紫铜管用途
2017-06-06 17:50:10
紫铜管用途广泛,常应用于制冷、暖通、水管、汽管、油管等多个领域。1、紫铜管是经济的。 由于铜管容易加工和连接,使其在安装时,可以节省材料和总费用,稳定性可可靠性,可省去维修。2、紫铜管是轻便的。 对相同内径的绞螺纹管而言,铜管不需要黑色
金属
的厚度。当安装时,铜管的输送费用更小,维护更容 易,占用空间更小。 3、紫铜管是可以改变形状的。 因为铜管可以弯曲、变形,它常常可以做成弯头和接头,光滑的弯曲允许铜管以任何角度折弯。4、紫铜管是易连接的。5、紫铜管是安全的。 不渗漏、不助燃、不产生有毒气体、耐腐蚀。紫铜管质地坚硬,不易腐蚀,且耐高温、耐高压,可在多种环境中使用。与此相比,许多其他管材的缺点显而易见,比如过去住宅中多用的镀锌钢管,极易锈蚀,使用时间不长就会出现自来水发黄、水流变小等问题。还有些材料在高温下的强度会迅速降低,用于热水管时会产生不安全隐患,而铜的熔点高达摄氏1083度,热水系统的温度对铜管微不足道。紫铜管具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。想要了解更多关于紫铜管用途的信息,请继续浏览上海
有色
网。
碳纳米管的改性
2019-03-08 09:05:26
碳纳米管自发现以来,因为其共同的结构和独特的物理,化学和力学特性以及其潜在的运用远景而倍受人们的重视。碳纳米管(carbonnanotubes,CNTs)于1991年由NEC(日本电气)筑波研讨所的饭岛澄男(SumioIijima)初次发现。因为其优秀的电磁功用、力学功用、光学功用和热功用等,激起了人们的极大爱好,敏捷成为继 C60之后最抢手的碳纳米材料。
碳纳米管在溶剂中涣散性差、加工操作困难,这极大地约束了它的运用,因此需求经过表面改性来进步它的溶解性和涣散性。并且经过化学或物理的办法还能够将其他功用性基团或材料复合到碳管的表面制备多功用性材料。所以,碳纳米管的功用化改性是非常重要的一个研讨范畴。
一物理法改性
选用物理的办法使碳纳米管晶格发作位移,内能增大,内能增大后的碳纳米管易与介质发作反响,在机械力或磁力作用下活性炭纳米管的体表面与介质发作反响、吸附,到达表面改性的意图。
1高能机械研磨
运用涂敷或压嵌在研具上的磨料颗粒,经过研具与工件在高压力作用下的相对运动对碳纳米管表面进行改性加工。该法使碳纳米管表面构成晶格缺点或晶格歪曲,然后得到高活性自由基,使碳纳米管易于与其他材料发作反响。
缺点是在研磨过程中不易控制,在构成晶格缺点的一起简略导致碳纳米管的长度过短,失掉原始碳纳米管具有的功用。
2高能球磨法
用球磨机的滚动或振动使硬球对碳纳米管进行激烈的冲击、研磨和拌和,最终使碳纳米管表面构成晶格缺点,得到改性。
缺点是简略在样品中混入硬球成分的杂质,难以别离。
3超声振动法
运用超声波的高频声波发生振动,使碳纳米管在介质中进行涣散,碳纳米管在介质中涣散程度的好坏直接影响碳纳米管的功用与运用作用。
二化学法改性
运用化学办法引进具有活性的羧基、羟基、基等功用团,功用团的引进使得碳纳米管表面的化学性质发作了明显的改变,然后为后续的反响供给了改性的活性点。
1酸处理法
运用碳纳米管的端头及弯折处易被氧化开裂,一起转化为羧基、羟基的特色,选用浓酸或许稀酸处理,使其两头或弯折处开口,引进羟基、羧基等官能团,如图所示,进而增大碳纳米管与溶质间的亲和力,进步其在溶质中的涣散性。
2偶联剂法
选用分子结构一端和碳纳米管结构类似另一端和要结合的材料结构类似的分子作为偶联剂,一端与碳纳米管牢牢结合,另一端与要复合的材料分子结合。这种润饰办法不会对碳纳米管自身的结构构成损坏,然后能够得到结构完好的经润饰的碳纳米管。
3化学镀法
化学镀是近年来被很多研讨运用的一种在材料表面制备接连细密包覆层的办法,具有操作便利、工艺简略、镀层均匀、孔隙率小、外观杰出等特色。因其不必外加电源,但凡镀液能浸到的当地,包含微小孔、盲孔都能够得到均匀的镀层,所以在碳纳米管上也具有优秀的包覆性。
4高能射线辐照法
高能射线指离子束、电子束、γ射线等含有高能量的射线,当这些高能射线照射到碳纳米管上的时分,炮击碳纳米管击出碳原子,碳原子停留在晶格的空隙方位上发生空隙原子,在它本来的平衡方位则留下一个空位。当炮击粒子动能足够大时,导致磕碰级联效应,无序结构添加。大都空位和空隙原子或许互相复合而互相退火,但仍有少量原子作为空隙原子而构成晶格进一步缺点。辐射也能够引起碳原子的溅射,溅射出来的碳原子沉积在碳纳米管的外壁上构成一层无定形碳结构。
5原子搬运自由基聚合法
是近年来敏捷发展并有着重要运用价值的一种活性聚合技能。它源于有机化学中的原子搬运自由基加成反响,运用该技能可在碳纳米管表面接入聚合物分子链,然后取得具有某些功用特性的碳纳米管。
三联合法改性
一般单一的碳纳米管表面改性办法很难取得特定功用的改性碳纳米管,或许是需求花费很多的时刻、财力,得到的改性材料作用也不行抱负。假如将两种乃至多种改性办法合作运用,运用每种办法改性后所得到的功用特色,扬长避短,互相结合,可得到多样化的、功用愈加安稳的改性作用。
经过上述改性办法能够改进碳纳米管的涣散功用,进步它与基体材料之间的相容性,并增强它们之间的互相作用。别的,经过对其进行表面润饰还能够赋予碳纳米管新的功用,完成碳纳米管的分子拼装,取得各种功用优异的纳米材料,在分子电子学、纳米电子学以及纳米生物分子学等方面具有宽广的运用远景。
陶瓷复合管用途
2019-03-15 11:27:19
陶瓷钢管用途 液体管道输送已遍及电力、冶金、煤炭、石油、化工、建材、机械等行业,并高速地发展着。当管道内输送磨削性大的物料时(如灰渣、煤粉、矿精粉、尾矿、水泥等),都存在一个管道磨损快的问题。特别是弯管磨损更快。当管道内输送具有强烈腐蚀的气体、液体或固体时,都存在管道被腐蚀而很快破坏的问题。当管道内输送具有较高温度的物料时,存在着使用耐热钢管价格十分昂贵的问题。当陶瓷钢管上市后,这些问题均迎刃而解。陶瓷钢管广泛用于磨损严重的矿山充填料、矿精粉和尾矿运送,燃煤火电厂送粉、除渣、输灰等管道最合适。陶瓷钢管是输送强烈腐蚀的酸、碱、盐以及磨蚀兼有的固体、液体输送的理想管道。陶瓷钢管在高温腐蚀、高温磨损或高温熔蚀的场合下使用非常安全可靠。 本公司生产的陶瓷钢直管和陶瓷弯管、三通、四通等,已在一百多家燃煤电厂,五十多家矿山,以及煤碳、建材、机械、化工等行业得到了应用。例如在强烈磨损场合下,陶瓷钢直管使用数年,到现在为止,还没有一家陶瓷钢直管被磨穿过。磨损最快的陶瓷钢弯管,其寿命比铸石弯管,耐磨合金铸钢弯管,钢塑、钢橡弯管高十倍到二倍。 陶瓷钢管迅速占领市场,除质量高、性能好外,还在于它的性能价格比高于其他耐磨耐蚀耐热管材。在相同规格和单位长度的管道方面,陶瓷钢管重量只有耐磨合金铸钢管的二分之一左右,其每米工程造价降低20%-30%;只有铸石管重量三分之一,每米降低工程造价5%-10%;在腐蚀或高温场合下使用的陶瓷钢管,其价格只有不锈钢管、镍钛管的几分之一。
结构用无缝钢管用途
2019-03-18 11:00:17
结构用无缝钢管标准材质: 20G 16Mn 标准: GB5310-95 GB6479-86 GB9948-8822×2.5-451×3-6108×4-20159×5-30299×10-5025×2.5-557×3-8114×5-20168×8-30325×8-4528×3-560×4-10121×5-20180×7-30351×10-3632×3-563.5×4-12127×6-20194×8-30377×10-3838×3-676×4-14133×5-22203×10-32402×10-4542×3-683×5-14140×6-22219×7-45426×10-3045×3-689×4.5-20146×8-25245×8-45480×12-3048×3-6102×4-20152×8-25273×8-50530×12-30中低压锅炉管、流体管、地质管结构用无缝钢管标准材质: 20# dz40 标准: GB3087-1999 GB8163-1999 YB23-708×1-238×3-795×6-20159×5-40351×10-50101-242×3-8102×4-20168×8-40377×10-5012×1-2.545×3-8108×4-20180×7-40402×10-5014×1.5-451×3-10114×4-20194×8-40426×10-5016×2-457×3-10121×5-20203×10-45480×12-4518×2-560×3-12127×6-25219×7-50530×12-4022×2-563.5×3-14133×5-25245×8-50450×12-4025×2-676×4-14140×6-25273×8-50610×12-3028×2-683×5-16146×8-20299×10-50430×12-3032×2.5-689×4-20152×8-30325×8-50720×12-30 结构用无缝钢管(GB/T8162-1999)是用于一般结构和机械结构的无缝钢管。 GB/T8162——中国国家标准 ASTM A53——美国材料与试验学会标准 ASME SA53 ——美国锅炉及压力容器规范 用途: 结构用无缝钢管用途用于制造管道、容器、设备、管件及机械结构用无缝钢管 主要钢管牌号: 10、20、35、45、Q345、15CrMo、12Cr1MoV、A53A、A53B、SA53A、SA53B
碳纳米管吸波材料简述
2019-01-03 09:36:51
碳纳米管作为一维纳米材料,因其特殊的结构、优良的化学稳定性、良好的导电性能、优异的机械性能及纳米材料特有的纳米效应引起了广泛的关注。从电磁波吸收方面来看,碳纳米管由于其导电性和作为一维纳米材料所具有的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应,因而显示出很强的宽带微波吸收性能,已成为新型吸波收材料研究热点之一。碳纳米管是一种电损耗型的吸波材料,大量的研究工作十分关注碳纳米管改性以提高其磁学性质,从而改善其阻抗匹配,提高电磁损耗,并最终达到更好的吸波效果。
汪刘应等采用矢量网络分析仪测试了不同管径碳纳米管(CNTs)的电磁参数,结果表明随着 CNTs的管径不同,其电磁性能也随之改变,即随着CNTs管径增加,其复介电常数虚部也不断增加。用电磁波的传输线理论计算了不同厚度不同管径的碳纳米管的反射率曲线,结果表明厚度为 2.0 mm,管径为30~50nm 时 CNTs 模拟反射率峰值为-26.24 dB,小于-10 dB 的频带宽为 4.16 GHz。
肇研等研究了相同碳纳米管含量不同厚度以及不同碳纳米管含量相同厚度的复合材料吸波性能的变化规律,研究了其在 26.5~ 40.0 GHz频段的吸波性能。结果发现,在该范围内,随着多壁碳纳米管加入量的增加,反射率降低则吸波性能增强。
酸溶性钛渣的酸解工艺
2019-02-13 10:12:38
用酸溶性钛渣作质料比钛铁矿作质料有以下长处。
a.因为钛渣中的TiO2含量高,产品总收率可进步2%~3%,并可节省相应的储运、枯燥、原矿破坏的费用;
b.因为钛渣中钛含量高、铁含量低,因而酸耗也明显下降,每吨钛的酸(H2SO4)耗可节省25%~30%,但反响时硫酸浓度较高;
c.无副产品硫酸亚铁,也不需求用铁屑来复原,防止废铁屑带进的杂质对成品质量的影响;
d.能耗低,可节省0.6t蒸汽/钛,节电8%、节油或燃气4%、节水5%、节省制作本钱12%;
e.工艺流程短,可省去复原、亚铁结晶与别离和浓缩3个工艺操作进程;
f.反响生成的钛液稳定性好,晶种增加量也较少;
g.废酸,废水、废渣排放量以每吨钛计比普通钛铁矿酸解工艺要少得多,三废管理的费用相对少。
因为酸溶性钛渣在高温冶炼时要参加复原剂(无烟煤),因而产品中不含Fe2O3而含有二价的FeO和金属铁,所以在酸解进程中不只不需求参加铁屑来复原高价铁,有时因为三价钛含量过高还要参加少数的氧化剂。别的因为酸溶性钛渣中二氧化钛含量高、总铁含量低、不含有Fe2O3,因而反响时放热低,需求蒸汽加热的时刻较长,反响时的硫酸浓度要求较高(91%)老练和浸取的时刻较长。
图1为运用加拿大QIT索利尔酸溶性钛渣的酸解反响进程,从图中能够看出:反响前的80min为加酸、投矿和拌和的进程,此刻的压缩空气流量为600m3/h,随后加稀释水7min,因为硫酸稀释放热温度从50℃升至80℃,然后通蒸汽加热25min温度上升至120℃,主反响当即开端,在5min内温度从120℃猛增至200℃左右。主反响期间保持约15min,从加稀释水前20min到主反响期间压缩空气的流量增大至800~1000m3/h,保温吹气0.5h,此刻压缩空气量可降至500m3/h,中止吹气老练约4h,在此期间温度从190℃缓慢降至85℃,接着在不超越90℃的情况下浸取约7h,浸取期间拌和用的压缩空气流量约800m3/h,所得钛液的相对密度为1.550g/cm3。[next]
图2是一个运用加拿大QIT索利尔酸溶性钛渣的工艺流程和物料平衡示意图。
钛酸锂电池
2019-12-17 12:06:21
作为锂离子电池负极材料-钛酸锂,可与锰酸锂、三元材料或磷酸铁锂等正极材料组成2.4V或1.9V的锂离子二次电池。此外,它还能够用作正极,与金属锂或锂合金负极组成1.5V的锂二次电池。因为钛酸锂的高安全性、高稳定性、长寿命和绿色环保的特色。组成正极:磷酸铁锂、锰酸锂或三元材料、镍锰酸锂。负极:钛酸锂材料。电解液:以碳作负极的锂电池电解液。电池壳:以碳作负极的锂电池壳。优势选用电动车辆替代燃油车辆是处理城市环境污染的最佳挑选,其间锂离子动力电池引起了研究者的广泛重视.为了满意电动车辆对车载铿离子动力电池的要求,研发安全性高、倍率功能好且长寿命的负极材料是其热门和难点。现在,商业化的锂离子电池负极首要选用碳材料,但以碳做负极的锂电池在应用上仍存在一些坏处:1、过充电时易分出锂枝晶,构成电池短路,影响锂电池的安全功能;2、易构成SEI膜而导致初次充放电功率较低,不可逆容量较大;3、即碳材料的渠道电压较低(接近于金属锂),并且简单引起电解液的分化,然后带来安全隐患。4、在锂离子嵌入、脱出过程中体积改变较大,循环稳定性差。与碳材料比较,尖晶石型的Li4Ti5012具有显着的优点:1、它为零应变材料,循环功能好;2、放电电压平稳,并且电解液不致发作分化,进步锂电池安全功能;3、与炭负极材料比较,钛酸锂具有高的锂离子扩散系数(为2 *10-8cm2/s),可高倍率充放电等。4、钛酸锂的电势比纯金属锂的高,不易发生锂晶枝,为保证锂电池的安全供给了根底。
16Mn无缝钢管用途
2019-03-15 10:05:15
16mn无缝钢管尺寸及允许偏差:
偏差等级 标准化外径允许偏差D1 ±1.5%, 最小±0.75 mmD2 ±1.0%。 最小±0.50 mmD3 ±0.75%.最小±0.30 mmD4 ±0.50%。最小±0.10 mm
16Mn无缝钢管用途:
(1)16Mn无缝钢管用途很广泛。一般用途的无缝钢管由普通碳素结构钢、低合金结构钢或合金结构钢轧制,产量最多,主要用作输送流体的管道或结构零件。用做高压容器瓶的原料、高温环境中作为输送用管道、桥梁、作钢结构的支柱材料。(2)根据用途不同分三类供应
按化学成分和机械性能供应;
按机械性能供应;
按水压试验供应。按a、b类供应的钢管,如用于承受液体压力,也要进行水压试验。(3)专门用途的16Mn无缝钢管有锅炉用无缝钢管、地质用无缝钢管及石油用无缝钢管等多种。16Mn无缝钢管重量公式:
[(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量)
116Mn无缝钢管用途其它说法:
2用于桥梁的专用钢种为“16Mnq”,汽车大梁的专用钢种为“16MnL”,压力容器的专用钢种为“16MnR”。
3此类钢是依靠调整含碳(C)量来改善钢的力学性能,因此,根据含碳量的高低,此类钢又可分为:
4低碳钢--含碳量一般小于0.25%,如10、20钢等;
5中碳钢--含碳量一般在0.25~0.60%之间,如35、45钢等;
6高碳钢--含碳量一般大于0.60%。此类钢一般不用于制造钢管。
一张图看懂碳纳米管
2019-01-03 09:37:11
一张图看懂碳纳米管
新型复合材料的针线——碳纳米管
2019-01-04 17:20:24
[导读] 以碳纳米管“针”,对复合材料进行“穿针引线”可以实现复合材料层间的良好结合,与现有复合材料相比,经碳纳米管“缝合”的复合材料强度可提升30%,在断裂前能承受更大的作用力,这项技术的运用,提升了当前复合材料的综合性,对拓宽其在航空结构中的应用将起到很大的推动作用!中国粉体网讯 麻省理工学院航天工程师设计了碳纳米管“针”,它可以“穿针引线”使复合材料层间实现良好结合,从而有助于制造出质量更轻、抗损伤性能更强的航天飞机。 目前,空客和波音公司最新的载人航天飞机机身主要是由先进的复合材料构成的,譬如用质量极轻且使用性能优异的碳纤维增强塑料代替飞机的铝基材料,可以使其重量减轻约20%。复合材料在飞机上的主要应用优势就在于通过减轻重量以节省燃油消耗。 但是复合材料抗损伤性能较差:与铝基材料在断裂前可以承受较大的冲击相比,复合材料的多层结构在较小冲击下就很容易发生断裂。低抗损伤性能已经成为复合材料的阿喀琉斯之踵。 近日,麻省理工学院(MIT)的航空工程师探索出一种粘结复合材料层的新方法,从而使其强度更高,耐损伤性能更好。 研究人员使用碳纳米管将每一层复合材料“栓”在一起。碳纳米管中的薄卷状碳原子虽然“身形”微小,但是强度极高。他们在类胶状聚合物基体中嵌入碳纳米管“森林”,然后“压紧”碳纤维复合材料层间的聚合物基体。纳米管就像是细小的竖直排列的“针”,充当多层结构的支架,在层间部位进行“缝合”。 测试结果表明,与现有复合材料相比,经碳纳米管“缝合”的复合材料强度可提升30%,在断裂前能承受更大的作用力。 此项研究的首席研究员,MIT航空航天系博士后RobertoGuzman认为,性能提升的复合材料可以用于制造强度更高、质量更轻的飞机零部件,尤其是那些使用传统复合材料制造的因包含螺钉或螺栓而容易断裂的零部件。 “尺寸是关键” 当前,复合材料由层状的横向碳纤维组成,通过聚合物胶粘接。此项研究参与者,MIT航空航天系教授Wardle指出,“层间结合处是非常薄弱、存在问题的区域”。许多学者尝试采用“Z钉扎”方法固定或通过“三维编制”复合材料层的碳纤维束以增强结合性能,类似于钉子和针线所起的作用。 Wardle表示,“钉子或针的尺寸是碳纤维的几千倍,所以如果在碳纤维中加入这些物质,将会破坏成千上万的碳纤维,对复合材料本身的损伤不言而喻。”而碳纳米管直径约10纳米,只有碳纤维尺寸的百万分之一。 “尺寸的问题很重要,正因为纳米管进入复合材料内部而不会影响大尺寸的碳纤维,才使复合材料的性能得以保持,”Wardle解释说,“碳纳米管拥有的表面积达到碳纤维的1000倍,这使它们与聚合物基体结合良好。” Guzman和Wardle采用的新技术即可使碳纳米管嵌入聚合物胶内部。首先,他们获得竖直排列的碳纳米管森林,然后将纳米森林置于粘稠的、未固化的复合层之间,重复此过程一直到16层(典型的复合材料叠层结构),实现碳纳米管在层与层之间粘结。 Wardle认为,“随着大多数新型飞机的重量超过一半来自于复合材料,提升当前复合材料的综合性能对拓宽其在航空结构中的应用将起到很大的推动作用。”