无缝钛管知识
2019-03-18 08:36:58
无缝钛管采用挤压工艺制成,焊接钛管采用板材卷曲后焊接而成。一般无缝钛管壁厚比较小,口径也比较小。 钛管titanium tube 执行标准:ASTM B337 ,ASTM B338 ,ASTM B338 B861 无缝钛管: 直径:O.D 6-108mm 壁厚:0.5-8mm 长度:最长15000mm 焊接钛管: 直径:O.D100- 610mm 无缝钛管知识壁厚:2-6mm 只要焊接工艺过关,在使用上没有太大区别。 镀锌钢管:为提高钢管的耐腐蚀性能,对一般钢管(黑管)进行镀锌。镀锌钢管分热镀锌和电钢锌两种,热镀锌镀锌层厚,电镀锌成本低。 吹氧焊管:用作炼钢吹氧用管,一般用小口径的焊接钢管,规格由3/8寸-2寸八种。用08、10、15、20或Q195-Q235钢带制成。为防蚀,有的进行渗铝处理。 电线套管:也是普通碳素钢电焊钢管,用在混凝土及各种结构配电工程,常用的公称直径从13-76mm。电线套套管壁较薄,大多进行涂层或镀锌后使用,要求进行冷弯试验。 公制焊管:规格用无缝管形式,用外径*壁厚毫米表示的焊接钢管,用普通碳素钢、优质碳素钢或普能低合金钢的热带、冷带焊接,或用热带焊接后再经冷拨方法制成。公制焊管分普能和薄壁、普通用作结构件,如传动轴,或输送流体,薄壁用来生产家具、灯具等,要保证钢管强度和弯曲试验。 托辊管:用于带式输送机托辊电焊钢管,一般用Q215、Q235A、B钢及20钢制造,直径63.5-219.0mm。对管弯曲度、端面要与中心线垂直、椭圆度有一定要求,一般进行水压和压扁试验。 变压器管:用于制造变压器散热管和其它热交换器,采用普通碳素钢制造,要求进行压扁、扩口、弯曲、液压试验。钢管以定尺或倍尺交货,对钢管弯曲度有一定要求。 异型管:由普通碳结结构钢及16Mn等钢带焊制的方形管、矩形管、帽形管、空胶钢门窗用钢管,主要用作农机构件、钢窗门等。 电焊薄壁管:主要用来制作家具、玩具、灯具等。近年来不锈钢带制作的薄壁管应用很广,高级家具、装饰、栏栅等。 螺旋焊管:是将低碳碳素结构钢或低合金结构钢钢带按一定的螺旋线的角度(叫成型角)卷成管坯,然后将管缝焊接起来制成,它可以用较窄的带钢生产大直径的钢管。螺旋焊管主要用于石油、天然气的输送管线,其规格用外径*壁厚表示。螺旋焊管有单面焊的和双面焊的,焊管应保证水压试验、焊缝的抗拉强度和冷弯性能要符合规定。
无缝钛管是什么
2019-03-15 09:13:19
钛管质量轻,强度高,机械性能优越。广泛应用于热交换设备,如列管式换热器、盘管式换热器、蛇形管式换热器、冷凝器、蒸发器和输送管道等。 钛管按照使用要求和性能的不同执行两个国家标准:GB/T3624-1995 GB/T3625-1995。 供应牌号:TA0,TA1,TA2,TA9,TA10 BT1-00,BT1-0 Gr1,Gr2 供应规格:直径 φ4~114mm 壁厚 δ0.2~4.5mm 长度 15m以内 无缝钛管采用挤压工艺制成,焊接钛管采用板材卷曲后焊接而成。一般无缝钛管壁厚比较小,口径也比较小。 1.无缝钛管,钛管titanium tube。强度高。钛合金具有很高的强度,其抗拉强度为686—1176MPa,而密度仅为钢的60%左右,所以比强度很高。
2.无缝钛管硬度较高。钛合金(退火态)的硬度HRC为32—38。
3.无缝钛管弹性模量低。钛合金(退火态)的弹性模量为1.078×10-1.176×10MPa,约为钢和不锈钢的一半。执行标准:ASTM B337 ,ASTM B338 ,ASTM B338 B861
无缝钛管:
直径:O.D 6-108mm
壁厚:0.5-8mm
长度:最长15000mm
4.高温和低温性能优良。无缝钛管在高温下,钛合金仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550—600℃;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253℃时还能保持良好的韧性。
5.无缝钛管抗腐蚀性强。钛在550℃以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。
最小的黄铜管的直径是多大
2019-02-27 13:23:44
黄铜管具有巩固、耐腐蚀的特性,而成为现代承包商在所有住所商品房的自来水管道、供热、制冷管道装置的首选。黄铜管是最佳供水管道。 黄铜管特性:分量较轻,导热性好,低温强度高。常用于制作换热设备(如冷凝器等)。也用于制氧设备中装置低温管路。直径小的铜管常用于运送有压力的液体(如光滑体系、油压体系等)和用作外表的测压管等。黄铜管具有巩固、耐腐蚀的特性,而成为现代承包商在所有住所商品房的自来水管道、供热、制冷管道装置的首选。 铜管融很多长处于一身:它刚强,具有一般金属的高强度;一起又比一般金属易曲折、易改变、不易裂缝、不易折断,并具有必定的抗冻胀和抗冲击才能,因而建筑中的供水体系中铜水管一经装置,运用起来安全可靠,乃至无需保护和保养。 黄铜管的长处:铜管质地坚固,不易腐蚀,且耐高温、耐高压,可在多种环境中运用。与此比较,许多其他管材的缺陷清楚明了,比方曩昔住所中多用的镀锌钢管,极易锈蚀,运用时间不长就会呈现自来水发黄、水流变小等问题。还有些材料在高温下的强度会敏捷下降,用于热水管时会发生不安全危险,而铜的熔点高达摄氏1083度,热水体系的温度对铜管微乎其微。 黄铜管:每米分量=0.02670*壁厚*(外径-壁厚)
磨机中钢球直径与给矿粒度之间的关系
2019-01-17 13:33:11
钢球的大小尺寸取决于矿石的物理机械性质和矿石粒度组成。
处理硬度大粒度粗的矿石,需要有较大的冲击力,需要装入尺寸大些的钢球;处理矿石较软给矿粒度较小,要求产品粒度较细,则应以研磨为主,可装入尺寸较小的钢球。
生产现场球磨机都装入多种球径的球,按一定比例配比来处理大小不同的矿粒组成的物料。从理论上讲,只有保证各种球有一定比例,才能与被磨物料的粒度组成相适应,才能取得良好的磨矿效果。
钢球的配比是一个比较复杂的技术性问题。所以,生产厂必须根据实际情况,经过长期调查研究才能找出合理的装球配比。
下面列出球径与给矿粒度之间的关系经验数字,可以提供参考:
球径与给矿粒度之间的关系球径(毫米)120100908070605040 给矿粒度(毫米)12-1810-128-106-84-62-41-20.3-0.1
钛管在发电站上应用所要解决的三个问题
2019-01-25 10:18:50
经过很多的实验和运用实例都证明,在电站凝汽器上用钛管,在技术上和经济上都具有很大的优越性,从经济视点来看,以日本1983年一台1000Mw凝汽器的核电机组用管材(大约需求5万根凝汽器管)报价为例,依照凝汽器的运用时间为40年计,铝黄铜管均匀年走漏lO根,钛管在40年内无走漏。下面讲一下钛管在发电站上运用所要处理的三个问题:
1.腐蚀问题
沿海电站的凝气器用海水做冷却水.因为海水中含有很多的泥沙、悬浮物质、海洋生物和各种腐蚀性物质.在海水与河水替换改变的淡咸水中的状况更为严重.传统运用的铜台金管发作腐蚀方法有:全面腐蚀(均匀腐蚀)、溃蚀、冲蚀和应力腐蚀等.因为钛具有优异的耐腐蚀功能,所以钛管凝气器因腐蚀而形成的海水走漏事端已被根绝,可是,因为钛管的耐蚀功能好,不象铜合金管那样在表面发作一种含毒物质.故在钛管内壁上就简单有海生物附着,然后影响传热作用,所以就必须有相应的清洗设备.
2.吸氢问题
虽然钛材表面具有细密的钝化膜,在许多强腐蚀介质中十分耐腐蚀,可是因为钛与氢的亲合力很大.十分简单吸氢.在常温时就发作,高温时(如100℃)吸氢敏捷.氢在钛中的固熔限很小(约为20ppm),超越定量就会在钛表面上分出氢化物(TtH2).跟着表面TiH2的增多,钛的冲击值和延伸率敏捷下降【4J.此外.在旧机组改造时,因为管板是铜合金,冷凝管用钛,这就需求选用阴极维护设备以防止电化学腐蚀如日立公司发电厂凝气器选用海水冷却,用钛列管与铜合金板组成电偶,当维护电位低于一0.75 v(ScE)时使出口的钛管端吸氢,运用一年氢含量到达650 ppm;假如电位选用一05~O.75 v(scE),在常温下钛不会发作吸氢”
3.轰动问题
因为钛管的耐蚀性好.钛制凝汽器不会因为腐蚀而发作走漏损坏.但钛管却或许因为振荡而形成损坏.要防止钛管的振荡问题,在制作垒钛凝汽器时,就要断定习惯的隔板距离;在改造老机组时,则要考察本来的隔板距离是否适用钛管.
低压流体输送用大直径电焊钢管(GB/T14980-1994)
2019-03-15 11:27:19
4.低压流体输送用大直径电焊钢管(GB/T14980-1994)
(1)尺寸规格见表6-107。
表6-107大直径电焊钢管的尺寸规格公称外径D壁厚S/mm4.04.55.05.56.07.0【打印低压流体输送用大直径电焊钢管(GB/T14980-1994)】 【收藏低压流体输送用大直径电焊钢管(GB/T14980-1994)】 【关闭】更多 资讯搜索>>返回钢管信息港首页在百度搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)在谷歌搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)在雅虎搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)在搜狗搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)在有道搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)在搜搜搜索 低压流体输送用大直径电焊钢管(GB/T14980-1994)
钛在海水淡化设备上的应用
2019-02-15 14:21:24
淡水约占地球水资源的3%,经过海水淡化获取新的淡水资源是往后国际用水的一大趋势.现在,海水淡化已成为像中东这样的水资源缺少区域获取水源的首要方法.1、国际海水淡化情况 至1993年,国际各国在5738个区域的海水淡化设备共有9014台,总容量为1.624X107m3/d,仅中东区域总容量就达8.91*106m3/d,占55%,美国为2.37*106m3/d,占重5%。 早在50年代,就已选用海水淡化方法出产淡水.海水淡化的首要方法有: ①蒸腾法:多级闪蒸法、单级闪蒸法,立式多效法、横式多效法、浸管法、蒸气紧缩法; ②:电透析法、逆渗透法; ③复合法。 其间,蒸腾法占60%,逆渗透法占33%,电透析法占5.5%。表1为日本国内首要运用的海水淡化法及其有用份额。 表1 日本国内首要的海水淡化法及其有用份额 饮用水 工业用水 逆渗透法 42% 56% 电透析法 37% 18% 蒸腾法 21% 26%
2 钛在海水淡化设备中的运用2.1海水淡化设备中的导热管 原海水淡化设备导热管首要用铜合金管,因为铜合金管存在许多缺乏,现已被可靠性高且免于维护的钛管所替代. (1)钛管的壁厚 导热管壁厚由运用条件,管板材料、扩管作业的施工才能、管端的焊接技能等来决议,因为导热管直径小,对强度要求不高,因而实践运用中选用壁厚较薄的管材,一般,铜合金管等壁厚为0.9mm-1.2mm;用钛管替代,在腐蚀性小的当地,可用壁厚为0.3mm的薄壁焊管。 2)钛管的导热性 因为导热管的原料不同,热导率也不同,如钛为17W/(m•k),铝黄铜为lOOW/(m•k),90/10白铜为47W(m•k),70/30白铜为29W/(m•k),因而,可经过壁厚的改变操控导热管的导热作用。在以上材料中,钛的热导率最小.如运用薄壁钛焊管,导热性尽管比铝黄铜差,但与90/10白铜适当,比70/30白铜的要好。 (3)钛管的经济性 钛管的单位质量报价比铜合金贵2—6倍,但从性价比上考虑,钛管报价可与铜合金管抗衡,因为钛的密度低,壁厚相一起,平等长度的钛管质量仅仅铜合金管的50%,当钛管壁厚为铜合金管的50%时,相同传热面积的钛管质量仅为铜合金管的1/4.按现在的报价水平,选用薄壁钛焊管的全体报价与铝铜管相同,比白铜管还廉价.可见,钛管在报价方面是有竞争力的。2.2日本薄壁钛焊管的开发和运用 钛带轧制技能的开发成功成为钛焊管批量出产的根底。60年代,在法烧碱电解出产中,日本选用了钛丝;90年代初,为避免污染,对烧碱出产工艺进行了改善,跟着隔阂法的选用,700多吨的钛带得以运用,以此为关键,日本研讨开发了连续出产热轧和冷轧钛带卷的技能,建立了海水淡化和电站冷凝器钛薄壁焊管用的带卷的批量出产系统,相应开发了薄壁焊管的出产技能。 日立,三菱及东芝出产的电站冷凝器,运用了厚0.5mm的钛焊管,三菱、川崎、日立,三井以及神户制钢等公司出产的海水淡化设备,运用了厚0.5mm-0.7mm的钛焊管。[next] 以电站运用为主,钛焊管作为海水淡化、炼铁、船只、粹、化工等范畴的传热管已广泛运用。到1983年,在16年的时间里,日本出产了用于国际各地海水淡化设备的薄壁钛焊管4038t,至今未发作因海水腐蚀而损坏的现象。 (1)通风凝结器和喷发压气机 日本真实的海水淡化设备是1967年由松岛碳矿株式会社建成的2650t/d海水淡化设备。该设备的通风凝结器及喷发压气机的传热管和管板,因为受海水中Br-的腐蚀,不能用铜合金,换用钛后,没发作过因腐蚀导致的毛病。 (2)热放出部冷凝器 多级闪蒸冷凝器是将海水作冷却水,冷却各级闪速室发作的水蒸气,因为海水常混有泥沙、海生物,它们在传热管内及管端附着,腐蚀铜合金管。因而,现在简直一切的MSF型海水淡化设备的传热冷凝器上都运用了钛管。特别是为了死海水中的细菌,不得不注入氧时,更需运用耐蚀性好的钛管。 (3)热收回部冷凝器 热收回部冷凝器传热面积较大,因为经济原因,现一般运用铜合金管,仅在特殊场合运用钛管,如含有或等污染物的介质对铜合金的腐蚀剧烈。1977年,向德国出口的3600t/d的MSF型淡化设备,因为它是的附属设备,不能用铜合金,而选用了钛;因为硫化氧的腐蚀,秘鲁的3120t/dMSP型淡化设备,运用1年后铝黄铜管就发作了腐蚀,最终将悉数传热管换成了钛管。 据报道,日产百吨的海水淡化设备用钛管达6万根.从1967年至1994年,在近30年的时间里,共出产了52套原于能级火力发电用冷凝器和7套海水淡化设备,合计运用钛焊管11000t。3、运用时应留意的问题 (1)电偶腐蚀 钛在海水中电位较正,与其它金属触摸时,可促进其它金属的腐蚀。避免方法有传热管和管板均选用钛,或用献身阳极的方法。80℃以上,为避免吸氢,运用Fe-90%Ni合金作献身阳极;80℃以下,运用涂层或胶衬钢板。 (2)空隙腐蚀 钛管选用扩管法安装在钛管板上,在100℃,pH值为8的海水中可发作空隙腐蚀.但实践水室中运用了铜合金,即便海水温度到达120℃,也不会发作空隙腐蚀。在实际中,为了进步设备的可靠性,在100℃以上运用时多选用管端焊接来避免空隙腐蚀。 (3)吸氢 在80℃以上的海水中;钛有或许吸氢;施加阴极维护时,过维护时会引起吸氢。如选用Fe-9%Nq合金作献身阳极板时,不会发作钛吸氢. (4)振荡 因为钛管壁薄,在替换铜合金管时,还应留意管振荡引起的损坏。可选用比铜合金管的管支撑板距离小的方法来处理这一问题。
钛在石油化工中应用
2019-02-15 16:44:47
在石油化工厂商中钛换热器、冷凝器及有关辅佐设备现已成功地运用了20多年。钛材中最常用工业纯钛(以TA2运用最广泛),Ti-6Al—4V(在需求必定强度时)和Ti-0.8Ni—0.3Mo(存在缝隙时或在非氧化性介质中)。当可能发生吸氢和氢脆时,尤其是焊区腐蚀和吸氢的状况下,需求运用低铁(1)在含硫和含盐高的原油炼制中,钛制设备是比较抱负的。国外在常压蒸馏设备、污水处理设备、脱硫别离塔的冷凝器和汽提塔的散热器等许多工序都成功选用钛制设备多年。我国也已在该体系中选用铸钛海水泵、催化裂化分馏中的钛制冷凝器、深冷别离钛冷凝器和多孔钛板等,都已正常操作运转十年以上。 (2)氯化烃是石油化工的最大种类之一。因为涉及到氯化反响,不锈钢设备已难担任。国外已用钛材制作精馏塔,三换热器、冷凝塔和分馏塔,冷凝塔,过氯乙烯换热器和多氯化物盘管加热器等。我国在氯乙烯出产中,冷却塔、废水汽提塔和废水贮罐的塔板支承架、接收、法兰密封面,选用了Ti-0.2Pd的面料,已运用近十年未见腐蚀。而钛管道、接头和气体散布器等都已选用钛材多年。 (3)是石油化工的重要质料,以炼油气中的和为质料,从异丙、过氧化异丙得到和,是一项新工艺。世界在十几年前就选用钛设备,我国此项工艺尚在开发之中。旧工艺用磺化碱溶液出产,我国已选用钛制中和反响釜、钛盘管冷却器和离子氮化钛的搅拌器轴套,作用很好。 (4)在乙烯氧化成、氧化成乙酸和氧化组成的设备中,除质料和产品有必定腐蚀性外,首要腐蚀介质是催化剂,不锈钢在其间腐蚀很快,唯有钛具有杰出耐蚀性。早在1963年美国就在乙烯氧化制出产中运用钛获得成功。我国第一套乙烯氧化制设备已于1976年投入运用,至今钛设备的运转状况杰出。国外衬钛反响器高达9.6m、直径为3m,还有换热器、催化剂再生塔、溶液冷却器等11台钛设备。我国在80年代今后,上海和吉林都别离引入国外的乙烯氧化制的成套设备,其间许多设备和泵阀等都用钛制作,较之不锈钢有显着长处,运用作用非常满意。氧化制的定型规划,钛设备有12台,一座年产3万吨的工厂,钛设备达40t。 (5)氧化制乙酸是我国的通用工艺,现已选用钛材作为高沸物再沸器,一级品醋酸塔再沸器和冷凝冷却器等多种设备。国外在精馏塔、分馏塔和蒸馏塔等都选用了钛设备。尤其在初级烷烃氧化制乙酸时副产品较多,含量达8%,腐蚀性极强,此刻用钛替代不锈钢,作用非常抱负。 (6)对二是组成涤纶的质料,工业上用氧化法制取。不管高温氧化仍是低温氧化均存在乙酸和化物的高温腐蚀,在温度高于135℃的介质中,316L不锈钢通过几十小时即发生点蚀。故规划规范规定在135℃以上有必要运用钛材。北京石化总厂引入全套钛设备,包含氧化反响釜、溶剂脱水塔、加热器、冷凝器、再沸器等16台。南京扬子石化公司引入年产45万吨对二设备,有56台钛设备和很多钛管道阀门。上海石化总厂引入的氧化反响釜高32m,上直径4m,下直径5.3m,容积为505m,设备自重达175t。运用钛材作用很好,推广运用远景光亮。 (7)尿素是优质化肥,又是石油化工的质料。自1963年第一台衬钛尿素组成塔投产以来,现在已有近万台设备在全世界运转,实践标明衬钛组成塔无显着腐蚀。而316L不锈钢的折算腐蚀速度为4.1—4.5mm/a。因而钛材比不锈钢具有更好的经济效益。除了衬钛尿素组成塔外,国内从70年代以来,先后运用了C02汽提塔、换热器、混合器和泵阀等。
钛材热挤压成形技术发展和应用现状
2019-01-24 09:36:27
热挤压工艺是利用挤压机上挤压杆传递的高压,对封闭在挤压筒中的坏料进行挤压成形为与模具形状相同的制品的一种先进塑性加工方法(常见金属热挤压过程如图1所示)。其具有提高金属的变形能力、制品综合质量高、产品范围广等优点。钛及钛合金属是难变形金属,又价格昂贵,因此热挤压工艺对生产大规格、厚壁或高要求钛管、钛棒、钛型材(以下简称钛挤压材)而言是最有发展前途的生产方法。图1 钢材热挤压过程简图
一、钛材热挤压成形技术的发展
钛是一种高活性金属,不仅在空气中加热极易污染,而且在一定的温度、压力和表面状态下具有和模具粘结的特性。钛的导热性差,热挤压时坯料表层与中心易产生较大温差,促使金属流动不均匀性加剧,这样表面层就产生较大的附加拉应力,在制品表面易形成裂纹。严重时,在挤压棒材及管材上可能产生大的中心挤压缩孔。同时,挤压钛及钛合金时热效应显著,不合适的挤压工艺对挤压品组织和性能有副作用。钛的弹性模量低,回弹严重,成型困难。因此钛合金挤压变形过程比铝合金、铜合金等其它有色金属挤压变形过程更为复杂。钛材热挤压工艺过程根据坯料是否包套有所区别,其主要工艺流程如图2所示。钛材热挤压技术发展至今,中外相关技术人员围绕提高钛挤压材质量和成材率、降低生产成本在坯料制备、坯料加热温度、挤压比、挤压速度、润滑及挤压模具等方面做了大量研究探索工作。图2 钛材热挤压工艺流程
(一)钛挤压坯锭的制备
钛及钛合金的挤压坯传统制造工艺一般是真空电弧熔炼铸锭经锻造或轧制成毛坯,然后经切削加工或热压力穿孔制成尺寸和表面质量符合要求的光坯。不经热穿孔直接挤压,荒管质量好,但成材率低。为提高钛挤压材的综合成材率,研究冶炼直接挤压的空心铸锭工艺是未来挤压钛材实现规模化生产一个发展方向。乌克兰E.O.Paton电焊研究所已研究出通过电子束冷床熔炼大型空心锭。目前,宝钛、宝钢特钢已引进等离子、电子束冷床炉,下一步应积极研究冶炼可直接挤压的空心铸锭工艺。
(二)钛挤压坯锭的加热
钛在空气中加热时易被气体污染,所以挤压坯锭加热时必须设法保护金属表面不受或少受气体污染。挤压坯锭的加热按其保护方法可分为包套加热、涂层加热、盐浴加热、玻璃熔体加热和常规加热等。目前,一般用感应加热。在制定加热工艺时,为了便于在最小的压力下实现快速挤压,应在能保证产品具有良好力学性能下用尽可能高的温度进行挤压。例如:对于工业纯钛,即使挤压温度高达1038℃,对其力学性能也无明显的影响目前,纯钛、α型及α+β型钛合金通常在低于合金的α+β/β相变温度20℃~100℃挤压。β型钛合金通常
采用高于相变温度挤压。
(三)钛挤压比的确定
挤压加工中,变形程度一般用挤压比(λ)表示。为了改善制品的组织和性能,很多文献都认为,挤压钛及其合金时应该采用较大的挤压比,其实,钛的挤压比相对较小,一般小于30。研究表明:TC4钛合金在两相区加热,采用3~10的挤压比,可得到综合性能良好的产品;而用相同温度加热,用28的挤压比时,由于变形热效应而使温度升高到α+β/β相变温度以上,使产品出现网状组织,材料综合性能变差。除考虑金属本身特点以外,还必须考虑设备能力和工模具的强度因素。同时,挤压比还受钛的润滑方式影响。一般采用玻璃润滑选用的挤压比包套挤压小。
(四)钛挤压速度的范围
与挤压温度、挤压比一样,挤压速度不仅影响挤压件的性能和表面质量,还影响挤压力。挤压时可达到的实际挤压轴速度根据钛合金成分、挤压温度和挤压比而变化。一般选用80~130毫米/秒中等速度挤压。速度对挤压的热效应的影响可用来保持挤压件的温度恒定。据国外文献报道,挤压速度级根据挤压件挤出的温度变化进行校正,温度用精密仪表记录。通过温度信息反馈,调节挤压速度。此外,还可通过理论模拟-程序控制挤压速度。通过计算机预先计算出温升规律,根据不同的产品,选择相应的程序进行等温挤压。
(五)钛挤压润滑剂的选用
润滑问题是国内外钛及钛合金热挤压技术的一个难点,也是一个研究热点。目前,使用的润滑剂主要有润滑脂、玻璃润滑剂和金属包覆三种类型。
润滑脂一般为加有稠化剂的矿物油。用润滑脂润滑剂方便、实用,可以挤出表面质量优良的钛材,但往往挤压制品的长度受到限制。挤压型材的最大长度限于3~4.5米。长挤压材末端易出现粘结缺陷。现在该方法多为小批量生产或与下面两种方法连用。
玻璃润滑挤压是目前世界上最先进的润滑工艺。自1941年发明至今已得到广泛应用。与其它润滑材料相比,玻璃润滑剂具有导热系数低,隔热性能好,高温附着性能好,耐压能力高,化学性能稳定性好,与金属不起反应,能防止金属被气体污染等优点。因此,它是最具有发展潜力的润滑材料。目前,世界上普遍采用玻璃润滑挤压。我国虽然也很早开展玻璃润滑剂的研究,但还未达到工业化应用水平。
钛及钛合金热挤压还可以采用金属包覆润滑。主要是在坯料外面包覆铜、软钢或其它金属,也可喷涂铜。采用铜包覆挤压,当金属加热温度超过850℃时,在钛与铜的界面上会生成一种Ti-Cu共晶组织,该组织为脆性物质,不仅起不到润滑的作用,反而会破坏正常的挤压。因此,该方法一般只限于纯钛挤压。此外,金属包覆挤压工序复杂,成本高,酸洗过程环境污染严重。
(六)钛挤压工模具的使用
与挤压其它金属一样,挤压钛管材时一般用平面模具。为提高模具的使用寿命和改善润滑条件,模具一般预热到300℃~400℃。正常情况下每副挤压模的使用寿命在20次左右。模具材料和加工成本非常高,因此为降低钛挤压材的加工成本必须对模具材料和模具结构进行研究。对于型材挤压,为提高薄壁型材尺寸精度和工模具耐磨性,俄罗斯轻合金研究院曾研究在挤压模具工作表面用气体火焰法和等离子法涂敷了不同金属的碳化物和氧化物涂层,结果表明普通工具钢上涂敷0.05~0.1毫米厚的钼底层,再以等离子法涂敷二氧化锆涂层的模具性能最佳,制出了断面单元厚度为2毫米,公差为0.5毫米的高强钛合金型材。采用带陶瓷涂层的模具配合使用玻璃润滑剂,成为了成批生产是薄壁型材的一个重要因素。
表 钛及钛合金棒材的挤压参数需要指出的是,钛及钛合金优质产品的挤压,要求在保持工具有满意寿命的条件下制定正确的生产工艺,即要求温度、挤压速度、挤压比及润滑方式的配合。上表列举了典型钢种挤压棒材的参数。
二、钛挤压材的生产与应用
20世纪50年代,伴随着钛开始工业化生产,热挤压成形技术在钛材生产中得以快速应用和发展。经过几十年的发展,俄罗斯、美国、英国等国家用挤压法除了可以生产钛及钛合金管、棒材以外,还可挤压种类繁多的钛及钛合金型材。这些型材不仅是角材、丁字形材、槽形管材,还包括各种各样的异型材、变断面型材,甚至尺寸公差,表面质量达到可不进行机械加工的程度。
俄罗斯的钛合金的试验工作始于1953年,在上世纪60年代为迅速发展的航空技术提供各种各样的薄壁型材、翼翅型材、空心型材、大型型材和壁板等。自此俄罗斯钛挤压型材技术处于世界先进水平。其生产的钛合金牌号达十几种,规格达两千多种。例如:生产的OT4、OT4-1、BT20、BT14、BT15合金薄壁型材,其腹板厚度为1.5~5毫米,腹板厚度公差为0.5毫米。俄罗斯上萨尔达冶金联合生产企业(VSMPO)挤压管、棒和型材除国内使用外,也大量出口美国和欧洲飞机制造和供应厂家。除航空航天外,VSMPO公司生产的含Pd,Ru的合金Ti-6Al-4V合金管还用于了石油开采。
美国的大直径钛合金挤压管生产居世界领先水平。美国将直径(48~610)毫米×26毫米×2600毫米的Ti-6Al-4V-Ru合金管用做地热、海上钻井管道。美国RMI公司生产的直径650毫米×(22~25)毫米×35000毫米超长Ti-3Al-2.5V-Ru合金管用于海底石油开采。此外,在挪威北海钻井支撑平台立管用的是直径600毫米×25毫米×15000毫米的Ti-6Al-4V ELI合金管。国际上对钛型管的研发比较迟缓,只有美国Titanium Sports Technology公司采用挤压和拉伸法,生产出正方形、长方形、三角形、椭圆形、五角形、六角形和八角形等多种形状的型管,成为世界上唯一一家生产钛型管的公司。目前钛型管的应用还不够广泛,用量不大,但在建筑、体育休闲及特殊工程等领域,存在较大的潜在市场。
我国钛及钛合金挤压生产开始于20世纪60年代末。当时,宝钛公司和长城钢厂分别从德国引进了一台3150吨可挤压钛合金的热挤压机。经过近40年发展,宝钛公司可挤压钛及钛合金的各种规格的管、棒材及简单断面的型材及复合材,牌号达几十种。这些产品已广泛应用于航空、航天、卫星以及能源、化工等国民经济的各个部门。但是还应该看到,我国与先进国家相比,还存在较大差距,较复杂断面的型材还不能生产。近几年,随着化工等民用领域对高质量钛管需求剧增,西部钛业、浙江五环等公司先后引进了主要用于挤压钛管的挤压机。2009年10月,宝钢特钢从德国引进的世界先进水平的6000T挤压机投产(如图3),为我国生产大规格钛管和型材提供了必需的装备,标志着我国钛材挤压设备上了一个新台阶。图3 宝钢6000T热挤压机
三、结束语
我国钛热挤压技术发展缓慢,和国外存在较大差距。开发有竞争力的钛挤压材,提高我国钛挤压材整体水平,建议应首先从以下四个方面着手解决:
(一)利用冷床炉进行空心铸锭管坯的研究。如前所述,按照目前的管坯制造方法,已不适应建设资源节约型社会的发展要求,为此要积极开展冷床炉冶炼空心管坯工艺研究,简化工序,降低成本,提高市场竞争力,势在必行。
(二)高温润滑剂的研究。润滑剂对于热挤压成形产品质量和生产成本有着重要影响,因此,研究适合于不同材料的润滑剂,以提高产品的综合质量,减轻模具磨损是目前迫切需要解决的问题。
(三)模具材料和模具结构设计研究。热挤压时,模具承受高温高压和强摩擦复合作用,严重影响了模具的使用寿命、产品的质量和生产成本。因此,对模具材料和模具结构设计方法研究,也是今后需要解决的问题之一。
(四)积极开拓钛挤压材市场。钛挤压材将在飞机制造、海洋工程、体育休闲等行业有非常大的需求潜力。现在钛挤压材生产与设计应用单位结合并不紧密,大家应共同努力提高我国钛挤压材整体水平。
钛制热交换器在精炼设备中的应用
2019-02-18 10:47:01
在原油提炼过程中,原油脱盐后,一些残留的盐会水解成HCl,HCl蒸气抵达冷凝器中冷凝后,与水构成,这种酸部分被或胺中和构成相同具有腐蚀性的铵盐或胺盐。因在HCl,NH4Cl,NH4HS中的耐蚀性好,多年来钛及钛合金已成功地用于粹设备中,首要用作常压原油蒸馏塔冷凝器管组,其牢靠性远高于碳钢;还可用作壳式热交换器、管式热交换器、空气冷却器及压力容器等。 Gr.2(相当于TA1)用作常压原油蒸馏塔冷凝器已达25年之久,其运用温度不能超过121℃。还可用于石油催化裂化设备、延时焦化设备、酸性溶液汽提塔,此刻适合的运用温度为99℃-121℃。Gr.12(相当于TA10)用作常压原油蒸馏塔冷凝器时运用温度不低于171℃,并可防止构成固态盐,但此刻应挑选适合的水质洗涤剂和胺中和剂。新近用于精粹设备的Gr.16(Ti—0.04-0.08Pd)的运用温度高达177℃。 碳钢结构(如挡板、衔接杆等)的腐蚀可使钛制管组过早地失效,因而管板和管组结构用材须适宜,625合金、825合金、20Cb-3、400合金、乃至316L不锈钢可用作结构。选用壁厚为0.89mm的薄壁钛管时,挡板距离应尽或许小,以防钛管振荡而使管组过早疲惫失效。为操控pH值和维护热交换器壳体、冷凝管、上储存塔,通常在冷凝器内参加专用的水溶的或其它载体的中和胺,但对钛冷凝器尽量防止参加或胺构成高熔点的固态氯盐。 下面是钛在原油提炼设备中的详细运用状况。 1972年,常压原油蒸馏塔冷凝器/水冷热交换器中选用Gr.12钛管替换短碳钢管。钛管组在温度低于127℃的环境下运用长达25年以上无任何问题呈现。 1973年,初次选用Gr.2配备原油蒸馏塔冷凝器/热交换器(运用温度为167℃)。运用不到一个月,呈现渗漏现象,后改用Gr.12管组。Gr.12管组在这种恶劣的高温环境下已执役15年。 1994年为代替1年~2年即失效的碳钢管组,选用Gr.12和400合金组成两个常压原油蒸馏塔冷凝器/热交换器,进口温度分别为165℃和146℃。1998年第二个热交换器(方位较低的)呈现渗漏,与挡板触摸的管外壁决裂,远离挡板的管外壁上有涣散的坑蚀点。在管组和挡板缝隙处存在腐蚀性很高的氯化胺盐,置于这种“干”氯化胺盐中的Gr.7(相当于TA9),Gr.12,Gr.16极易被腐蚀,参加少量的水(1%)可有用地使钛合金处于钝态。 液体催化裂化设备、延时焦化设备分馏塔上冷凝器液流内含有高浓度的NH3和H2S,并含有少量的HCN,HCl,SO2和CO2。1992年选用Gr.2管组配备了液态残余催化裂化设备分馏塔上冷凝器。水质洗涤剂将馏分蒸气温度由138℃降102℃,Gr.2管组的运用作用杰出。 1996年将Gr.12拼装于分馏塔塔顶冷凝器,温度为141℃。冷凝物含有4%的NH4HS和0.012%的。冷凝器作业牢靠。 选用汽提塔可去除H2S和NH3。汽提塔冷凝器内含30%~40%的NH4HS,还有少量的氯化物、及其它腐蚀性物质。钛可用作冷凝管组,由于钛是少量几种可有用抗高浓度NH4HS腐蚀的材料之一。 1995年,为处理来自炼焦厂、石油氢化处理厂的酸性排出物,在汽提塔塔顶安装了空气冷却管组(Gr.2)和顶盖箱。注入的蒸气温度不能超过118℃。冷凝物残留有15%左右的NH4HS,0.0030%~0.0035%的氯化物,0.0035%~0.0050%的。该设备至今接连作业杰出。 1971年,Gr.2钛管组用作粗汽油氢化处理设备中安稳塔的进料/底部热交换器,壳体侧进给管温度达142℃,底部温度为247℃。执役25个月后,管组壁厚未发作变化;又经10个月后,管组的内外壁均部分腐蚀(如缝隙腐蚀),管组呈现毛病。原因是180℃~200℃下,NH4Cl腐蚀金属管组。管板两边增加隔热材料可下降钛管组的温度,使其不易被腐蚀。尔后3年,管组未呈现毛病。 在壳体及衔接收均为碳钢的常压原油蒸馏塔上冷凝器Gr.2钛管组内,含有的H2S腐蚀碳钢部件构成FeS,设备不作业时露出于空气中的FeS可发作自燃,着火达数小时之久。查看发现,此刻钛管组彻底氧化,只残留氧化物壳。碳钢挡板和热交换器壳体根本无缺,仅仅有些曲折。使设备坚持足够湿以消除氧化热,可防止自燃。 为安全运用钛合金,应研究其腐蚀抗力和作业环境的联系,如胺的类型(是否存在NH3)、氯化物的浓度、作业温度等对钛制部件腐蚀性的影响。
海上钻井开采系统用钛
2019-01-25 13:37:03
钛合金具有高强度、低密度、优良的耐蚀性和良好的韧性,因而使其成为海洋钻探系统用设备如立管、钻管及锥形应力接头等的最好选择。在更多情况下,钛和钢的复合应用对海上钻探系统成本的降低和效益的提高具有很大的贡献。 在过去几年中,钛合金构件在海上石油钻探系统上的应用显著增加。钛合金使得钻井设备可以进入更深的水里和井里,包括温度更高和更具腐蚀性的环境中。以Ti-6Al-4V为基的钛合金,具有物理、机械和腐蚀等最佳的综合性能,对于海上钻探构件而言具有更大的吸引力。这些特点主要包括: 1、高的压缩和拉伸强度; 2、低密度与高强度结合,可使构件更轻; 3、良好的韧性和低的弹性模量,意味着弯曲应力较低,弯曲疲劳寿命高; 4、在空气及海水中具有高的疲劳寿命; 5、能耐高达300℃的含盐与酸性的油井流体的腐蚀; 6、在300℃下,基体及焊缝耐海水腐蚀; 7、优越的抗冲刷腐蚀性能;⑧良好的塑性和断裂韧性以及高的耐久性和损伤容限。 为了得到海洋开发系统不同应用部件的最佳性能,在Ti-6Al—4V合金的基础上进行了成分调整。如Grade 5合金(Ti-6Al-4V)最适合于做钻管。这是由于钻管对屈服强度和疲劳强度的要求较高,而其它两种低间隙元素合金,如Grade 29,Grade 23则适合于对断裂韧性要求较高的立管。当构件的服役温度超过75℃~80℃时,为了防止间隙腐蚀和应力腐蚀的发生或为了满足NACEMR-01-75标准的要求,通常要选择更加耐蚀的含钌的Grade 29合金(Ti—6Al—4V—Ru,ELI,≤0.13%),这些合金均可用传统的焊接方法焊接。 Ti—6Al—4V基合金在海上钻探系统应用的主要有以下几种构件。 (1)海上钻井立管钻井立管使用钛合金,除了减重外,还具有较好的损伤容限、易于用传统技术进行检查等优点。首次在海上大量使用钛合金钻井立管的是北海油田。在其高压立管中使用了30根599 mm(内径)X25 mm(壁厚)X14.6m(长)的Grade 23合金管材。采用钛合金立管的优点有 1)可将立管的牵引力从9.8 MN降至3.7 MN,因此,减小了张紧轮的尺寸; 2)可减少立管底部的活动连接,从而使其在钻井平台结构中易于手工操作; 3)减少了平台系统承载的质量; 4)不需要使用表面涂层。尽管钛合金立管的成本较不锈钢的要高,但使用后其整个系统的成本却比原来降低了40%。 虽然钛在立管上的使用取得很大成功,但全钛立管的市场却非常有限。由于经济原因,实际上多使用的将会是不锈钢/钛或复合材料/钛的立管。 (2)钻管 在短距离钻井中(曲率半径在18m以内),传统的不锈钢管过早地出现转动疲劳和物理磨损,因而RTI开发了由Grade5合金与标准Cr-Mo钢接头连接而成的钻管。这样设计避免了工具卡死和磨损并保证了其韧性和疲劳寿命。1999年,美国已用外径为73 mm的钛合金管成功地钻成了10口曲率半径18m的油井。近来,又用外径为63.5 mm的钛合金钻管钻成了曲率半径为12m~15m的油井。另外,钛合金的无磁性也是吸引人之处,使得油井勘探不受磁性的影响。在长距离钻井中,采用钢管,其钻井深度在垂直方向只到6.1km,水平方向为7.1km-9.1 km,而采用钛管材后,其垂直方向可达9.1km。大直径钛管的使用,使得钻具吊起所需的力减少了约30%,扭矩减少了30%~40%,并克服了液压传动装置的限制。 (3)钛锥形应力接头 金属锥形应力接头相对于橡胶/铜等柔性接头而言,设计紧凑,易于检查,气密性好,可在高温下使用等,钛的锥形应力接头,其长度只有钢的1/3,成本与钢的相差无几,甚至更低。RTI已设计和制造了Grade 23和Grade 29合金应力接头,并安装在墨西哥湾和北海的钻井平台上,由于相对较低的成本和成功应用实例,钛制应力接头市场呈现出持续增长的势头。
陶瓷复合管用途
2019-03-15 11:27:19
陶瓷钢管用途 液体管道输送已遍及电力、冶金、煤炭、石油、化工、建材、机械等行业,并高速地发展着。当管道内输送磨削性大的物料时(如灰渣、煤粉、矿精粉、尾矿、水泥等),都存在一个管道磨损快的问题。特别是弯管磨损更快。当管道内输送具有强烈腐蚀的气体、液体或固体时,都存在管道被腐蚀而很快破坏的问题。当管道内输送具有较高温度的物料时,存在着使用耐热钢管价格十分昂贵的问题。当陶瓷钢管上市后,这些问题均迎刃而解。陶瓷钢管广泛用于磨损严重的矿山充填料、矿精粉和尾矿运送,燃煤火电厂送粉、除渣、输灰等管道最合适。陶瓷钢管是输送强烈腐蚀的酸、碱、盐以及磨蚀兼有的固体、液体输送的理想管道。陶瓷钢管在高温腐蚀、高温磨损或高温熔蚀的场合下使用非常安全可靠。 本公司生产的陶瓷钢直管和陶瓷弯管、三通、四通等,已在一百多家燃煤电厂,五十多家矿山,以及煤碳、建材、机械、化工等行业得到了应用。例如在强烈磨损场合下,陶瓷钢直管使用数年,到现在为止,还没有一家陶瓷钢直管被磨穿过。磨损最快的陶瓷钢弯管,其寿命比铸石弯管,耐磨合金铸钢弯管,钢塑、钢橡弯管高十倍到二倍。 陶瓷钢管迅速占领市场,除质量高、性能好外,还在于它的性能价格比高于其他耐磨耐蚀耐热管材。在相同规格和单位长度的管道方面,陶瓷钢管重量只有耐磨合金铸钢管的二分之一左右,其每米工程造价降低20%-30%;只有铸石管重量三分之一,每米降低工程造价5%-10%;在腐蚀或高温场合下使用的陶瓷钢管,其价格只有不锈钢管、镍钛管的几分之一。
钛材在湘澧盐矿的应用(二)
2019-02-18 10:47:01
钛材运用作用
钛材在湘澧盐矿的运用以来,收效是明显的;(见表2) 1、延伸了设备的运用寿数,削减检修次数,节省能源,添加有用出产时刻。例如,芒硝车间的冷冻泵(6SH一6型)曩昔是用铸铁的,每三个月替换一次,叶轮寿数仅一个月。换上钛泵后,运转近6年,未发现腐蚀,仅叶轮稍有机械磨损,每年只需补焊一次,其他部位与装置时相同。又如蒸发器,运用5年未发现腐蚀,一起钛管还充分发挥了管壁润滑,不易结垢的优越性,洗蒸发器(洗罐)时刻可削减二分之一,下降了能耗,添加了有用出产时刻。再如,盐浆输送管,碳钢管用2个月,不锈钢管用6个月都产生点蚀、穿孔等现象,而钛管运用5年多尚无腐蚀,并且表面还保存有原雪白光泽。此外,其他凡用钛材的当地,设备及部件运用寿数,均比碳钢延伸数倍至数十倍,从根本上处理了盐硝出产中的跑冒滴漏现象,车间相貌为之一新。 2、运用钛材在经济上合理。为削减设备、材料费用,下降出产本钱供给了有利的条件。运用钛材一次出资虽较多,但从久远、从全面看,是经济的。例如,钛盐浆管,我矿77年5月开端,至今已装置Ø108*3,Ø89*3 等盐浆管道440m,运用5年多未发现腐蚀,还可运用多年。而不锈钢盐浆管运用寿数仅半年,从材料费用上看,以每m一次出资计:不锈钢管Ø89*4,152元/m(Ø108X 4.5,208元/m);钛材Ø89*3,445元/m,(Ø108*3,544元/m),钛材管运用5年多,未发现腐蚀,假如不锈钢管则需替换11次,计出资1672元(2288元),是钛材出资的3.76倍(4.2倍)。即运用钛材盐浆管,一年半即可回收一次出资。又如钛泵,77年3月芒硝车间开端用6SH-6钛冷冻循环泵,已运转5年零八个月未发现腐蚀,原用6SH-6铸铁泵运用寿数仅3个月,钛泵一次出资4770元/台,铸铁泵585元/台,如运转5年零8个月需替换铸铁泵22台,即需求投12870元,是钛泵一次出资的2.7倍,即运用钛泵2年零2个月即可回收一次出资。再如钛蒸发器,碳钢设备1.5万元/台,运用寿数10个月,钛材设备25万元/台,77年10月开端运用,至今完好无缺,预汁还能够运用10年,以运用寿数15年核算,可少用碳钢设备18台,合资金27万元,除掉钛设备一次出资外,尚可节省资金2万元。 钛材报价是不锈钢的4-5倍,但其比重仅为不锈钢的二分之一(钛比重4.51g/cm3,不锈钢比重7.93g/cm3),相同规格的设备,钛材比不锈钢材料用量削减一半。这样,钛材实践报价只要不锈钢的2-2.5倍。因为钛材耐腐蚀性强,制作设备时,在满意规划压力的前提下,材料厚度可适当选薄一些,也可节省出资。因为钛制品运用寿数长,削减设备更新费用和频频的检修费用,实践上节省了开支,下降了本钱。 湘澧盐矿已运用钛设备、钛铸件、钛盐浆管道共约60吨,与原运用碳钢、不锈钢、铜材比较,每年可节省设备替换费用35万元(钛设备按估计运用寿数核算,钛铸件和盐浆管道按已运用时刻核算)。假如加上因削减设备修理而节省的人工费用及辅助材料费用,以及添加产值,下降本钱的收益,其经济效益就愈加明显。 3、为进步盐、硝产品质量发明了有利条件。曩昔芒硝车间冷冻体系的首要设备腐蚀严峻,出产极不正常,芒硝产值低、质量差。向制盐车间供给的精卤达不到要求,以致产品精盐中含芒硝量超越部颁标准要求,严峻影响产品质量和厂商诺言。改用钛材设备、盐浆管道后,腐蚀问题基本处理,加上工艺及设备的技能改造,加强厂商管理,出产逐渐走向正常。芒硝产值的进步,满意了制盐出产需求的精卤,因此确保了精盐质量。81年精盐,一级品率到达73.85%。消除了三级盐,1982年精盐一级品率上升到93.93%。雪牌精制盐81年被评为湖南省优质产品。一起,芒硝质量也大进步,产品由滞销变为热销,求过于供。芒硝81年均匀硫酸钠含量上升为98.86%(其间出口无水芒硝中硫酸钠含量均匀99.3%)。钻塔牌无水硫酸钠82年被评为湖南省优质产品。82年9月份在轻工业部盐务总局同类产品评比中,湘澧盐矿芒硝被评为第一名。 总归,湘澧盐矿到77年3月运用钛材以来,的确收到了明显的经济效益。实践现已证明,钛材是盐、硝出产中优异的耐腐蚀材料,它能够延伸设备的运用寿数,有利于产品质量的安稳与进步,技能经济效益非常明显。能够承认, 钛材在真空制盐工业中的推广运用是有意义,有出路的。咱们决计把这项作业坚持下去,并不断总结、进步。
硫酸法钛白粉的生产--钛液的净化与浓缩
2019-02-15 14:21:24
一、钛液净化的意图 经过沉降除掉了绝大部分残渣,经过冷冻结晶除掉了硫酸亚铁晶体,可是钛液中尚含有一些沉降不彻底而带过来的微量固相物,这些固相杂质颗粒极细,在硫酸亚铁晶体的粗滤时,能穿过滤布留在钛液中,其表面或许带有必定的电荷,让其留在钛液中会构成下列两方面的损害。 1.影响水解产品颗粒结构,构成偏钛酸水洗难和产品的颜料功能差。 钛液水解的进程,是先构成一批结晶中心,这些结晶中心逐步生长,终究成为固体而沉析出来。结晶中心是一种胶体物质,它对水解产品的颗粒结构有必定的影响。为了得到符合要求的水解产品,有必要按规则要求制备结晶中心。而钛液中的胶体固相杂质,在钛液水解时会起到结晶中心的效果,可是这种结晶中心是不符合要求的,是一种不良的或不规则的结晶中心,它会影响水解产品的颗粒结构,使其形状不规则,颗粒表面不光滑,带有棱角,构成偏钛酸水洗效果差,一同还会影响产品的颜料功能。 2.吸附金属离子,污染制品,下降纯度,影响白度。 因为这些固相杂质是带有电荷的胶体微粒,它们会吸附某些金属离子。当它们在水解进程中成为结晶中心时,这些吸附的金属离子便跟着进人了水解产品偏钛酸的粒子内部,终究混人制品中去,下降了制品的纯度。而某些带色的有害金属离子如钒、铬、锰、铅、钻等的混入,还会影响到产品的白度。 为此,在出产颜料钛时,有必要进行一次板框压滤,把这些固相杂质除掉。 二、助滤剂及其在净化过滤中的效果 能够改动过滤物料颗粒散布及其过滤特性,然后改善过滤效果的辅助性粉状物质称为助滤剂。助滤剂是一种疏松、多孔、有吸附才能,具有粒子小、粒度散布规模较窄,颗粒较坚固,分散性、悬浊性、化学稳定性及构成滤饼多孔性都好,报价低廉、来历丰厚的物质。它具有滤除细微颗粒、避免过滤介质阻塞、延伸过滤设备作业时刻、取得彻底弄清滤液的效果。 经沉降除渣和经硫酸亚铁过滤后的钛液,仍存在有极细的胶体固相杂质。若用一般办法进行板框压滤,初滤时简略穿滤,得到的滤液弄清度仍欠安,而且跟着过滤的持续进行,这些胶体固相杂质会逐步在滤层孔眼处积累,导致滤层阻塞,使钛液难以持续经过,过滤速度大为下降。为了战胜上述困难,能够在板框压滤前先将助滤剂配成悬浮液加人板框压机内,使滤布先黏附上一层助滤剂,然后再加人钛液进行板框压滤,这样就能够避免胶体固相杂质阻塞滤层,然后使压滤进程顺畅地进行下去。 三、常见各种助滤剂的特性、质量要求和用量 常用的助滤剂有木炭粉、硅藻土、谷壳灰和纸浆等。 木炭粉是木材烧成的木炭再经破坏加工而成的黑色粉末。木炭粉疏松多孔,颗粒近似球形,有利于过滤,有必定的比表面积,能够吸附胶体杂质。木炭的质量要求是灼烧减量应>90%,不含Fe2O3、MnO2等,避免下降钛液的三价钛含量,要求细度为150目筛余物为2%,每平方米过滤面积运用约0. 5kg,压滤机助滤层铺设厚度为1-2mm。 硅藻土是一种古代单细胞硅藻微生物的残骸沉积物,用作助滤剂的是天然品或加工品,其主要成分为Si02、A12O3、Fe2O3、CaO, MgO等,其间Si02含量约为80%-85%,耐酸性好,粒度为20-150μm,相对密度为2.1-2.5,色彩有多种,以白色为最纯,呈晦暗土状不透明光泽,要求细度为150目,每平方米过滤面积运用0.5kg,助滤层铺设厚度为lmm。 稻谷壳灰含Si02大于90%,有活性吸附效果,由多孔硅酸物质组成。运用量为每平方米过滤面积运用1-2kg。[next] 四、板框压滤机的结构及作业原理 板框压滤机是由10-30对滤板和滤框替换摆放组成。每对滤板和滤框之间夹有滤布,安放在一个支承架上,并配有一个压紧设备和集料盘。压紧设备可用手动,也可用电动操作,使滤板和滤框严密触摸而不走漏。集料盘用来搜集板框间滴流下来的钛液。 滤板和滤框在一边的上角和下角处各有一孔,板框摆放后,这些孔相互联结成两个孔道,上孔道为待滤钛液的流人通道,与滤框内部相通,滤框的中间是空的。下孔道为滤净的钛液流出的通道,与滤板的集液口相通,滤板四边滑润,中间部分有直的沟槽以供滤液活动之用,沟槽和下部通道相通,使滤液聚集于排液通道而排出。 板框压滤机作业时,滤框坐落两块滤板之间,构成一个滤室,浆钛液流入滤室后,固体粒子就被截留于滤布上,清液则透过滤布,沿着滤板上的沟槽下贱,流至通道口,最终集于排液管而排出。 五、板框压滤的工艺操作进程 板框压滤的操作是先把助滤剂用淡废酸或水调成悬浮状,通压缩空气拌和均匀,然后用泵打人上好滤布的板框压滤机内,进行循环过滤,在压力的效果下使助滤剂在滤布上构成一层均匀的助滤层,至循环液弄清中止。然后泵人待过滤的钛液进行循环过滤,直至滤液到达要求后,当即中止循环,进行正常的接连压滤作业。得到弄清度合格的钛液,送人合格钛液贮槽,以备浓缩之用,这种钛液固体物含量应 生成的重金属硫化物沉积在沉降时与残渣同时除掉。遇酸生成的一部分未起反响的气体从酸解锅的烟囱放空排掉。[next] 七、钛液的浓缩及涂料钛液浓缩原因 钛液中的水是溶剂,是可蒸腾的。钛液中的硫酸氧钛、硫酸钛和硫酸亚铁等是溶质,是不行蒸腾的。借助于加热效果,使钛液中的溶剂(水)逐步汽化蒸腾而扫除,使溶质浓度逐步增大,这个进程称为浓缩。 根据浓度低的钛液,制得偏钛酸的颗粒较粗,进而制得的钛的颜料功能较差。为了使钛液经过水解后制得的偏钛酸颗粒细而均匀,进而得到颜料功能优越的钛,就有必要将经过结晶过滤和板框压滤的浓度较低的钛液进行浓缩,直至浓缩到含Ti02 (200±5)g/L(加压水解用)或215-230g/L(常压水解用)中止。若制作非颜料用钛,则其钛液能够不经浓缩,在除掉硫酸亚铁晶体后,直接送去进行常压水解。 八、钛液采纳真空浓缩的原因及其要求 因为溶液在沸点以上的温度其汽化蒸腾的速度最快。钛液的沸点在104-114℃之间。要是在这样高的温度下长时刻加热蒸腾,钛液的稳定性会敏捷下降。因为钛液水解的临界温度只要80℃,到达80℃以上就会水解,这样就会导致钛液的前期水解,这关于制作优质的颜料钛是很不适合的。因而有必要把钛液的沸点降到80℃以下。要到达这个要求,就有必要采纳真空浓缩,因为液体的沸点是与压力成正比的,压力越低,沸点也越低。要使压力低,就有必要在抽真空的减压下进行浓缩,抽真空度越高,沸点便越低。要操控浓缩温度不超越75℃,其真空度有必要在8*104Pa以上。 九、单效真空浓缩罐的结构及其浓缩流程 真空浓缩有单效浓缩和接连浓缩。单效浓缩罐的结构,一般是钢制珐琅反响锅或钢罐内衬耐酸陶瓷板、搪铅等,运用蛇形管或夹套进行蒸汽加热,罐顶有汽液别离设备及进料阀,底部有放料阀,罐上还装有液位计、温度计和真空表。其浓缩的工艺流程如下:钛液在浓缩罐中,被蛇形管的直接蒸汽加热,在真空下到达沸点,钛液中的水分开端汽化,从浓缩罐顶部排出,进人汽液别离器,经过开始别离出来的蒸汽从底部进人冷凝器逆流而上,冷却水从顶部喷淋而下,与蒸汽充沛触摸,冷凝后从气压管排到水封池流人体系外,未被冷凝的气体,从冷凝器顶部排出,经汽液别离设备到真空缓冲罐,再经真空泵排人大气。 十、接连真空浓缩器的结构及其浓缩工艺流程 接连真空浓缩运用的是薄膜浓缩器。其结构是单程升膜式的,由加料、蒸腾室和别离器组成。外壳的立式钢管为蒸腾室,管内有一列平排的细钛管,其下部为钛液进人的加料室,加料室有均布料液的设备,使钛液由此均匀地进人各蒸腾管内,外面是蒸汽,在各蒸腾列管壁发作热交换,其顶部为别离器,别离器内有捕液设备,使汽液别离。为了避免列管与管壳间发作温度应力,外壳上有热补偿设备。蒸腾器上还设有窥视镜、真空表、温度计、流量计(见图)。[next] 薄膜蒸腾器浓缩钛液的工艺流程如下:钛液经流量计从薄膜浓缩器底部的加料室进人钛管蒸腾器,在此受管外的蒸汽所加热,蒸腾出来的水汽以很高的速度在管内上升,钛液则被这个高速气流拉成薄膜,在极短的时刻内上升至蒸腾器顶部涌出,在别离器进行汽液别离,浓钛液经溢流管进入钛液水封池,蒸汽则进人混合冷凝器中,与冷却水混合冷凝后,经过气压管排到水封池流出体系外,其间的不冷凝性气体,从冷凝器顶部排出,经汽液别离设备进人真空缓冲罐,最终经真空泵排人大气。[next] 十一、接连浓缩器的长处 与单效真空浓缩罐比较,接连真空浓缩的薄膜浓缩器具有下列六方面的长处。 ①操作接连化,比间歇操作简略,也便于完成自动化。 ②浓缩效率高,一台Φ360mm的薄膜浓缩器,其出产才能相当于4台体积为3000L的单效浓缩罐。 ③因为钛液在列管内受热面积大,受热均匀,使能源消耗少。 ④设备占地面积小。 ⑤钛液受热时刻短。钛液在列管上升的速度一般可到达20-25m/s,其实践受热时刻只要0.08一0.20s,这样就很有利于坚持钛液的稳定性。而单效浓缩罐浓缩时,钛液受热时刻常常长达数小时,这会构成钛液的稳定性下降。 ⑥所得浓缩的钛液浓度高。在用单效浓缩罐浓缩时,跟着水分的蒸腾,罐内液位不断下降,热交换面积越来越小,蒸腾也越来越慢,至必定液位后,持续加热已因小失大,假如稀钛液浓度偏低,得到的浓钛液浓度也低,乃至达不到目标要求。而薄膜浓缩器浓缩,只要调理进料量及加热蒸汽压力,即便稀钛液浓度低,也能浓缩成浓度较高的浓钛液。 十二、薄膜浓缩器真空浓缩的操作 ①将查验合格的待浓缩的钛液注人钛液高位槽,并在浓钛液水封池中注人必定量的钛液使之坚持液封。 ②开动真空泵,敞开冷却水,并调好冷却水的流量和调好真空度在8*104 Pa以上。 ③敞开流量计下面的阀门,让钛液进人钛管蒸腾器中,6m2浓缩器进料量操控在1-1. 5m3/h。14m2浓缩器操控在1. 5-3m3/h。引入的钛液蒸腾器的换热面积为260m2,可满意1.5万吨/年钛的出产要求。 ④敞开蒸汽阀,并坚持在4.9*104-7.8*104Pa的蒸汽压力下进行真空浓缩,操控钛液温度在70-75℃之间。 ⑤准时测定钛液浓度,使总钛含量到达目标要求。 ⑥浓缩中止时,先关蒸汽阀,让钛液持续进料3-5min,待温度微降当即封闭进料阀,再关冷却水和真空泵。 ⑦敞开浓缩器下面的放料阀,放完浓缩器内的钛液,然后将未浓缩过的淡钛液加人到已浓缩过的浓钛液中进行分配,使钛液的目标到达水解的工艺要求。 十三、真空浓缩应留意的事项 ①严厉依照操作规程操作。 ②严厉操控蒸汽压力、真空度、进料量、进料浓度和浓缩温度,以保证浓缩后的钛液到达目标要求。 ③若浓缩进程中冷却水量过大,冷却水未能彻底从气压管中排出,以至于冷凝器内冷却水液位高于冷凝蒸汽的进口管,而进人浓缩器的顶部,从溢流管流人到浓钛液水封池中,使钛液的浓度急剧下降,达不到浓缩的意图。为此,有必要避免冷却水流人钛液水封池中。 ④若体系漏气较严峻或抽气量缺乏或加热时蒸汽量过大或冷却水不行,都会使真空度下降。应该坚持真空度在8*104Pa以上,避免上述现象的发作。 ⑤若钛液流量太大,浓缩器溢流管来不及排出或浓缩器溢流管阻塞或溢流管漏气等,都会使钛液进人冷凝体系,为此有必要避免上述情况的发作。 ⑥若浓缩时真空度下降或温度太高或冷却水倒流都会引起钛液的稳定性下降而呈现前期水解现象,构成不行拯救的丢失,有必要避免这类事端的发作。
德法英韩四国钛业概况
2019-03-14 11:25:47
4月14日音讯:
本世纪以来,世界钛业阅历了非常规快速开展时期,钛的运用范畴越来越广大,航空、航天工业以外的很多民用范畴已为钛工业敞开了运用的大门,并显示出无比巨大的运用潜力,很多国家都纷繁加强钛金属的研讨、出产与运用。德国、法国、英国和韩国也莫不如此。
一、德国钛业
德国钛工业不具备完好的工业链,但重视运用,从以下三个比如可窥其一斑。
德国TITAL公司是欧洲最大的钛铸件制造商,也是世界上最大的钛铸件厂之一。2009年1月TITAL出资1400万美元建立钛金属铸造厂,安装了大型钛铸件设备,出产能力得到进步,产品规模扩展,并因而取得很多世界客户的订单,进一步稳固了其作为法国空中客车公司的战略直销商位置。
TITAL是铝和钛高端铸造专家,客户包含空中客车、EADS、BAE体系公司、罗尔斯罗伊斯公司、斯奈克玛等世界大公司和闻名公司。TITAL的铸件在空中客车及波音737、747、777、787等飞机中都得到了充沛的运用。
德国特固龙公司研发的钛制自锁式髓内针操作简洁,作用显着。临床运用时,将髓内针悉数插入骨内,使其在骨折愈合期间不会移位,也不会影响软组织。其长处:一是手术时间短,愈合快;二是不用扩髓,感染率低;三是能够削减对软组织的损害。
德国钛业公司(Deutsche Titan)5年前施行扩产方案,并更名为帝森克虏伯德国钛业公司(Thyssenkrupp Titanium Gmbh),在意大利的钛厂(Titania Spa)也随之更名为帝森克虏伯意大利钛业公司(Thyssenkrupp Titanium Spa)。该公司产品首要用于欧洲航空航天业。德国工厂首要出产钛锭、钛棒;意大利工厂出产钛板、钛丝和钛管。公司扩产后,上述两家工厂在2006年度的产量就到达1.1亿欧元。
二、法国钛业
法国海绵钛运用彻底依靠进口,其钛工业仅从把海绵钛和残钛熔炼成纯钛及钛合金锭开端,再加工成棒、薄板和管材等,然后再向下流延伸。
在运用方面,近几年法国不断加强研讨和推行,尤其是在航空航天范畴。在这一范畴的运用首要体现在机身、发动机短舱、航空发动机、涡轮增压发动机和火箭涡轮泵等方面。在水兵配备中,钛首要运用于热交换器,海水体系范畴,包含:压力容器、冷却体系、海水连接器、阀门管道等。此外,在陆军配备中首要研讨和运用规模会集在装甲车辆、防弹装甲材料和等方面。
法国AUBERT & DUVAL公司是一家出产钢材、钛合金及超合金的公司,隶属于ERAMET矿冶集团。该公司与哈萨克斯坦UKTMP公司一起出资4700万欧元建立的UKAD公司将于2011年秋天正式投产,首要出产耐热钛合金及超合金产品,初期年产能为500吨,2020年将到达5000吨。现在该合资公司已取得空客公司(Airbus)在2020年前的10亿欧元的确保性订单。
三、英国钛业
钛元素首先是由英国人在1791年发现的。1955年英国开端出产钛,直到近几年才开端用于飞机制造业。
英国在耐热钛合金的研讨和运用方面与美国相同杰出,偏重研讨近α型合金,大力开发以进步蠕变强度为要点的钛合金,如Ti-4Al-2Sn-4Mo-0.5Si、Ti-11Sn-2.25Al-5Zr-1Mo-0.2Si(IMI879)、Ti-6Al-5Zr-0.5Mo-0.25Si(IMI685)等钛合金,其间IMI685钛合金在欧洲已取得广泛运用。
此外,Huntsman公司于2006年将钛白工厂的产能由本来的10万吨/年扩展到15万吨/年。
四、韩国钛业
韩国钛资源较为丰厚,但档次低;国内没有海绵钛厂,钛加工前史较短,钛工业尚处于起步阶段。
跟着韩国高新技术的开展,航空业、汽车业等开展的需求,重量轻、强度高和耐蚀性好的钛合金材料已得到多方面的深化运用。钛材进口数量也因而逐年添加,1991年钛材进口由1989年的486吨陡增到2000吨,1997、1998年的进口量保持在3600吨的水平上,其间管材进口量陡增,板材花费约占六成。(Fiona)
锆常识
2019-03-14 09:02:01
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。 锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。 锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。 ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和 ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。 锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。 近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为 950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。 制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。 锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。 锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
锆知识
2019-03-08 11:19:22
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。
锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。
锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。
ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。
锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。
近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。
制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。
锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。
锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
镍电解液净化除铁的生产实践
2019-02-13 10:12:44
镍电解液净化除铁的出产实践镍电解厂一般都选用空气中的氧伯化剂,使阳极电解液中的Fe2+氧化成Fe3+,然后水解沉积。除铁反响进程受Fe2+氧化反响速度操控,溶液中存在有少数铜离子时,对Fe2+的氧化有催化效果。因而,一般都将除铁进程安排在除铜之前。
镍电解阳极液水解沉积所得的含镍铁渣经酸溶和用氧化后,用黄钠铁矾法除铁。
一、 阳极电解液净化除铁
除铁作业有接连和接连两种作业方法。大型镍电解厂选用接连作业;小型工厂则多选用接连作业。接连净化方法质量安稳,设备出产能力大,是这一工艺开展的方向。
除铁进程包含亚铁离子氧化和三价铁水解沉积反响: 除铁进程有H+生成,须在鼓风一起参加中和剂。为了防止过多的钠离子进入出产系统常以NiCO3作除铁中和剂:
4H++2NiCO3=2Ni2++2CO2↑+2H2O
进步反响P能够加快除铁反响,但PH值过高会引起渣含镍升高。
溶液中铜离子的存在,能够加快Fe2+的氧化反响。这是因为铜离子在Fe2+的氧化进程中起传递电子效果:
Cu+-e=Cu2+
Cu2++Fe2+=Cu++Fe3+
净化水解铁渣还呆带走溶液中1/3~2/5的铜,减轻了除铜担负。
在除铁进程中,因为运用空气作氧化剂所构成的溶液电位缺乏以使Ni2+、Co2+氧化成高价态,但部分Ni2+会以碱式盐的方式水解沉积:
3NiSO4+4NiCO3+4H2O=3NiSO4.4Ni(OH)2↓+4CO2↑
Fe(OH)3具有很强的吸附性,在除铁进程中,一定量的锌能与Fe(OH)3发生共沉积而被除掉,一起部分铜也会水解沉积:
3CuSO4+2NiCO3+2H2O=CuSo4.2Cu(OH)2↓+2NiSO4+2CO2↑
某工厂的除铁进程,是将阳极电解液经钛管换热器加热至65~75℃后,再接连经过5个75m3帕秋卡式空气拌和槽。往槽内鼓入空气,既作氧化剂,又为拌和用。在第一个拌和槽入口处,参加碳酸镍,中和除铁反响所分出的酸,使除铁反响操控PH为3.5~4的规模。以过5个槽子的接连沉铁反响,最终将除铁液泵入管式过滤器内进行液固别离,得到含~10%Fe、~20%Ni的铁渣和Fe﹤0.01g/L的除铁后液。[next]
二、水解沉铁渣酸浸液的净化除铁
在镍电解阳极液用NiCO3中和水解沉铁工艺中,按理论核算,三价铁离子在PH≤3.5时水解沉积,可将铁彻底脱除,不丢失镍,但实际上中和沉积时操控PH较高,因而有部分Ni2+呈复盐与铁共沉积,所以工业出产中产出的铁渣都含有较高的镍。为了下降铁渣含镍,某厂将铁渣酸溶后,用黄钠铁矾法除铁,以收回酸浸液中的镍,其工艺流程示于图1。铁渣浆化后在酸溶槽内用工业硫酸溶解,得到酸溶后液。酸溶后液在黄钠铁矾除铁槽内加热至90℃,用作氧化剂,将溶液中的亚铁离子氧化成三价铁离子,槽内留有少数黄钠铁矾渣作晶种,氯可不可能钠效果氧化剂,将溶液中的亚铁离子氧化成三价铁离子,槽内留有少数黄钠铁反响所生成的酸,经过黄钠铁矾再振奋结晶进程,能够收回净化铁渣中90%~95%的镍。
某厂用酸溶-黄钠铁矾除铁法处理电解液净化渣的工艺流程和技能操作条件如表1所示。
表1 黄钠铁矾法处理铁渣技能操作条件项 目单 位技能操作条件铁渣酸溶
温度
风压
结尾PH值
酸溶后液组成
℃
kPa
g/L
38~50
196
1.5~1.7
Ni55~70 Fe总6~18
Co0.1~0.25 Fe2+0.2~1.5
Cu3~8 Na+32~43黄钠铁矾沉铁
反响温度
氧化进程PH值
参加量
沉铁进程PH值
沉铁后液组成
℃
g/L
﹥90
1.5~1.7
NaClO3:Fe2+=(0.3~0.4):1
2.0~2.4
Ni55~67 Fe0.5~1
Cu2~6 Co0.15~0.2
Na30~42
blv塑铝线
2017-06-06 17:50:05
blv塑铝线的不同规格: (国标1.5平方 导体直径1.38 BV 塑铜线 ## BLV 塑铝线)(国标2.5平方 导体直径1.78 BV 塑铜线 ## BLV 塑铝线)(国标4平方 导体直径2.25 BV 塑铜线 ## BLV 塑铝线)(国标6平方 导体直径2.76 BV 塑铜线 ## BLV 塑铝线)(国标10平方 导体直径1.33*7 BV 塑铜线 ## BLV 塑铝线)(国标16平方 导体直径170*7 BV 塑铜线 ## BLV 塑铝线)(国标25平方 导体直径210*7 BV 塑铜线 ## BLV 塑铝线)(国标35平方 导体直径250*7 BV 塑铜线 ## BLV 塑铝线)(国标50平方 导体直径178*19 BV 塑铜线 ## BLV 塑铝线)(国标70平方 导体直径210*19 BV 塑铜线 ## BLV 塑铝线)( 国标95平方 导体直径250*19BV 塑铜线 ## BLV 塑铝线)以上是blv塑铝线的规格表
铜线价格表
2017-06-06 17:50:09
软铜线
价格(国标0.75平方 导体直径0.15*42 RV 软铜线
价格
0.346/米)(国标1 平方 导体直径 0.2*32 RV 软铜线
价格
0.448/米) (国标1.5 平方 导体直径 0.2*48 RV 软铜线
价格
0.657/米) (国标2.5 平方 导体直径0.25*49 RV 软铜线
价格
1.052/米) (国标4 平方 导体直径0.25*81 RV 软铜线
价格
1.704/米)(国标6 平方 导体直径0.25*122 RV 软铜线
价格
2.499/米 地埋线
价格(国标6平方地埋线导体直径2.76 价格
0.397/米) (国标10平方地埋线导体直径1.33*7 价格
0.716/米)(国标16平方地埋线导体直径170*7 价格
1.016/米)(国标25平方地埋线导体直径214*7 价格
1.771/米)(国标25平方地埋线导体直径210*7 价格
1.748/米)(国标35平方地埋线导体直径250*7 价格
2.263/米)(国标35平方地埋线导体直径252*7 价格
2.275/米) 更多关于铜线
价格
的资讯请关注上海
有色
网。
铝线的规格
2017-06-06 17:50:05
铝线的规格:导线的规格有:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240平方毫米。不常用的有:0.5、0.75、300、400、500平方毫米等。此外,blv塑铝线也有不同规格: (国标1.5平方 导体直径1.38 BV 塑铜线 ## BLV 塑铝线)(国标2.5平方 导体直径1.78 BV 塑铜线 ## BLV 塑铝线)(国标4平方 导体直径2.25 BV 塑铜线 ## BLV 塑铝线)(国标6平方 导体直径2.76 BV 塑铜线 ## BLV 塑铝线)(国标10平方 导体直径1.33*7 BV 塑铜线 ## BLV 塑铝线)(国标16平方 导体直径170*7 BV 塑铜线 ## BLV 塑铝线)(国标25平方 导体直径210*7 BV 塑铜线 ## BLV 塑铝线)(国标35平方 导体直径250*7 BV 塑铜线 ## BLV 塑铝线)(国标50平方 导体直径178*19 BV 塑铜线 ## BLV 塑铝线)(国标70平方 导体直径210*19 BV 塑铜线 ## BLV 塑铝线)( 国标95平方 导体直径250*19BV 塑铜线 ## BLV 塑铝线)想要了解更多关于铝线的规格的资讯,请浏览上海
有色
网(
www.smm.cn
)
裸铝线规格
2017-06-06 17:50:05
裸铝线规格:目前有的导线规格1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240平方毫米。不常用的有:0.5、0.75、300、400、500平方毫米等。blv塑铝线的不同规格: (国标1.5平方 导体直径1.38 BV 塑铜线 ## BLV 塑铝线)(国标2.5平方 导体直径1.78 BV 塑铜线 ## BLV 塑铝线)(国标4平方 导体直径2.25 BV 塑铜线 ## BLV 塑铝线)(国标6平方 导体直径2.76 BV 塑铜线 ## BLV 塑铝线)(国标10平方 导体直径1.33*7 BV 塑铜线 ## BLV 塑铝线)(国标16平方 导体直径170*7 BV 塑铜线 ## BLV 塑铝线)(国标25平方 导体直径210*7 BV 塑铜线 ## BLV 塑铝线)(国标35平方 导体直径250*7 BV 塑铜线 ## BLV 塑铝线)(国标50平方 导体直径178*19 BV 塑铜线 ## BLV 塑铝线)(国标70平方 导体直径210*19 BV 塑铜线 ## BLV 塑铝线)( 国标95平方 导体直径250*19BV 塑铜线 ## BLV 塑铝线)以上是blv塑铝线的规格表想要了解更多裸铝线规格的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铝频道。
什么是钢管通径与钢管外径
2019-03-15 09:13:19
一般来说,管子的直径可分为外径、内径、公称直径。管材为无缝钢管的管子的外径用字母 D 来表示,其 后附加外直径的尺寸和壁厚,例如外径为 108 的无缝钢管,壁厚为 5MM,用 D108*5 表示,塑料管也用外 径表示,如 De63,其他如钢筋混凝土管、铸铁管、镀锌钢管等采用 DN 表示,在设计图纸中一般采用公称 直径来表示,公称直径是为了设计制造和维修的方便人为地规定的一种标准,也较公称通径,是管子(或 者管件)的规格名称。管子的公称直径和其内径、外径都不相等,例如:公称直径为 100MM 的无缝钢管 邮 102*5、108*5 等好几种,108 为管子的外径,5 表示管子的壁厚,因此,该钢管的内径为(108*5-5) =98MM,但是它不完全等于钢管外径减两倍壁厚之差,也可以说,公称直径是接近于内径,但是又不等 于内径的一种管子直径的规格名称,在设计图纸中所以要用公称直径,目的是为了根据公称直径可以确定 管子、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,公称直径采用符号 DN 表示,如果在设计图纸中 采用外径表示,也应该作出管道规格对照表,表明某种管道的公称直径,壁厚。 . 管子系列标准 压力管道设计及施工,首先考虑压力管道及其元件标准系列的选用。世界各国应用的标准体系虽然多,大 体可分成两大类。 压力管道标准 分 类 大外径系列 小外径系列 规格 DN-公称直径 Ф-外径 DN15-ф22mm,DN20-ф27mm DN25-ф34mm,DN32-ф42mm DN40-ф48mm,DN50-ф60mm DN65-ф76(73)mm,DN80-ф89mm DN100-ф114mm,DN125-ф140mm DN150-ф168mm,DN200-ф219mm DN250-ф273mm,DN300-ф324mm DN350-ф360mm,DN400-ф406mm DN450-ф457mm,DN500-ф508mm DN600-ф610mm, DN15-ф18mm,DN20-ф25mm DN25-ф32mm,DN32-ф38mm DN40-ф45mm,DN50-ф57mm DN65-ф73mm,DN80-ф89mm DN100-ф108mm,DN125-ф133mm DN150-ф159mm,DN200-ф219mm DN250-ф273mm,DN300-ф325mm DN350-ф377mm,DN400-ф426mm DN450-ф480mm,DN500-ф530mm DN600-ф630mm, 公称钢管通径(steel tube nominal diameter),又称平均钢管外径(steel tube mean outside diameter)。公称通径用字母“DN”后面紧跟一个数字标志。 钢管管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。 DN是公称通径,公称通径(或叫公称直径),就是各种管子与管路附件的通用口径。同一公称直径的管子与管路附件均能相互连接,具有互换性.它不是实际意义上的管道外径或内径,虽然其数值跟管道内径较为接近或相等;为了使管子、管件连接尺寸统一,采用公称直径(也称公称口径、公称通径)。例如焊接钢管按厚度可分为薄壁钢管、普通钢管和加厚钢管。其公称直径不是外径,也不是内径,而是近似普通钢管内径的一个名义尺寸。每一公称直径,对应一个外径,其内径数值随厚度不同而不同。公称直径可用公制mm表示,也可用英制in表示。管路附件也用公称直径表示,意义同有缝管。
结构无缝钢管GB-T 8162-1999标准
2019-03-15 09:13:19
结构用无缝管是用于一般结构和机械结构的无缝钢管。结构无缝钢管GB-T 8162-1999标准 第一章 钢管生产概论
1.1 钢管的分类 1.2 钢管的技术要求钢管生产的技术依据
对钢管的尺寸偏差的要求 1.2.3 对钢管的长度要求 1.2.4 外形 1.2.5 重量 不同用途的钢管应各有什么样的技术条件 1.2.7 我公司的主要产品管线管、油管和套管的主要技术要求 1.2.8 钢管技术要求中常用术语
1.2.6 1.3 钢管的主要生产方法 第二章 热轧钢管生产工艺流程
2.1 一般工艺流程
穿孔 2.1.2 轧管
第三章
定减径(包括张减)
2.2 各热轧机组生产工艺过程特点
连续轧管机的几种形式 2.2.2 三辊(斜)轧管机轧管 各机组的异同
2.3 轧钢的几种形式
纵轧 2.3.2 横轧 斜轧
管坯及管坯加热
3.1 管坯准备 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2
管坯库 管坯上料 管坯锯切 环形炉简述
3.2 管坯加热
炉子结构及辅助设备 3.2.3 环形炉自动化系统(资料不全待定)
第四章 穿孔
4.1 二辊斜轧穿孔机及穿孔过程 4.2 斜轧穿孔运动学 4.2.1
两辊穿孔机运动学
2无缝钢管生产技术
4.3 穿孔的咬入条件 4.3.1 4.3.2
一次咬入条件 二次咬入条件4.4 孔腔形成机理 4.5 斜轧穿孔时的金属变形 4.5.1 4.5.2 4.6.1 4.6.3
管坯受力情况 金属变形
4.6 穿孔工具及设计
轧辊 4.6.2 导盘 导板 4.6.4 顶头
4.7 穿孔机调整参数确定 4.8 其他穿孔方法
压力穿孔 推轧穿孔 4.8.3 斜轧穿孔
4.8.1 4.8.2 4.9 力能参数的计算
轧制力 4.9.2 顶头轴向力的确定 4.9.3 斜轧力矩计算
4.9.1 4.10 穿孔机的设备组成
斜轧穿孔机的设备由哪几部分组成? 4.10.2 主传动的方式及特点? 4.10.3 管坯定心机的组成结构? 4.10.4 穿孔机机座(牌坊)有哪几部分组成?
4.10.1
导盘调整方式有哪几种? 4.10.6 三辊定心的作用和结构? 4.10.7 顶杆的冷却形式有哪些? 4.10.8 顶头的使用方式有几种?
4.10.5 4.11 常见工艺问题
内折 4.11.2 前卡 4.11.3 中卡
4.11.1
后卡(镰刀) 4.11.5 链带 4.11.6 壁厚不均
4.11.4 第五章 毛管轧制
5.1 限动芯棒连轧管机(MPM)
工艺描述 5.1.2 MPM 连轧管机的设备结构、平面布置及相关技术参数 5.1.3 MPM 连轧管机组的工作原理和工艺控制
5.1.1 5.1.4
主要设备及参数
目录
3
5.1.5 5.1.6 5.1.7
MPM 连轧管机轧制工具 MPM 连轧机的孔型设计
连轧机组在线检测系统 5.1.8 常见生产事故
5.2 PQF 连轧机组(PREMIUM QUALITY FINISHING) 5.2.1 5.2.2
概述
连轧工艺 5.2.3 PQF 主机说明 5.2.4 脱管机说明 5.2.5 芯棒循环系统 工具准备与更换 5.2.7 常见质量缺陷
5.2.6 5.2.8 连轧基本理论 5.3 新 型 ASSEL 轧 管 机 5.3.1 5.3.2 5.4.1 5.4.2 5.4.3
主要工艺设备 主要调整参数 自动轧管机轧管
Accu-Roll 轧管机轧管
5.4 其他热加工钢管的延伸方法
顶管机顶管 5.4.4 挤压钢管 5.4.5 周期轧管机(皮尔格轧管机)轧管
5.4.6
热扩钢管
第六章 钢管的再加热、定径与减径 钢管的再加热、 6.1 钢管空心轧制理论 6.1.1 6.1.2 6.2.1 6.2.3 6.2.4
张减速度制度原理
CARTAT 系统介绍
6.2 定径工艺
工艺描述 6.2.2 定径机的设备结构、平面布置及相关技术参数 定径机组的工作原理和工艺控制 操作及调整 6.2.5 常见事故处理方法 6.2.6 质量缺陷及控制要点
6.3 张力减径工艺
工艺概述 6.3.2 设备参数及工艺数据介绍 6.3.3 质量检查
6.3.1
关于可调机架 6.3.5 轧制之前的现场检查 6.3.6 工具的准备和更换过程 6.3.7 工艺控制参考
6.3.4 第七章 轧制表的编制
4无缝钢管生产技术
7.1 编制原则和程序 7.1.1 编制原则 7.1.2 编制轧制表的要求 7.1.3 编制轧制表的步骤 7.1.4 轧制表编制方法 7.2 编制方法 7.3 编制实例 第八章 钢管的冷却和精整 8.2 轧管厂精整管排锯 8.2.1 8.2.2
精整锯切机组设备概述
管排锯的切割过程及工艺控制要点 8.2.3 常见切割缺陷的处理方法
8.3 轧管厂精整矫直机 8.3.1 8.3.2 8.3.3
精整矫直机组设备概述
矫直机相关参 矫直原理 8.3.4 矫直机的矫直过程及工艺控制要点 8.3.5 常见矫直缺陷的处理方法
8.3.6 8.4.1 8.4.3 8.5.1 8.5.3
工具管理
8.4 热处理
前言 8.4.2 热处理的定义和意义 热处理基本原理
8.5 无损检测
无损探伤概论 8.5.2 漏磁探伤 涡流(ET)检测 8.5.4 磁粉检测 8.5.5 电磁超声
8.6 人工检查 8.6.1 8.6.2 8.7.1 8.7.2
检查程序 热轧无缝钢管缺陷 质量保证的控制要点简述
8.7 钢管的质量保
质量控制点 8.7.3 工艺文件的编制与执行 8.7.4 其它
第九章 钢管的试验检测 9.1 钢管的力学性能
前 言 9.1.2 金属材料的力学性能 9.1.3 管材工艺性能试验
9.1.1
目录
5
9.2 钢中的各种组织和夹杂物 9.2.1 9.2.2
钢中的各种组织简介
钢中非金属夹杂物含量的测定标准评级图显微检验法 9.2.3 金属平均晶粒度测定方法 9.3.1 直读光谱仪 9.3.2 碳硫分析仪
第四章
4.1 二辊斜轧穿孔机及穿孔过程
穿孔
1886 年德国的曼内斯 今天在无缝钢管生产过程中,穿孔工艺被广泛应用而且非常经济 。 曼兄弟申请了用斜辊穿孔机生产管状断面产品的专利。 专利中描述了金属变形时内部力的作 用和使用两个或多个呈锥形的轧辊进行穿孔,因此被称作曼内斯曼穿孔过程。 由 R.C 斯蒂菲尔发明的导板使得穿孔后的毛管长度得到增加。 后来狄舍尔发明了导盘, 使穿孔效率得到更大提高。 1970 年出现了锥形辊的穿孔机 , 在 它比以前的穿孔机在金属的 变形上有明显的改进。 在无缝钢管生产中,穿孔工序的作用是将实心的管坯穿成空心的毛管。穿孔作为金属变 形的第一道工序,穿出的管子壁厚较厚、长度较短、内外表面质量较差,因此叫做毛管。如 果在毛管上存在一些缺陷, 经过后面的工序也很难消除或减轻。 所以在钢管生产中穿孔工序 起着重要作用。 当今无缝钢管生产中穿孔工艺更加合理,穿孔过程实现了自动化。 斜轧穿孔整个过程可以分为三个阶段 第一个不稳定过程--管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次 咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。 稳定过程--这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离 开变形区为止。 第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止。 稳定过程和不稳定过程有着明显的差别, 这在生产中很容易观察到的。 如一只毛管上头 尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。 头尾尺寸偏差大是不稳定过程特征之一。 造成头部直径大的原因是: 前端金属在逐渐充满变 形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特 别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得 轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直径大。尾端直径 小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧 小,所以外径小。 生产中出现的前卡、后卡也是不稳定特征之一,虽然三个过程有所区别,但他们都在同 一个变形区内实现的。变形区是由轧辊、顶头、导盘(导板)构成。见图 4-1。 从图中可以看出,整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆 形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧 形顶头。 变形区形状决定着穿孔的变形过程,改变变形区形状(决定与工具设计和轧机调整)将 导致穿孔变形过程的变化。穿孔变形区大致可分为四个区段,如图 4-2 所示 。 Ⅰ区称之为穿孔准备区, (轧制实心圆管坯区)。Ⅰ区的主要作用是为穿孔作准备和顺
8
无缝钢管生产技术
利实现二次咬入。这个区段的变形特点是:由于轧辊入口锥表面有锥度,沿穿孔方向前进的 管坯逐渐在直径上受到压缩, 被压缩的部分金属一部分向横向流动, 其坯料波面有圆形变成 椭圆形,一部分金属轴向延伸,主要使表层金属发生形变,因此在坯料前端形成一个“喇叭 口”状的凹陷。此凹陷和定心孔保证了顶头鼻部对准坯料的中心,从而可减小毛管前端的壁 厚不均。穿孔变形区中四个区段
Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金 属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与 顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个 区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和 纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。 导盘的作用不仅可
第四章
穿孔
9
以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。 Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶 头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段 也是椭圆形,并逐渐减小。 Ⅳ区称为归圆区。 该区的作用是把椭圆形的毛管, 靠旋转的轧辊逐渐减小直径上的压下 量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变 形,变形力也很小。 变形过程中四个区段是相互联系的, 而且是同时进行的, 金属横截面变形过程是由圆变 椭圆再归圆的过程4.2.1
斜轧穿孔运动学
两辊穿孔机运动学
4.2.1.1 螺旋轧制的速度分析 穿孔机轧辊是同一方向旋转,且轧辊轴相对轧制轴线倾斜,相交一个角度称作前进角。当 圆管坯送入轧辊中,靠轧辊和金属之间的摩擦力作用,轧辊带动圆管坯—毛管反向旋转,由于 前进角的存在,管坯—毛管在旋转的同时向轴向移动,在变形区中管坯—毛管表面上每一点都 是螺旋运动,即一边旋转,一边前进。 表现螺旋运动的基本参数是: 切向运动速度、 轴向运动速度、 和轧辊每半转的位移值 (螺 距)。 首先来讨论轧辊上任意一点的速度,如果轧辊圆周速度为 VR,则可以分解为两个分量 (切向分量和轴向分量)。
10
无缝钢管生产技术管 坯 轴
轧辊轴线线下VaR=VRCOSβ=πD Nb/60×COSβ切向旋转速度 (1) VtR=VR sinβ=πD Nb/60×Sinβ轴向速度 (2) 式中 D所讨论截面的轧辊直径,mm; Nb轧辊转速, rpm;v β咬入角。 在轧制过程中由于坯料靠轧辊带动,轧辊将相应的速度传递给管坯,则管坯速度为: VB=πD Nb/60×COSβ (3) 但实际上轧辊速度和金属速度并非完全相等。 一般金属运动速度小于轧辊速度, 即两者 之间产生滑移,可用滑移系数来表示两者速度,这样 VaR =πD Nb/60×COSβ×ητ (4) VtR=πD Nb/60×sinβ×η0 (5) 式中:ητ 切向滑移系数, η0 轴向滑移系数,两者小于 1。 不同的材料有不同的滑移系数,参考如下: 碳钢 η0 = 0.8~1.0 低合金钢 η0 = 0.7 ~ 0.8 高合金钢 η0 = 0.5 ~ 0.7 在生产中最有实际意义的是毛管离开轧辊时的那一点速度,众所周知,出口速度愈大, 即生产率也愈高。为了简化计算,一般假设轧辊出口速度等于 VtR,实际误差包含在滑移系 数中。 毛管离开轧辊一点的轴向滑移系数可用公式(2)求出轴向速度,除以毛管长度得出理论的 穿孔时间,再和实测时间相比,即η0=T 理/T 实.这样确定η0 后,则可计算出毛管离开轧辊的轴 向速度。 螺距在变形中是个可变值,并且随着管坯进入变形区程度增加而增加,这是由于管坯-
第四章
穿孔
11
毛管断面积不断减小而轴向流动速度不断增加所致。 毛管离开轧辊一点的螺距值计算公式为: T=π/2×η0/ητ×d×tgβ 式中:d毛管直径
4.3
穿孔的咬入条件
斜轧穿孔过程存在着两次咬入, 第一次咬入是管坯和轧辊开始接触瞬间, 由轧辊带动管 坯运动而把管坯曳入变形区中,称为一次咬入。当金属进入变形区到和顶头相遇,克服顶头 的轴向阻力继续进入变形区为二次咬入。 一般满足了一次咬入的条件并
不见得就能满足二次咬入条件。在生产中我们常常看到, 二次咬入时由于轴向阻力作用,前进运动停止而旋转继续着即打滑。
4.3.1
一次咬入条件
一次咬入既要满足管坯旋转条件又要满足轴向前进条件。 管坯咬入的力能条件由下式确定: Mt ≥ Mp + Mq + Mi 式中:Mt - 使管坯旋转的总力矩; Mp—由于压力产生的阻止坯料旋转力矩 Mq—由于推料机推力而在管坯后端产生的摩擦力矩 Mi—管坯旋转的惯性矩 如果忽略 Mq、 Mi(值很小)则一般的表达式为: n (Mt + Mp) ≥ 0 (n—轧辊数)
(6)
前进咬入条件是指管坯轴向力平衡条件, 也就是, 曳入管坯的轴向力应大于或等于轴向 阻力,其表达式为: n (Tx-Px) + P′ ≥ 0 (7) 式中:Tx—每个轧辊作用在管坯上的轴向摩擦力 Px--每个轧辊作用在管坯上正压力轴向分量 P′—后推力 (一般为零) 一次咬入所需旋转条件 下面的公式表明在管坯咬入时力的平衡, 两个重要参数, 摩擦系数和角速度可以通过下 面公式计算。
(8) 式中: ——轧辊入口锥角 ——咬入角 ——辊喉处的直径减径值
12
无缝钢管生产技术
若想管坯咬入顺利些,可以将咬入角变大些、轧辊的入口锥角小些,或者通过施加管坯 的推入力和加大轧辊表面的辊花深度。
4.3.2
二次咬入条件
二次咬入的力能条件 二次咬入中旋转条件比一次咬入增加了一项顶头/顶杆系统的惯性阻力矩,其值很小。 因此二次咬入旋转条件,基本和一次咬入相同。二次咬入的关键是前进条件。 二次咬入时轴向力的平衡条件: n (Tx-Px) -Q′ ≥ 0 (9) 式中:Q′—顶头鼻部的轴向阻力 二次咬入所需旋转条件 二次咬入的条件在轴向管坯的推入力要大于顶头和管坯与轧辊之间的摩擦力, 能实现二 次咬入的前提是在管坯接触顶头前(x=自由长度) 管坯至少要旋转一周。
式中:d B——管坯直径
4.4
孔腔形成机理
斜轧实心管坯时, 在顶头接触管坯前常易出现金属中心破裂现象, 当大量裂口发展成相 互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。见图 4-5。在顶头前过早 形成孔腔,会造成大量的内折缺陷,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺 中力求避免过早形成孔腔。
图 4-5
孔腔示意图
影响孔腔形成的主要因素有: 变形的不均匀性(顶头前压缩量)
第四章
穿孔
13
不均匀变形程度主要决定于坯料每半转的压缩量(称为单位压缩量),生产中指顶头前 压缩量。 顶头前压缩量愈大则变形不均匀程度也愈大, 导致管坯中心区的切应力和拉应力增 加,从而容易促进孔腔的形成。一般用临界压缩量来表示最大压缩量值的限制,压缩量小于 临界压缩量则不容易或不形成孔腔。 椭圆度的影响 穿孔过程中在管坯横断面上存在着很大的不均匀变形, 椭圆度愈大, 则不均匀变形也愈 大。 按照体积不变定律可知, 横向变形愈大则纵向变形愈小, 将导致管坯中心的横向拉应力、 切应力以及反复应力增加,加剧了孔腔的形成趋势 单位压缩次数的影响 在生产中主要指管坯从一次咬入到二次咬入过程中管坯的旋转次数, 次数的增多就容易 形成孔腔。 钢的自然塑性 钢的自然塑性由钢的化学成分、 金属冶炼质量以及金属组织状态所决定, 而组织状态又 由管坯加热温度和时间所影响。一般来说塑性低的金属,穿孔性能差,容易产生孔腔。
4.5
4.5.1
斜轧穿孔时的金属变形
管坯受力情况
图 4-6 显示管坯的受力情况,图中显示 F 为轧辊方向(平面)的力,为压应力,在接触 点的位置显示为最大。中心部位(导盘方向)显示为拉应力,理论上在导盘的中心部位受力 为最大。因为管坯的不断旋转,同一部位的受力情况不断变化,导致中心部位的金属受到交 变应力的作用,中心产生疏松,形成孔腔。
图 5 金属受理分析图 4.5.2 金属变形 斜轧穿孔过程中存在着两种变形,即基本变形(或宏观变形)和附加变形(称不均匀变形) 基本变形是指外观形状的变化, 这种变形是可以直观的, 如由实心圆管坯变成空心的毛
图 4-6
4.5.2
金属变形 金属变形
基本变形完全是几何尺寸的变化, 与材料的性质无关, 而且基本变形取决于变形区的几
14
无缝钢管生产技术
何形状(由工具设计和轧机调整所决定)。 附加变形指的是材料内部的变形, 是直观不到的变形, 附加变形是由于材料中内应力所 引起的,是增大材料的变形应力,引起材料中产生的缺陷,所以在实际生产中如何来减小附 加变形是很重要的。 4.5.2.1 基本变形 基本变形即延伸变形,切向变形和径向变形(壁厚压缩)。这三种变形都是宏观变形, 表示外观形状和尺寸变化。基本变形可用下式表示: 径向应变增量:
r = ln
纵向(延伸)应变增量:
s1 s0
l = ln
切向(圆周)应变增量:
l1 l0
t = ln
4.5.2.2 附加变形
2 ( D1 s1 ) D0
附加变形包括有扭转变形, 纵向剪切变形等, 附加变形是由于金属各部分的变形不均匀 产生的,附加变形会带来一系列的后果,如造成变形能量增加,以及由于附加变形所引起的 附加应力,容易导致毛管内外表面上和内部产生缺陷等。 纵向剪切变形主要是由于顶头的轴向阻力所造成的, 一方面轧辊带动管材轴向流动, 而 顶头要阻止金属轴向流动, 最终导致各金属轴向流动有差异, 可是各层金属又是互相联系的, 是一个整体,所以在各层金属间必然产生附加变形和附加应力,特别是和轧辊、顶头直接接 触的表面层金属 ,由图中可看出,附加变形更大些,因此毛管内外表面很容易出现缺陷或 者使管坯表面原有的缺陷发展扩大。 切向剪变形往往是造成毛管内外表面产生缺陷原因之一 (如裂纹、 折迭、 离层等缺陷) 。
4.6
穿孔工具及设计
穿孔机工具主要包括:轧辊、顶头和导板(导盘)。这些工具是直接参与金属变形的。 除此之外,还包括顶杆、毛管定位叉、导管、导槽等部件。 工具的尺寸和形状要求合理,这样才能保证穿出高质量的毛管,保证穿孔过程的稳定、 生产率高、低能耗、工具耐磨性高、使用寿命长的要求。
4.6.1
轧辊
穿孔机轧辊形状主要有盘式辊、桶形辊和锥形辊,盘式辊很少使用,常用的是桶形辊和
第四章
穿孔
15
锥形辊。 从大体的形状来看, 桶形辊和锥形辊度一般是由两个锥形段组成的, 即入口锥和出口锥。 如果细分的话, 入口锥又可以分为一段式和两段式, 两段式是为了改善咬入条件和减少从车 次数。根据毛管扩径量的需求,出口锥也可以分为一段式和两段式,两段式用于大扩径量的 机组。 另外,有的轧辊在入口锥和出口锥之间采用过渡带即轧制带,有的则没有。轧制带的作 用是防止两锥相接处形成尖锐棱角,这种棱角在穿孔时会使毛管外表面产生划伤。 轧辊的特征尺寸指轧辊最大直径和辊身长,轧辊最大直径和辊身长度是根据轧辊长度、 轧制速度、咬入条件、轧制产品规格、电能消耗、轧辊重车次数等因素确定。 轧辊直径增加, 则咬入条件改善、 轧制速度提高、 轧辊重车次数增加、 轧辊的利用率高, 但同时也增加了轧制压力和电能消耗。 4.6.1.1 轧辊的入口锥角和出口锥角 轧辊的入口锥角和出口锥角? 轧辊入口锥的角度大小决定管坯能否顺利咬入和积累足够的力以克服顶头阻力使管坯 穿成毛管。相关的文献指出,入口锥角在 2~40 之间,一般情况下将轧辊的入口锥设计成两 段,第一段的角度在 1~30 之间,为的是保证管坯的咬入,第二段的角度在 3~60 之间,为 的是防止形成孔腔。 轧辊的出口锥角在 3~40 之间,这取决于管坯的扩径量,扩径量越大,角度越大。 4.6.1.2 轧辊的入口锥和出口锥长? 轧辊的入口锥和出口锥长? 确定轧辊入口锥和出口锥的长度首先为了校核轧辊的长度是否满足毛管咬入和扩径的 要求,其次为在生产中合理使用轧辊。 轧辊入口锥长的计算公式为:
轧辊出口锥长的计算公式为:
注:DB-管坯直径; E-轧辊距离; DR-毛管直径; αe—轧辊入口锥段的空间角,可以近似等于轧辊入口锥角; αa—轧辊出口锥段的空间角,可以近似等于轧辊出口锥角。
4.6.2
导盘
导盘的作用是封闭孔型。导盘设计要素主要有:接触弧半径和厚度。见图 4-7。
16
无缝钢管生产技术
图 4-7
4.6.2.1 导盘的轮廓 导盘的轮廓是由一般有两个半径入口半径 R2、 出口半径 R1 组成, 根据经验我们可以确 定其值的大小: R2=(0.66~0.70)*DB 入口半径: R1=(0.8~0.87)*DB 出口半径: 4.6.2.2 导盘厚度 到盘厚度由最小轧辊距离和导盘与轧辊的最小间隙决定。大小为: B=(0.8~1.0)* DB 注:DB-管坯直径
4.6.3
导板
导板的设计原则是:一种管坯需要设计一种导板,如果是用一种管坯生产不同尺寸的毛 管,可以只设计一种导板。 导板的纵剖面形状应与轧辊辊形相对应,也有入口锥、压缩带和出口锥组成。导板入口 锥主要起到引导管坯的作用,使管坯中心线对准穿孔中心线。当管坯与上、下导板接触时, 它起着限制管坯椭圆度的作用。 限制椭圆度是为了避免过早形成孔腔, 同时促进金属的纵向 延伸。导板的出口锥起限制毛管横变形,并控制毛管轧后外径的作用。 压缩带是过渡带,它不在导板的中间,而是向入口方向移动,移动值一般在 20~30mm, 也有到 50mm 的。 移动的目的是: 可以减小管坯在顶头上开始碾轧时的椭圆度和减小导板的 轴向阻力,提高穿孔速度。 导板的入口锥角一般等于轧辊入口锥角或比轧辊入口锥角大 10~20,出口锥角一般等 于轧辊的出口锥角或比轧辊的出口锥角小 0.50~10。 导板的横断面形状是个圆弧形凹槽, 这是为了便于管坯和毛管旋转。 凹槽的圆弧可做成 单半径或双半径的。 导板的长度由变形区长度决定,压缩带宽度一般为 10~20mm. 导板的厚度根据轧辊距离来确定, 以薄壁毛管为设计对象。 适应薄壁管的导板一定适应
第四章
穿孔
17
厚壁管的生产。
4.6.4
顶头
顶头的种类按冷却方式来分,有内水冷、内外水冷、不水冷顶头(穿孔过程和待轧时间 内都不冷却,主要指生产合金钢用的钼基顶头): 按顶头和顶杆的连接方式来分,有自由连接和用连接头连接顶头。 按水冷内孔来分,有阶梯形、锥形和弧形内孔顶头。内孔与外表面之间的壁厚有等壁和 不等壁两种。 按顶头材质分,有碳钢、合金钢和钼基顶头。 从扩径段分:有 2 段式、3 段式、4 段式。扩径率小于 20%用 2 段式顶头,大于 20%用 3 或 4 段式顶头。 为延长顶头的使用寿命, 应通过加强冷却水的压力来提高顶头在孔型中顶头的冷却, 尤 其是顶头的前部。使用内水冷主要是为了降低顶头内部温度,应尽可能降到最低水平,冷却 水压应保证在 10~15 bar。 影响顶头寿命的因素: 管坯材质,合金含量越高,变形抗力越大,顶头寿命越低; 顶头化分和热处理工艺,热处理工艺决定顶头寿命。 穿孔时间和管坯长度,穿孔时间越长,顶头温度越高,顶头越容易变形和损坏。 顶头在穿孔过程中,顶头承受着交变热应力、摩擦力及机械力的作用,力的大小影响顶 头的寿命。顶头过分磨损会划伤毛管内表面,粘钢后产生内折。 顶头一般是轧制的、 锻造的或者是铸钢的。 搬运顶头时应保护表面的氧化层, 避免脱落, 否则影响使用寿命。 更换标准是: 顶头头部磨损,磨损带长度超过 5mm,破损面积超过 30cm2. 穿孔段出现裂纹;裂纹长度超过 60mm,宽度在 1.0mm 左右。 粘钢,有粘钢就该更换。 剔废的顶头原则上不能重复使用,若重车,需要再次热处理。 4.6.4.1 计算过程: 计算过程: 下面以 2 段式顶头举例说明设计过程,设计的前提是必须已知轧辊的尺寸和管坯直径、 毛管直径、毛管壁厚及咬入角。 ——确定轧制带处(HP)的辊距(E) 辊距(E)的大小取决于: 材料的钢级 管坯的直径 毛管壁厚 下面是一些常见钢中的辊距值(E) E = 0.84 to 0.9 * DB = 84 to 90 %, usual 86 – 89 % 碳钢: E = 85 ~ 90 %, 87 ~ 90 % 低合金钢: E = 88 ~ 91 %, 88 ~ 90 % 高合金钢 确
定轧辊的入口长度(Le)和出口长度(La),计算它们是为了验证其长度是否超过
18
无缝钢管生产技术
轧机的设计长度,公式见前面轧辊设计部分。 如果计算的结果是入口长度(Le) 或出口长 度(La) 比轧辊现有的相应部分大的话就得加大轧辊间距(E)或者增加入口锥角和出口锥 角 ——确定顶头直径(Dd)
——毛管与顶头的间隙值(CH),目前仍以经验值或经验公式为主
——确定顶头坪滑段的长度(LGT2) 平滑段的作用是均匀壁厚的偏差, 长度至少要保证毛管能够转一周并加上保险系数。 即
SF—平滑系数 1.2 ~2, 通常为 1.5 --咬入角 LGT2 必须小于顶头过 HP 处的长度, 否则的话减小系数值。 平滑段的角度 似等于轧辊的出口锥角 ——确定顶头穿孔段末端的直径(DR)
近
——计算顶头前伸量 Ld1 顶头前伸量的大小影响着穿孔的过程和毛管的质量.生产中应避免在顶头的前部形成空 腔 ,这样有利于减轻毛管内表面的缺陷。但起决定性的影响内表面缺陷的因素有顶头前直 径减径率和管坯接触顶头前转动的次数。换句话说,顶头前直径减径率的参考极限值如下: 碳钢 低合金钢 高合金钢 ——自由段长度 (GL), 机关批从接触轧辊到顶头前的长度,必须保证管坯转一周。
GF1 to 1.5 如果轧辊之境与管坯直径的比值较大的话, GF 可以取值范围为 0.8 to 1 所以顶头位置(Ld1)为: 顶头前伸量的值至少要大于 40mm,系数 GF 通常影响顶头位置和 顶头前的压下量。 ——确定顶头长度(Ld)
第四章
穿孔
19
顶头再 HP 后长度(Ld2)计算公式如下:
所以顶头长(Ld)为 —— 确定顶头鼻部的直径(F) 一般情况下 F = 0.25 to 0.30 * Dd (Dd圆弧半径为:
圆弧半径值 (Rd) 范围在 300~ 900 mm 之间. 的 限值。 4.6.4.2 顶头计算过程(2 段式顶头) 顶头计算过程( 段式顶头) ——给定
2 段式顶头的圆弧半径值不要取上
——计算 辊距 E 177,2 mm (选择直径压下率为 88.6 % of DB, 见附表 1 ) 入口锥长度
出口锥长度
顶头与毛管的间隙
20
无缝钢管生产技术
Clearance: CH10 mm (见附表 2)
桶形棍—— CH (锥形辊取值比桶形辊大)
平滑段长度
故取 确定平滑段开始处的直径
自由工作段长度(咬入段) 选择 GF 1.05
顶头前伸量
顶头在 HP 点后的长度
顶头长
核查顶头前伸量
第四章
穿孔
21
核查实际的咬入系数 F=0.2*165 F= 33mm
22
无缝钢管生产技术
附表 1: ——直径压下率
——径壁比 附表 2: CH
壁厚
第四章
穿孔
23
4.7
穿孔机调整参数确定
现代的穿孔机在整个机组中承担的变形量愈来愈大。 表示穿孔变形的参数有: 直径扩径 率、延伸系数、轧制带处的压下量、顶头前压下量。 直径扩径率 一般在 3~40%的范围内,锥形辊穿孔机的扩径率明显高于桶形辊穿孔机。扩径率大, 容易产生内外表面缺陷或恶化壁厚不均,因此最好采用等径或小扩径穿孔。图 4-8 显示锥形 辊与桶形辊扩径值的比较。
图 4-8
扩径值比较
延伸系数 延伸系数大意味着毛管壁厚薄。管坯直径愈大,在同一壁厚下,延伸系数愈大。随着锥 形辊穿孔机的的广泛使用,以 180 机组为例,穿孔毛管的最小壁厚可以达到 8mm。 轧制带处的压下量 它表示管坯直径在轧制带处的变化量,取值范围在 9~12%,穿孔薄壁管取大值,厚壁 管取小值。 它表示管坯直径从一次咬入点到二次咬入点的变化量, 它的大小决定管坯的二次咬入效 果,过大又容易形成钢管内折缺陷。 穿孔机主要的调整参数有轧辊距离、顶头前伸量、导板(导盘)距离、前进角的大小和 轧辊转速(导盘速度)。 调整的基本原则是毛管几何尺寸满足轧管机组的要求,壁厚均匀且内外表面良好。 调整的方法可以参考下表(表中没有涉及到前进角的调整):
24
无缝钢管生产技术
原
因
辊 减小 增加 减小 增加 增加 减小 - -
距
导 - - - -
距
顶 前 量 - - 增加 减小 增加 减小 - - 多增加 多减小 (增加) (减小)
壁厚稍微厚 壁厚稍微薄 壁厚太厚 壁厚太薄 外径太大 外径太小 外径稍微大 外径稍微小 外径、壁厚都太大 外径、壁厚都太小 外径太大、壁厚太小 外径太小、壁厚太大 如何确定轧辊距离?
-(减小) -(增加) 减小 增加 - - - -
-(增加或减小) -(增加或减小) 多增加 多减小
轧辊距离指的是两个轧辊的轧制带之间的距离, 它是重要的调整参数之一。 确定轧辊距 离(E)的前提条件是应明确: ——管坯材质 ——管坯直径 ——毛管壁厚 下列数据为标准数据: E=(0.84~0.90)*DB 碳钢: 通常为(0.86~0.89)*DB 低合金钢: E=(0.85~0.90)*DB 通常为(0.87~0.90)*DB 高合金钢: E=(0.88~0.91)*DB 通常为(0.88~0.90)*DB 一般情况下,厚壁管上限值为 0.93*DB,薄壁管取下限。 如何确定导盘距离? 导盘距离与轧辊距离的比值决定着轧件在变形区中的椭圆度,而椭圆度又影响毛管质 量、咬入条件、轴向滑移、穿孔速度、扩径量、轧卡及毛管尺寸控制等。特别是对毛管质量 (穿孔合金钢管)影响更为明显,椭圆度越大,毛管内表面出现裂纹的可能性越大,过早形 成空腔的可能性越大。 生产中, 导盘距离总是大于轧辊距离, 二者比值即椭圆度系数, 一般在 1.07~1.15 之间, 穿孔厚壁管和合金管时取小值。 确定导盘距离可按椭圆度系数推导: A=(1.07~1.15)*E 注:A—导盘距离 E—轧辊距离 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即
第四章
穿孔
25
直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 如何确定顶头前伸量? 顶头前伸量的测量方法是, 将顶头/顶杆深入到轧辊之间, 测量顶头头部到轧辊轧制带 之间的距离。 确定顶头前伸量的步骤如下: Ld1=Le-X
X=π*DB*tan(β)*FE 注:Ld1—顶头前伸量 Le—轧辊入口锥长 β—前进角 FE—系数,取值范围在 1~1.5 之间 顶头前伸量和轧辊距离有着密切的联系,顶头前伸量增加,顶头前压下量减小,相反顶 头前伸量减小,顶头前压下量增加。 顶头前伸量调整在生产中有着重要意义。 因为顶头前伸量的大小和毛管质量、 咬入条件、 轴向滑移、穿孔速度、轧卡以及毛管尺寸控制等都有关。 什么是扩展值?如何确定顶头与毛管的间隙量? 毛管内径与顶头之差叫做扩展值, 计算扩展值是选择顶头直径的重要依据, 不同壁厚毛 管的扩展值是不同的, 不同形式的穿孔机扩展值变化的规律也不一样。 影响扩展值的因素还 有:变形区椭圆度、穿孔温度、钢种等。 扩展值用 CH 表示,大小为: CH=DH-2*SH-Dd 使用锥形辊穿孔机的扩展值 CH 值与桶形辊穿孔机的扩展值 CH 关系是: CHctp=1.5*CH CH 的经验值计算方法是: CH=(0.09+0.076*DB)-(0.007+0.0013*DB)*SH 注:DB—毛管外径 SH—毛管壁厚 Dd—顶头直径 如何计算穿孔的轧制时间? 穿孔的轧制时间的多少往往表示一个机组的能力大小, 斜轧穿孔机的工作时间由下面公 式计算:
式中 Dw—轧辊的工作直径;
26
无缝钢管生产技术
L1-变形区长―; L0-毛管长; n—轧辊转速; η0-轴向滑移系数; β-前进角(轧辊倾角) 如何选择轧辊的前进角? 前进角及轧辊轴线与轧制线在水平面内的夹角。选择的范围在 8~150 之间,常用的角 度为 10~120。。前进角的选择影响以下几方面: 前进角越大,毛管的出口速度越大,轧制时间相应减少,可以提高机组的节奏,还可以 降低工具消耗; 前进角越小,管坯咬入条件越好,原因是管坯与轧辊的接触面积增大,摩擦力增大的缘 故。 前进角的大小决定轧制力的大小,角度越大,轧机负载越大。若在一个轧辊上使用不同 直径的管坯(不同孔型),角度随管坯直径增加而减小。
4.8
其他穿孔方法
管坯的穿孔方式有压力穿孔,推轧穿孔和斜轧穿孔。
4.8.1
压力穿孔
压力穿孔是在压力机上穿孔, 这种穿孔方式所用的原料是方坯和多边形钢锭。 工作原理 是首先将加热好的方坯或钢锭装入圆形模中 (此圆形模带有很小的锥度),然后压力机驱 动带有冲头的冲杆将管坯中心冲出一个圆孔。 这种穿孔方式变形量很小, 一般中心被冲挤开 的金属正好填满方坯和圆形模的间隙,从而得到几乎无延伸的圆形毛管,延伸系数最大不超过 1.1。
4.8.2
推轧穿孔
推轧穿孔是在推轧穿孔机上穿孔,这种穿孔方式是压力穿孔的改进。把固定的圆锥形模 改成带圆孔型的一对轧辊。这对轧辊由电机带动方向旋转(两个轧辊的旋转方向相反),旋 转着的轧辊将管坯咬入轧辊的孔型, 而固定在孔型中的冲头便将管坯中心冲出一个圆孔。 为 了便于实现轧制,在坯料的尾端加上一个后推力(液压缸),因此,叫做推轧穿孔。 这种穿孔方式使用方坯,传出的毛管较短,变形量很小,延伸系数一般不大于 1.1。 推轧穿孔的优点如下: 坯料中心处于全应力状态,过程是冲孔和纵轧相结合,不会产生二辊斜轧的内折缺陷, 毛管内表面质量好,对坯料质量要求较低; 冲头上的平均单位压力比压力穿孔小 50%左右,因而工具消耗较小; 穿孔过程中主要是坯料的中心部分金属变形, 使中心粗大而疏松的组织很好的加工而致 密化,同时在压应力作用下,毛管内外表面不易产生裂纹。 生产率比压力穿孔高,可达每分钟两支; 以上两种穿孔多生产特殊钢种的无缝钢管,现存的机组很少,因变形量很小,毛管短且 厚, 因而在热轧无缝钢管机组中要设置斜轧延伸机, 将毛管的外径和壁厚减小并使管子延长。
第四章
穿孔
27
另外容易产生较大的壁厚不均。
4.8.3
斜轧穿孔
这种穿孔方式被广泛的应用于无缝钢管生产中, 一般使用圆管坯, 靠金属的塑性变形加 工来形成内孔,因而没有金属的损耗。 斜轧穿孔机的分类 斜轧穿孔机按照轧辊的形状可分为锥形辊穿孔机、 盘式穿孔机和桶形辊穿孔机。 按照轧 辊的数目分又可分为二辊斜轧穿孔机和三辊斜轧穿孔机。 锥形辊穿孔机、 桶形辊穿孔机 是当今广泛使用的主要机组, 锥形辊穿孔机的历史较短, 具有更多优点。比较如下: 桶形辊穿孔机的轧辊可以上下和左右布置,而锥形辊穿孔机的轧辊只能上下布置; 桶形辊穿孔机的轧辊由两个锥形组成,锥形辊穿孔机的轧辊由一个锥形组成; 桶形辊穿孔机的轧件速度变化为小-大-小, 锥形辊穿孔机的轧件速度随轧辊直径的增 加从小逐步增大; 毛管在孔型中的宽展,锥形辊穿孔机要小些,更有利金属轴向延伸变形,附加变形小,毛 管内表面质量好,壁厚精度较桶形辊穿孔机高; 锥形辊穿孔机的延伸系数比桶形辊穿孔机大, 更适合穿孔薄壁毛管, 使得轧管机组的机 架数目可以减少; 斜轧穿孔机不管轧辊的形状如何不同, 为了保证管坯曳入和穿孔过程的实现, 都由以下 三部分组成:穿孔锥(轧辊入口锥),辗轧锥(轧辊出口锥)和轧辊压缩带——由入口锥到 出口锥之过渡部分。 二辊式穿孔机和三辊式穿孔机的特点? 二辊式穿孔机主要有带导辊的穿孔机、 带导板的穿孔机和带导盘的穿孔机, 带导辊的穿 孔机一般不常用,只用于穿孔软而粘的有色金属,如铜管、钛管等。带导板的穿孔机具有孔 型封闭好、接触变形区长、穿出的毛管壁厚可以更薄的特点而仍然得到重视;带导盘的穿孔 机越来越得到发展,它的特点是: 生产率高,这是由于
主动导盘对轧件产生轴向拉力作用,导致毛管轴向速度增加。最快 可以达到 3~4 支/分; 由于导盘的轴向力作用,使管坯咬入容易一些,减少了形成管端内折的可能性,也可以 提高壁厚的精度; 导盘比导板有较高的耐磨性,从而减少了换工具的时间并提高了工具寿命; 三辊式穿孔机的特点是: 由于三个辊呈等边三角形布置,因而在变形中管坯横断面的椭圆度小; 由于三个辊都是驱动的,仅存在顶头上的轴向力,因而穿孔速度较快,但顶头上的轴向 阻力比二辊式大; 在轧制实心管坯时,由于管坯始终受到三个方向的压缩,加上椭圆度小,一般在管坯中 心不会产生破裂,即形成孔腔,从而保证了毛管内表面质量。这种变形方式更适合穿孔高合 金钢管。三个轧辊穿孔时坯料和顶头容易保正对中,因此毛管几何尺寸精度高,即毛管横断 面壁厚偏差小。 因穿孔薄壁毛管时容易形成尾三角,使毛管尾端卡在轧辊辊缝中,更适合穿孔中厚壁毛管。
28
无缝钢管生产技术
4.9
4.9.1
力能参数的计算
轧制力
计算总轧制压力,首先要确定接触面积。 4.9.1.1 变形区长度的确定 变形区的长度是入口断面到出口断面的距离。如图 4-9 所示。考虑送进角 α 时,变形区 长度按 4.1 式计算[11]。
图 4-9 穿孔时的变形区图示
l = l1 + l 2 = (
d p dH 2tgα 1
) cos α + (
dm dH ) cos α 2tgα 2
d 其中: p 入口断面上的管坯直径, mm ; d m 出口断面上的毛管直径, mm ; d H 轧辊之间的最小距离, mm ;
(4.1)
α 1 ——轧辊的入口錐母线倾角,度 α 2 ——轧辊的出口錐母线倾角,度 α ——送进角,度。
4.9.1.2 接触面宽度的确定 在斜轧穿孔时,沿变形区长度,接触表面的宽度是变化的。任一断面的接触宽度 b [12], 如图 4-10 所示。
第四章
穿孔
29
图 4-10
穿孔时的接触面积
b=
(4.2) 式中: D ——该断面上的轧辊直径; d ——该断面上的坯料直径; r ——径向压下量; 1 上式中的径向压下量 r ,根据图 4-1。对各个区域分别按下列公式计算。 对于区域Ⅰ, r 表示坯料在 k 转中两相邻断面半径之差 1 r = s tan α 1 对于区域Ⅱ, r 表示坯料在 k 转中两相邻断面壁厚之差 (4.3) (4.4) (4.5)
rd + 2r 2 d r 1+ + 2 D D
r = s(tan α 1 + tan γ )
对于区域Ⅲ,
r = s(tan γ tan α 2 ) 式中: γ ——顶头锥体的母线的倾斜角; s ——螺距。
η 0 F1 d1 tan α ηt F K 式中: F1 ——金属在出口断面上的面积;
s =π
(4.6)
η t ——出口断面的切向滑动系数,η t ≈ 1 ; η 0 ——轴向滑动系数;
η 0 = 0.68 ln α + 0.05 d0 ε0 f k dp F ——金属在所研究断面上的面积; d1 ——管坯在出口断面上的直径;
d 0 ——管坯的外径,mm; 式中: d p ——顶头的外径,mm; f ——摩擦系数;
(4.7)
α ——送进角; ε 0 ——顶头前坯料的径向压下量,%;
轧制过程中产生大的滑动是不利的, 它会使生产率降低, 工具磨损加快, 能量消耗增加,
30
无缝钢管生产技术
轧件质量恶化。因此,合理的设计应使滑动系数尽可能增大。 由式(4.6)可见,螺距是变化的,其值随轧件进入变形区坯料横断面面积的减小而增 大。 接触面积为
bi + bi +1 l 2 式中: bi 、 bi +1 ——在分点 i 及 i + 1 上的接触宽度; F =∑
(4.8)
l ——分点 i 及 i + 1 间的距离。
4.9.1.3 平均单位压力 p 的计算
' ' ' p = νnσ nσ' nσ'' σ s
(4.9)
式中:ν——中间主应力影响系数(取ν=1.15); ' ' nσ ——外摩擦及变形区几何参数影响系数(取 nσ = 1 ); ' nσ' ——外端影响系数; ' ' nσ'' ——张力影响系数(取 nσ'' = 1 ); σ s ——一定的变形温度、变形速度及变形程度金属的变形抗 力, MPa ; ' nσ' 的计算 1 外端影响的应力状态系数 入口錐侧变形区: ' nσ' 1 =1.5(1-2.7ε2) (4.10) ε 孔喉处的相对压下率;
ε = (d p d H ) / d p
出口錐侧变形区:
' ' nσ' 2 = 0.75nσ' 1
(4.11)
(4.12)
2 入口錐侧变形区平均单位压力 p1 =1.15×1.5(1-2.7 ε 2 ) σ s (4.13) σ s 不同变形温度、变形速度及变形程度时,沿入口锥长度 式中: 的平均变形抗力; 3 出口錐侧变形区平均单位压力
p2 =
4 平均单位压力
4 p1 3 7 p1 6
(4.14)
p=
5 变形抗力 σ s 的确定
(4.15)
变形抗力的确定首先是计算穿孔时的变形温度, 变形速度和变形程度数值, 然后根据该 钢种的实测变形抗力曲线,确定该变形条件下的变形抗力。确定入口锥的平均变形阻力:
第四章
穿孔
31
1) 变形温度:根据已有现场实测参考数值在 1180℃~1240℃ 2) 变形程度: 在斜轧穿孔入口锥碾轧实心坯的区域,变形程度为:
ε=
2 r dx
(4.16)
在斜轧穿孔出口锥碾轧毛管的区域,变形程度为:
ε=
r S + r 式中: r ——该截面的径向压下量; S ——该截面毛管壁厚; r = z x (tan α 1 ) ; z x ——单位螺矩;
(4.17)
α 1 ——入口锥辊面锥角;
d x ——该截面轧件直径;
η 1 Z x = πξ x d x x tan α ηy 2
式中: ξ x ——椭圆度系数; η x ——轴向滑动系数,查图表可得; η y ——切向滑动系数,近似为 1;
(4.18)
α ——送进角。
3) 变形速度: 在斜轧穿孔入口锥碾轧实心坯的区域,任一断面的沿接触弧的平均变形速度:
ε=
(4.19) 在斜轧穿孔出口锥碾轧毛管的区域,任一断面的沿接触弧的平均变形速度:
r R ω0 1 + m vt
2
ε=
其中:
r rp r + r rp vt + + 1 ln ω0 ( R + r ) R R r rp r R b R (弧度)
(4.20)
m=
(4.21)
ω 0 = arcsin
式中: ω 0 ——毛管咬入点所对应轧辊中心角; R ——入口区管坯任一断面的轧辊半径; r ——入口区管坯任一断面的管坯半径; r ——径向压下量;
(4.22)
32
无缝钢管生产技术
vt ——金属切向速度分量; rp ——顶头半径;
b ——轧辊和管坯接触宽度[13];
b=
re ——轧前管坯半径,即为 re =
椭圆度
2 Rre r Rr + (ξ 1) R + re R+r
dp
(4.23)
2 ;
ab dh ; 式中: a b ——导盘距离; d h ——轧辊距离;
ξ=
4.9.1.4 轧制压力 P 的计算
P = p×F
(4.24)
4.9.2
顶头轴向力的确定
确定斜轧穿孔时轴向力的大小对于生产有很重要的意义。 轴向力即为作用在顶杆上的压 力,轴向上的大小直接影响着顶杆强度及工作的稳定性。 顶头轴向力对轧辊所受的轴向力大小和轧制力矩的大小有直接影响。 因此在设计中, 为 了计算轧辊止推轴承,电机功率,顶杆的弯曲强度和顶杆的止推轴承,都要求较准确的确定 顶头轴向力的大小。如图 4-11 所示。
图 4-11
作用在顶头上的力
顶头的轴向力是由作用在顶头尖端上和主体上的两部分轴向力所组成。 顶头主体是由头 部、定径段和圆柱段组成。试验表明顶头尖端的轴向力只占顶头轴向力的 15%左右。因此, 顶头上的轴向力主要由作用在主体上的力决定。主体上的轴向力与坯料每转的送进距离有 关,送进距离越大,金属与工具接触面增大,作用在顶头上的轴向力就增大。 送进角愈大,送进距离也愈大,轴向速度增加,同时由于轧制压力的增加,其轴向分力 也增加,所有这些因素都使顶头所受的轴向力有较大的增长。
第四章
穿孔
33
穿孔过程中与顶头有关的重要力能参数指标有两个: 一个是顶头对金属的轴向力, 这个 力越大,顶杆产生的弯曲也越大,这样导致毛管壁厚不均匀增加;另外一个指标是顶头的轴 向力与轧辊上所受的总压力的比值 Q / P ,这个比值越小,金属对轧辊的轴向滑动就越小, 因而越有利于穿孔过程的力能条件。 顶头轴向力的确定用理论方法计算是很复杂的。 根据顶头受力的平衡条件而求出的轴向 力解析计算公式十分庞大,式中的各分力很难正确算出,因此在实际中无法应用。 作用在顶头轴向上的力基本公式计算为[12]:
Q = QH + 2 P0 (sin 0 + f cos 0 cos θ c ) (4.25) 式中: Q, QH 作用在顶头上和作用在顶头鼻部上的轴向力; P0 作用在顶头上的正压力;
0 顶头母线的倾斜角; θ c 倾斜角。
目前在设计时广为应用的办法是根据实际测定的 Q / P 比值来确定。 Q / P 比值的范围 在 27%~44%内,故推荐经验公式: Q =(0.35~0.50) P (4.26) Q =0.35 P 。 我们这里暂定为
4.9.3
斜轧力矩计算
4.9.3.1 转动轧辊所需的力矩 当没有顶头的情况下如图 4-12 所示,即轧件在前进方向没有受到轴向阻力时:
图 4-12
在没有顶头作用下斜轧的受力分析
34
无缝钢管生产技术
b M z = P R sin ω cos α + cos ω 2 ω 角由下式确定;
tan ω = b dx 式中: b ——轧辊与轧件平均接触宽度; d x ——轧制力作用面内的坯料直径;
(4.27)
(4.28)
α 送进角。
R ——合压力作用面上轧辊半径;
当有顶头时如图 4-13 所示,在前进方向受到顶头的轴向阻力(Q),这时传动轧辊所需 总轧制力矩为:
图 4-13
二辊穿孔机轧辊受力分析
M z = P ( R sin ω cos α +
b Q cos ω ) + R sin α 2 K
(4.29)
式中: K 轧辊数目; Q 顶头上的轴向力。 4.9.3.2 电机所需力矩 电机所需力矩除了轧制力矩外,还有摩擦力矩,空转力矩,动力矩。这些力矩的计算方 法与一般纵轧相同。 当不考虑动力矩时所需电机力矩:
M 电=
k
η1η 2
(
M Mm + + Mk) i i
(4.30)
式中: K ——轧辊数; M ——一个轧辊所需的轧制力矩; i ——减数箱传动比; M m ——产生在轧辊轴承中的摩擦力矩。
第四章
穿孔
35
由于传动扭矩是由穿孔主电机直接经主传动轴传至轧辊。所以减数箱传动比 i =1;
(4.31) 式中: f ——轧辊轴承中的摩擦系数, 滚珠轴承可取 f =0.004~0.006, 滑动轴承可取 f =0.08~0.1;
M m = Pf
dm 2
η1 ——齿轮机座传动效率,一般取 0.92~0.95; η 2 ——接轴传动效率,为 0.99;
M k ——空转力矩,空载时传动轧机主机列所需的力矩,它应
等于所有转动机件空转力矩之和。 一般可按经验方法确 定如下:
P ——轧制力; d m ——轴承摩擦园直径,即为轧辊辊颈直径;
M k ≈ 0.03M H M H ——电动机的额定转矩。
额定功率=3800kw 转速=62~110r/min
(4.32)
M H = 9.55
Ph 3800 = 9.55 × = 585.3kN m n 62
(4.33)
M k = 17.55kN m
4.9.3.3 电机功率的计算 根据已转换到电机轴上的总力矩 M 电,可求出电机功率:
N = 0.105M 电 n
式中: N ——电机功率,kw; M 电 ——总力矩,kN. m ;
(4.34)
n ——电机转速,r/min。
4.9.3.4 穿孔机轧制时间的确定 在电机校核中,需要用到纯轧时间和间隙时间。 1 纯轧时间的计算 斜轧的纯轧时间是指轧件通过变形区所需的时间——由管坯前端接触轧辊起到轧出的 毛管尾端离开轧辊止的时间间隔。
l+L πD n η x 1 r sin α 60 式中: l ——变形区长度; L ——毛管长度; T ——纯轧时间; T=
(4.35)
η x ——出口断面的轴向滑动系数;
36
无缝钢管生产技术
α ——送进角
D1 ——出口断面上的轧辊直径; nr ——轧辊的转速;
由此可见,为提高轧机生产效率,缩短纯轧时间,可以通过提高轧辊转速和加大送进角 来实现。 虽然也可以通过加大轧辊直径和增加滑动系数使纯轧时间减少, 但受到轧机结构和 咬入条件的限制,后面的方法是不可取的。 2 间隙时间的确定 由实际情况确定。
4.10
4.10.1
穿孔机的设备组成
斜轧穿孔机的设备由哪几部分组成? 斜轧穿孔机的设备由哪几部分组成
穿孔机设备由主传动、前台、机架和后台四大部分组成。主传动一般由主电机或主电极 +变速箱组成。前台设备一般包括受料槽、导管和推钢机组成。机架中包括轧辊和导向设备 (导盘或导板)。 后台设备主要包括定心辊、毛管回送辊道、顶杆小车、顶杆小车的止推座及将毛管从穿 孔机组运送到轧辊机组的运输设备,常见的运输设备有传送链、回转臂和电动车。
4.10.2
主传动的方式及特点? 主传动的方式及特点
穿孔机的主传动电机可以使用直流电机或交流电机。 直流电机一般通过传动轴直接与轧 辊连接,而交流电机则通过减速机和传动轴与轧辊连接。 一个机组可以使用一个电机,即一个电机连接减速机,减速机输出两个输出轴。也可以 两个电机串联后再接减速机单独驱动一个轧辊。 穿孔机使用的接轴有万向接轴和十字头接轴。 十
字头接轴具有良好的调节性能, 无论在 水平面和垂直平面内都可以产生相对的角位移。
4.10.3
管坯定心机的组成结构? 管坯定心机的组成结构
定心方法有两种,即热定心和冷定心。热定心是用压缩空气或液压在热状态下冲孔。特 点是生产效率高,设备简单,同时由于冲头形状与顶头鼻部形状相适应,能获得良好的定心 孔形状。从近些年的发展来看,热定心工序有逐步被取消的趋势。 冷定心是在离线状态下在机床上钻孔,冷定心仅在高合金或重要用途钢管的生产中采 用。
4.10.4
穿孔机机座(牌坊)有哪几部分组成 穿孔机机座(牌坊)有哪几部分组成?
穿孔机的机座大多由包括以下几部分: 转鼓,又称作轧辊箱。作用是放置轧辊,轧辊在转鼓内滑动或与转鼓紧固在一起。 轧辊倾角调整装置,常用的驱动设备是电机+蜗轮蜗杆+定位器(编码器),作用在转 鼓上。一般放置的位置在牌坊的侧面。由于立式穿孔机的下转鼓在水平面以下,冷却水及氧 化铁皮的长时间冲刷,工作环境恶劣,给电机的维护带来困难,用液压马达替代电极可以解 决此问题。
第四章
穿孔
37
轧辊倾角调整的平衡装置 与轧辊倾角调整装置组合,消除穿孔过程中产生的间隙和冲击。根据转鼓的形状不同, 安装的位置可以与倾角调整装置在一侧或另外一侧。常使用液压缸实现此功能。 轧辊的平衡装置 作用是消除穿孔过程中对轧辊的瞬间冲击。 机盖 机盖上一般安装轧辊间距的调整装置。
4.10.5
导盘调整方式有哪几种? 导盘调整方式有哪几种
导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。
4.10.6
三辊定心的作用和结构? 三辊定心的作用和结构
由于顶杆很长且直径较小, 因此顶杆的刚度较差。 为了增加顶杆刚度和防止顶杆在穿孔 过程中的抖动,在穿孔机的后台设置定心辊装置。老式穿孔机因毛管较短,定心辊的数目一 般为 3~4 架,随着毛管长度的增加现代的穿孔机定心辊数目为 6~7 架。 每一台定心辊装置有三个互为 1200 布置定心辊组成,即上定心辊和 2 个下定心辊。 在轧制过程中定心辊的另外作用是: 当毛管未接近定心辊时,三个定心棍将顶杆抱住,并随顶杆而转动。作用是使顶杆轴线 始终保持在轧制线上,不至于因弯曲而产生甩动; 当毛管接近定心辊时,上下定心辊同时打开一定距离(小打开位置),使毛管进入三个 定心辊之间,毛管就在三个定心辊中旋转前进,其导向的作用; 当一只毛管完全穿透之后,上定心辊向上抬起一个较大的距离(大打开位置),布置在 定心辊之间的升降辊同时将毛管托住。 定心辊的驱动最早是由气缸完成的, 使用在小机组上。 后来被液压缸代替。 定心辊小打开的间距需要根据毛管直径的变化而调整, 调整距离指导行毛管时三个辊的 距离,距离的大小为毛管直径加毛管跳动量,毛管的跳动量一般为 8~12 毫米左右,薄壁管 可以取上限,厚壁管取下限。 小打开位置调整一般通过调整丝杠来限制液压缸的行程, 最新型的液压缸缸体内带有位 置检测装置,调整行程只需在调整终端上修改数值即可,具有简单、安全、快捷的优点。 第一架三辊定心辊的位置大多放置在机架以外, 为了减小毛管头部的壁厚不均, 最新的 设计机组将第一架三辊定心辊伸入到机架内或者在机架内设立四辊或三辊式的定心装置。
4.10.7
顶杆的冷却形式有哪些? 顶杆的冷却形式有哪些
顶杆的循环方式主要有两种。
38
无缝钢管生产技术
一种为顶杆不循环,此种方式顶杆一般为内水冷式,而顶头为外水冷式,每穿孔一次更 换一个顶头或者直到一个顶头损坏才更换; 另一种方式为顶杆循环使用,此种顶杆结构简单、维护方便,每组一般需要 6~12 支才 能循环使用。
4.10.8
顶头的使用方式有几种? 顶头的使用方式有几种?
顶头的使用方式主要有以下几种: 顶头与顶杆连接在一起一同进行循环的。顶头损坏后需要离线进行更换,一般情况下, 一组顶杆 6~7 支,冷却站在轧线之外,占地面积较大。 顶头在线循环。即使用一支顶杆,每穿孔一次,顶头更换一次,一般情况下使用三个顶 头,顶头循环的次序是 1,2,3,再 1,2,3。这种方式只更换顶头,使用方便,生产节奏 快。但要求顶头的定位精确,工具加工精度高,设备运转正常,否则的话,容易发生顶头与 顶杆连接不牢,顶头脱落的情况。 一个顶头/顶杆单独使用。当顶头损坏后,须在线更换顶头顶杆。
铜材设备
2017-06-06 17:50:10
铜材设备型 号ZY250/14铜杆连铸连轧生产线用 途 :本机组采用连铸连轧的工艺方法生产φ8mm(10mm、12mm)光亮铜杆,原材料为电解铜或废旧紫铜。主要组成 五轮式浇铸机、油压剪、连轧机。五轮式浇铸机 油压剪 轧辊名义直径 250结晶轮直径mm 1550最大剪切力N 1.41×105最大终轧速度m/s 7.2结晶轮型腔截面积mm2 1760最大剪切力行程mm 67主电机功率KW DC 315浇铸速度r/min 6.4-15.6电动葫芦起重量Kg 250主电动转速r/min 500电动机功率KW 4 连轧机机架中心高度mm 902电动机转速r/min 1000 轧辊型式前2二辊式、后12三辊Y型机组总重量:58.55t浇煲有效容铜量Kg 500出杆直径mm Ф8(Ф10、Ф12.5)外形尺寸: 18.6×5.63×5.64钢带尺寸mm 120×3×14000 机架数 14(12、10)最大生产能力:9.98t/h -12t/hSWL型上引无氧铜连铸机组(年产2000吨-3500吨)型 号:SWL型上引无氧铜连铸机组用 途 :利用电解铜或废旧杂铜为原料,生产φ14.4-φ25mm铜杆,还可以生产铜管、铜排等异性铜材。产 量:铜杆(同时生产6-12根,每根直径φ14.4-φ25mm,年产2000-5000T) 铜管(同时生产2-6根,每根直径φ25-φ50mm,年产500-3000T) 铜排(同时生产2-6根,每根直径5*2*100,年产500-5000T) 大拉机(滑轮式铜线拉丝机、铜线拔丝机):进线直径9.5mm-8mm.出线直径2.0mm-1.7mm铜大拉(水箱式铜线拉丝机、铜线拔丝机):进线直径8mm,出线直径2.25-3.0mm铜中拉(水箱式铜线拉丝机、铜线拔丝机)《连拉连退》:进线直径2.2-3.0mm出线直径0.6-1.0mm中小拉(水箱式铜线拉丝机、铜线拔丝机):进线直径0.43-1.34mm出线直径0.15-0.5mm小 拔(水箱式铜线拉丝机、铜线拔丝机):进线直径0.30mm出线直径0.08mm铜材连铸连轧机系列:SWL型上引无氧铜连铸组(铜杆、铜管、铜排年产2000吨-3500吨)FRHC法 利用废杂铜精炼工艺上引铜连铸生产线(日产40吨)TLZ型铜连铸连轧生产线TLZ-8(10、12)型冷轧铜杆机组ZY-250型轧机机组 更多有关铜材设备信息请详见于上海
有色
网
铝线型号
2017-06-06 17:50:05
铝线型号,有很多种,下面可以介绍一下大致的型号:一般铝线规格1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240平方毫米。不常用的有:0.5、0.75、300、400、500平方毫米等。铝合金线是铝与其他材料合成的产品,其他类似的产品有:5056铝线、3003铝线、2011铝线、1050铝线、5050铝线等等.blv塑铝线的不同规格: (国标1.5平方 导体直径1.38 BV 塑铜线 ## BLV 塑铝线)(国标2.5平方 导体直径1.78 BV 塑铜线 ## BLV 塑铝线)(国标4平方 导体直径2.25 BV 塑铜线 ## BLV 塑铝线)(国标6平方 导体直径2.76 BV 塑铜线 ## BLV 塑铝线)(国标10平方 导体直径1.33*7 BV 塑铜线 ## BLV 塑铝线)(国标16平方 导体直径170*7 BV 塑铜线 ## BLV 塑铝线)(国标25平方 导体直径210*7 BV 塑铜线 ## BLV 塑铝线)(国标35平方 导体直径250*7 BV 塑铜线 ## BLV 塑铝线)(国标50平方 导体直径178*19 BV 塑铜线 ## BLV 塑铝线)(国标70平方 导体直径210*19 BV 塑铜线 ## BLV 塑铝线)( 国标95平方 导体直径250*19BV 塑铜线 ## BLV 塑铝线)以上是blv塑铝线的规格表想要了解更多铝线型号的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铝频道。
钢管壁厚标准
2019-03-19 11:03:29
钢管壁厚的直径可分为外径、内径、公称直径。管材为无缝钢管的钢管壁厚的外径用字母D来表示,其后附加外直径的尺寸和壁厚,例如外径为108的无缝钢管,壁厚为5MM,用D108*5表示,塑料管也用外径表示,如De63,其他如钢筋混凝土管、铸铁管、镀锌钢管等采用DN表示,在设计图纸中一般采用公称直径来表示,公称直径是为了设计制造和维修的方便人为地规定的一种标准,也较公称通径,是钢管壁厚(或者管件)的规格名称。
钢管壁厚的公称直径和其内径、外径都不相等,例如:公称直径为100MM的无缝钢管邮102*5、108*5等好几种,108为钢管壁厚的外径,5表示钢管壁厚的壁厚,因此,该钢管的内径为(108*5-5)=98MM,但是它不完全等于钢管外径减两倍壁厚之差,也可以说,公称直径是接近于内径,但是又不等于内径的一种钢管壁厚直径的规格名称,在设计图纸中所以要用公称直径,目的是为了根据公称直径可以确定钢管壁厚、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,公称直径采用符号DN表示,如果在设计图纸中采用外径表示,也应该作出管道规格对照表,表明某种管道的公称直径,壁厚。
圆管规格表
2019-03-18 08:36:58
对于管子的尺寸描述,第一个数字都是指外径,外径219的管子就是DN200(公称直径)的管子;第二个数字一般指壁厚。10毫米的壁厚就是sch60;至于8,有可能是管子长度是8米热缩管规格中Φ2mm内径标准3.0±0.2mm,适用于被包物物体外径1.1-1.8mm.Φ3mm内径3.5±0.2mm适用于被包物物体外径1.6-2.7mm,沃尔达热缩提供一般来说,管子的直径可分为外径、内径、公称直径。管材为无缝钢管的管子的外径用字母D来表示,其后附加外直径的尺寸和壁厚,例如外径为108的无缝钢管,壁厚为5MM,用D108*5表示,塑料管也用外径表示,如De63,其他如钢筋混凝土管、铸铁管、镀锌钢管等采用DN表示,在设计图纸中一般采用公称直径来表示,公称直径是为了设计制造和维修的方便人为地规定的一种标准,也较公称通径,是管子(或者管件)的规格名称。管子的公称直径和其内径、外径都不相等,例如:公称直径为100MM的无缝钢管有102*5、108*5等好几种,108为管子的外径,5表示管子的壁厚,因此,该钢管的内径为(108*5-5)=98MM,但是它不完全等于钢管外径减两倍壁厚之差,也可以说,公称直径是接近于内径,但是又不等于内径的一种管子直径的规格名称,在设计图纸中所以要用公称直径,目的是为了根据公称直径可以确定管子、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,公称直径采用符号DN表示,如果在设计图纸中采用外径表示,也应该作出管道规格对照表,表明某种管道的公称直径,壁厚。 圆管规格表. 管子系列标准 压力管道设计及施工,首先考虑压力管道及其元件标准系列的选用。世界各国应用的标准体系虽然多,大体可分成两大类。压力管道标准见表3。法兰标准见表4。 表3 压力管道标准 分 类 大外径系列 小外径系列 规格 DN-公称直径 Ф-外径 DN15-ф22mm,DN20-ф27mm DN25-ф34mm,DN32-ф42mm DN40-ф48mm,DN50-ф60mm DN65-ф76(73)mm,DN80-ф89mm DN100-ф114mm,DN125-ф140mm DN150-ф168mm,DN200-ф219mm DN250-ф273mm,DN300-ф324mm DN350-ф360mm,DN400-ф406mm DN450-ф457mm,DN500-ф508mm DN600-ф610mm, DN15-ф18mm,DN20-ф25mm DN25-ф32mm,DN32-ф38mm DN40-ф45mm,DN50-ф57mm DN65-ф73mm,DN80-ф89mm DN100-ф108mm,DN125-ф133mm DN150-ф159mm,DN200-ф219mm DN250-ф273mm,DN300-ф325mm DN350-ф377mm,DN400-ф426mm DN450-ф480mm,DN500-ф530mm DN600-ф630m
“架空绞线用硬铝线”材料的要求、实验
2019-01-14 13:50:22
本规范参照《架空绞线用硬铝线(GB/T17048-2009)》标准编制。 1范围 本规范规定了采购“架空绞线用硬铝线”材料的要求、实验方法、检验规则、包装、标志和贮运。 2引用标准 GB/T3048.2-2007电线线缆电性能实验方法第2部分:金属材料电阻率实验(IEC60498:1974,MOD) GB/T4909.3裸电线实验方法第3部分:拉力试验 GB/T4909.7裸电线实验方法第7部分:卷绕试验 3硬铝线计算用数值 计算时,用使用下列硬铝线的数值: 20℃时的电阻率,较大(nΩ·m)28.264(相当于61.0%IACS) 20℃时的密度(kg/dm3)2.703 线膨胀系数(1/℃)23310-6 20℃时的电阻温度系数(1/℃)0.00403 4要求 4.1材料 硬铝线应由要求纯度的铝制成,以达到本标准规定的机械性能和电气性能。铝的含量应不小于99.5%。 4.2直径和直径公差 硬铝线的标称直径,单位为毫米,准确到小数点后两位。 硬铝线直径的每次测量值与标称值之差应不大于表1规定的相应数值。 表1硬铝线的直径和直径公差 标称直径d公差 d≤3.00±0.03 d>3.00+1%d 为检验硬铝线直径是否符合上述要求,直径应在同一截面且互相垂直的方向上测量两次。 4.3接头 硬铝线在较后拉制前允许有接头。但如果符合下述全部条件,成品硬铝线也允许有一个接头: a)成圈硬铝线重500kg及以上;
国外用注水旋流器处理细粒铁矿石的研究
2019-02-19 10:03:20
概述
印度的次生铁矿床的矿石铁档次较高。可是,其间存在的二氧化硅和氧化铝需求去除。大多数选矿厂运用多段水力旋流器取得细粒铁精矿(-100μm)。在水力旋流器分级进程中,许多的含有黏土矿藏的细粒部分随给水进入粗粒产品中,然后下降精矿铁档次。Btadley报导了下降进入到水力旋流器底流中水量的不同办法。其间一种是对底流的排放量节流来操控进入底流中的水量。这种体系易于发作严峻的磨损和需求更多的保护。另一种办法是经过多段分级来改善分选功率。多段分级体系就是选用串联的多台水力旋流器分级,即一台旋流器的底流次序进入下一台旋流器中。这种装备使得进入粗粒产品中的细粒含量显着下降。Rao报导印度Rakha铜选矿厂选用两段旋流器体系进行分级。依据这篇报导,串联的分级体系改善了总的分级效果,可是这种装备需求添加泵池和泵送体系,而且需求添加保护工作量。而且,这种两段分级流程易于遭到工厂操作动摇的影响。
改善分级效果的第三种办法是将压力水经过粗粒产品排放的结尾注入到旋流器中。压力水注入技能初次用在矿山产品的脱泥中。Kll等证明,该法用于直径75mm旋流器时分级精度较好。他们证明,在普通的操作中,给矿中48%的~10μm细粒进入底流中,运用灌水旋流器时只要11.5%~10μm细粒进入底流中。在造纸工业中运用灌水旋流器来添加溢流中纤维的收回率。Firth等人选用灌水旋流器对细粒煤进行分级。Patil等人报导,选用直径为100mm的Krebs型灌水旋流器比普通的水力旋流器处理硅砂有一些优越性。Honaker等人报导了选用灌水旋流器对细粒煤分级的重要性。最近,又用灌水旋流器收回旋流器溢流产品中细粒重物料。一种取得专利权的灌水旋流器,一般被称为“Cyclowash”已经有商业化产品出售。
本研讨是选用这种技能出产铁档次高于66%铁精矿,一起下降铁精矿二氧化硅和氧化铝的含量。
能够将一台灌水旋流器(图1,a)看作一台在沉砂嘴上方设备有灌水体系的普通水力旋流器。因而这套体系具有普通水力旋流器一切的特征,例如,有一个主圆柱体与一个倒置的圆锥联接,一个切线给料口开在圆柱体的上部,以及坐落圆柱体外部突出来的一个圆柱形旋涡溢流管,溢流管坐落旋涡轴的中心,一向延伸到给料口的下部。在普通旋流器椎体下部链接灌水设备。灌水设备(图1,b)由外圆柱体和内圆柱体组成,在内圆柱周边上有许多切线进水孔,进水孔之间的间隔是持平的。外圆柱体经过管道与贮水池相连。新鲜水以必定压力从内圆柱壁上的孔切线注入设备中。在主旋流器和灌水体系之间是一个截锥,用来约束灌水孔处底流矿浆的压力,以避免矿浆经过灌水孔进入新鲜水套中。
给料矿浆经过进料口给到灌水旋流器中。首要分级进程发作旋流器主体部分中。细粒级进入旋流器轴周围的竖直液流中,然后进入旋涡溢流管。粗粒级在到达旋流器壁后进入底流矿浆中。粗粒级底流经过截锥后进入灌水设备中。注入的水横向穿过底流矿浆,在该进程中,进入底流中的给水被注入水所代替,然后使夹藏的细粒进入溢流中。图1 灌水旋流器(a)和灌水设备(b)
一、实验
(一)样品收集和给料特性
铁矿矿浆收集自印度的一个选矿厂。这些样品代表耙式分级器的溢流产品。这些产品在选矿厂中经过串联的水力旋流器进行富集。这些矿浆经过过滤,然后在100℃下烘干。干固体(大约400㎏)经过混合,选用标准取样技能制成每份10㎏的矿样。化学分析成果标明,这些枯燥给矿样品含有63.5%Fe、2.5%Al2O3和3.5%SiO2。然后对这些样品进行粒度分析和化学分析,以便了解Fe、Al2O3和SiO2的散布。图2为各粒级的化学分析成果。从图2能够看出,给料的粒度组成为75%~45μm,50%~25μm。铁含量随粒度减小而下降。可是,铁含量在-25μm粒级中含量急剧降至58.53%,这标明氧化铝和二氧化硅在该粒级中富集。图2 给料各粒级产率和铁含量
△-产率;●-铁档次
(二)实验设备和实验进程
图3为实验设备示意图。实验设备由一个200L的给料筒和一个100L的灌水罐组成,二者设备在固定的平台上。给料筒的底部与一台离心泵衔接,离心泵由三相5.5kW电动机驱动。泵的出口经过管道与竖直设备在矿浆桶上方的直径100mm灌水旋流器给料口相衔接。经过隔阂压力计丈量旋流压力降。经过操控阀调理旁路管的流量,使灌水旋流器中的压力降坚持固定。
旋涡溢流管、截锥和沉砂嘴的尺度与实验规划的灌水旋流器相匹配。将称量好的固体和水在给料槽中混合10~15min,并使给料矿浆的固体浓度为25%。依据实验规划先将新鲜水注入到灌水设备中。之后,经过翻开操控阀,将给料矿浆给入旋流器中,并操控回流阀使进浆压力坚持在70kPa。在安稳状态下(15s到达),对溢流和底流别离取样。样品经过过滤、枯燥和称重,而且对铁、氧化铝和二氧化硅含量进行分析。经过分量散布和金属含量,依据金属平衡,核算精矿中的铁的收回率和氧化铝和二氧化硅的去除率。图3 灌水旋流器实验设备图
(三)实验规划
本实验中选用正交实验办法,其间包括16个实验(24∶2水平,4要素),包括的要素为灌水流量、截锥直径、沉砂嘴直径和溢流管直径。要素的水平如表1所示。截锥直径、溢流管直径、沉砂嘴直径和灌水流量别离用A、B、C和D标明。所研讨的下限和上限如下所示:
表1 实验中的要素和水平要素称号单位实践低值实践高值低水平高水平A截锥直径(TCD)mm19.0525.40-1+1B溢流管直径(VFD)mm25.4031.75-1+1C沉砂嘴直径(SPD)mm22.2326.97-1+1D灌水流量(IWR)L/min15003000-1+1①截锥直径:19.05和25.4mm;
②溢流管直径:25.4和31.75 mm;
③沉砂嘴直径:22.23和26.9 7 mm;
④灌水流量:1500和3000 L/min
在统计分析时,低水平用-1码标明,高水平用1码标明。
二、成果与评论
表2为在不同的实验条件下得到的铁精矿铁档次和收回率、氧化铝和二氧化硅的去除率。由表2可知,在不同的操作条件下铁精矿(旋流器底流产品)的铁档次为65.2%~67.9%,氧化铝的含量为0.31%~1.33%,二氧化硅的含量为1.39%~2.40%。尾矿(旋流器溢流产品)铁含量为40.9%~45.6%,氧化铝含量为8.25%~13.15%,二氧化硅含量为10.0%~13.1%。铁的收回率为86.6%~92.3%。氧化铝的去除率为54.0%~89.0%,二氧化硅的去除率为39.6%~65.0%。
表2 实验条件和实验成果实验
编号实验条件 TCDVFDSODIWR125.4031.7526.971500 225.4031.7526.973000 325.4031.7522.231500 425.4031.7522.233000 525.4025.4022.231500 625.4025.4022.233000 725.4025.4026.971500 825.4025.4026.973000 919.0525.4026.971500 1019.0525.4026.973000 1119.0525.4022.231500 1219.0525.4022.233000 1319.0531.7522.231500 1419.0531.7522.233000 1519.0531.7526.971500 1619.0531.7526.973000 实验成果 (%)铁氧化铝二氧化硅Fe收回率Al去
除率Si去除率UFsolRIW%OFUFOFUFOFUF137.243.165.812.00.6911.02.090.773.246.815.3264.944.766.611.80.6311.41.990.473.947.113.2356.744.766.512.80.3510.91.689.886.254.225.8496.745.667.611.00.3310.61.586.688.561.515.2542.7840.965.511.41.1311.91.890.762.552.113.7669.144.765.810.61.0312.51.886.969.460.68.2737.643.365.213.01.3313.12.492.654.039.615.9851.741.365.313.01.3113.02.092.354.844.010.4944.045.666.010.31.2011.61.991.254.745.725.21082.441.866.810.41.1312.01.988.066.257.39.91150.942.266.310.50.8712.51.887.571.964.715.91271.043.866.910.60.9912.51.789.864.956.79.81358.144.166.812.30.3313.01.5878.089.065.021.11484.445.667.911.20.4611.01.588.881.957.920.41552.044.366.710.90.6311.81.989.076.253.619.31647.043.566.913.20.6111.71.788.083.259.68.8OF-灌水旋流器溢流(尾矿)
UF-灌水旋流器底流(铁精矿)
Rec-收回率
Rej-去除率
UFsol-底流中固体质量百分含量
RIW-灌水比列(注入的水流量与底流水流量比值)
实验成果还标明,各个变量之间存在交互联系。为了了解各变量独自和之间的交流影响效应,运用商业化的Design Expert软件对实验成果进行统计分析。不同变量对铁档次、收回率、氧化铝和二氧化硅去除率的影响如表2所示。
用来点评独自和交互效应的遍及的公式为:
Yi=α0+α1A+α2B+α3C+α4D+α5AB+α6AC+α7AD+α8BC+α9BD+α10CD+α11ABC+α12ABD+α13ACD+α14BCD+α15ABCD (1)
式中:Yi-呼应(i代表铁档次、铁收回率、氧化铝去除和二氧化硅去除);α0-截距;α1…α15-模型参数;A、B、C和D-截锥直径、旋涡溢流管直径、沉砂嘴直径和灌水量的码值。
A、B、C和D的码值可由下式核算
A=(AR-Aa)/(Aa-Al) (2)
B=(BR-Ba)/(Ba-Bl) (3)
C=(CR-Ca)/(Ca-Cl) (4)
D=(DR-Da)/(Da-Dl) (5)
式中:AR-截锥直径所期望的水平;Aa-截锥直径高水平和低水平的平均值;Al-截锥直径的低水平。BR、Ba和Bl;CR 、Ca 和CR ;Da和Dl具有相似的意义。
虽然为了模型的完整性,均提到了模型中一切的参数,可是,为了解说物理机理,下面只评论影响比较大的单变量和双变量的影响。
(一)变量对灌水比值的影响(RIW)
再灌水旋流器中,首要的分级发作在主旋流器中,二次分级发作在灌水体系中。在灌水体系中,新注入的水代替底流矿浆中的水。在该进程中,注入的水别离进入溢流和底流中,而进入溢流和底流的水的比值取决沉砂嘴直径。截锥直径、溢流管直径和灌水流量的巨细。对灌水别离进行准确量化是比较困难的。因而,运用灌水流量和底流水流量的比值来描绘分级的机理是不错的代替办法。因而,在本研讨中,分析各个变量对这个比值(用RIW标明)的影响,然后用它来描绘它对其他分选目标的影响。在不同实验条件下得到的RIW值如表2所示。
灌水比值在不同的实验条件下在37.2%~96.7%之间改变。灌水比值的模型公式为:
RIW=59.2-2.07A+2.97B-7.05C+11.75D+3.83AB-2.19AC+1.78AD-4.80BC+0.65BD-2.36CD+1.20ABC+4.03ABD-0.72ACD-3.09BCD+3.11ABCD (6)
从模型常数能够看出,截锥直径和沉砂嘴直径的添加会下降RIW值。当这些变量在较高水平操作时,来自给料的水和注入的水许多进入底流中,因而这个数值减小。溢流管和灌水流量变量项前的常数为正值,这标明跟着这些变量的添加,RIW值添加。
截锥直径和沉砂嘴直径(AC)、溢流管直径和沉砂嘴直径(BC)和沉砂嘴直径和灌水流量(CD)的交互影效应标明,一切与沉砂嘴直径的交互效应都是负面效应。与截锥有关的交流效应,例如,截锥直径和溢流管直径(AB)和截锥直径与灌水流量(AD)交互影响是正效应。截锥和沉砂嘴直径的交互影呼应为负面效应,这标明,沉砂嘴的直径起首要影响效果。
用对RIW数值影响的调查成果来证明变量对精矿铁档次、收回率、二氧化硅和氧化铝去除率的影响。
(二)变量对精矿铁档次的影响
铁精矿档次模型公式如下。实践值与模型猜测值符合较好,R2为0.98,标准偏差为0.23。
Fegr=66.3-0.246A+0.509B-0.203C+0.174D+0.160AB-0.189AC-0.159BC+0.188BD-0.189CD+0.217ACD-0.132ABCD (7)
由上式可知,在独立变量影响中,溢流管直径对铁档次影响最大,其次是截锥直径、沉砂嘴直径和灌水流量。溢流管直径和灌水流量的是正效应,这标明铁精矿铁档次随这些变量的增大而添加。截锥直径和沙嘴直径是负效应,这标明随这些变量的增大,精矿铁档次下降。
与灌水比值的影响相似,与沉砂嘴直径相关的交互影响(AC、BC和CD)是负效应,这标明一起添加这些变量,铁精矿档次会下降。铁档次的下降可由下列机理来解说:
1、AC添加标明截锥和沉砂嘴尺度变大,这将缩短给料在主旋流器和灌水体系中的停留时间,在灌水体系中,注入的水对底流矿浆进行清洗;
2、关于CD,因为沉砂嘴直径和灌水流量一起添加,注入的水大部分进入底流中,改善对底流的清洗;
3、溢流管的影响是正效应,一起添加溢流管和沉砂嘴直径(BC),会发作负面效应,这标明沉砂嘴直径的影响是首要的。
上述机理能够由经过底流排放矿浆流的添加而使RIW值减小得以证明。
截锥直径和溢流管直径的组合(AB)的影响是正效应,这标明随该变量的增大,精矿铁档次升高。这可能是因为溢流管直径增大能够增大由溢流带走的黏土数量。而且,截锥开口变宽时,因为注入水的竖直上升流的增大(由RIW正值可看出),能够有用的将细粒黏土清洗到溢流中。
(三)变量对精矿铁收回率的影响
精矿铁收回率模型公式如下。实测值与模型猜测值符合较好,R2为0.99,标准偏差为0.33。
Ferec=89.3+0.804A-0.405B+1.095C-0.336D-0.246ACB-0.519AC-0.498AD-0.367BC+1.064ACD+0.271BCD-0.351ABCD (8)
由式(8)可知,在一切的独立变量之中,沉砂嘴的直径对铁精矿铁收回率影响最大,其次是截锥直径、溢流管直径和灌水流量。截锥和沉砂嘴的直径增大使铁精矿铁收回率添加。溢流管和灌水流量的影响是负效应,这标明跟着溢流管直径和灌水流量的增大,铁精矿铁收回率下降。
变量之间的交互影响研讨成果标明,截锥直径和沉砂嘴直径的组合(AB、AC、AD和BC)的影响是明显的。一切这些组合的影响都是负效应,这标明添加这些组合的水平会下降铁精矿铁的收回率。截锥直径或沉砂嘴直径的增大标明,向底流排放固体的孔更大,然后进步精矿铁收回率。
(四)变量对氧化铝和二氧化硅去除率的影响
细粒铁矿石中存在的氧化铝和二氧化硅来自黏土矿藏。此外,二氧化硅还来自石英。显微镜调查标明,给猜中的黏土的粒度小于5μm,90%的二氧化硅的粒度小于10μm。氧化铝和二氧化硅去除率的模型公式如下所示。
Alrej=71.9-1.59A+9.61B-4.88C+0.95D-1.46AC+0.40AD+1.54CD-2.52ACD (9)
Sirej=54.2-3.41A+1.57B-4.93C+1.44D-1.43AC+1.12AD-1.00BC+1.35CD-2.74ACD (10)
氧化铝去除率的实测值与模型猜测值符合较好,R2为0.99,标准偏差为1.7。相似的,二氧化硅的去除率实测值与模型猜测值符合得也较好,R2为0.98,标准偏差为1.5。
由公式(9)可知,在一切的独立变量中,溢流管直径对氧化铝去除率影响最大,其次是沉砂嘴直径、截锥直径和灌水流量。沉砂嘴直径对二氧化硅的去除率(式(10))影响最大,其次是截锥直径、溢流管直径和灌水流量。溢流管直径和灌水流量对氧化铝和二氧化硅的去除率发作正效应,这标明添加溢流管直径和灌水流量能够添加氧化铝和二氧化硅的去除率。截锥和沉砂嘴的直径发作负效应,这标明增大截锥直径和沉砂嘴直径会下降氧化铝和二氧化硅的去除率。
变量之间的交流影响研讨成果标明,AC影响是负效应,AD和CD影响是正效应。截锥和沉砂嘴直径的添加导致精矿中夹藏的黏土和其他含二氧化硅的矿藏增多,这是因为向下的矿浆流速增大引起的,因而下降了氧化铝和二氧化硅的去除率。
AD交互影响研讨成果标明,一起增大变量,会增大氧化铝和二氧化硅的去除率。一起添加截锥直径和灌水流量会增大注入水的上升流速,这可由模型中RIW(公式(6))为正值看出。在注入体系中的竖直上升流能够将黏土和细粒石英矿藏冲入溢流中,因而,增大了二氧化硅和氧化铝的去除率。
一起添加沉砂嘴直径和灌水流量(CD)会增大氧化铝和二氧化硅的去除率。
(五)变量对底流固体含量的应先
底流中固体含量的模型公式如下所示:
UFsol=66.3-0.794A+1.870B-0.763C-3.512D+0.789AB-0.261AC+0.560AD-2.478BC+0.538BD-0.641CD+1.717ACD+0.560ABCD (11)
在独立变量中,灌水流量对底流固体含量的影响最大,其次是涡流溢流管直径、截锥直径和沉砂嘴直径。溢流管影响是正效应,这标明随灌水流量增大,底流固体含量增大。截锥和沉砂嘴直径会下降底流中的固体含量。
一起添加与沉砂嘴的直径有关的组合(如AC、BC和CD),会下降底流中的固体含量。AC组合增大标明截锥和沉砂嘴直径的值较大,这有利于稀的矿浆进入灌水体系中,也使更多的注入水进入底流产品中。截锥开口进一步增大,因为注入的竖直上升水流更多,所以截锥直径与溢流管直径组合(AB)和截锥直径和截锥直径与溢流管直径组合(AD)的影响为正效应。
三、定论
(一)用灌水旋流器对含63.0%Fe、2.5%氧化铝和3.5%二氧化硅的物料进行分级,能够得到Fe档次大于66.0%、含1.5%氧化铝和2.0%二氧化硅的铁精矿。
(二)用溢流管直径为31.75mm、沉砂嘴直径为22.23mm的灌水旋流器,能够在坚持上述精矿铁档次的前提下,铁精矿铁收回率大于85%,氧化铝和二氧化硅的去除率别离高于80%和50%。
(三)变量影响的统计分析成果标明,增大溢流管直径和灌水流量,以及减小截锥直径和沉砂嘴直径能够进步精矿铁档次,进步氧化铝和二氧化硅的去除率。
(四)当截锥直径较小时,取得所要求的铁档次所需的灌水流量较低。
(五)能够在小的沉砂嘴直径、宽的溢流管直径和低的灌水流量下取得固体含量较高的底流产品(精矿)。