红石矿,经选矿而取得,天然金红石的产值很少,只能在有资源的当地作弥补的质料运用。    CP-A最主要的来历是人工金红石,是除掉钛铁矿晶粒中的铁而取得的一种金红石型高品位的富钛料。最典型的如加拿大QIT公司的UGS渣。    人工金红石的出产办法有电热法、复原锈蚀法、浸出法、硫酸浸出法。    各种出产办法的工艺特色见表6。[next]    三、钛质料的商场状况和开展趋势    作为氯化法质料受环保的限制近几年CP-B、CP-A开展很快。据统计2000年天然钛矿藏占质料总供应的44%,其他为人工富钛料。总供应量为457. 8万吨/年,其间可供氯化法运用的质料,钛铁矿、白钛石64. 9万吨,天然金红石39.0万吨,人工富钛料253. 4万吨,算计357. 3万吨。人工富钛料占供应总量的78%。由此可见,供氯化法运用的质料仍是非常丰富的。    现在,全球钛渣出产能力为300万吨/年以上,最大的直销商为加拿大的QIT公司。人工金红石的出产能力为100.0万吨/年;西澳大利亚艾路卡选用Becher工艺的出产能力最大为48.0万吨/年。    人工金红石的标准见表7。[next]    四、国内氯化法质料    国内电炉冶炼高钛渣的出产能力较低,一共约有40000吨/年。氯化法钛白用量为19000吨,出产海绵铁及精TiC14用高钛渣为20000吨。高钛渣冶炼电炉最大为7500kV·A,多为1800kV·A的小炉子。国内氯化法钛白和海绵钛产能的添加将会拉动高钛渣出产厂开展。    因本钱的原因硫酸法钛白厂商对酸溶性钛渣不感兴趣,致使国内没有出产酸溶性钛渣的工厂。跟着清洁出产法的施行,硫酸法用酸溶性钛渣出产会说到日程上来。    国内合适CP-A的金红石、优质高钛渣经多年的攻关和研制,尚没有构成实践出产能力,还不能为氯化法工艺规模化安稳出产供给质料。

氯化法钛白的原料(一)

2019-01-25 13:37:59

一、氯化工艺对原料的要求    目前氯化工艺(包括海绵钛生产)从总体看有两种工艺,即沸腾床氯化和熔盐氯化。世界上各厂家多采用沸腾床氯化,仅有前苏联和中国锦州厂采用熔盐氯化工艺制取TiCl4,而且中国锦州厂已实现氯化与熔盐氯化工艺对接技术。    根据氯化工艺不同所选用的原料也不同。国外把氯化使用的原料分为以下三类。    ①CP-A原料中Ti02≥90%,多为人造金红石、天然金红石。    ②CP-B原料中Ti02≥80%,电炉冶炼的高钛渣。    ③CP-C原料中Ti02≥60%-80%,以电炉冶炼的高钛渣和高品位的钛矿为主。    熔盐氯化使用的原料较沸腾氯化用料要求低一些,特别是高钛料CaO, MgO含量可以放宽很多。    世界上氯化法工厂采用CP-A原料的较多,占工厂总数的60%,占总生产能力的54.87%;采用CP-B原料的有7个工厂,占工厂总数的29. 16%,占生产能力的31.12%;仅有杜邦公司下属的两个工厂可使用CP-C原料,生产能力达40. 5万吨/年,占氯化法总生产能力的15.5%。    2000年的氯化法生产能力统计见表1。    20世纪70年代末使用CP-A原料9个工厂的生产能力还没有使用CP-C原料的生产能力大。由于受排污的限制,在80年代CP-A工厂的生产能力得到发展;到1990年CP-A工厂运行超过CP-C工厂的生产能力;到2000年使用CP-A工厂的总生产能力占氯化法总生产能力的50%。可见氯化法工艺使用优质富钛料生产TiCI4已成为发展的趋势,同时也满足了日益严格的环保要求。现在仅有杜邦公司在墨西哥的阿尔塔米拉(12.0万吨/年)和美国密西西比州的德莱尔厂(30.0万吨/年)仍然使用CP-C原料生产。    在沸腾氯化工艺中使用的富钛矿物中,最有害的杂质CaO,Mg0含量不能过高,特别是CaO含量不能太高,否则影响氯化炉正常运行。    美国钛产品公司专利419179提出,如果钛渣氯化时CaO,MgO, Al203的含量要控制在0.5%、7.0%和5.0%以下,可以使沸腾氯化炉操作正常进行并可以避免氯化炉筛板堵塞。为防止炉壁结疤氯化炉多采用高温氯化,控制1000℃以上温度使生成的CaCl2(沸点1900℃,熔点731℃)、MgCl2(沸点1412℃,熔点714℃)以较小的颗粒被气流带出去。[next]    中国在研究无筛板沸腾氯化过程中曾使用过攀枝花矿冶炼的高钛渣,MgO+CaO含量≥12%,CaO含量≥1. 0%,基本顺利,状态稳定,反应良好,排渣顺畅,床层料中MgO+CaO含量高达30%-40%;超过了国外认为的15%的“极限浓度”。国内无筛板氯化炉排渣中控制Ca含量1.0%一1.5%,Mg含量1.5%-4.0%,可以正常运行。    某工厂沸腾床层料实际组成见表2。工艺控制范围见表3.直接用于氯化法高品位铁精矿的化学组成见表4。    从国外床层料成分可以看出Si02的氯化率很低并在床层料中得到富集,相反,CaO, MgO被氯化后带出去,在床层中控制仍然比较低(<1.0%),以防止结料堵塞筛板的喷孔。即使在CP-C的工艺中采用高品位的Ti02含量≥60%的钛精矿,但依然要求CaO, MgO的含量非常低,其中Mg0含量≤0. 5%,CaO含量≤0. 10%。要求Mg0+Ca0含量不超过0.6%,否则在系统中也难以正常控制,影响氯化的质量。    就此看来按照国外的沸腾氯化技术要求,目前国内的最优质钛铁矿、最好高钛渣都不能满足沸腾氯化的要求。而我国目前无筛板氯化炉技术确有一定的先进性,目前Φ1200-1400mm的炉日产TiCI4只有25-40吨,因没有需求没能开发出满足钛白需要日产TiCI4 250吨以上的沸腾氯化炉。因此国内大型沸腾氯化炉尚需要攻关解决。[next]    二、氯化法原料的制备技术    氯化法钛白原料的最大特点是要求Ti02含量高,CaO, MgO含量低,特别是CaO含量要求更低。    1. CP-C原料(高品位钛精矿)的制备    CP-C原料的特点是Ti02含量)60%,CaO, MgO含量低,CaO含量<0.10%,CaO+MgO含量≤1.2%。    钛的资源十分丰富,且分布很广,几乎遍布全世界。现已发现的钛矿物有140多种,但现阶段具有实用价值的只有少数几种,主要是金红石、钛铁矿,其次是白钛石、镁钛矿和红钛铁矿。    钛矿中理论分子式为FeTi03,其中Ti02的理论含量为52. 63%。因形成的条件各异而含有杂质(如Cr, Al, Mg等),可以用通式表示,即m[(Fe·Mg·Mn)·Ti02]·n[(Fe·Cr·A1)203〕。    具有开采价值的钛矿床可分为岩矿和砂矿两大类。岩矿床又可分为两类,即岩浆分化形成的块状矿和碱性岩石中的金红石矿。    钛原料开采和处理作业示意如图1所示。     钛矿含钛铁矿达到15kg/m3的就具有开采价值。    尽管经过严格的选矿,但是能达到CP-C使用钛铁矿的还是不多的。由于氯化技术的限制和环保要求废物排放量减少的要求,因此使得使用CP-C的原料工厂在减少,都在向CP-B、CP-A方向发展。[next]    2. CP-B原料的制备    氯化法使用的CP-B原料主要是电炉冶炼的高钛渣。    生产原理:钛铁矿与还原剂石油焦或褐煤,加入一定量的黏结剂如沥青、造纸业的纸浆进行混配料,在电炉中温度达到1650-1700℃时进行熔炼,使以铁为主能被碳还原的金属还原生成合金在熔融物下层,上层则是熔融的Ti02。定期放出到炉外渣包中,冷却后将它们分开,上层的钛渣进行破碎精整,选出铁珠,就得到被称为高钛渣的富钛料。    冶炼高钛渣的钛铁矿,除要求Ti02含量要高之外,尚要求含铁高,电炉熔炼后才能得到含Ti02高的富钛料。    国外钛渣冶炼厂生产的钛渣,不追求过度还原生成低价钛化合物,提高Ti02含量,而是基本使铁完全还原析出即可,节电高产。因此,这样产品中Ti02含量正常在70%-80%之间,例如,南非RBM渣是Ti02含量比较高的高钛渣。氯化法原料化学成分见表5。

水合二氧化钛的制造---钛液的水解

2019-02-13 10:12:33

水合二氧化钛的制作,一般包含钛液的水解和水合二氧化钛的净化。钛液的水解能够把它当作盐类水解的一部分。最浅显的了解盐类的水解反响,就是把它当作中和反响的逆反响,即:    可是由于组成盐类的离子不同,盐类与水效果时会发作弱电解质面使溶液的pH发作改动,如弱酸强碱盐醋酸钠溶于水时,发作的水解反响使溶液呈碱性:                                CH3COONa+H2O===CH3COOH+NaOH(Na+、OH-)    而强酸弱碱盐,如氯化铵溶于水时,发作的水解反响使溶液呈酸性:                                NH4Cl+H2O===NH4OH+HCl(H+、Cl-)     从以上盐类水解反响能够看出,pH值是影响盐类水解的首要要素,在盐类水解到达平衡后,溶液中H+和OH-浓度的改动能够损坏水解反响的平衡,使反响朝左或朝右进行。关于强酸弱碱盐,在溶液偏碱性的情况下水解率较高,假如此刻进步溶液的酸度,水解反响则不能进行;相同关于强碱弱酸盐,在溶液呈酸性的情况下水解率才会高。 表1               部分金属氢氧化物沉积时的pH值氢氧化物开端沉积时的pH值氢氧化物开端沉积时的pH值Ti(OH)4 Ce(OH)4 Ti(OH)3 Fe(OH)30.47~1 0.8~1.2 2.5~3 2~3Fe(OH)2 Cr(OH)3 Mn(OH)2 Co(OH)24.5~7 4.6~5.6 8.6~10.8 7.2~8.7       表1为部分金属氢氧化物沉积时的pH值,由于不同的盐类有不同的水解pH值,溶解于钛液中的其他可溶性金属杂质的硫酸盐,如铁(Fe2+、Fe3+)、铝(A13+)、锰(Mn2+)、铜(Cu2+)、铅(pb2+)、镍(Ni2+)、铬(Cr3+)、钴(Co2+)、铈(Ce4+)等,它们水解时的pH值都较高,如Fe2+开端水解沉积时pH值为4.5~7,Mn2+水解沉积时pH值8.6~10.8只要在到达水解pH值时,才会发作它们的氢氧化物沉积。硫酸法钛出产工艺中,钛液的水解是在酸度很高的情况下进行的,并且在水解进程中还不断有游离酸发作,因而上述金属杂质离子会遭到溶液中的酸度按捺而不发作水解沉积,这样在钛液水解时不只能够使水合二氧化钛沉积下来,而其他杂质离子仍留在母液中,使沉积下来的水合二氧化钛能很好的与钛液中可溶性杂质分脱离。     影响盐类水解的要素除了pH值外,当然还有溶液的温度和浓度。酸、碱中和反响是一个放热反响,它的逆反响盐类的水解肯定是一个吸热反响,进步水解时的反响温度,反响能够向水解方向移动,水解会更彻底。而盐的水解度与盐的浓度平方根成反比,因而下降盐的浓度有利于盐的电离,能够进步它的水解速率和水解度。     可是钛液的水解与一般盐类的水解有相同之处也有不同之处,其中最显着的差异是献液的水解没有一个固定的pH值,只要在加热或稀释的条件下,不需要附加任何反响剂即能水解分出水合二氧化钛的沉积,甚至在酸度很高的情况下(H2SO4400~500g/L),经过长期的煮沸也能发作水合二氧化钛的沉积。由于钛液这种遇加热和稀释会发作水解的性质,所以在钛液制备进程中的浸取、过滤洗刷、浓缩等工序不只操作温度不能太高,并且要尽或许的防止用水稀释避免发作钛液的前期水解。[next]     在常温下用水稀释钛液水解生成的是a钛酸或正钛酸(H4TiO4)如胶体氢氧化物沉积,这种组成也能够写成Ti(OH)4,适当于二氧化钛的二水合物——TiO2·2H2O,它能溶于有机酸、稀无机酸和钛液中,其溶液具有显着的胶体特征,如把此溶液陈化或加热会失掉胶体特征,一起沉积物a钛酸也会转变成β钛酸(偏钛酸),这种沉积物就只能溶于热的浓硫酸中。其化学反响式如下:    假如把钛液直接加热坚持欢腾也能发作水解反响生成偏钛酸(H2TiO3)的白色沉积,这种水合物的组成亦可写成TiO(OH)2,它挨近二氧化钛的一水合物(TiO2·H2O),这是现在工业上经过钛液水解制取偏钛酸的仅有方法,其化学反响式如下:    上述水解产品经X衍射分析标明,正钛酸是无定型的化合物、偏钛酸具有不太显着的晶体结构,与锐钛型二氧化钛的晶体结构彻底相同。由于煮沸和稀释都能促进钛液的水解,在工业出产中往往两者并用。一般钛的硫酸盐水解时的产品是锐钛型二氧化钛,而钛的卤化物或硝酸盐水解时得到的是金红石型二氧化钛。     从钛盐制取水合二氧化钛,还能够选用碱沉积法,这是前期从钛液制取氢氧化钛的方法,其化学反响式如下:                               TiOSO4+Na2CO3+2H2O→Ti(OH)4+Na2SO4+CO2                               TiOSO4+Na2CO3+H2O→TiO(OH)2+Na2SO4+CO2     关于钛液加热水解的反响机理的报导许多,但比较有代表性的是水解进程中的H+搬运和胶体的凝集进程。一般以为在F值低、总钛高的钛液中以胶凝进程为主;而F值高、总钛低的钛液中以离子间的反响为主。     由于钛在元素周期表中坐落ⅣB族,它的正四价离子的离子半径很小,所以四价钛在水溶液中很难以简略的离子方法存在,而是与水构成络合物,以水合络离子的方法存在,一般是一个6配位的水合络离子[Ti(H2O)6]4+.水解收第一步是从一个水分子中脱去1个H+,这样就构成了一个由5个水分子和1个OH-所组成的络合离子,然后下降了钛的电荷。OH-起着“桥基”的效果。    跟着溶液中酸度的逐渐增高,这时由于钛的“羟桥”络合物上的H+持续搬运而构成更安稳的“氧桥”。这种H+的搬运跟着水解进程的持续,而构成多核络合物。 [next]     这种顺次生成的多核络合物,呈锁状或网状胶粒结构,终究凝集成大颗粒,当凝集粒子到达10μm左右时就可沉积下来。也有的学者以为这种以氧为链桥的多核络合物,在溶液中实际上呈如下长链状结构。   跟着热水解的进行,链长越来越长,在加热和拌和的效果下,相互环绕在一起发作凝集而沉积。这种凝集既使在较高的酸度下也能进行,不断重复上述凝集和沉积进程,使水解反响持续进行,直至绝大部分钛离子水解生成水合二氧化钛胶粒从母液中沉析分离出来。      美国巴克斯特尔(Baricsdahle)在他的“钛的发现与它的化学与工艺学”一书中是这样论说的:水解终究沉积产品是10~200μm巨细的白色絮凝团,它的巨细直接决议水解产品偏钛酸的过滤与洗刷速度;对颇料功能无关,它是由0.6~0.7μm的1次集合粒子凝集而成,1次集合粒子才是决议颜料功能的基粒子,此粒子又是由大约1000个60~75mμm的微晶组成,每个60~75mμm的微晶是由10个原子呈线性摆放而组成的网状结构。     前苏联别连基和利斯庚在他们所著的“颜料化学与工艺学”一书史所述观念与美国巴克斯特尔的观念相似,他们以为水解开端前先构成亚安稳的锐钛型微晶体,直径3~10nm,20~30个这样的微晶体定向摆放配位成胶体颗粒,它决议着二氧化钛粒子的巨细,这种胶粒成片状结构,长度为45~90nm,厚度约0.25nm。跟着水解持续进行,胶粒加快凝集成0.55~0.75μm的一次集合粒子,它决议颜料粒子的根本功能,其比表面积约60~70m2/g,因而能够吸附很多的水和硫酸盐离子。正钛酸每摩尔钛吸附着大约0.3摩尔的硫酸根,偏钛酸每摩尔钛吸附大约0.1摩尔的硫酸根(SO42-),所以偏钛酸的组成近似10H2TiO3·SO3.    不管是哪一种水解机理,水解进程总要经过以下3个阶段来完结。     (1)结晶中心的构成(晶核的构成阶段),这是能够测出来的最小粒子,它不能被打碎,只能被溶解,它的巨细首要取决于晶种浓度;     (2)晶核的生长与水合二氧化钛开端分出的阶段,晶核生长构成一次集合体,集合体巨细取决于水解条件,它直接影响颜料的功能,能够被化学和机械力破碎;     (3)水合二氧化钛的凝集沉析及沉积物组成改动的阶段,此刻凝集颗粒巨细影响偏钛酸的过滤和洗刷功能,对颜料功能影响不大。     第一阶段是晶核构成阶段,水解开端首先从弄清的钛液中分出一批极微细的称为晶核的结晶中心,这批晶核的数量、性质、结构、组成为终究水解产品的性质和组成奠定了根底。     在安稳性差的亚安稳钛液中,在水解前的寄存进程中就现已构成一部分这种极细的胶体晶核,只不过它的数量缺乏于作为结晶中心而在短期内诱发水解反响,可是这些不良结晶中心的存在,会严重影响水解产品的功能,对制品钛的质量也晦气。因而用“新鲜”钛液与安稳性欠好的“陈腐”钛液一道水解时,得到的沉积物组成是不同的,所以在水解前要先除掉这些不良晶核(包含上批水解后的残留产品)。为了正确引导水解进程,在溶液中有必要具有一批适当数量、具有必定组成结构的晶核来作为结晶中心。在工亚出产中这些受控的结晶中心,能够经过按必定程序加热稀释后发作(自生晶种),或独自人为地制备一批晶核,再把它们放到待水解的钛液中(外加晶种).由于这部分晶核的数量和组成往往不固定,因而有时把化学组成彻底相同的钛液,在彻底相同的条件下水解,由于晶种的不同也会得到不同的水解产品。假如说水解是钛出产中的中心部位,那么晶核的构成又是水解进程中最重要的一环。     在第二阶段,也就是粒子的生长阶段钛以水合二氧化钛的方法在现已构成的结晶上逐渐沉析长大成为水合二氧化钛颗粒,但还缺乏以能够沉积下来,这个阶段就是在水解时发现刚变色的阶段,此刻溶液的化学组成未发作改动,这种物质的组成在适当宽的TiO2与H2SO4浓度范围内是不变的,可是在选用外加晶种水解时,这段晶核生长的阶段没有自生晶种水解时显着。     第三阶段,水合二氧化钛颗粒逐渐凝集长大而沉积下来,这些凝集颗粒的巨细、涣散程度对今后的水洗操作带来较大的影响。在这个阶段中由于从溶液中分出了固体偏钛酸颗粒,打破了本来溶液中的水解平衡,使水解以较大的速度进行,液相中的二氧化钛组分,不断的转为固相偏钛酸的沉积,溶液中的二氧化钛浓度不断下降,游离酸浓度急剧升高,在这期间也一起发作沉积粒子的部分溶解和从头分出新的沉积进程,直至水解进程绪束。     沉积的偏钛酸表面吸附有母液,也就是母液中所含的游离酸、硫酸亚铁及其他金属杂质离于的硫酸盐等。走运的是钛液的热水解能够在较高的酸度下进行,这些杂质离子在这样高的酸度下不会沉积下来,今后能够经过水洗的方法除掉。可是三价铁离子水解时的酸度较高(pH2~3),很有或许会在水解时与偏钛酸一起沉积下来,因而在工业出产中水解用的钛液中要含有必定量的三价钛,水解后的母液中也应该含有微量的三价钛,三价钛含量一般操控在0.1~0.5g/L。     水解是钛出产中极为重要的工序,在颜料级钛出产进程中,操控沉积物的粒子巨细和使沉积颗粒均匀是水解工艺的要害。由于水解时的操作条件根本上决议了二氧化钛微晶体、水合二氧化钛胶粒的巨细和偏钛酸的组成,尽管盐类水解反响是可逆的,可是水解过释中粒子的生长是不可逆的,操作不妥简直无法返工弥补,终究直接影响后工序的操作和制品钛的质量。