您所在的位置: 上海有色 > 有色金属产品库 > 钛管坯 > 钛管坯百科

钛管坯百科

无缝钛管知识

2019-03-18 08:36:58

无缝钛管采用挤压工艺制成,焊接钛管采用板材卷曲后焊接而成。一般无缝钛管壁厚比较小,口径也比较小。 钛管titanium tube 执行标准:ASTM B337 ,ASTM B338 ,ASTM B338 B861 无缝钛管: 直径:O.D 6-108mm 壁厚:0.5-8mm 长度:最长15000mm 焊接钛管: 直径:O.D100- 610mm 无缝钛管知识壁厚:2-6mm 只要焊接工艺过关,在使用上没有太大区别。 镀锌钢管:为提高钢管的耐腐蚀性能,对一般钢管(黑管)进行镀锌。镀锌钢管分热镀锌和电钢锌两种,热镀锌镀锌层厚,电镀锌成本低。 吹氧焊管:用作炼钢吹氧用管,一般用小口径的焊接钢管,规格由3/8寸-2寸八种。用08、10、15、20或Q195-Q235钢带制成。为防蚀,有的进行渗铝处理。 电线套管:也是普通碳素钢电焊钢管,用在混凝土及各种结构配电工程,常用的公称直径从13-76mm。电线套套管壁较薄,大多进行涂层或镀锌后使用,要求进行冷弯试验。 公制焊管:规格用无缝管形式,用外径*壁厚毫米表示的焊接钢管,用普通碳素钢、优质碳素钢或普能低合金钢的热带、冷带焊接,或用热带焊接后再经冷拨方法制成。公制焊管分普能和薄壁、普通用作结构件,如传动轴,或输送流体,薄壁用来生产家具、灯具等,要保证钢管强度和弯曲试验。 托辊管:用于带式输送机托辊电焊钢管,一般用Q215、Q235A、B钢及20钢制造,直径63.5-219.0mm。对管弯曲度、端面要与中心线垂直、椭圆度有一定要求,一般进行水压和压扁试验。 变压器管:用于制造变压器散热管和其它热交换器,采用普通碳素钢制造,要求进行压扁、扩口、弯曲、液压试验。钢管以定尺或倍尺交货,对钢管弯曲度有一定要求。 异型管:由普通碳结结构钢及16Mn等钢带焊制的方形管、矩形管、帽形管、空胶钢门窗用钢管,主要用作农机构件、钢窗门等。 电焊薄壁管:主要用来制作家具、玩具、灯具等。近年来不锈钢带制作的薄壁管应用很广,高级家具、装饰、栏栅等。 螺旋焊管:是将低碳碳素结构钢或低合金结构钢钢带按一定的螺旋线的角度(叫成型角)卷成管坯,然后将管缝焊接起来制成,它可以用较窄的带钢生产大直径的钢管。螺旋焊管主要用于石油、天然气的输送管线,其规格用外径*壁厚表示。螺旋焊管有单面焊的和双面焊的,焊管应保证水压试验、焊缝的抗拉强度和冷弯性能要符合规定。

铜线坯

2017-06-06 17:50:08

  铜线坯广泛应用于电工中,那么电工用铜线坯的标准是什么呢?   本标准是对GB/T3952-2008《电工用铜线坯》的修订。与原标准相比,本标准变化主要如下: 1.增加了对连铸连轧铜线坯的铜粉量、上引无氧铜线坯的氢脆、紫杂铜火法精炼高导电率铜线坯的退火性能要求,并规定了相应的检验方法; 2.增加了铜线坯铜粉量的测定方法;3.加严了T1、T2牌号铜线坯中的氧含量的限量,并根据国内实际修改了TU2牌号铜线坯的氧含量,T3牌号铜线坯规定为用紫杂铜生产的连铸连轧和上引法铜线坯;4.将原标准中的正反10转扭转试验改为扭断试验并增加了相应的等级规定,以明确对试验结果的界定,同时加严了热态T2、YU2牌号伸长率指标; 5.增加了退火性能试验方法。6.增加了与体积电阻率对应的质量电阻率指标;7.增加了无氧铜线坯氢脆试验方法;想要了解更多关于铜线坯的信息,请继续浏览上海 有色 网。

电工铜线坯

2017-06-06 17:50:11

标准名称:电工铜线坯标准状态:现行英文标题:Copper drawing stock for electrical purpose替代情况:替代GB/T 3952-1998实施日期:2008-9-1颁布部门:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会内容简介:本标准规定了电工用铜线坯的要求、试验方法、检验规则及标志、包装、运输和贮存。本标准适用于直径为6.0mm~35.0mm,供进一步拉制线材或其他电工用铜导体的圆形截面铜线坯。    本标准修改采用美国ASTM B49—1998《电气用铜线杆盘条》及英国BS6926—1988《电工用铜 高导铜线坯》标准。本标准是对GB/T3952—1998《电工用铜线坯》的修订。与原标准相比,本标准主要变化如下:———加严了T1、T2牌号铜线坯中的氧含量的限量,并根据国内实际修改了TU2牌号铜线坯的氧含量,T3牌号铜线坯规定为用紫杂铜生产的连铸连轧和上引法铜线坯;———将原标准中的正反10转扭转试验改为扭断试验并增加了相应的等级规定,以明确对试验结果的界定,同时加严了热态T2、TU2牌号伸长率指标;———增加了与体积电阻率对应的质量电阻率指标;———增加了对连铸连轧铜线坯的铜粉量、上引无氧铜线坯的氢脆、紫杂铜火法精炼高导电率铜线坯的退火性能要求,并规定了相应的检验方法;———增加了附录A,铜线坯铜粉量的测定方法;———增加了附录B,无氧铜线坯氢脆试验方法;———增加了附录C,退火性能试验方法。    电工铜线坯的更多相关信息请关注上海 有色 网。

无缝钛管是什么

2019-03-15 09:13:19

钛管质量轻,强度高,机械性能优越。广泛应用于热交换设备,如列管式换热器、盘管式换热器、蛇形管式换热器、冷凝器、蒸发器和输送管道等。  钛管按照使用要求和性能的不同执行两个国家标准:GB/T3624-1995 GB/T3625-1995。 供应牌号:TA0,TA1,TA2,TA9,TA10 BT1-00,BT1-0 Gr1,Gr2  供应规格:直径 φ4~114mm   壁厚 δ0.2~4.5mm   长度 15m以内     无缝钛管采用挤压工艺制成,焊接钛管采用板材卷曲后焊接而成。一般无缝钛管壁厚比较小,口径也比较小。      1.无缝钛管,钛管titanium tube。强度高。钛合金具有很高的强度,其抗拉强度为686—1176MPa,而密度仅为钢的60%左右,所以比强度很高。  2.无缝钛管硬度较高。钛合金(退火态)的硬度HRC为32—38。  3.无缝钛管弹性模量低。钛合金(退火态)的弹性模量为1.078×10-1.176×10MPa,约为钢和不锈钢的一半。执行标准:ASTM B337 ,ASTM B338 ,ASTM B338 B861 无缝钛管: 直径:O.D 6-108mm 壁厚:0.5-8mm 长度:最长15000mm 4.高温和低温性能优良。无缝钛管在高温下,钛合金仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550—600℃;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253℃时还能保持良好的韧性。  5.无缝钛管抗腐蚀性强。钛在550℃以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。

管坯轧制造事项

2019-03-18 11:00:17

管坯轧制时,有时会出现安全臼断裂,出现抱棒现象,进而导致停机事故,严重影响生产顺利进行。分析认为有以下原因: 1毛管尺寸因素。毛管尺寸偏大会使连轧负荷增加,轧制力增高,从而导致断臼抱棒。 2辊缝过压因素。辊缝过压使压下量增大,导致轧制力升高,使断臼抱棒几率大增。 3辊缝内外差大因素。辊缝内外差大,辊缝大的一侧轧制力小,辊缝小的一侧轧制力大。在 设定的压下量情况下,轧制力偏大的一侧容易发生断臼。 4轧辊转速调整不当因素。相邻机架轧辊的转速调整不当,会产生堆、拉钢现象,拉钢使轧制力降低,堆钢使轧制力增高,轧制力高断臼抱棒几率增加。 为此改进的方法为: 1毛管取样。当芯棒规格变化≥5mm时必须提出毛管取样,必须根据毛管的实际尺寸进行调整。当芯棒规格变化<5mm时,必须在脱棒链前测量毛管外径,根据毛管外径尺寸进行调整。 及时测量辊缝。多次调整后由于累积调整误差,辊缝与实际辊缝的片产可能过大,导致轧制力偏高,为此要求班组交接时必须测量一次实际辊缝,当芯棒规格变化时,也必须测量实际辊缝。 3及时测量内外辊缝。由于轧辊本身装配精度问题,连轧辊内外辊缝经常出现偏差过大现象。所以使用铅块及时测量轧辊的内外辊缝,内外辊缝超差的要立即更换该轧辊。 4规范转速调整。要其相邻机架之间转速修正值差不能大于3%,避免产生过堆、拉现象,造成断臼抱棒事故停机。 以上措施在国内天津钢管轧管厂得以实行后,平均断臼抱棒停机时间由30min降低到15.6min内,创效100余万,效果较好

钢坯管坯加热工艺

2019-03-15 09:13:19

炼钢炉炼成的钢水经过铸造后得到的产品就是钢坯。钢坯从制造工艺上主要可分为两种:模铸坯和连铸坯,目前模铸工艺已基本淘汰。    生产钢管所用的坯料,叫做管坯。通常,采用优质(或合金)的实心圆钢作管坯。某些管生产方式也有采用钢锭、连铸坯、锻坯、轧制方坯及离心浇铸的空心坯等做制管的坯料。一般情况下,管坯是指圆管坯。圆管坯的规格大小以实心圆钢的直径来表示。1 钢坯管坯加热工艺 对 130/185 工件计算切屑厚度 每次重磨后锯片寿命 锯片重磨次数 锯片更换用时 主驱动 AC 电机 芯轴旋转无级变速 AC 电机进给能力 无级变速进给 快速返回恒定值 中心润滑系统 刷扫装置 液压 3 条锯切系统 西门子控制系统 表示质量 Ra 平直度最大 毛刺高度 切屑长度公差 尺寸: 宽 长 0.1~0.15mm 10~20m2 8~10 3~5min 55kw 34~90rpm (180) 6.9kw 100~2000mm/min 8000mm/min 0.1kw 0.12kw 2×75kw S7 25µm 0.5/100 1.2mm ±1mm 大约 2850mm 大约 1200mm 大约 1920mm 大约 14000kg mm 高 每条坯总重 一个切断周期为 70 秒(包括夹紧、管坯切断、锯片返回、打开夹紧装置和管坯出料以及 切头、切尾的时间,但不包括管坯运输时间)。 3 台锯的最大生产能力为 50 万吨/年。管坯锯有一特殊的倒向装置(液压伺服装置)有利 于减振和提高锯的使用寿命(只在进给时起作用)。 锯床有两个夹紧装置分布于入出口(输入区 有辊道支撑保证弯坯的夹紧)锯切后入口端。夹紧打开保证锯片返回时不与坯子接触。 —进给锯齿轮 —锯齿轮减振, 由三个固定齿轮的减振组成, 作为可移动的减振避免了锯片相对于轴向 的摆动。 —刷扫装置 —在锯片的底部安装有一个驱动刷扫装置,清扫齿上的铁屑,不会影响锯片的寿命。 —锯片喷射润滑。 为了提高锯片的使用寿命, 高负载润滑剂的容器由空气雾化少量浇注 在锯片上,没有残留。 —锯片冷却装置。一个特殊的喷嘴,冷的空气-5oC 喷在锯片上。 锯切后的定尺坯经出口辊道和称重装置后拨至装料机前缓冲链(注:3#锯前有一尚需切 头的单倍尺坯上料台架,称重后有一回炉坯上料台架),缓冲移送链将管坯运至装料机下辊 道前, 坯子由翻料钩从链上翻至辊道上称重合格的管坯由装料机装入环形炉, 称重不合格的 管坯由辊道运输至剔除台架前剔除。 2 环形炉简述 环形炉在热轧生产线中的作用是将管坯锯锯切之后的合格定尺管坯由常温 (20℃) 加热 到 1280±5℃以供穿孔机组进行穿孔工序。环形炉是目前世界上用于加热圆管坯的最理想的 工业炉炉型。 此炉型的特点是炉底呈环形, 在炉底驱动装置的作用下承载管坯由入料端旋转 至出料端, 再由出料机从出料炉门将加热好的管坯取出。 在管坯随炉底运动过程中通过炉墙、 炉顶等处的烧嘴加热达到合格的出料温度,并满足温度均匀性要求。 为了达到理想的加热质量, 从热工控制上将炉子从圆周方向上分成若干控制区, 依次形 成预热段、加热段、均热段,各段亦可再分若干控制区以提高控制精度,例如我厂环形炉就 分成 7 个控制区,预热段一个控制区,加热段四个控制区,均热段一个控制区,最后一个出 料区。各控制区按不同的温度进行控制,实现对管坯的合理加热,达到要求的加热质量。各 区的基本加热设备是烧嘴,烧嘴将助燃空气、燃料按合理的比例(空燃比)混合燃烧形成火 焰加热管坯。 其中燃料由管道系统供送, 助燃空气是由鼓风机 (助燃风机) 经由换热器加热, 再由空气管道分配至各区烧嘴参与燃烧。 而温度的调节由自动化控制系统通过调节管道上的 阀门开度实现燃料及配风的流量来实现。而燃料燃烧产生的烟气通过烟囱排入大气。炉底、 炉墙、烟道、烟囱等是由耐火材料砌筑而成的,以达到保温节能的效果。 与其它的炉型相比,环形炉具有以下优点: ★环形炉最适合加热圆管坯, 并能适应各种不同直径和长度的复杂坯料组成, 易于按管坯规 格的变化调整加热制度。 ★管坯在炉底上间隔放置,坯料能三面受热,加热时间短,温度均匀,加热质量好。 ★管坯在加热过程中随炉底一起转动, 与炉底之间没有相对运动和摩擦, 氧化铁皮不易脱落。 炉子除装出料门外无其它开口,严密性好,冷空气吸入少,因而氧化烧损较少。 ★炉内管坯可以出空,也可以留出不装料的空炉底段,便于更换管坯规格,操作调度灵活。 ★装料、出料和炉内运转都能自动运行,操作的机械化和自动化程度高。 环形炉的缺点是:炉子是圆形的,占用车间面积较大,平面布置上比较困难;管坯在炉 底上呈辐射状间隔布料,炉底面积的利用较差,单位炉底面积的产量较低。 目前,国际上 DALMING 厂环形炉中径为φ46m。ALGOMA 厂环形炉中径为φ36m, 国内宝钢环形炉中径为φ35m,成都无缝厂环形炉中径为φ20m,包头无缝厂环形炉中径为 φ35m,我厂一套环形炉中径φ48m,这些都是环形炉在无缝钢管厂使用的一些例证。 我厂管坯加热采用环形炉,中径 33.25m,年加热管坯量约为 50 万吨,造价近 4000 万人民 币。 3.2.1.1 1 布置 环形炉在生产线中的布置和作用 环形炉为高架布置,座落在+5m 平台上。炉体在 A-B 跨和 B-C 跨内,占据着两个跨。 从纵向看在 3 柱和 6 柱之间。 连铸管坯经冷锯切割成定尺管坯后, 管坯经由运输设备送至炉 子装料机夹钳下方, 装料机夹钳夹起管坯装入炉内。 加热好的管坯用出料机从炉内取出送至 穿孔工艺工序。 2 作用 轧管厂设置一座管坯加热炉,供连铸圆坯轧制前加热。 1) 生产任务 管坯规格:   钢坯管坯加热工艺 31 直径(mm);200 210 150 长度(mm):1122~4200 最大单重(kg): 1040 注:管坯材质为低合金钢、合金钢。 2) 工艺要求 管坯加热温度:1260~1280℃ 允许温差:±5℃ 3.2.1.2 环形炉基本尺寸 炉底中心平均直径:33250mm 炉膛内部宽度:4800mm 炉底宽度:4350mm 炉膛高度:1800mm 装出料炉门夹角:14.47。 有效炉底面积:600.85m2 3、钢坯管坯加热工艺之三 炉子结构及辅助设备 结构概述: 环形炉由转动的炉底和固定的炉墙、炉顶组成。 图 3-1 环形炉运转示意图 管坯由装料机 A 送入环形炉并放置在炉底上,随炉底一起转动,在转动过程中,被安 装在炉子侧墙和炉顶的烧嘴加热,转动一圈后,由出料机 B 将被加热好的管坯取出。 环形炉炉内烟气按照与炉底转动相反的方向流动, 加热管坯后废气经由装料端内环侧墙上的 排烟口排除炉外。 1 具体的特点如下: 炉子的钢结构: 炉体外壳由轧制型钢焊接的柱梁和炉皮钢板组成。炉顶钢结构承载吊挂炉顶的耐火材 料。 2 环缝与水封:为了保证炉底运转良好,炉底和侧墙的内外环之间留有一定的缝隙,即环缝.考虑到炉子 工作时受热膨胀,炉子外环缝要比内环缝的缝隙稍大一些。 炉底和炉墙之间的环缝采用水封,水封系统由水封槽、活动刀和固定刀组成。活动刀安装在 炉墙上不动。在活动刀底部装有刮板,这样炉底在转动时,通过刮板,把水封槽内的氧化铁 皮和其它一些杂质刮到水封槽的漏斗处,最后通过漏斗清渣。 4、钢坯管坯加热工艺之四 隔墙: 在装料门和出料门之间的炉膛内设有一道隔墙 A, 其目的是减少低温管坯区对高温管坯 区及高温出炉管坯的吸热。及高温烟气直接进入低温区形成烟气短路。 在装料门后烟气出口前又设有一道隔墙 B,因为烟气出口处为负压,即有抽力。为了防止炉 膛从装料门吸入大量的冷空气,造成热耗和烧损的增加,就设置了这道隔墙 B。出料段与均 热段间设有一道隔墙 C,起到了隔离均热段与出料段,提高加热均匀性, 进一步防止烟气短路。 炉门及其它 炉子四周设有必要的检修门和观察门。 操作平台, 走道和梯子可以通达所有的烧嘴和阀 门处。 3.2.2.2 1 炉子机械 装出料机 钢坯管坯加热工艺 33 1) 结构 装出料机都是由一个固定的钢架和安装在钢架上的操作小车组成, 操作小车又由带有夹 钳的机械臂的提升装置组成。操作小车的运动用电机驱动,夹钳用液压缸开闭,所有暴露在 炉膛高温下的机械部件都采用水冷,装有绞盘,在紧急情况下把机械臂从炉内退出。 为了使夹钳夹管坯平稳,最大行程为 7600mm,且出料机夹钳可以左右摆动。扒渣机设在装 料机之间负责扒除炉底氧化铁皮积渣。 2) 动作描述 装出料机可以同步工作,也可以分别工作,所有动作都是由液压传动来完成的。装出料 机的动作可以近似看为一个矩形, 机械臂提升 前进 下降 夹钳打开 (夹紧夹钳) 3) 提升 后退 技术参数: 起重能力:1040kg 运行速度:>1m/s 运送行程:7600mm 动作频率:180 次/小时 2 炉底装置 1) 结构 环形炉的中枢部分是在炉底结构。 转动炉底是由一个型钢制成的双层钢架, 上下两层钢 架之间不是紧固连接的。上层钢架承载炉底耐火材料,下层钢架的横断面呈梯形,可把传动 设备、支撑辊、定心辊布置在炉底两侧,有利于设备的更换和维修。 2) 转动机械 环形炉通过均匀分布在炉底圆周上的两台液压马达销轮和柱销装置驱动, 柱销安装在炉 底下层钢架的外环侧。 炉底可以反向转动, 通过液压靠紧装置可以保持传动销轮和柱销之间 始终能良好的咬合。 表 3-1 每步转动距离 mm 炉内根数 每步周期(最小)S 布料排数 3 1) 定心辊和支撑辊 定心辊 为了使炉底以一个固定中心转动,采用了水平定心辊来实现定心,即沿圆周设有 12 组 321.4 313 20 单排或交错 带弹簧压紧装置的弹簧式定心辊。 定心是从内环方向向外顶住炉底下层钢架来实现。 定心力 的大小通过调节弹簧的压力来实现。 2) 4 支撑辊 整个炉底由 96 个锻钢滚轮支撑。 炉门开闭机械 装料门、出料门和清渣门用加筋的钢结构制成,内衬以浇注料,传动采用液压缸,炉门的开闭与装、出料机操作连锁。 2 炉子的供热与燃烧系统 概述 环形炉烧天然气,按照加热制度分为七个控制段供热,从装料门开始,第一段为预热段,中间四段为加热段,第六段为均热段, 第七段为出料段,预热段、 加热段侧墙上均装有德国 Krom 公司的高速型侧烧嘴,均热段和出料段炉顶装有德国 Krom 公司的平焰顶烧嘴。 2 燃烧系统的组成及设备性能 燃烧系统由一台助燃风机、空气管道、一台烟气稀释风机、一台空气换热器、一套燃气 分配系统和烧嘴形成。构成燃烧系统的这些设备,保证了燃料、助燃空气通过烧嘴达到正常 燃烧的目的。下面分别介绍: 1) 助燃空气鼓风机(1 台) 鼓风机的作用 是提供足够的助燃空气。 直联离心式 风量 60000m3/h 风压 转速 2) 功率 烟气稀释风机(1 台) 12000pa 1450r/min 355kw(10kv 50HZ)作用:烟气出炉温度很高时(850℃),则起动稀释风机,向烟气内鼓入冷空气,这样烟 气温度就下降,保证烟气到达换热器处的温度最高值低于允许温度(930℃),保护换热器 不至于被烧毁.这种操作是自动进行的,随烟气温度的升降自动开闭稀释风机。 性能: 型式 直联离心式 风量 风压 转速 功率 3 空气预热器 1) 作用 烟气出炉温度很高近 1000℃,具有很高的热能,把这部分能量传给空气,这样便可回 收一定的热能,达到节能,提高热效率的目的。 2) 结构 换热器是由许多无缝钢管组成的。钢管内部走空气,换热器置于烟道内,这样,钢管内 12000m3/h 1960pa 1450r/min 15kw的空气就被加热了。 由于烟气的走向和空气的走向是相反方向的, 所以叫做逆流管状换热器。

铝带坯连铸连轧工艺用途

2019-01-15 09:51:27

铝带坯连铸连轧工艺是八十年代从国外引进的一种先进的生产工艺,其基本流程为:铝锭→熔炼炉→静置炉→除气→过滤→铸嘴→轧机→中间机组→卷取机。     其特点是将熔融的铝液铸轧成6-10mm厚,650-1400mm宽的板坯并收卷,然后直接送冷轧机精轧,这样在铝板带材的生产过程中,省略了铸锭、加热、热轧、开坯等工艺,不但缩短了铝板带材生产的工艺流程,大大减少了工程建设资金,还减少了生产过程中的金属烧损,节约能源,同时又能方便地实现铝板带材的连续生产。 其用于将铝及铝合金的冷轧带卷,通过该机组的开卷切头,切边,接头缝合,表面清洁,烘干,拉伸旁曲矫直,板面检查,卷取纠编工序,获得平整,干净,色泽均匀,外形整齐的卷状产品,适用于要求板石平整,无油脂,表面积水,涂漆涂层,装饰及复合等高质量产品的生产. 用于将热轧或冷轧后的铝及铝合金带板横向剪切或不同长度要求的板片关产品,机列由开卷,送料,切头展平,切边废边处理,辊式矫平,测量剪切,垛板等设备组成. 主要产品指标材料,铝及铝合金. 厚度:0.3-12mm(按厚度不同分档设计) 宽度:600-1560mm 剪切长度:500-4500mm 机列速度:90m/min。

铝带坯连铸连轧工艺

2019-01-15 09:51:37

铝带坯连铸连轧工艺是八十年代从国外引进的一种先进的生产工艺,其基本流程为:铝锭→熔炼炉→静置炉→除气→过滤→铸嘴→轧机→中间机组→卷取机。   其特点是将熔融的铝液铸轧成6-10mm厚,650-1400mm宽的板坯并收卷,然后直接送冷轧机精轧,这样在铝板带材的生产过程中,省略了铸锭、加热、热轧、开坯等工艺,不但缩短了铝板带材生产的工艺流程,大大减少了工程建设资金,还减少了生产过程中的金属烧损,节约能源,同时又能方便地实现铝板带材的连续生产。   其用于将铝及铝合金的冷轧带卷,通过该机组的开卷切头,切边,接头缝合,表面清洁,烘干,拉伸旁曲矫直,板面检查,卷取纠编工序,获得平整,干净,色泽均匀,外形整齐的卷状产品,适用于要求板石平整,无油脂,表面积水,涂漆涂层,装饰及复合等高质量产品的生产.   用于将热轧或冷轧后的铝及铝合金带板横向剪切或不同长度要求的板片关产品,机列由开卷,送料,切头展平,切边废边处理,辊式矫平,测量剪切,垛板等设备组成.   主要产品指标材料,铝及铝合金.   厚度:0.3-12mm(按厚度不同分档设计)   宽度:600-1560mm   剪切长度:500-4500mm   机列速度:90m/min

高品质铝合金锭坯的铸造工艺

2018-12-28 09:57:22

航空铝合金材料的最终性能与其锭坯的组织有很大关系。因此,无裂纹大型锭坯铸造是大规格材料生产需要解决的关键难题。高品质锭坯要求不得有明显的疏松、气孔,且氢与氧化夹杂含量低,晶粒细小。除氢含量需严格控制外,一些碱金属 Li,Na,K,碱土金属 Ca 也要严格控制。高强铝合金由于合金主元素( Zn,Mg,Cu等) 含量高,不仅在熔体中易产生偏析,难以分布均匀,且形核率降低,晶粒粗大。由于铸锭尺寸大,收缩的热应力大,容易开裂。高强铝合金的结晶范围较宽(可达180 K),非平衡凝固共晶开裂倾向较大,这对高 Zn 含量的 7XXX (7050,7055) 合金尤为突出。大型宽幅厚锭在铸造过程中极易开裂。扁锭较圆锭的铸造难度更大。为了能够铸造出高品质的大型无裂纹锭坯,研发了一系列的熔铸技术,熔体电磁搅拌是其中一种十分重要的新技术。   熔体电磁搅拌技术是通过在铝熔池内产生电磁力,搅动熔池内铝熔体的流动,使熔体成分均匀,避免人工搅拌时铁质工具产生污染。该技术不仅可有效地控制 Fe 杂质含量,而且还可减少铝熔体表面氧化膜的破坏,降低合金元素的烧损和氢的溶入。采用熔体电磁搅拌技术 可将熔炼时间缩短约20% ,能源消耗降低10%~15% ,炉渣量减少20%~50%,扒渣时间缩短20%~50%。引入超声外场、机械振动等也有利于铸锭晶粒的细化和成分的均匀化。通过先进的在线除气和过滤技术能很好地控制氢含量和夹杂含量,如除气结合陶瓷过滤可使熔体中的氢含量控制在 0. 1 ml/100 g Al。铸造大都采用液压半连续铸造机,具有运行平稳、自动化程度高、控制精度高等特点。铸造过程的平稳控制对大锭的成形非常关键。先进铝加工厂通过计算机对铸造温度,铸造速度,冷却水的喷射角度、分布、流量和强度等工艺参数进行精细调控,可有效防止铸锭开裂。同时,锭坯采用超声探伤检测夹杂物、裂纹、气孔等缺陷。目前,国外已生产出直径达1066.8 mm,质量达 16吨的 7050,7175 和 2219 等铝合金圆锭,以及4368.8 mm × 2438.4mm × 1066.8 mm重约 32 吨的 2618合金扁锭。   高强铝合金铸锭由于合金元素含量高,不均匀性和过饱和度大,故其铸锭均匀化成为紧接熔铸后的一道材料制备的关键工序。均匀化处理可使合金成分均匀分布,消除非平衡结晶低熔点相,球化硬质第二相(如含杂质 Fe,Si 的第二相粒子) 、形成共格弥散相(如Al3Zr) 为后续加工控制材料的晶粒结构、降低合金的淬火敏感性,提高材料的强韧性作组织准备。为优化合金均匀化后弥散相粒子的分布,可采用先低温后高温的双级均匀化工艺。双级均匀化后合金中的弥散相粒子分布更加均匀、细小。为了最大程度地抑制再结晶,获得高的力学性能,必须避免均匀化后冷却时形成粗大第二相,铸锭均匀化后须以较快的速率冷却,对7050 铝合金,冷却速率需大于 0.5℃/s。

电工铝圆杆铸坯轧制生产工艺

2019-01-15 09:51:44

1、严格控制炉内铝液的化学成分铝液成分中的Fe、Si含量增加,则电阻率增加,抗拉强度提高,延伸率下降。Fe、Si含量降低,抗拉强度下降,延伸率提高,因此要严格控制其含量,在原铝选择上,主要考虑Si不大于0.08%,w(Fe)/w(Si)=1.5~2.0。在铸造前要对铝液进行精炼,通过高纯氮气将粉末精炼剂吹入铝液内,应尽可能使精炼剂均匀分布到铝液中,以利于除气除渣,精炼完成后要静置40~60min。必要时加入适量的Al-Ti-B细化剂,以保证铸坯组织致密,提高铸坯的内部组织质量。   2、连续铸锭在浇注系统中增设过滤装置,即在过滤包中安放两道陶瓷过滤板,一道水平放置,一道竖直安放,将原玻璃丝布过滤改为泡沫陶瓷过滤板过滤;使用较长的流槽,尽可能减少铝液的转注次数;浇铸嘴由相当于十点半的倾斜位置改为相当于十二点的水平位置;并在流槽与中间包的衔接处采用导管导流,这样可以使铝液平稳地进入结晶腔,不产生紊流与湍流,保持流槽与中间包内铝液表面的氧化膜不破裂,减少铝液的再次吸气、氧化,避免氧化膜进入铸腔形成新的夹渣;浇注系统采用新型整体结构打结,耐火材料坚固耐用,消除过去耐火材料对铝液的二次污染。在铸造过程中,严格控制铸造温度、铸造速度、冷却条件三要素,铝液出炉温度一般控制在730℃~740℃,浇铸温度700℃~710℃,浇铸速度0.20~0.22m/s,冷却水在0.1~0.3Mpa,冷却水温度不高于40℃。3、连续轧制热轧时金属具有较高的塑性,抗变形能力较低,因此可以用较少的能量得到较大的变形。在轧制中连轧机的轧制速度、轧制温度、工艺润滑是保证铝杆质量的三要素,轧制时要根据铸坯情况,及时、合理调整轧制参数,以保证铝杆质量。轧制温度轧制温度过高会使坯料内部低熔点组织物熔化而造成轧件过热,出现高温脆裂和轧辊粘铝,铝杆表面有疤痕;轧制温度过低,坯料变形易造成堵杆,根据实际经验,铸锭坯料温度入轧前控制在480~520℃为宜。轧制速度轧制速度直接影响铝杆的生产效率和机械性能。在铝杆的化学成分与生产冷却条件不变的情况下,轧制速度高时热效应大,出现热脆现象,铝杆抗拉强度降低,轧件易拉断;轧制速度低时铝杆抗拉强度提高,但轧制效果不佳。一般入轧速度控制在0.18~0.22m/s,终轧速度控制在6m/s左右为佳。

金属锭坯温度与挤压筒温度的影响

2019-05-29 19:48:40

金属锭坯温度与揉捏筒温度的影响      金属锭坯温度与工其温度首要经过以下几个方面临金属活动产生影响:    (1)对大都金属.如黄铜等,跟着锭坯沮度升高,冲突系致增大,金属活动不均匀。别的,金属导热性的效果。不同合金的导热性不同,纯俐的导热系数较高,锭坯内外层金属的沮差较小,使变形扰力挨近共同,所以纯钢金属的活动较均匀。而导热性低的合金,锭坯断面上沮度若散布不均匀.金属的变形抗力也不同.其金属活动不均匀程度比纯铜严峻,如图2-8所示   (2)温度的改动.对一些合金可能发生相变,影响金属活动的均匀性。如HPb59-1黄铜等合金,在高沮下是单向安排(p相),揉捏时金属活动均匀,而在锭坯加热沮度较低时(720℃以下)为两相安排(。十p相),揉捏时金属活动不均匀。   (3)揉捏筒沮度升高.金属活动趋于均匀。由于揉捏筒温度升高,使锭坯内外层沮度差减小,揉捏时金属内外层变形抗力趋于共同,使得揉捏过程中的金渭活动均匀。    (4)对传热系数低的金属.锭坯径向上的沮度散布和硬度散布都很不均匀,其金属活动不均匀程度严峻。拓宽阅览:铜合金管材揉捏时金属的活动特色铜市根本面向好的N个理由之四:我国转暖力拓先知铜市根本面向好的N个理由之三:嘉能可减产40万吨镍黄铜的应用范围及特色【含表】h85黄铜管特性及其应用范围【组图】

锡磷青铜带坯的再结晶退火

2019-05-29 19:30:41

锡磷青铜带坯的再结晶退火 锡磷青铜带坯遍及选用钟罩式亮光退火炉进行再结晶退火。保护性气体的混合器可使氮气和混合在一起,露点为-70℃。炉子的密封功能好,一直能使带材表面坚持杰出的亮光度。安装在炉底的强对流气体循环电扇和编好程序的温度操控设备可确保带材在设定带材在设定的退火技术条件下功能均一。  钟罩式亮光退火炉的优势是退火后能坚持必定的表面亮光度,退火成本低,设备出资相对较小。其缺陷是关于卷重较大、厚度较薄的带卷容易发作粘接。成卷带材在加热时会发作胀大,卷内金属更趋绷紧,因为高温文高压的效果,一层金属或许焊合在下一层金属上,形成退火后的带卷无法翻开,或许即便强行翻开,也会在带材表面留下疤痕而形成作废。一起,钟罩式亮光退火炉的退火进程比较长,一般要16~20h才干完结一个退火进程。  现在,单张接连退火的方法日益广泛地应用于锡磷青铜薄带的再结晶退火。这种方法可有效地防止退火进程中的铜带粘接,一起接连退火炉一般都带有带材的脱脂、酸洗、磨面及制品的钝化处理设备,因而,退火处理后铜带的表面质量明显提高并满意不同用户的要求。

铝带坯连铸连轧生产线简介

2019-01-14 13:50:25

铝带坯连铸连轧生产线由熔炼静置炉组、在线式铝熔体净化处理装置、晶粒细化剂添加机、黑兹莱特双带式连续铸造机、夹送(牵引)辊、单机架或多机架热(温)连轧机列、切边机、剪床、卷取机组成。截止到2004年底全世界有这类生产线14条,可生产的带坯宽度为300mm-2300mm,据称正在设计可生产带坯宽度达2500mm的铸造机。这种生产线可生产的铝合金带坯有:1XXX系合金,3XXX系合金,5052、5754、5349、5757、5049合金,6005、6061、6063合金,7072合金,8011、8079合金等。   黑兹莱特连续铸造机黑兹莱特双带式连续带坯铸造机是美国黑兹莱特带坯铸造公司(HazelettStrip-CastingCorpora-tion)靠前代带头人克拉伦斯·W·黑兹莱特(Clarence·W·Hazelett)发明的,现在的老板为第三代R·威廉·黑兹莱特(R·WilliamHazelett)。1947年开始研究开发双带式铸造机,1963年靠前台660mm铸造机在加拿大铝业公司(Alcan)的加拿大安大略省托威市(Tower)阿尔古兹公司(Algoods,Inc.)投产。   黑兹莱特连续铸造机主要部件为供流系统(熔体槽与密闭熔体供流器)、两条无端钢带(上带与下带)、两侧的边部挡块、传动系统(张力辊与挡辊、直接传动结构)、水冷与传热系统(喷水嘴、水槽与散热片等)、框架等。   钢带与边部挡块构成带坯铸模(结晶器)。钢带套于上下框架上,框架间距可以调整,调整边部挡块之间的距离就可以铸出不同宽度的带坯。框架内有诸多磁性支承辊,从钢带内侧对应地对其顶紧,张紧度可以调控,以保证钢带保持所要求的平直度偏差。   钢带由黑兹莱特公司专制的1.2mm厚的低碳带钢用钨极惰气保护电焊的,其铸造寿命约115h,成本约RMB18元/t。铸造羊须用Al2O3微粒对钢带打毛,打毛深度决定于所铸带坯合金种类,而后以等离子或火焰法喷涂一层MatrixTM涂层。   双带式连续铸造机有强大的水冷系统,对水质有严格要求,其PH=6-8,应洁净,不得有油及其他可见的浮悬物,水的消耗量约15t/m·min。   从喷嘴高带射出的冷却水沿弧形挡块切向喷射到钢带上,均匀而快速地冷却钢带,使铝熔体高速(50℃/s-70℃/s)冷却。冷却水经过钢带支承辊上的环形槽沿弧形挡块流入集水器,通过排水管返回冷却水槽,如此循环冷却。在铸造过程中钢带不对凝固着的带坯施加压力,铸造前需将钢带预热到130℃左右,铸造时向钢带与熔体之间吹送保护气体氦,它有高的热导率。氦气不贵,是制氧企业的副产物。   铸嘴为有专利的陶瓷产品,商品名称为StreamTM带形陶瓷铸嘴,由氧化铝与硅石纤维混合物组成,真空压制成形,是一次性消耗品,铸嘴消耗在制造成本中约为RMB10元/t。   双带式连续铸造带坯的主要消耗材料与备件为钢带、MatrixTM喷涂粉、StreamTM陶瓷铸嘴,它们都由黑兹莱特公司提供,价格合理,因为它们的及时与按成本(加运费与报关费、关税等)价供应给用户是售后服务的主要内容之一。   铸造前,根据所生产带坯宽度与厚度调整边部挡块间距与钢带间距。开始铸造时应及时调控钢带移动带度,使其与熔体流量平衡,即熔体平面高度应处于凝固腔开口处。铸造速度为4-10m/min。供料嘴与钢带间隙为0.25mm左右,引带头应伸入到距铸嘴前缘约100mm处。   双带式铸造法熔体的冷却速度可高达50℃/s-70℃/s,比半连续铸造法(DC)的1℃/s-5℃/s高得多,因而带坯的晶体组织致密细小、枝晶间距小、合金元素固溶度大,使产品性能得到一定程度的提高。转换合金时如果铸嘴的使用期限尚未到期,可不必更换,继续使用,但以产生一定量的废料为代价。   带坯离开铸造机后,通过夹送(牵引)辊送入单机架温轧机或多机架连轧机列。夹送辊不对带坯施加轧制力,但有一定量的牵引力。   单机架或多机架温轧机   在双带式黑兹莱特铸造机之后可布置1台或多台温(热)轧机,可是2辊的,也可以是4辊的或混合型的,组成连铸连轧生产线。在目前运转的14条连铸轧生产线中,后置单机架四辊轧机的有2条,后置双机架四辊轧机的有5条,其余的6条各有3台四辊轧机,但加拿大铝业公司萨古赖(Saguenay)轧制厂的为混合型的,靠前台为二辊的,第二、三台为四辊的。自上世纪90年代以来建设的都是三机架的,中国将建的这条生产线也是三机架的。   连铸连轧生产线热轧机与铸锭热连轧生产线热轧机的结构完全相同,不再赘言,但在生产线的布置与轧制速度等方面还是有区别的。例如连铸连轧生产线温(热)轧机的轧制速度还不到铸锭热轧生产线相应轧机轧轧制速度仅约100m/min;连铸连轧生产线连轧机列各机架的间距比铸锭热轧生产线连轧机列的大;连铸连轧生产线有2台卷取机,同时设在地下。

钛管在发电站上应用所要解决的三个问题

2019-01-25 10:18:50

经过很多的实验和运用实例都证明,在电站凝汽器上用钛管,在技术上和经济上都具有很大的优越性,从经济视点来看,以日本1983年一台1000Mw凝汽器的核电机组用管材(大约需求5万根凝汽器管)报价为例,依照凝汽器的运用时间为40年计,铝黄铜管均匀年走漏lO根,钛管在40年内无走漏。下面讲一下钛管在发电站上运用所要处理的三个问题:   1.腐蚀问题   沿海电站的凝气器用海水做冷却水.因为海水中含有很多的泥沙、悬浮物质、海洋生物和各种腐蚀性物质.在海水与河水替换改变的淡咸水中的状况更为严重.传统运用的铜台金管发作腐蚀方法有:全面腐蚀(均匀腐蚀)、溃蚀、冲蚀和应力腐蚀等.因为钛具有优异的耐腐蚀功能,所以钛管凝气器因腐蚀而形成的海水走漏事端已被根绝,可是,因为钛管的耐蚀功能好,不象铜合金管那样在表面发作一种含毒物质.故在钛管内壁上就简单有海生物附着,然后影响传热作用,所以就必须有相应的清洗设备.   2.吸氢问题   虽然钛材表面具有细密的钝化膜,在许多强腐蚀介质中十分耐腐蚀,可是因为钛与氢的亲合力很大.十分简单吸氢.在常温时就发作,高温时(如100℃)吸氢敏捷.氢在钛中的固熔限很小(约为20ppm),超越定量就会在钛表面上分出氢化物(TtH2).跟着表面TiH2的增多,钛的冲击值和延伸率敏捷下降【4J.此外.在旧机组改造时,因为管板是铜合金,冷凝管用钛,这就需求选用阴极维护设备以防止电化学腐蚀如日立公司发电厂凝气器选用海水冷却,用钛列管与铜合金板组成电偶,当维护电位低于一0.75 v(ScE)时使出口的钛管端吸氢,运用一年氢含量到达650 ppm;假如电位选用一05~O.75 v(scE),在常温下钛不会发作吸氢”   3.轰动问题   因为钛管的耐蚀性好.钛制凝汽器不会因为腐蚀而发作走漏损坏.但钛管却或许因为振荡而形成损坏.要防止钛管的振荡问题,在制作垒钛凝汽器时,就要断定习惯的隔板距离;在改造老机组时,则要考察本来的隔板距离是否适用钛管.

淮钢特殊钢大型圆坯连铸工艺装备特点及实践

2019-01-04 15:16:46

摘要:淮钢生产碳素、合金结构钢、锚链钢、轴承钢、齿轮钢及低合金高强度钢生产流程为80 t转炉-90 t LF-100 t RH-喂线-Φ380~Φ600mm圆坯CC工艺。中间包容量40 t,自动控制弧形管式结晶器液面,喷水+气雾2次冷却,M-EMS+F-EMS电磁搅拌,连铸机拉速0.3~0.8m/min,年生产能力120万t圆铸坯。文中介绍中间包、结晶器、电磁搅拌、二次冷却的设备特点和相关工艺的优化和圆坯冶金质量的改善。 关键词 特殊钢 大型圆坯 连铸 装备 特点 工艺实践 江苏沙钢集团淮钢特钢股份有限公司转炉特殊钢大圆坯连铸机是从达涅利公司引进,于2006年12月投产,主要生产钢种为优质碳素结构钢、合金结构钢、锚链钢、轴承钢、齿轮钢及低合金高强度钢等,生产初期存在的主要缺陷为铸坯芯部裂纹和外部纵裂。为提高和改进大圆坯的质量,对连铸设备、生产工艺进行研究,并采取针对性的改进措施,使大圆坯的内部、外部质量缺陷得到有效控制和改善。 1 工艺流程和设备参数 炼钢厂生产特钢的工艺流程为80 t转炉冶炼→90 t LF精炼→100 tRH真空处理→喂线进行夹杂变性→大圆坯连铸。大圆坯连铸机主要技术参数见表1。 表1 大圆坯连铸机主要技术参数 Table 1 Main technical parameters of large round bloom项目参数机型DANIELI-2BLC1406连铸机流数/流6弧半径R/m14矫直半径/mm19/34铸坯断面直径/mm380、450、500、600流间距/mm1 700中间包容量/t40液位高度/mm800结晶器型式弧型管式铜管长度/mm780锥度双锥度结晶器液面控制自动(Cs 137)保护渣加渣方式自动振动装置液压振动行程/mm0~20振动频率/opm25~250二次冷却喷水+气雾冷却电磁搅拌M-EMS+F-EMS拉速范围/(m·min-1)0.3~0.8年设计能力/万t1202 主要工艺装备与技术特点 连铸机由DANIELI公司负责工艺设计和关键设备的详细设计,关键设备和技术从DANIELI公司引进。中冶京城公司负责工厂设计和部分设备的详细转化设计。主要设备有:钢包回转台旋转驱动装置、电动机械塞棒自动控制系统、结晶器、结晶器液位检测系统、结晶器电磁搅拌器、二次喷淋与气-水控制调节系统、末端电磁搅拌器、液压振动装置、拉矫机驱动装置与液压缸、火焰切割系统等。 2.1 钢包回转台 钢包回转台形状为H蝶形,在两个相互独立的钢包回转台臂上有钢包提升、下降装置,钢包提升行程为600mm。安装可提升臂的优点是便于钢包与中间包之间的长水口保护浇注操作;控制、调节长水口的插入中间包钢水液面的深度;钢包水口不能自动打开时,便于钢包工烧氧引流。 2.2 中间包 中间包整体结构形状为三角形,该形状在中间包本体受热膨胀后可防止耐火材料附着在中间包本体上。内部设置挡渣坝、挡渣墙及水口稳流装置,确保中间包内合理的钢水流场(温度场、夹杂物上浮与分布场)。在中间包钢水注入点的两侧设置两个溢流口,其高度为850mm,便于放渣、换渣操作,稳定和控制中间包覆盖剂的冶金效果;控制中间包的渣层厚,减少中间包钢水被污染的程度,提高连铸坯的洁净度。 2.3 电动机械塞棒系统 电动机械塞棒系统用于调节和控制中间包水口钢流,实现钢水自动浇注。开浇操作既可以由操作工手动完成,也可在操作工控制下由自动化系统完成。自动开浇通过顺序开启和关闭中间包水口完成,结晶器液位控制系统同时控制塞棒和拉矫机同步,一段时间后拉矫机按预定加速度运转、浇速达到预定值。自动浇注状态下,从液位控制系统接收到的信号经PLC处理后反馈到塞棒组件的控制电机上,浇注时浇速保持不变,通过塞棒控制结晶器钢水液面。 2.4 结晶器和足辊 管式结晶器在设计上考虑避免铜管因高温作用而产生永久性变形。否则,结晶器管变形后会造成其寿命明显缩短,并对铸坯产生较深的振痕和形状缺陷。为防止变形,高温度作用下的铜管严格被限制在只能沿其纵轴上自由膨胀。 铜管与水套间隙保持在3.25mm,保证水缝内的高速水流以降低铜管温度,避免产生水沸腾。同时,在足够水压作用下,可防止铜管壁温度过高会造成严重结垢,影响铜管的传热效果。 结晶器底部设有两排足辊,调节范围±2.5mm,足辊的作用是引导引锭杆进出结晶器,可以避免引锭杆划伤铜管,减少铜管磨损和降低浇注条件变化对铸坯质量造成的影响。同时,可提高铜管拉钢量,提高铸机作业率。 2.5 液压振动台 振动台安装在冷却室外的铸机弧形半径的外侧,便于维修人员日常点检、维修和检修。振动通过液压缸完成,液压缸配有位置传感器,用以控制振动行程,其形成和波形在浇注期间可根据所浇钢种的技术参数而自动地改变。其位置传感器分辨率为0.005mm,响应时间为0.45ms。DANIELI液压振动技术可以在浇注过程中修改振动频率、振动行程和振动模式以获得最佳的表面质量。实际振动曲线与理想曲线重叠,误差很小,高频、小振幅的振动参数,以保证凝固壳的充分润滑,减少振痕深度和裂纹的产生,获得稳定、良好的铸坯表面质量。 2.6 结晶器电磁搅拌系统 由DANLIELIROTELEC公司设计制造的M-EMS为外置式,搅拌器线圈为3相、2极、低频旋转式,其供电电源为低频、逆变式变频器,提供了极好的搅拌器无功功率补偿,控制电流大小、电流频率和输出电流正弧波形。最大电流每相550A,低频。输入功率LV,3相,50 Hz,最大,135 kVA(130 kW)。 使用结晶器M-EMS改善铸坯表面质量的作用主要在于: (1)钢水旋转产生的向心力可以除去凝固前沿的夹杂物。夹杂物上浮到弯月面中心可以防止进入凝固壳内,减少表面和次表面的夹杂物数量并且其沿钢坯中心断面分布更加均匀。 (2)由于结晶器壁上的钢渣漂到弯月面中心并被收集起来,因此可防止钢渣粘接。 (3)由于钢水运动除去凝固前沿的气泡,使次表面区域的气泡、针孔、气孔显著减少。 2.7 末端电磁搅拌系统 在固定扇形段距结晶器液面8.5~9.0m位置处安装了F-EMS,搅拌线圈3相、2极、旋转连续/交替式,供电电源为逆变式变频器,提供了极好的搅拌器无功功率补偿,最大电流每相1 100A,低频。 2.8 二冷气雾冷却 二冷区域分为4个独立的冷却区域,每个区域由二极自动化系统单独控制。根据所浇注的圆坯的规格、拉速和钢种的不同,使用不同的冷却区域。表2为大圆坯连铸机二冷区域参数。 表2 大圆坯连铸机二冷区域工艺参数 Table 2 Process parameters of large round bloom caster at secondary coolingzone项目冷却段长度/mm喷嘴形式喷嘴只数最大水压/MPa气压/MPa1区300水2×80.6-2区1 400气-水6×40.60.203区2 000气-水6×40.60.204区2 000气-水6×40.60.203 生产、质量情况与改进 3.1 生产钢种 目前生产钢种主要有优质碳素结构钢,代表钢号S48C、50Mn、45、20、20G、STPG370、B、JS20、IS35、JS45、CL60;合金结构钢,代表钢号为40Cr、20CrMnTi、42CrMo、42CrMo4V、4130X、12Cr1MoVG、15CrMoG、25MnG、20MnG、St52.0、37Mn5、20Mn2、28Mn2、CM690、ASTMA350 LF-2、ASTMA105、S355K2H;轴承钢,代表钢号为GCr15、CCr15SiMn;低合金高强度结构钢,代表钢号为16Mn、Q345D、Q345E、S355NL等。连铸圆坯主要用于生产无缝钢管、环锻件和锻造齿轮坯、轴类件、法兰件、锚链扣件附件及其它机械零件等。 3.2 铸坯质量 按YB/T4149-2006和外方的保证值对Φ380、Φ450、Φ500、Φ600 mm四个规格的圆坯进行检验,结果分别如下: (1)铸坯尺寸公差 生产的3种规格铸坯实物尺寸按外方的保证值要求进行控制,具体见表3。铸坯尺寸公差控制较好,达到保证值要求。 表3 大圆坯规格控制范围和实测值 Table 3 Control range and measured value of size of large round bloom圆坯直径/mm直径公差/%不圆度/%弯曲度长度公差/mm单位弯曲度/(mm·m-1)6 m长最大弯曲值/mm保证值±1.25≤1.5≤5250~+50Φ380-0.16~0.570.30~0.601.3~3.023+(6~50)Φ450-0.13~0.510.30~0.551.2~2.822+(1~50)Φ500-0.10~0.420.25~0.451.2~2.622+(7~50)Φ600-0.15~0.410.22~0.431.0~2.921+(9~50)(2)铸坯表面质量 按外方的保证值要求批判铸坯实物表面质量情况见表4。 表4 大圆坯实物表面质量 Table 4 Surface quality of large round bloom规格/mm表面无缺陷区比例/%主要缺陷特征保证值≥98%-Φ38098.3表面纵裂与渣沟、渣坑Φ45099.1渣沟、渣坑Φ50099.5渣坑Φ60099.2振痕深铸坯表面质量总体情况比较好,主要存在与保护渣和冷却相关的渣沟、渣坑和开裂问题。 (3)铸坯低倍组织 按YB/T4149-2006中附录A连铸圆管坯低倍组织缺陷评级图检查铸坯低倍组织,见表5。 表5 大圆坯低倍组织/级 Table 5 Macrostructure of large round bloom/rating圆坯规格/mm中心疏松缩孔裂纹皮下气泡中心中间皮下Φ3800.5~1.50~4.00~3.00~1.50~1.00~1.0Φ4501.0~2.50~3.00~2.00~1.500Φ5001.0~2.50~2.50000Φ6001.0~3.00~2.50000铸坯低倍质量总体情况较好,98%以上铸坯低倍无缺陷。但发现少量钢种的铸坯低倍存在皮下裂纹和芯部裂纹缺陷。 3.3 存在问题分析与改进 3.3.1 保护渣改进 出现的渣沟存在两种情况: (1)直条渣沟,沿拉坯方向延伸,时断时续; (2)螺旋渣沟,与拉坯方向成一定夹角。 铸坯存在的渣沟综合反应出铸坯在结晶器中存在冷却不均匀性问题,保护渣的熔化、润滑、结晶等性能需要进一步优化。为此,会同保护渣生产厂家,对保护渣性能开展相关研究、改进、调整工作,按钢种、断面确定了8种系列保护渣,以适用该厂大圆坯连铸生产的需要。 3.3.2 二冷喷嘴与布置的改进 根据铸坯表面开裂和皮下裂纹特征分析,主要是二冷冷却不均问题造成的。对外方提供的喷嘴和国产转化的喷嘴测试,确认外方提供的喷嘴和国产转化的喷嘴存在: (1)使用喷嘴实际喷射角小于设计要求,两个喷嘴之间的铸坯部位存在无水覆盖死区,该区域铸坯坯壳薄、强度低,在热应力作用下容易出现开裂; (2)喷嘴流量选型大,水压低,雾化效果变差; (3)水流密度分布不对称,见表6. 表6 喷嘴气雾测试结果 Table 6 Measured results of fine spraying of nozzle喷嘴型号喷射角/°流量/(L·min-1)水流密度分布测试值偏差测试值偏差1PM.021.30.21(国产转化)49-111.87+4%基本对称1PM.021.30.40(国产转化)51-92.87+20%不对称1PM.021.30.21(外方提供)55-51.83+2%基本对称1PM.021.30.40(外方提供)56-42.72+14%基本对称在现有喷嘴布置不改变的情况下,对喷嘴型号重新选型,改进前后的喷嘴参数见表7。喷嘴改进后,喷嘴雾化效果良好,冷却均匀性明显得到改善,铸坯外裂与皮下裂纹问题得到消除。 表7 改进前后喷嘴参数对比 Table 7 Comparison of parameters of fine spraying nozzle before and afterimprovement喷嘴布置改进前改进后型号流量/(L·min-1)喷射角/°型号流量/(L·min-1)喷射角/°二区1PM.021.30.402.460D40206-04900-70510-BR2.0070三区1PM.021.30.211.560D40206-04900-70440-BR1.2570四区1PM.021.30.211.560D40206-04900-70400-BR1.0070外方设计喷嘴布置为内外弧和两侧交叉垂直的4个方向喷水冷却,在客观上也造成了铸坯冷却不均问题。为了改善冷却问题,有必要将原4个方向冷却增加到6个方向冷却,对喷嘴布置方式重新调整。 3.3.3 连铸钢水温度的控制 对存在芯部裂纹的CM690、Q345E等高Mn、高Al钢种炉号进行统计分析,主要为中间包前两炉,其过热度控制比较高。产生芯部裂纹的主要原因有: (1)该类钢种铝含量比较高,钢水流动性比较差,生产班组为避免出现中间包水口絮瘤问题,人为高控开浇炉和中间包第二炉钢水过热度; (2)在高过热度情况下,采取降低拉速操作,连铸二冷比水量相对较大,铸坯表面温度低,而凝固末端的芯部钢水仍然是高温区域,内外温差梯度较大,中心部位处于高温脆性区域,在热应力的作用下产生了芯部裂纹。 3.3.4 末端电磁搅拌参数的优化 在外方调试设备期间,按其提供的末端电磁搅拌参数生产45、25Mn钢,铸坯低倍存在白亮带问题。为了消除白亮带缺陷,针对不同钢种对连铸的配水、过热度、拉速和末端电磁搅拌等工艺参数进行综合、系统地优化,最终消除了较宽、较重的白亮带缺陷。 4 缺陷 (1)淮钢引进DANIELI公司的特殊钢大圆坯连铸机工艺装备性能优良,产品质量满足保证值要求。 (2)保护渣造成的圆坯渣沟问题,通过改进保护渣性能完全得到消除。根据不同钢种和断面建立相应保护渣采购标准体系,以满足特殊钢大圆坯连铸生产和保证产品质量的要求。 (3)大圆坯存在的外部开裂和皮下裂纹与使用的喷嘴参数变化与布置方式有关,通过对喷嘴重新选型、改进,铸坯冷却均匀性得到改善,消除了铸坯外裂缺陷。 (4)为消除白亮带问题,所开展的相关连铸工艺参数优化工作是有效可行的,此项工作还需要进一步细化。

钛材热挤压成形技术发展和应用现状

2019-01-24 09:36:27

热挤压工艺是利用挤压机上挤压杆传递的高压,对封闭在挤压筒中的坏料进行挤压成形为与模具形状相同的制品的一种先进塑性加工方法(常见金属热挤压过程如图1所示)。其具有提高金属的变形能力、制品综合质量高、产品范围广等优点。钛及钛合金属是难变形金属,又价格昂贵,因此热挤压工艺对生产大规格、厚壁或高要求钛管、钛棒、钛型材(以下简称钛挤压材)而言是最有发展前途的生产方法。图1  钢材热挤压过程简图 一、钛材热挤压成形技术的发展 钛是一种高活性金属,不仅在空气中加热极易污染,而且在一定的温度、压力和表面状态下具有和模具粘结的特性。钛的导热性差,热挤压时坯料表层与中心易产生较大温差,促使金属流动不均匀性加剧,这样表面层就产生较大的附加拉应力,在制品表面易形成裂纹。严重时,在挤压棒材及管材上可能产生大的中心挤压缩孔。同时,挤压钛及钛合金时热效应显著,不合适的挤压工艺对挤压品组织和性能有副作用。钛的弹性模量低,回弹严重,成型困难。因此钛合金挤压变形过程比铝合金、铜合金等其它有色金属挤压变形过程更为复杂。钛材热挤压工艺过程根据坯料是否包套有所区别,其主要工艺流程如图2所示。钛材热挤压技术发展至今,中外相关技术人员围绕提高钛挤压材质量和成材率、降低生产成本在坯料制备、坯料加热温度、挤压比、挤压速度、润滑及挤压模具等方面做了大量研究探索工作。图2  钛材热挤压工艺流程 (一)钛挤压坯锭的制备 钛及钛合金的挤压坯传统制造工艺一般是真空电弧熔炼铸锭经锻造或轧制成毛坯,然后经切削加工或热压力穿孔制成尺寸和表面质量符合要求的光坯。不经热穿孔直接挤压,荒管质量好,但成材率低。为提高钛挤压材的综合成材率,研究冶炼直接挤压的空心铸锭工艺是未来挤压钛材实现规模化生产一个发展方向。乌克兰E.O.Paton电焊研究所已研究出通过电子束冷床熔炼大型空心锭。目前,宝钛、宝钢特钢已引进等离子、电子束冷床炉,下一步应积极研究冶炼可直接挤压的空心铸锭工艺。 (二)钛挤压坯锭的加热 钛在空气中加热时易被气体污染,所以挤压坯锭加热时必须设法保护金属表面不受或少受气体污染。挤压坯锭的加热按其保护方法可分为包套加热、涂层加热、盐浴加热、玻璃熔体加热和常规加热等。目前,一般用感应加热。在制定加热工艺时,为了便于在最小的压力下实现快速挤压,应在能保证产品具有良好力学性能下用尽可能高的温度进行挤压。例如:对于工业纯钛,即使挤压温度高达1038℃,对其力学性能也无明显的影响目前,纯钛、α型及α+β型钛合金通常在低于合金的α+β/β相变温度20℃~100℃挤压。β型钛合金通常 采用高于相变温度挤压。 (三)钛挤压比的确定 挤压加工中,变形程度一般用挤压比(λ)表示。为了改善制品的组织和性能,很多文献都认为,挤压钛及其合金时应该采用较大的挤压比,其实,钛的挤压比相对较小,一般小于30。研究表明:TC4钛合金在两相区加热,采用3~10的挤压比,可得到综合性能良好的产品;而用相同温度加热,用28的挤压比时,由于变形热效应而使温度升高到α+β/β相变温度以上,使产品出现网状组织,材料综合性能变差。除考虑金属本身特点以外,还必须考虑设备能力和工模具的强度因素。同时,挤压比还受钛的润滑方式影响。一般采用玻璃润滑选用的挤压比包套挤压小。 (四)钛挤压速度的范围 与挤压温度、挤压比一样,挤压速度不仅影响挤压件的性能和表面质量,还影响挤压力。挤压时可达到的实际挤压轴速度根据钛合金成分、挤压温度和挤压比而变化。一般选用80~130毫米/秒中等速度挤压。速度对挤压的热效应的影响可用来保持挤压件的温度恒定。据国外文献报道,挤压速度级根据挤压件挤出的温度变化进行校正,温度用精密仪表记录。通过温度信息反馈,调节挤压速度。此外,还可通过理论模拟-程序控制挤压速度。通过计算机预先计算出温升规律,根据不同的产品,选择相应的程序进行等温挤压。 (五)钛挤压润滑剂的选用 润滑问题是国内外钛及钛合金热挤压技术的一个难点,也是一个研究热点。目前,使用的润滑剂主要有润滑脂、玻璃润滑剂和金属包覆三种类型。 润滑脂一般为加有稠化剂的矿物油。用润滑脂润滑剂方便、实用,可以挤出表面质量优良的钛材,但往往挤压制品的长度受到限制。挤压型材的最大长度限于3~4.5米。长挤压材末端易出现粘结缺陷。现在该方法多为小批量生产或与下面两种方法连用。 玻璃润滑挤压是目前世界上最先进的润滑工艺。自1941年发明至今已得到广泛应用。与其它润滑材料相比,玻璃润滑剂具有导热系数低,隔热性能好,高温附着性能好,耐压能力高,化学性能稳定性好,与金属不起反应,能防止金属被气体污染等优点。因此,它是最具有发展潜力的润滑材料。目前,世界上普遍采用玻璃润滑挤压。我国虽然也很早开展玻璃润滑剂的研究,但还未达到工业化应用水平。 钛及钛合金热挤压还可以采用金属包覆润滑。主要是在坯料外面包覆铜、软钢或其它金属,也可喷涂铜。采用铜包覆挤压,当金属加热温度超过850℃时,在钛与铜的界面上会生成一种Ti-Cu共晶组织,该组织为脆性物质,不仅起不到润滑的作用,反而会破坏正常的挤压。因此,该方法一般只限于纯钛挤压。此外,金属包覆挤压工序复杂,成本高,酸洗过程环境污染严重。 (六)钛挤压工模具的使用 与挤压其它金属一样,挤压钛管材时一般用平面模具。为提高模具的使用寿命和改善润滑条件,模具一般预热到300℃~400℃。正常情况下每副挤压模的使用寿命在20次左右。模具材料和加工成本非常高,因此为降低钛挤压材的加工成本必须对模具材料和模具结构进行研究。对于型材挤压,为提高薄壁型材尺寸精度和工模具耐磨性,俄罗斯轻合金研究院曾研究在挤压模具工作表面用气体火焰法和等离子法涂敷了不同金属的碳化物和氧化物涂层,结果表明普通工具钢上涂敷0.05~0.1毫米厚的钼底层,再以等离子法涂敷二氧化锆涂层的模具性能最佳,制出了断面单元厚度为2毫米,公差为0.5毫米的高强钛合金型材。采用带陶瓷涂层的模具配合使用玻璃润滑剂,成为了成批生产是薄壁型材的一个重要因素。 表  钛及钛合金棒材的挤压参数需要指出的是,钛及钛合金优质产品的挤压,要求在保持工具有满意寿命的条件下制定正确的生产工艺,即要求温度、挤压速度、挤压比及润滑方式的配合。上表列举了典型钢种挤压棒材的参数。 二、钛挤压材的生产与应用 20世纪50年代,伴随着钛开始工业化生产,热挤压成形技术在钛材生产中得以快速应用和发展。经过几十年的发展,俄罗斯、美国、英国等国家用挤压法除了可以生产钛及钛合金管、棒材以外,还可挤压种类繁多的钛及钛合金型材。这些型材不仅是角材、丁字形材、槽形管材,还包括各种各样的异型材、变断面型材,甚至尺寸公差,表面质量达到可不进行机械加工的程度。 俄罗斯的钛合金的试验工作始于1953年,在上世纪60年代为迅速发展的航空技术提供各种各样的薄壁型材、翼翅型材、空心型材、大型型材和壁板等。自此俄罗斯钛挤压型材技术处于世界先进水平。其生产的钛合金牌号达十几种,规格达两千多种。例如:生产的OT4、OT4-1、BT20、BT14、BT15合金薄壁型材,其腹板厚度为1.5~5毫米,腹板厚度公差为0.5毫米。俄罗斯上萨尔达冶金联合生产企业(VSMPO)挤压管、棒和型材除国内使用外,也大量出口美国和欧洲飞机制造和供应厂家。除航空航天外,VSMPO公司生产的含Pd,Ru的合金Ti-6Al-4V合金管还用于了石油开采。 美国的大直径钛合金挤压管生产居世界领先水平。美国将直径(48~610)毫米×26毫米×2600毫米的Ti-6Al-4V-Ru合金管用做地热、海上钻井管道。美国RMI公司生产的直径650毫米×(22~25)毫米×35000毫米超长Ti-3Al-2.5V-Ru合金管用于海底石油开采。此外,在挪威北海钻井支撑平台立管用的是直径600毫米×25毫米×15000毫米的Ti-6Al-4V ELI合金管。国际上对钛型管的研发比较迟缓,只有美国Titanium Sports Technology公司采用挤压和拉伸法,生产出正方形、长方形、三角形、椭圆形、五角形、六角形和八角形等多种形状的型管,成为世界上唯一一家生产钛型管的公司。目前钛型管的应用还不够广泛,用量不大,但在建筑、体育休闲及特殊工程等领域,存在较大的潜在市场。     我国钛及钛合金挤压生产开始于20世纪60年代末。当时,宝钛公司和长城钢厂分别从德国引进了一台3150吨可挤压钛合金的热挤压机。经过近40年发展,宝钛公司可挤压钛及钛合金的各种规格的管、棒材及简单断面的型材及复合材,牌号达几十种。这些产品已广泛应用于航空、航天、卫星以及能源、化工等国民经济的各个部门。但是还应该看到,我国与先进国家相比,还存在较大差距,较复杂断面的型材还不能生产。近几年,随着化工等民用领域对高质量钛管需求剧增,西部钛业、浙江五环等公司先后引进了主要用于挤压钛管的挤压机。2009年10月,宝钢特钢从德国引进的世界先进水平的6000T挤压机投产(如图3),为我国生产大规格钛管和型材提供了必需的装备,标志着我国钛材挤压设备上了一个新台阶。图3  宝钢6000T热挤压机 三、结束语 我国钛热挤压技术发展缓慢,和国外存在较大差距。开发有竞争力的钛挤压材,提高我国钛挤压材整体水平,建议应首先从以下四个方面着手解决: (一)利用冷床炉进行空心铸锭管坯的研究。如前所述,按照目前的管坯制造方法,已不适应建设资源节约型社会的发展要求,为此要积极开展冷床炉冶炼空心管坯工艺研究,简化工序,降低成本,提高市场竞争力,势在必行。 (二)高温润滑剂的研究。润滑剂对于热挤压成形产品质量和生产成本有着重要影响,因此,研究适合于不同材料的润滑剂,以提高产品的综合质量,减轻模具磨损是目前迫切需要解决的问题。 (三)模具材料和模具结构设计研究。热挤压时,模具承受高温高压和强摩擦复合作用,严重影响了模具的使用寿命、产品的质量和生产成本。因此,对模具材料和模具结构设计方法研究,也是今后需要解决的问题之一。 (四)积极开拓钛挤压材市场。钛挤压材将在飞机制造、海洋工程、体育休闲等行业有非常大的需求潜力。现在钛挤压材生产与设计应用单位结合并不紧密,大家应共同努力提高我国钛挤压材整体水平。

钛在海水淡化设备上的应用

2019-02-15 14:21:24

淡水约占地球水资源的3%,经过海水淡化获取新的淡水资源是往后国际用水的一大趋势.现在,海水淡化已成为像中东这样的水资源缺少区域获取水源的首要方法.1、国际海水淡化情况  至1993年,国际各国在5738个区域的海水淡化设备共有9014台,总容量为1.624X107m3/d,仅中东区域总容量就达8.91*106m3/d,占55%,美国为2.37*106m3/d,占重5%。  早在50年代,就已选用海水淡化方法出产淡水.海水淡化的首要方法有:  ①蒸腾法:多级闪蒸法、单级闪蒸法,立式多效法、横式多效法、浸管法、蒸气紧缩法;  ②:电透析法、逆渗透法;  ③复合法。  其间,蒸腾法占60%,逆渗透法占33%,电透析法占5.5%。表1为日本国内首要运用的海水淡化法及其有用份额。             表1 日本国内首要的海水淡化法及其有用份额                   饮用水  工业用水            逆渗透法   42%   56%            电透析法   37%   18%             蒸腾法   21%   26% 2 钛在海水淡化设备中的运用2.1海水淡化设备中的导热管  原海水淡化设备导热管首要用铜合金管,因为铜合金管存在许多缺乏,现已被可靠性高且免于维护的钛管所替代.  (1)钛管的壁厚  导热管壁厚由运用条件,管板材料、扩管作业的施工才能、管端的焊接技能等来决议,因为导热管直径小,对强度要求不高,因而实践运用中选用壁厚较薄的管材,一般,铜合金管等壁厚为0.9mm-1.2mm;用钛管替代,在腐蚀性小的当地,可用壁厚为0.3mm的薄壁焊管。  2)钛管的导热性  因为导热管的原料不同,热导率也不同,如钛为17W/(m•k),铝黄铜为lOOW/(m•k),90/10白铜为47W(m•k),70/30白铜为29W/(m•k),因而,可经过壁厚的改变操控导热管的导热作用。在以上材料中,钛的热导率最小.如运用薄壁钛焊管,导热性尽管比铝黄铜差,但与90/10白铜适当,比70/30白铜的要好。  (3)钛管的经济性  钛管的单位质量报价比铜合金贵2—6倍,但从性价比上考虑,钛管报价可与铜合金管抗衡,因为钛的密度低,壁厚相一起,平等长度的钛管质量仅仅铜合金管的50%,当钛管壁厚为铜合金管的50%时,相同传热面积的钛管质量仅为铜合金管的1/4.按现在的报价水平,选用薄壁钛焊管的全体报价与铝铜管相同,比白铜管还廉价.可见,钛管在报价方面是有竞争力的。2.2日本薄壁钛焊管的开发和运用  钛带轧制技能的开发成功成为钛焊管批量出产的根底。60年代,在法烧碱电解出产中,日本选用了钛丝;90年代初,为避免污染,对烧碱出产工艺进行了改善,跟着隔阂法的选用,700多吨的钛带得以运用,以此为关键,日本研讨开发了连续出产热轧和冷轧钛带卷的技能,建立了海水淡化和电站冷凝器钛薄壁焊管用的带卷的批量出产系统,相应开发了薄壁焊管的出产技能。  日立,三菱及东芝出产的电站冷凝器,运用了厚0.5mm的钛焊管,三菱、川崎、日立,三井以及神户制钢等公司出产的海水淡化设备,运用了厚0.5mm-0.7mm的钛焊管。[next]  以电站运用为主,钛焊管作为海水淡化、炼铁、船只、粹、化工等范畴的传热管已广泛运用。到1983年,在16年的时间里,日本出产了用于国际各地海水淡化设备的薄壁钛焊管4038t,至今未发作因海水腐蚀而损坏的现象。  (1)通风凝结器和喷发压气机  日本真实的海水淡化设备是1967年由松岛碳矿株式会社建成的2650t/d海水淡化设备。该设备的通风凝结器及喷发压气机的传热管和管板,因为受海水中Br-的腐蚀,不能用铜合金,换用钛后,没发作过因腐蚀导致的毛病。  (2)热放出部冷凝器  多级闪蒸冷凝器是将海水作冷却水,冷却各级闪速室发作的水蒸气,因为海水常混有泥沙、海生物,它们在传热管内及管端附着,腐蚀铜合金管。因而,现在简直一切的MSF型海水淡化设备的传热冷凝器上都运用了钛管。特别是为了死海水中的细菌,不得不注入氧时,更需运用耐蚀性好的钛管。  (3)热收回部冷凝器  热收回部冷凝器传热面积较大,因为经济原因,现一般运用铜合金管,仅在特殊场合运用钛管,如含有或等污染物的介质对铜合金的腐蚀剧烈。1977年,向德国出口的3600t/d的MSF型淡化设备,因为它是的附属设备,不能用铜合金,而选用了钛;因为硫化氧的腐蚀,秘鲁的3120t/dMSP型淡化设备,运用1年后铝黄铜管就发作了腐蚀,最终将悉数传热管换成了钛管。  据报道,日产百吨的海水淡化设备用钛管达6万根.从1967年至1994年,在近30年的时间里,共出产了52套原于能级火力发电用冷凝器和7套海水淡化设备,合计运用钛焊管11000t。3、运用时应留意的问题  (1)电偶腐蚀  钛在海水中电位较正,与其它金属触摸时,可促进其它金属的腐蚀。避免方法有传热管和管板均选用钛,或用献身阳极的方法。80℃以上,为避免吸氢,运用Fe-90%Ni合金作献身阳极;80℃以下,运用涂层或胶衬钢板。  (2)空隙腐蚀  钛管选用扩管法安装在钛管板上,在100℃,pH值为8的海水中可发作空隙腐蚀.但实践水室中运用了铜合金,即便海水温度到达120℃,也不会发作空隙腐蚀。在实际中,为了进步设备的可靠性,在100℃以上运用时多选用管端焊接来避免空隙腐蚀。  (3)吸氢  在80℃以上的海水中;钛有或许吸氢;施加阴极维护时,过维护时会引起吸氢。如选用Fe-9%Nq合金作献身阳极板时,不会发作钛吸氢.  (4)振荡  因为钛管壁薄,在替换铜合金管时,还应留意管振荡引起的损坏。可选用比铜合金管的管支撑板距离小的方法来处理这一问题。

钛制热交换器在精炼设备中的应用

2019-02-18 10:47:01

在原油提炼过程中,原油脱盐后,一些残留的盐会水解成HCl,HCl蒸气抵达冷凝器中冷凝后,与水构成,这种酸部分被或胺中和构成相同具有腐蚀性的铵盐或胺盐。因在HCl,NH4Cl,NH4HS中的耐蚀性好,多年来钛及钛合金已成功地用于粹设备中,首要用作常压原油蒸馏塔冷凝器管组,其牢靠性远高于碳钢;还可用作壳式热交换器、管式热交换器、空气冷却器及压力容器等。  Gr.2(相当于TA1)用作常压原油蒸馏塔冷凝器已达25年之久,其运用温度不能超过121℃。还可用于石油催化裂化设备、延时焦化设备、酸性溶液汽提塔,此刻适合的运用温度为99℃-121℃。Gr.12(相当于TA10)用作常压原油蒸馏塔冷凝器时运用温度不低于171℃,并可防止构成固态盐,但此刻应挑选适合的水质洗涤剂和胺中和剂。新近用于精粹设备的Gr.16(Ti—0.04-0.08Pd)的运用温度高达177℃。  碳钢结构(如挡板、衔接杆等)的腐蚀可使钛制管组过早地失效,因而管板和管组结构用材须适宜,625合金、825合金、20Cb-3、400合金、乃至316L不锈钢可用作结构。选用壁厚为0.89mm的薄壁钛管时,挡板距离应尽或许小,以防钛管振荡而使管组过早疲惫失效。为操控pH值和维护热交换器壳体、冷凝管、上储存塔,通常在冷凝器内参加专用的水溶的或其它载体的中和胺,但对钛冷凝器尽量防止参加或胺构成高熔点的固态氯盐。   下面是钛在原油提炼设备中的详细运用状况。  1972年,常压原油蒸馏塔冷凝器/水冷热交换器中选用Gr.12钛管替换短碳钢管。钛管组在温度低于127℃的环境下运用长达25年以上无任何问题呈现。  1973年,初次选用Gr.2配备原油蒸馏塔冷凝器/热交换器(运用温度为167℃)。运用不到一个月,呈现渗漏现象,后改用Gr.12管组。Gr.12管组在这种恶劣的高温环境下已执役15年。  1994年为代替1年~2年即失效的碳钢管组,选用Gr.12和400合金组成两个常压原油蒸馏塔冷凝器/热交换器,进口温度分别为165℃和146℃。1998年第二个热交换器(方位较低的)呈现渗漏,与挡板触摸的管外壁决裂,远离挡板的管外壁上有涣散的坑蚀点。在管组和挡板缝隙处存在腐蚀性很高的氯化胺盐,置于这种“干”氯化胺盐中的Gr.7(相当于TA9),Gr.12,Gr.16极易被腐蚀,参加少量的水(1%)可有用地使钛合金处于钝态。  液体催化裂化设备、延时焦化设备分馏塔上冷凝器液流内含有高浓度的NH3和H2S,并含有少量的HCN,HCl,SO2和CO2。1992年选用Gr.2管组配备了液态残余催化裂化设备分馏塔上冷凝器。水质洗涤剂将馏分蒸气温度由138℃降102℃,Gr.2管组的运用作用杰出。  1996年将Gr.12拼装于分馏塔塔顶冷凝器,温度为141℃。冷凝物含有4%的NH4HS和0.012%的。冷凝器作业牢靠。  选用汽提塔可去除H2S和NH3。汽提塔冷凝器内含30%~40%的NH4HS,还有少量的氯化物、及其它腐蚀性物质。钛可用作冷凝管组,由于钛是少量几种可有用抗高浓度NH4HS腐蚀的材料之一。  1995年,为处理来自炼焦厂、石油氢化处理厂的酸性排出物,在汽提塔塔顶安装了空气冷却管组(Gr.2)和顶盖箱。注入的蒸气温度不能超过118℃。冷凝物残留有15%左右的NH4HS,0.0030%~0.0035%的氯化物,0.0035%~0.0050%的。该设备至今接连作业杰出。   1971年,Gr.2钛管组用作粗汽油氢化处理设备中安稳塔的进料/底部热交换器,壳体侧进给管温度达142℃,底部温度为247℃。执役25个月后,管组壁厚未发作变化;又经10个月后,管组的内外壁均部分腐蚀(如缝隙腐蚀),管组呈现毛病。原因是180℃~200℃下,NH4Cl腐蚀金属管组。管板两边增加隔热材料可下降钛管组的温度,使其不易被腐蚀。尔后3年,管组未呈现毛病。  在壳体及衔接收均为碳钢的常压原油蒸馏塔上冷凝器Gr.2钛管组内,含有的H2S腐蚀碳钢部件构成FeS,设备不作业时露出于空气中的FeS可发作自燃,着火达数小时之久。查看发现,此刻钛管组彻底氧化,只残留氧化物壳。碳钢挡板和热交换器壳体根本无缺,仅仅有些曲折。使设备坚持足够湿以消除氧化热,可防止自燃。  为安全运用钛合金,应研究其腐蚀抗力和作业环境的联系,如胺的类型(是否存在NH3)、氯化物的浓度、作业温度等对钛制部件腐蚀性的影响。

钛在石油化工中应用

2019-02-15 16:44:47

在石油化工厂商中钛换热器、冷凝器及有关辅佐设备现已成功地运用了20多年。钛材中最常用工业纯钛(以TA2运用最广泛),Ti-6Al—4V(在需求必定强度时)和Ti-0.8Ni—0.3Mo(存在缝隙时或在非氧化性介质中)。当可能发生吸氢和氢脆时,尤其是焊区腐蚀和吸氢的状况下,需求运用低铁(1)在含硫和含盐高的原油炼制中,钛制设备是比较抱负的。国外在常压蒸馏设备、污水处理设备、脱硫别离塔的冷凝器和汽提塔的散热器等许多工序都成功选用钛制设备多年。我国也已在该体系中选用铸钛海水泵、催化裂化分馏中的钛制冷凝器、深冷别离钛冷凝器和多孔钛板等,都已正常操作运转十年以上。   (2)氯化烃是石油化工的最大种类之一。因为涉及到氯化反响,不锈钢设备已难担任。国外已用钛材制作精馏塔,三换热器、冷凝塔和分馏塔,冷凝塔,过氯乙烯换热器和多氯化物盘管加热器等。我国在氯乙烯出产中,冷却塔、废水汽提塔和废水贮罐的塔板支承架、接收、法兰密封面,选用了Ti-0.2Pd的面料,已运用近十年未见腐蚀。而钛管道、接头和气体散布器等都已选用钛材多年。   (3)是石油化工的重要质料,以炼油气中的和为质料,从异丙、过氧化异丙得到和,是一项新工艺。世界在十几年前就选用钛设备,我国此项工艺尚在开发之中。旧工艺用磺化碱溶液出产,我国已选用钛制中和反响釜、钛盘管冷却器和离子氮化钛的搅拌器轴套,作用很好。  (4)在乙烯氧化成、氧化成乙酸和氧化组成的设备中,除质料和产品有必定腐蚀性外,首要腐蚀介质是催化剂,不锈钢在其间腐蚀很快,唯有钛具有杰出耐蚀性。早在1963年美国就在乙烯氧化制出产中运用钛获得成功。我国第一套乙烯氧化制设备已于1976年投入运用,至今钛设备的运转状况杰出。国外衬钛反响器高达9.6m、直径为3m,还有换热器、催化剂再生塔、溶液冷却器等11台钛设备。我国在80年代今后,上海和吉林都别离引入国外的乙烯氧化制的成套设备,其间许多设备和泵阀等都用钛制作,较之不锈钢有显着长处,运用作用非常满意。氧化制的定型规划,钛设备有12台,一座年产3万吨的工厂,钛设备达40t。  (5)氧化制乙酸是我国的通用工艺,现已选用钛材作为高沸物再沸器,一级品醋酸塔再沸器和冷凝冷却器等多种设备。国外在精馏塔、分馏塔和蒸馏塔等都选用了钛设备。尤其在初级烷烃氧化制乙酸时副产品较多,含量达8%,腐蚀性极强,此刻用钛替代不锈钢,作用非常抱负。  (6)对二是组成涤纶的质料,工业上用氧化法制取。不管高温氧化仍是低温氧化均存在乙酸和化物的高温腐蚀,在温度高于135℃的介质中,316L不锈钢通过几十小时即发生点蚀。故规划规范规定在135℃以上有必要运用钛材。北京石化总厂引入全套钛设备,包含氧化反响釜、溶剂脱水塔、加热器、冷凝器、再沸器等16台。南京扬子石化公司引入年产45万吨对二设备,有56台钛设备和很多钛管道阀门。上海石化总厂引入的氧化反响釜高32m,上直径4m,下直径5.3m,容积为505m,设备自重达175t。运用钛材作用很好,推广运用远景光亮。  (7)尿素是优质化肥,又是石油化工的质料。自1963年第一台衬钛尿素组成塔投产以来,现在已有近万台设备在全世界运转,实践标明衬钛组成塔无显着腐蚀。而316L不锈钢的折算腐蚀速度为4.1—4.5mm/a。因而钛材比不锈钢具有更好的经济效益。除了衬钛尿素组成塔外,国内从70年代以来,先后运用了C02汽提塔、换热器、混合器和泵阀等。

海上钻井开采系统用钛

2019-01-25 13:37:03

钛合金具有高强度、低密度、优良的耐蚀性和良好的韧性,因而使其成为海洋钻探系统用设备如立管、钻管及锥形应力接头等的最好选择。在更多情况下,钛和钢的复合应用对海上钻探系统成本的降低和效益的提高具有很大的贡献。  在过去几年中,钛合金构件在海上石油钻探系统上的应用显著增加。钛合金使得钻井设备可以进入更深的水里和井里,包括温度更高和更具腐蚀性的环境中。以Ti-6Al-4V为基的钛合金,具有物理、机械和腐蚀等最佳的综合性能,对于海上钻探构件而言具有更大的吸引力。这些特点主要包括:  1、高的压缩和拉伸强度;  2、低密度与高强度结合,可使构件更轻;   3、良好的韧性和低的弹性模量,意味着弯曲应力较低,弯曲疲劳寿命高;  4、在空气及海水中具有高的疲劳寿命;  5、能耐高达300℃的含盐与酸性的油井流体的腐蚀;  6、在300℃下,基体及焊缝耐海水腐蚀;  7、优越的抗冲刷腐蚀性能;⑧良好的塑性和断裂韧性以及高的耐久性和损伤容限。  为了得到海洋开发系统不同应用部件的最佳性能,在Ti-6Al—4V合金的基础上进行了成分调整。如Grade 5合金(Ti-6Al-4V)最适合于做钻管。这是由于钻管对屈服强度和疲劳强度的要求较高,而其它两种低间隙元素合金,如Grade 29,Grade 23则适合于对断裂韧性要求较高的立管。当构件的服役温度超过75℃~80℃时,为了防止间隙腐蚀和应力腐蚀的发生或为了满足NACEMR-01-75标准的要求,通常要选择更加耐蚀的含钌的Grade 29合金(Ti—6Al—4V—Ru,ELI,≤0.13%),这些合金均可用传统的焊接方法焊接。  Ti—6Al—4V基合金在海上钻探系统应用的主要有以下几种构件。  (1)海上钻井立管钻井立管使用钛合金,除了减重外,还具有较好的损伤容限、易于用传统技术进行检查等优点。首次在海上大量使用钛合金钻井立管的是北海油田。在其高压立管中使用了30根599 mm(内径)X25 mm(壁厚)X14.6m(长)的Grade 23合金管材。采用钛合金立管的优点有  1)可将立管的牵引力从9.8 MN降至3.7 MN,因此,减小了张紧轮的尺寸;  2)可减少立管底部的活动连接,从而使其在钻井平台结构中易于手工操作;  3)减少了平台系统承载的质量;  4)不需要使用表面涂层。尽管钛合金立管的成本较不锈钢的要高,但使用后其整个系统的成本却比原来降低了40%。  虽然钛在立管上的使用取得很大成功,但全钛立管的市场却非常有限。由于经济原因,实际上多使用的将会是不锈钢/钛或复合材料/钛的立管。  (2)钻管 在短距离钻井中(曲率半径在18m以内),传统的不锈钢管过早地出现转动疲劳和物理磨损,因而RTI开发了由Grade5合金与标准Cr-Mo钢接头连接而成的钻管。这样设计避免了工具卡死和磨损并保证了其韧性和疲劳寿命。1999年,美国已用外径为73 mm的钛合金管成功地钻成了10口曲率半径18m的油井。近来,又用外径为63.5 mm的钛合金钻管钻成了曲率半径为12m~15m的油井。另外,钛合金的无磁性也是吸引人之处,使得油井勘探不受磁性的影响。在长距离钻井中,采用钢管,其钻井深度在垂直方向只到6.1km,水平方向为7.1km-9.1 km,而采用钛管材后,其垂直方向可达9.1km。大直径钛管的使用,使得钻具吊起所需的力减少了约30%,扭矩减少了30%~40%,并克服了液压传动装置的限制。  (3)钛锥形应力接头 金属锥形应力接头相对于橡胶/铜等柔性接头而言,设计紧凑,易于检查,气密性好,可在高温下使用等,钛的锥形应力接头,其长度只有钢的1/3,成本与钢的相差无几,甚至更低。RTI已设计和制造了Grade 23和Grade 29合金应力接头,并安装在墨西哥湾和北海的钻井平台上,由于相对较低的成本和成功应用实例,钛制应力接头市场呈现出持续增长的势头。

陶瓷复合管用途

2019-03-15 11:27:19

陶瓷钢管用途  液体管道输送已遍及电力、冶金、煤炭、石油、化工、建材、机械等行业,并高速地发展着。当管道内输送磨削性大的物料时(如灰渣、煤粉、矿精粉、尾矿、水泥等),都存在一个管道磨损快的问题。特别是弯管磨损更快。当管道内输送具有强烈腐蚀的气体、液体或固体时,都存在管道被腐蚀而很快破坏的问题。当管道内输送具有较高温度的物料时,存在着使用耐热钢管价格十分昂贵的问题。当陶瓷钢管上市后,这些问题均迎刃而解。陶瓷钢管广泛用于磨损严重的矿山充填料、矿精粉和尾矿运送,燃煤火电厂送粉、除渣、输灰等管道最合适。陶瓷钢管是输送强烈腐蚀的酸、碱、盐以及磨蚀兼有的固体、液体输送的理想管道。陶瓷钢管在高温腐蚀、高温磨损或高温熔蚀的场合下使用非常安全可靠。   本公司生产的陶瓷钢直管和陶瓷弯管、三通、四通等,已在一百多家燃煤电厂,五十多家矿山,以及煤碳、建材、机械、化工等行业得到了应用。例如在强烈磨损场合下,陶瓷钢直管使用数年,到现在为止,还没有一家陶瓷钢直管被磨穿过。磨损最快的陶瓷钢弯管,其寿命比铸石弯管,耐磨合金铸钢弯管,钢塑、钢橡弯管高十倍到二倍。   陶瓷钢管迅速占领市场,除质量高、性能好外,还在于它的性能价格比高于其他耐磨耐蚀耐热管材。在相同规格和单位长度的管道方面,陶瓷钢管重量只有耐磨合金铸钢管的二分之一左右,其每米工程造价降低20%-30%;只有铸石管重量三分之一,每米降低工程造价5%-10%;在腐蚀或高温场合下使用的陶瓷钢管,其价格只有不锈钢管、镍钛管的几分之一。

结构无缝钢管GB-T 8162-1999标准

2019-03-15 09:13:19

结构用无缝管是用于一般结构和机械结构的无缝钢管。结构无缝钢管GB-T 8162-1999标准 第一章 钢管生产概论 1.1 钢管的分类 1.2 钢管的技术要求钢管生产的技术依据 对钢管的尺寸偏差的要求 1.2.3 对钢管的长度要求 1.2.4 外形 1.2.5 重量 不同用途的钢管应各有什么样的技术条件 1.2.7 我公司的主要产品管线管、油管和套管的主要技术要求 1.2.8 钢管技术要求中常用术语 1.2.6 1.3 钢管的主要生产方法 第二章 热轧钢管生产工艺流程 2.1 一般工艺流程 穿孔 2.1.2 轧管 第三章 定减径(包括张减) 2.2 各热轧机组生产工艺过程特点 连续轧管机的几种形式 2.2.2 三辊(斜)轧管机轧管 各机组的异同 2.3 轧钢的几种形式 纵轧 2.3.2 横轧 斜轧 管坯及管坯加热 3.1 管坯准备 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2 管坯库 管坯上料 管坯锯切 环形炉简述 3.2 管坯加热 炉子结构及辅助设备 3.2.3 环形炉自动化系统(资料不全待定) 第四章 穿孔 4.1 二辊斜轧穿孔机及穿孔过程 4.2 斜轧穿孔运动学 4.2.1 两辊穿孔机运动学 2无缝钢管生产技术 4.3 穿孔的咬入条件 4.3.1 4.3.2 一次咬入条件 二次咬入条件4.4 孔腔形成机理 4.5 斜轧穿孔时的金属变形 4.5.1 4.5.2 4.6.1 4.6.3 管坯受力情况 金属变形 4.6 穿孔工具及设计 轧辊 4.6.2 导盘 导板 4.6.4 顶头 4.7 穿孔机调整参数确定 4.8 其他穿孔方法 压力穿孔 推轧穿孔 4.8.3 斜轧穿孔 4.8.1 4.8.2 4.9 力能参数的计算 轧制力 4.9.2 顶头轴向力的确定 4.9.3 斜轧力矩计算 4.9.1 4.10 穿孔机的设备组成 斜轧穿孔机的设备由哪几部分组成? 4.10.2 主传动的方式及特点? 4.10.3 管坯定心机的组成结构? 4.10.4 穿孔机机座(牌坊)有哪几部分组成? 4.10.1 导盘调整方式有哪几种? 4.10.6 三辊定心的作用和结构? 4.10.7 顶杆的冷却形式有哪些? 4.10.8 顶头的使用方式有几种? 4.10.5 4.11 常见工艺问题 内折 4.11.2 前卡 4.11.3 中卡 4.11.1 后卡(镰刀) 4.11.5 链带 4.11.6 壁厚不均 4.11.4 第五章 毛管轧制 5.1 限动芯棒连轧管机(MPM) 工艺描述 5.1.2 MPM 连轧管机的设备结构、平面布置及相关技术参数 5.1.3 MPM 连轧管机组的工作原理和工艺控制 5.1.1 5.1.4 主要设备及参数 目录 3 5.1.5 5.1.6 5.1.7 MPM 连轧管机轧制工具 MPM 连轧机的孔型设计 连轧机组在线检测系统 5.1.8 常见生产事故 5.2 PQF 连轧机组(PREMIUM QUALITY FINISHING) 5.2.1 5.2.2 概述 连轧工艺 5.2.3 PQF 主机说明 5.2.4 脱管机说明 5.2.5 芯棒循环系统 工具准备与更换 5.2.7 常见质量缺陷 5.2.6 5.2.8 连轧基本理论 5.3 新 型 ASSEL 轧 管 机 5.3.1 5.3.2 5.4.1 5.4.2 5.4.3 主要工艺设备 主要调整参数 自动轧管机轧管 Accu-Roll 轧管机轧管 5.4 其他热加工钢管的延伸方法 顶管机顶管 5.4.4 挤压钢管 5.4.5 周期轧管机(皮尔格轧管机)轧管 5.4.6 热扩钢管 第六章 钢管的再加热、定径与减径 钢管的再加热、 6.1 钢管空心轧制理论 6.1.1 6.1.2 6.2.1 6.2.3 6.2.4 张减速度制度原理 CARTAT 系统介绍 6.2 定径工艺 工艺描述 6.2.2 定径机的设备结构、平面布置及相关技术参数 定径机组的工作原理和工艺控制 操作及调整 6.2.5 常见事故处理方法 6.2.6 质量缺陷及控制要点 6.3 张力减径工艺 工艺概述 6.3.2 设备参数及工艺数据介绍 6.3.3 质量检查 6.3.1 关于可调机架 6.3.5 轧制之前的现场检查 6.3.6 工具的准备和更换过程 6.3.7 工艺控制参考 6.3.4 第七章 轧制表的编制 4无缝钢管生产技术 7.1 编制原则和程序 7.1.1 编制原则 7.1.2 编制轧制表的要求 7.1.3 编制轧制表的步骤 7.1.4 轧制表编制方法 7.2 编制方法 7.3 编制实例 第八章 钢管的冷却和精整 8.2 轧管厂精整管排锯 8.2.1 8.2.2 精整锯切机组设备概述 管排锯的切割过程及工艺控制要点 8.2.3 常见切割缺陷的处理方法 8.3 轧管厂精整矫直机 8.3.1 8.3.2 8.3.3 精整矫直机组设备概述 矫直机相关参 矫直原理 8.3.4 矫直机的矫直过程及工艺控制要点 8.3.5 常见矫直缺陷的处理方法 8.3.6 8.4.1 8.4.3 8.5.1 8.5.3 工具管理 8.4 热处理 前言 8.4.2 热处理的定义和意义 热处理基本原理 8.5 无损检测 无损探伤概论 8.5.2 漏磁探伤 涡流(ET)检测 8.5.4 磁粉检测 8.5.5 电磁超声 8.6 人工检查 8.6.1 8.6.2 8.7.1 8.7.2 检查程序 热轧无缝钢管缺陷 质量保证的控制要点简述 8.7 钢管的质量保 质量控制点 8.7.3 工艺文件的编制与执行 8.7.4 其它 第九章 钢管的试验检测 9.1 钢管的力学性能 前 言 9.1.2 金属材料的力学性能 9.1.3 管材工艺性能试验 9.1.1 目录 5 9.2 钢中的各种组织和夹杂物 9.2.1 9.2.2 钢中的各种组织简介 钢中非金属夹杂物含量的测定标准评级图显微检验法 9.2.3 金属平均晶粒度测定方法 9.3.1 直读光谱仪 9.3.2 碳硫分析仪 第四章 4.1 二辊斜轧穿孔机及穿孔过程 穿孔 1886 年德国的曼内斯 今天在无缝钢管生产过程中,穿孔工艺被广泛应用而且非常经济 。 曼兄弟申请了用斜辊穿孔机生产管状断面产品的专利。 专利中描述了金属变形时内部力的作 用和使用两个或多个呈锥形的轧辊进行穿孔,因此被称作曼内斯曼穿孔过程。 由 R.C 斯蒂菲尔发明的导板使得穿孔后的毛管长度得到增加。 后来狄舍尔发明了导盘, 使穿孔效率得到更大提高。 1970 年出现了锥形辊的穿孔机 , 在 它比以前的穿孔机在金属的 变形上有明显的改进。 在无缝钢管生产中,穿孔工序的作用是将实心的管坯穿成空心的毛管。穿孔作为金属变 形的第一道工序,穿出的管子壁厚较厚、长度较短、内外表面质量较差,因此叫做毛管。如 果在毛管上存在一些缺陷, 经过后面的工序也很难消除或减轻。 所以在钢管生产中穿孔工序 起着重要作用。 当今无缝钢管生产中穿孔工艺更加合理,穿孔过程实现了自动化。 斜轧穿孔整个过程可以分为三个阶段 第一个不稳定过程--管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次 咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。 稳定过程--这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离 开变形区为止。 第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止。 稳定过程和不稳定过程有着明显的差别, 这在生产中很容易观察到的。 如一只毛管上头 尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。 头尾尺寸偏差大是不稳定过程特征之一。 造成头部直径大的原因是: 前端金属在逐渐充满变 形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特 别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得 轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直径大。尾端直径 小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧 小,所以外径小。 生产中出现的前卡、后卡也是不稳定特征之一,虽然三个过程有所区别,但他们都在同 一个变形区内实现的。变形区是由轧辊、顶头、导盘(导板)构成。见图 4-1。 从图中可以看出,整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆 形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧 形顶头。 变形区形状决定着穿孔的变形过程,改变变形区形状(决定与工具设计和轧机调整)将 导致穿孔变形过程的变化。穿孔变形区大致可分为四个区段,如图 4-2 所示 。 Ⅰ区称之为穿孔准备区, (轧制实心圆管坯区)。Ⅰ区的主要作用是为穿孔作准备和顺 8 无缝钢管生产技术 利实现二次咬入。这个区段的变形特点是:由于轧辊入口锥表面有锥度,沿穿孔方向前进的 管坯逐渐在直径上受到压缩, 被压缩的部分金属一部分向横向流动, 其坯料波面有圆形变成 椭圆形,一部分金属轴向延伸,主要使表层金属发生形变,因此在坯料前端形成一个“喇叭 口”状的凹陷。此凹陷和定心孔保证了顶头鼻部对准坯料的中心,从而可减小毛管前端的壁 厚不均。穿孔变形区中四个区段 Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金 属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与 顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个 区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和 纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。 导盘的作用不仅可 第四章 穿孔 9 以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。 Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶 头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段 也是椭圆形,并逐渐减小。 Ⅳ区称为归圆区。 该区的作用是把椭圆形的毛管, 靠旋转的轧辊逐渐减小直径上的压下 量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变 形,变形力也很小。 变形过程中四个区段是相互联系的, 而且是同时进行的, 金属横截面变形过程是由圆变 椭圆再归圆的过程4.2.1 斜轧穿孔运动学 两辊穿孔机运动学 4.2.1.1 螺旋轧制的速度分析 穿孔机轧辊是同一方向旋转,且轧辊轴相对轧制轴线倾斜,相交一个角度称作前进角。当 圆管坯送入轧辊中,靠轧辊和金属之间的摩擦力作用,轧辊带动圆管坯—毛管反向旋转,由于 前进角的存在,管坯—毛管在旋转的同时向轴向移动,在变形区中管坯—毛管表面上每一点都 是螺旋运动,即一边旋转,一边前进。 表现螺旋运动的基本参数是: 切向运动速度、 轴向运动速度、 和轧辊每半转的位移值 (螺 距)。 首先来讨论轧辊上任意一点的速度,如果轧辊圆周速度为 VR,则可以分解为两个分量 (切向分量和轴向分量)。 10 无缝钢管生产技术管 坯 轴 轧辊轴线线下VaR=VRCOSβ=πD Nb/60×COSβ切向旋转速度 (1) VtR=VR sinβ=πD Nb/60×Sinβ轴向速度 (2) 式中 D所讨论截面的轧辊直径,mm; Nb轧辊转速, rpm;v β咬入角。 在轧制过程中由于坯料靠轧辊带动,轧辊将相应的速度传递给管坯,则管坯速度为: VB=πD Nb/60×COSβ (3) 但实际上轧辊速度和金属速度并非完全相等。 一般金属运动速度小于轧辊速度, 即两者 之间产生滑移,可用滑移系数来表示两者速度,这样 VaR =πD Nb/60×COSβ×ητ (4) VtR=πD Nb/60×sinβ×η0 (5) 式中:ητ 切向滑移系数, η0 轴向滑移系数,两者小于 1。 不同的材料有不同的滑移系数,参考如下: 碳钢 η0 = 0.8~1.0 低合金钢 η0 = 0.7 ~ 0.8 高合金钢 η0 = 0.5 ~ 0.7 在生产中最有实际意义的是毛管离开轧辊时的那一点速度,众所周知,出口速度愈大, 即生产率也愈高。为了简化计算,一般假设轧辊出口速度等于 VtR,实际误差包含在滑移系 数中。 毛管离开轧辊一点的轴向滑移系数可用公式(2)求出轴向速度,除以毛管长度得出理论的 穿孔时间,再和实测时间相比,即η0=T 理/T 实.这样确定η0 后,则可计算出毛管离开轧辊的轴 向速度。 螺距在变形中是个可变值,并且随着管坯进入变形区程度增加而增加,这是由于管坯- 第四章 穿孔 11 毛管断面积不断减小而轴向流动速度不断增加所致。 毛管离开轧辊一点的螺距值计算公式为: T=π/2×η0/ητ×d×tgβ 式中:d毛管直径 4.3 穿孔的咬入条件 斜轧穿孔过程存在着两次咬入, 第一次咬入是管坯和轧辊开始接触瞬间, 由轧辊带动管 坯运动而把管坯曳入变形区中,称为一次咬入。当金属进入变形区到和顶头相遇,克服顶头 的轴向阻力继续进入变形区为二次咬入。 一般满足了一次咬入的条件并 不见得就能满足二次咬入条件。在生产中我们常常看到, 二次咬入时由于轴向阻力作用,前进运动停止而旋转继续着即打滑。 4.3.1 一次咬入条件 一次咬入既要满足管坯旋转条件又要满足轴向前进条件。 管坯咬入的力能条件由下式确定: Mt ≥ Mp + Mq + Mi 式中:Mt - 使管坯旋转的总力矩; Mp—由于压力产生的阻止坯料旋转力矩 Mq—由于推料机推力而在管坯后端产生的摩擦力矩 Mi—管坯旋转的惯性矩 如果忽略 Mq、 Mi(值很小)则一般的表达式为: n (Mt + Mp) ≥ 0 (n—轧辊数) (6) 前进咬入条件是指管坯轴向力平衡条件, 也就是, 曳入管坯的轴向力应大于或等于轴向 阻力,其表达式为: n (Tx-Px) + P′ ≥ 0 (7) 式中:Tx—每个轧辊作用在管坯上的轴向摩擦力 Px--每个轧辊作用在管坯上正压力轴向分量 P′—后推力 (一般为零) 一次咬入所需旋转条件 下面的公式表明在管坯咬入时力的平衡, 两个重要参数, 摩擦系数和角速度可以通过下 面公式计算。 (8) 式中: ——轧辊入口锥角 ——咬入角 ——辊喉处的直径减径值 12 无缝钢管生产技术 若想管坯咬入顺利些,可以将咬入角变大些、轧辊的入口锥角小些,或者通过施加管坯 的推入力和加大轧辊表面的辊花深度。 4.3.2 二次咬入条件 二次咬入的力能条件 二次咬入中旋转条件比一次咬入增加了一项顶头/顶杆系统的惯性阻力矩,其值很小。 因此二次咬入旋转条件,基本和一次咬入相同。二次咬入的关键是前进条件。 二次咬入时轴向力的平衡条件: n (Tx-Px) -Q′ ≥ 0 (9) 式中:Q′—顶头鼻部的轴向阻力 二次咬入所需旋转条件 二次咬入的条件在轴向管坯的推入力要大于顶头和管坯与轧辊之间的摩擦力, 能实现二 次咬入的前提是在管坯接触顶头前(x=自由长度) 管坯至少要旋转一周。 式中:d B——管坯直径 4.4 孔腔形成机理 斜轧实心管坯时, 在顶头接触管坯前常易出现金属中心破裂现象, 当大量裂口发展成相 互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。见图 4-5。在顶头前过早 形成孔腔,会造成大量的内折缺陷,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺 中力求避免过早形成孔腔。 图 4-5 孔腔示意图 影响孔腔形成的主要因素有: 变形的不均匀性(顶头前压缩量) 第四章 穿孔 13 不均匀变形程度主要决定于坯料每半转的压缩量(称为单位压缩量),生产中指顶头前 压缩量。 顶头前压缩量愈大则变形不均匀程度也愈大, 导致管坯中心区的切应力和拉应力增 加,从而容易促进孔腔的形成。一般用临界压缩量来表示最大压缩量值的限制,压缩量小于 临界压缩量则不容易或不形成孔腔。 椭圆度的影响 穿孔过程中在管坯横断面上存在着很大的不均匀变形, 椭圆度愈大, 则不均匀变形也愈 大。 按照体积不变定律可知, 横向变形愈大则纵向变形愈小, 将导致管坯中心的横向拉应力、 切应力以及反复应力增加,加剧了孔腔的形成趋势 单位压缩次数的影响 在生产中主要指管坯从一次咬入到二次咬入过程中管坯的旋转次数, 次数的增多就容易 形成孔腔。 钢的自然塑性 钢的自然塑性由钢的化学成分、 金属冶炼质量以及金属组织状态所决定, 而组织状态又 由管坯加热温度和时间所影响。一般来说塑性低的金属,穿孔性能差,容易产生孔腔。 4.5 4.5.1 斜轧穿孔时的金属变形 管坯受力情况 图 4-6 显示管坯的受力情况,图中显示 F 为轧辊方向(平面)的力,为压应力,在接触 点的位置显示为最大。中心部位(导盘方向)显示为拉应力,理论上在导盘的中心部位受力 为最大。因为管坯的不断旋转,同一部位的受力情况不断变化,导致中心部位的金属受到交 变应力的作用,中心产生疏松,形成孔腔。 图 5 金属受理分析图 4.5.2 金属变形 斜轧穿孔过程中存在着两种变形,即基本变形(或宏观变形)和附加变形(称不均匀变形) 基本变形是指外观形状的变化, 这种变形是可以直观的, 如由实心圆管坯变成空心的毛 图 4-6 4.5.2 金属变形 金属变形 基本变形完全是几何尺寸的变化, 与材料的性质无关, 而且基本变形取决于变形区的几 14 无缝钢管生产技术 何形状(由工具设计和轧机调整所决定)。 附加变形指的是材料内部的变形, 是直观不到的变形, 附加变形是由于材料中内应力所 引起的,是增大材料的变形应力,引起材料中产生的缺陷,所以在实际生产中如何来减小附 加变形是很重要的。 4.5.2.1 基本变形 基本变形即延伸变形,切向变形和径向变形(壁厚压缩)。这三种变形都是宏观变形, 表示外观形状和尺寸变化。基本变形可用下式表示: 径向应变增量:  r = ln 纵向(延伸)应变增量: s1 s0 l = ln 切向(圆周)应变增量: l1 l0 t = ln 4.5.2.2 附加变形 2  ( D1  s1 ) D0 附加变形包括有扭转变形, 纵向剪切变形等, 附加变形是由于金属各部分的变形不均匀 产生的,附加变形会带来一系列的后果,如造成变形能量增加,以及由于附加变形所引起的 附加应力,容易导致毛管内外表面上和内部产生缺陷等。 纵向剪切变形主要是由于顶头的轴向阻力所造成的, 一方面轧辊带动管材轴向流动, 而 顶头要阻止金属轴向流动, 最终导致各金属轴向流动有差异, 可是各层金属又是互相联系的, 是一个整体,所以在各层金属间必然产生附加变形和附加应力,特别是和轧辊、顶头直接接 触的表面层金属 ,由图中可看出,附加变形更大些,因此毛管内外表面很容易出现缺陷或 者使管坯表面原有的缺陷发展扩大。 切向剪变形往往是造成毛管内外表面产生缺陷原因之一 (如裂纹、 折迭、 离层等缺陷) 。 4.6 穿孔工具及设计 穿孔机工具主要包括:轧辊、顶头和导板(导盘)。这些工具是直接参与金属变形的。 除此之外,还包括顶杆、毛管定位叉、导管、导槽等部件。 工具的尺寸和形状要求合理,这样才能保证穿出高质量的毛管,保证穿孔过程的稳定、 生产率高、低能耗、工具耐磨性高、使用寿命长的要求。 4.6.1 轧辊 穿孔机轧辊形状主要有盘式辊、桶形辊和锥形辊,盘式辊很少使用,常用的是桶形辊和 第四章 穿孔 15 锥形辊。 从大体的形状来看, 桶形辊和锥形辊度一般是由两个锥形段组成的, 即入口锥和出口锥。 如果细分的话, 入口锥又可以分为一段式和两段式, 两段式是为了改善咬入条件和减少从车 次数。根据毛管扩径量的需求,出口锥也可以分为一段式和两段式,两段式用于大扩径量的 机组。 另外,有的轧辊在入口锥和出口锥之间采用过渡带即轧制带,有的则没有。轧制带的作 用是防止两锥相接处形成尖锐棱角,这种棱角在穿孔时会使毛管外表面产生划伤。 轧辊的特征尺寸指轧辊最大直径和辊身长,轧辊最大直径和辊身长度是根据轧辊长度、 轧制速度、咬入条件、轧制产品规格、电能消耗、轧辊重车次数等因素确定。 轧辊直径增加, 则咬入条件改善、 轧制速度提高、 轧辊重车次数增加、 轧辊的利用率高, 但同时也增加了轧制压力和电能消耗。 4.6.1.1 轧辊的入口锥角和出口锥角 轧辊的入口锥角和出口锥角? 轧辊入口锥的角度大小决定管坯能否顺利咬入和积累足够的力以克服顶头阻力使管坯 穿成毛管。相关的文献指出,入口锥角在 2~40 之间,一般情况下将轧辊的入口锥设计成两 段,第一段的角度在 1~30 之间,为的是保证管坯的咬入,第二段的角度在 3~60 之间,为 的是防止形成孔腔。 轧辊的出口锥角在 3~40 之间,这取决于管坯的扩径量,扩径量越大,角度越大。 4.6.1.2 轧辊的入口锥和出口锥长? 轧辊的入口锥和出口锥长? 确定轧辊入口锥和出口锥的长度首先为了校核轧辊的长度是否满足毛管咬入和扩径的 要求,其次为在生产中合理使用轧辊。 轧辊入口锥长的计算公式为: 轧辊出口锥长的计算公式为: 注:DB-管坯直径; E-轧辊距离; DR-毛管直径; αe—轧辊入口锥段的空间角,可以近似等于轧辊入口锥角; αa—轧辊出口锥段的空间角,可以近似等于轧辊出口锥角。 4.6.2 导盘 导盘的作用是封闭孔型。导盘设计要素主要有:接触弧半径和厚度。见图 4-7。 16 无缝钢管生产技术 图 4-7 4.6.2.1 导盘的轮廓 导盘的轮廓是由一般有两个半径入口半径 R2、 出口半径 R1 组成, 根据经验我们可以确 定其值的大小: R2=(0.66~0.70)*DB 入口半径: R1=(0.8~0.87)*DB 出口半径: 4.6.2.2 导盘厚度 到盘厚度由最小轧辊距离和导盘与轧辊的最小间隙决定。大小为: B=(0.8~1.0)* DB 注:DB-管坯直径 4.6.3 导板 导板的设计原则是:一种管坯需要设计一种导板,如果是用一种管坯生产不同尺寸的毛 管,可以只设计一种导板。 导板的纵剖面形状应与轧辊辊形相对应,也有入口锥、压缩带和出口锥组成。导板入口 锥主要起到引导管坯的作用,使管坯中心线对准穿孔中心线。当管坯与上、下导板接触时, 它起着限制管坯椭圆度的作用。 限制椭圆度是为了避免过早形成孔腔, 同时促进金属的纵向 延伸。导板的出口锥起限制毛管横变形,并控制毛管轧后外径的作用。 压缩带是过渡带,它不在导板的中间,而是向入口方向移动,移动值一般在 20~30mm, 也有到 50mm 的。 移动的目的是: 可以减小管坯在顶头上开始碾轧时的椭圆度和减小导板的 轴向阻力,提高穿孔速度。 导板的入口锥角一般等于轧辊入口锥角或比轧辊入口锥角大 10~20,出口锥角一般等 于轧辊的出口锥角或比轧辊的出口锥角小 0.50~10。 导板的横断面形状是个圆弧形凹槽, 这是为了便于管坯和毛管旋转。 凹槽的圆弧可做成 单半径或双半径的。 导板的长度由变形区长度决定,压缩带宽度一般为 10~20mm. 导板的厚度根据轧辊距离来确定, 以薄壁毛管为设计对象。 适应薄壁管的导板一定适应 第四章 穿孔 17 厚壁管的生产。 4.6.4 顶头 顶头的种类按冷却方式来分,有内水冷、内外水冷、不水冷顶头(穿孔过程和待轧时间 内都不冷却,主要指生产合金钢用的钼基顶头): 按顶头和顶杆的连接方式来分,有自由连接和用连接头连接顶头。 按水冷内孔来分,有阶梯形、锥形和弧形内孔顶头。内孔与外表面之间的壁厚有等壁和 不等壁两种。 按顶头材质分,有碳钢、合金钢和钼基顶头。 从扩径段分:有 2 段式、3 段式、4 段式。扩径率小于 20%用 2 段式顶头,大于 20%用 3 或 4 段式顶头。 为延长顶头的使用寿命, 应通过加强冷却水的压力来提高顶头在孔型中顶头的冷却, 尤 其是顶头的前部。使用内水冷主要是为了降低顶头内部温度,应尽可能降到最低水平,冷却 水压应保证在 10~15 bar。 影响顶头寿命的因素: 管坯材质,合金含量越高,变形抗力越大,顶头寿命越低; 顶头化分和热处理工艺,热处理工艺决定顶头寿命。 穿孔时间和管坯长度,穿孔时间越长,顶头温度越高,顶头越容易变形和损坏。 顶头在穿孔过程中,顶头承受着交变热应力、摩擦力及机械力的作用,力的大小影响顶 头的寿命。顶头过分磨损会划伤毛管内表面,粘钢后产生内折。 顶头一般是轧制的、 锻造的或者是铸钢的。 搬运顶头时应保护表面的氧化层, 避免脱落, 否则影响使用寿命。 更换标准是: 顶头头部磨损,磨损带长度超过 5mm,破损面积超过 30cm2. 穿孔段出现裂纹;裂纹长度超过 60mm,宽度在 1.0mm 左右。 粘钢,有粘钢就该更换。 剔废的顶头原则上不能重复使用,若重车,需要再次热处理。 4.6.4.1 计算过程: 计算过程: 下面以 2 段式顶头举例说明设计过程,设计的前提是必须已知轧辊的尺寸和管坯直径、 毛管直径、毛管壁厚及咬入角。 ——确定轧制带处(HP)的辊距(E) 辊距(E)的大小取决于: 材料的钢级 管坯的直径 毛管壁厚 下面是一些常见钢中的辊距值(E) E = 0.84 to 0.9 * DB = 84 to 90 %, usual 86 – 89 % 碳钢: E = 85 ~ 90 %, 87 ~ 90 % 低合金钢: E = 88 ~ 91 %, 88 ~ 90 % 高合金钢 确 定轧辊的入口长度(Le)和出口长度(La),计算它们是为了验证其长度是否超过 18 无缝钢管生产技术 轧机的设计长度,公式见前面轧辊设计部分。 如果计算的结果是入口长度(Le) 或出口长 度(La) 比轧辊现有的相应部分大的话就得加大轧辊间距(E)或者增加入口锥角和出口锥 角 ——确定顶头直径(Dd) ——毛管与顶头的间隙值(CH),目前仍以经验值或经验公式为主 ——确定顶头坪滑段的长度(LGT2) 平滑段的作用是均匀壁厚的偏差, 长度至少要保证毛管能够转一周并加上保险系数。 即 SF—平滑系数 1.2 ~2, 通常为 1.5 --咬入角 LGT2 必须小于顶头过 HP 处的长度, 否则的话减小系数值。 平滑段的角度 似等于轧辊的出口锥角 ——确定顶头穿孔段末端的直径(DR) 近 ——计算顶头前伸量 Ld1 顶头前伸量的大小影响着穿孔的过程和毛管的质量.生产中应避免在顶头的前部形成空 腔 ,这样有利于减轻毛管内表面的缺陷。但起决定性的影响内表面缺陷的因素有顶头前直 径减径率和管坯接触顶头前转动的次数。换句话说,顶头前直径减径率的参考极限值如下: 碳钢 低合金钢 高合金钢 ——自由段长度 (GL), 机关批从接触轧辊到顶头前的长度,必须保证管坯转一周。 GF1 to 1.5 如果轧辊之境与管坯直径的比值较大的话, GF 可以取值范围为 0.8 to 1 所以顶头位置(Ld1)为: 顶头前伸量的值至少要大于 40mm,系数 GF 通常影响顶头位置和 顶头前的压下量。 ——确定顶头长度(Ld) 第四章 穿孔 19 顶头再 HP 后长度(Ld2)计算公式如下: 所以顶头长(Ld)为 —— 确定顶头鼻部的直径(F) 一般情况下 F = 0.25 to 0.30 * Dd (Dd圆弧半径为: 圆弧半径值 (Rd) 范围在 300~ 900 mm 之间. 的 限值。 4.6.4.2 顶头计算过程(2 段式顶头) 顶头计算过程( 段式顶头) ——给定 2 段式顶头的圆弧半径值不要取上 ——计算 辊距 E 177,2 mm (选择直径压下率为 88.6 % of DB, 见附表 1 ) 入口锥长度 出口锥长度 顶头与毛管的间隙 20 无缝钢管生产技术 Clearance: CH10 mm (见附表 2) 桶形棍—— CH (锥形辊取值比桶形辊大) 平滑段长度 故取 确定平滑段开始处的直径 自由工作段长度(咬入段) 选择 GF 1.05 顶头前伸量 顶头在 HP 点后的长度 顶头长 核查顶头前伸量 第四章 穿孔 21 核查实际的咬入系数 F=0.2*165 F= 33mm 22 无缝钢管生产技术 附表 1: ——直径压下率 ——径壁比 附表 2: CH 壁厚 第四章 穿孔 23 4.7 穿孔机调整参数确定 现代的穿孔机在整个机组中承担的变形量愈来愈大。 表示穿孔变形的参数有: 直径扩径 率、延伸系数、轧制带处的压下量、顶头前压下量。 直径扩径率 一般在 3~40%的范围内,锥形辊穿孔机的扩径率明显高于桶形辊穿孔机。扩径率大, 容易产生内外表面缺陷或恶化壁厚不均,因此最好采用等径或小扩径穿孔。图 4-8 显示锥形 辊与桶形辊扩径值的比较。 图 4-8 扩径值比较 延伸系数 延伸系数大意味着毛管壁厚薄。管坯直径愈大,在同一壁厚下,延伸系数愈大。随着锥 形辊穿孔机的的广泛使用,以 180 机组为例,穿孔毛管的最小壁厚可以达到 8mm。 轧制带处的压下量 它表示管坯直径在轧制带处的变化量,取值范围在 9~12%,穿孔薄壁管取大值,厚壁 管取小值。 它表示管坯直径从一次咬入点到二次咬入点的变化量, 它的大小决定管坯的二次咬入效 果,过大又容易形成钢管内折缺陷。 穿孔机主要的调整参数有轧辊距离、顶头前伸量、导板(导盘)距离、前进角的大小和 轧辊转速(导盘速度)。 调整的基本原则是毛管几何尺寸满足轧管机组的要求,壁厚均匀且内外表面良好。 调整的方法可以参考下表(表中没有涉及到前进角的调整): 24 无缝钢管生产技术 原 因 辊 减小 增加 减小 增加 增加 减小 - - 距 导 - - - - 距 顶 前 量 - - 增加 减小 增加 减小 - - 多增加 多减小 (增加) (减小) 壁厚稍微厚 壁厚稍微薄 壁厚太厚 壁厚太薄 外径太大 外径太小 外径稍微大 外径稍微小 外径、壁厚都太大 外径、壁厚都太小 外径太大、壁厚太小 外径太小、壁厚太大 如何确定轧辊距离? -(减小) -(增加) 减小 增加 - - - - -(增加或减小) -(增加或减小) 多增加 多减小 轧辊距离指的是两个轧辊的轧制带之间的距离, 它是重要的调整参数之一。 确定轧辊距 离(E)的前提条件是应明确: ——管坯材质 ——管坯直径 ——毛管壁厚 下列数据为标准数据: E=(0.84~0.90)*DB 碳钢: 通常为(0.86~0.89)*DB 低合金钢: E=(0.85~0.90)*DB 通常为(0.87~0.90)*DB 高合金钢: E=(0.88~0.91)*DB 通常为(0.88~0.90)*DB 一般情况下,厚壁管上限值为 0.93*DB,薄壁管取下限。 如何确定导盘距离? 导盘距离与轧辊距离的比值决定着轧件在变形区中的椭圆度,而椭圆度又影响毛管质 量、咬入条件、轴向滑移、穿孔速度、扩径量、轧卡及毛管尺寸控制等。特别是对毛管质量 (穿孔合金钢管)影响更为明显,椭圆度越大,毛管内表面出现裂纹的可能性越大,过早形 成空腔的可能性越大。 生产中, 导盘距离总是大于轧辊距离, 二者比值即椭圆度系数, 一般在 1.07~1.15 之间, 穿孔厚壁管和合金管时取小值。 确定导盘距离可按椭圆度系数推导: A=(1.07~1.15)*E 注:A—导盘距离 E—轧辊距离 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 第四章 穿孔 25 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 如何确定顶头前伸量? 顶头前伸量的测量方法是, 将顶头/顶杆深入到轧辊之间, 测量顶头头部到轧辊轧制带 之间的距离。 确定顶头前伸量的步骤如下: Ld1=Le-X X=π*DB*tan(β)*FE 注:Ld1—顶头前伸量 Le—轧辊入口锥长 β—前进角 FE—系数,取值范围在 1~1.5 之间 顶头前伸量和轧辊距离有着密切的联系,顶头前伸量增加,顶头前压下量减小,相反顶 头前伸量减小,顶头前压下量增加。 顶头前伸量调整在生产中有着重要意义。 因为顶头前伸量的大小和毛管质量、 咬入条件、 轴向滑移、穿孔速度、轧卡以及毛管尺寸控制等都有关。 什么是扩展值?如何确定顶头与毛管的间隙量? 毛管内径与顶头之差叫做扩展值, 计算扩展值是选择顶头直径的重要依据, 不同壁厚毛 管的扩展值是不同的, 不同形式的穿孔机扩展值变化的规律也不一样。 影响扩展值的因素还 有:变形区椭圆度、穿孔温度、钢种等。 扩展值用 CH 表示,大小为: CH=DH-2*SH-Dd 使用锥形辊穿孔机的扩展值 CH 值与桶形辊穿孔机的扩展值 CH 关系是: CHctp=1.5*CH CH 的经验值计算方法是: CH=(0.09+0.076*DB)-(0.007+0.0013*DB)*SH 注:DB—毛管外径 SH—毛管壁厚 Dd—顶头直径 如何计算穿孔的轧制时间? 穿孔的轧制时间的多少往往表示一个机组的能力大小, 斜轧穿孔机的工作时间由下面公 式计算: 式中 Dw—轧辊的工作直径; 26 无缝钢管生产技术 L1-变形区长―; L0-毛管长; n—轧辊转速; η0-轴向滑移系数; β-前进角(轧辊倾角) 如何选择轧辊的前进角? 前进角及轧辊轴线与轧制线在水平面内的夹角。选择的范围在 8~150 之间,常用的角 度为 10~120。。前进角的选择影响以下几方面: 前进角越大,毛管的出口速度越大,轧制时间相应减少,可以提高机组的节奏,还可以 降低工具消耗; 前进角越小,管坯咬入条件越好,原因是管坯与轧辊的接触面积增大,摩擦力增大的缘 故。 前进角的大小决定轧制力的大小,角度越大,轧机负载越大。若在一个轧辊上使用不同 直径的管坯(不同孔型),角度随管坯直径增加而减小。 4.8 其他穿孔方法 管坯的穿孔方式有压力穿孔,推轧穿孔和斜轧穿孔。 4.8.1 压力穿孔 压力穿孔是在压力机上穿孔, 这种穿孔方式所用的原料是方坯和多边形钢锭。 工作原理 是首先将加热好的方坯或钢锭装入圆形模中 (此圆形模带有很小的锥度),然后压力机驱 动带有冲头的冲杆将管坯中心冲出一个圆孔。 这种穿孔方式变形量很小, 一般中心被冲挤开 的金属正好填满方坯和圆形模的间隙,从而得到几乎无延伸的圆形毛管,延伸系数最大不超过 1.1。 4.8.2 推轧穿孔 推轧穿孔是在推轧穿孔机上穿孔,这种穿孔方式是压力穿孔的改进。把固定的圆锥形模 改成带圆孔型的一对轧辊。这对轧辊由电机带动方向旋转(两个轧辊的旋转方向相反),旋 转着的轧辊将管坯咬入轧辊的孔型, 而固定在孔型中的冲头便将管坯中心冲出一个圆孔。 为 了便于实现轧制,在坯料的尾端加上一个后推力(液压缸),因此,叫做推轧穿孔。 这种穿孔方式使用方坯,传出的毛管较短,变形量很小,延伸系数一般不大于 1.1。 推轧穿孔的优点如下: 坯料中心处于全应力状态,过程是冲孔和纵轧相结合,不会产生二辊斜轧的内折缺陷, 毛管内表面质量好,对坯料质量要求较低; 冲头上的平均单位压力比压力穿孔小 50%左右,因而工具消耗较小; 穿孔过程中主要是坯料的中心部分金属变形, 使中心粗大而疏松的组织很好的加工而致 密化,同时在压应力作用下,毛管内外表面不易产生裂纹。 生产率比压力穿孔高,可达每分钟两支; 以上两种穿孔多生产特殊钢种的无缝钢管,现存的机组很少,因变形量很小,毛管短且 厚, 因而在热轧无缝钢管机组中要设置斜轧延伸机, 将毛管的外径和壁厚减小并使管子延长。 第四章 穿孔 27 另外容易产生较大的壁厚不均。 4.8.3 斜轧穿孔 这种穿孔方式被广泛的应用于无缝钢管生产中, 一般使用圆管坯, 靠金属的塑性变形加 工来形成内孔,因而没有金属的损耗。 斜轧穿孔机的分类 斜轧穿孔机按照轧辊的形状可分为锥形辊穿孔机、 盘式穿孔机和桶形辊穿孔机。 按照轧 辊的数目分又可分为二辊斜轧穿孔机和三辊斜轧穿孔机。 锥形辊穿孔机、 桶形辊穿孔机 是当今广泛使用的主要机组, 锥形辊穿孔机的历史较短, 具有更多优点。比较如下: 桶形辊穿孔机的轧辊可以上下和左右布置,而锥形辊穿孔机的轧辊只能上下布置; 桶形辊穿孔机的轧辊由两个锥形组成,锥形辊穿孔机的轧辊由一个锥形组成; 桶形辊穿孔机的轧件速度变化为小-大-小, 锥形辊穿孔机的轧件速度随轧辊直径的增 加从小逐步增大; 毛管在孔型中的宽展,锥形辊穿孔机要小些,更有利金属轴向延伸变形,附加变形小,毛 管内表面质量好,壁厚精度较桶形辊穿孔机高; 锥形辊穿孔机的延伸系数比桶形辊穿孔机大, 更适合穿孔薄壁毛管, 使得轧管机组的机 架数目可以减少; 斜轧穿孔机不管轧辊的形状如何不同, 为了保证管坯曳入和穿孔过程的实现, 都由以下 三部分组成:穿孔锥(轧辊入口锥),辗轧锥(轧辊出口锥)和轧辊压缩带——由入口锥到 出口锥之过渡部分。 二辊式穿孔机和三辊式穿孔机的特点? 二辊式穿孔机主要有带导辊的穿孔机、 带导板的穿孔机和带导盘的穿孔机, 带导辊的穿 孔机一般不常用,只用于穿孔软而粘的有色金属,如铜管、钛管等。带导板的穿孔机具有孔 型封闭好、接触变形区长、穿出的毛管壁厚可以更薄的特点而仍然得到重视;带导盘的穿孔 机越来越得到发展,它的特点是: 生产率高,这是由于 主动导盘对轧件产生轴向拉力作用,导致毛管轴向速度增加。最快 可以达到 3~4 支/分; 由于导盘的轴向力作用,使管坯咬入容易一些,减少了形成管端内折的可能性,也可以 提高壁厚的精度; 导盘比导板有较高的耐磨性,从而减少了换工具的时间并提高了工具寿命; 三辊式穿孔机的特点是: 由于三个辊呈等边三角形布置,因而在变形中管坯横断面的椭圆度小; 由于三个辊都是驱动的,仅存在顶头上的轴向力,因而穿孔速度较快,但顶头上的轴向 阻力比二辊式大; 在轧制实心管坯时,由于管坯始终受到三个方向的压缩,加上椭圆度小,一般在管坯中 心不会产生破裂,即形成孔腔,从而保证了毛管内表面质量。这种变形方式更适合穿孔高合 金钢管。三个轧辊穿孔时坯料和顶头容易保正对中,因此毛管几何尺寸精度高,即毛管横断 面壁厚偏差小。 因穿孔薄壁毛管时容易形成尾三角,使毛管尾端卡在轧辊辊缝中,更适合穿孔中厚壁毛管。 28 无缝钢管生产技术 4.9 4.9.1 力能参数的计算 轧制力 计算总轧制压力,首先要确定接触面积。 4.9.1.1 变形区长度的确定 变形区的长度是入口断面到出口断面的距离。如图 4-9 所示。考虑送进角 α 时,变形区 长度按 4.1 式计算[11]。 图 4-9 穿孔时的变形区图示 l = l1 + l 2 = ( d p  dH 2tgα 1 ) cos α + ( dm  dH ) cos α 2tgα 2 d 其中: p 入口断面上的管坯直径, mm ; d m 出口断面上的毛管直径, mm ; d H 轧辊之间的最小距离, mm ; (4.1) α 1 ——轧辊的入口錐母线倾角,度 α 2 ——轧辊的出口錐母线倾角,度 α ——送进角,度。 4.9.1.2 接触面宽度的确定 在斜轧穿孔时,沿变形区长度,接触表面的宽度是变化的。任一断面的接触宽度 b [12], 如图 4-10 所示。 第四章 穿孔 29 图 4-10 穿孔时的接触面积 b= (4.2) 式中: D ——该断面上的轧辊直径; d ——该断面上的坯料直径; r ——径向压下量; 1 上式中的径向压下量 r ,根据图 4-1。对各个区域分别按下列公式计算。 对于区域Ⅰ, r 表示坯料在 k 转中两相邻断面半径之差 1 r = s tan α 1 对于区域Ⅱ, r 表示坯料在 k 转中两相邻断面壁厚之差 (4.3) (4.4) (4.5) rd + 2r 2 d r 1+ + 2 D D r = s(tan α 1 + tan γ ) 对于区域Ⅲ, r = s(tan γ  tan α 2 ) 式中: γ ——顶头锥体的母线的倾斜角; s ——螺距。 η 0 F1 d1 tan α ηt F K 式中: F1 ——金属在出口断面上的面积; s =π (4.6) η t ——出口断面的切向滑动系数,η t ≈ 1 ; η 0 ——轴向滑动系数; η 0 = 0.68 ln α + 0.05 d0  ε0  f k dp F ——金属在所研究断面上的面积; d1 ——管坯在出口断面上的直径;  d 0 ——管坯的外径,mm; 式中: d p ——顶头的外径,mm; f ——摩擦系数; (4.7) α ——送进角; ε 0 ——顶头前坯料的径向压下量,%; 轧制过程中产生大的滑动是不利的, 它会使生产率降低, 工具磨损加快, 能量消耗增加, 30 无缝钢管生产技术 轧件质量恶化。因此,合理的设计应使滑动系数尽可能增大。 由式(4.6)可见,螺距是变化的,其值随轧件进入变形区坯料横断面面积的减小而增 大。 接触面积为 bi + bi +1 l 2 式中: bi 、 bi +1 ——在分点 i 及 i + 1 上的接触宽度; F =∑ (4.8) l ——分点 i 及 i + 1 间的距离。 4.9.1.3 平均单位压力 p 的计算 ' ' ' p = νnσ nσ' nσ'' σ s (4.9) 式中:ν——中间主应力影响系数(取ν=1.15); ' ' nσ ——外摩擦及变形区几何参数影响系数(取 nσ = 1 ); ' nσ' ——外端影响系数; ' ' nσ'' ——张力影响系数(取 nσ'' = 1 ); σ s ——一定的变形温度、变形速度及变形程度金属的变形抗 力, MPa ; ' nσ' 的计算 1 外端影响的应力状态系数 入口錐侧变形区: ' nσ' 1 =1.5(1-2.7ε2) (4.10) ε 孔喉处的相对压下率; ε = (d p  d H ) / d p 出口錐侧变形区: ' ' nσ' 2 = 0.75nσ' 1 (4.11) (4.12) 2 入口錐侧变形区平均单位压力 p1 =1.15×1.5(1-2.7 ε 2 ) σ s (4.13) σ s 不同变形温度、变形速度及变形程度时,沿入口锥长度 式中: 的平均变形抗力; 3 出口錐侧变形区平均单位压力 p2 = 4 平均单位压力 4 p1 3 7 p1 6 (4.14) p= 5 变形抗力 σ s 的确定 (4.15) 变形抗力的确定首先是计算穿孔时的变形温度, 变形速度和变形程度数值, 然后根据该 钢种的实测变形抗力曲线,确定该变形条件下的变形抗力。确定入口锥的平均变形阻力: 第四章 穿孔 31 1) 变形温度:根据已有现场实测参考数值在 1180℃~1240℃ 2) 变形程度: 在斜轧穿孔入口锥碾轧实心坯的区域,变形程度为: ε= 2 r dx (4.16) 在斜轧穿孔出口锥碾轧毛管的区域,变形程度为: ε= r S + r 式中: r ——该截面的径向压下量; S ——该截面毛管壁厚; r = z x (tan α 1 ) ; z x ——单位螺矩; (4.17) α 1 ——入口锥辊面锥角; d x ——该截面轧件直径; η 1 Z x = πξ x d x x tan α ηy 2 式中: ξ x ——椭圆度系数; η x ——轴向滑动系数,查图表可得; η y ——切向滑动系数,近似为 1; (4.18) α ——送进角。 3) 变形速度: 在斜轧穿孔入口锥碾轧实心坯的区域,任一断面的沿接触弧的平均变形速度:  ε= (4.19) 在斜轧穿孔出口锥碾轧毛管的区域,任一断面的沿接触弧的平均变形速度: r R ω0 1 + m vt 2  ε= 其中:  r  rp   r + r  rp vt  +  + 1 ln  ω0 ( R + r )  R  R   r  rp r R b R (弧度)   (4.20) m= (4.21) ω 0 = arcsin 式中: ω 0 ——毛管咬入点所对应轧辊中心角; R ——入口区管坯任一断面的轧辊半径; r ——入口区管坯任一断面的管坯半径; r ——径向压下量; (4.22) 32 无缝钢管生产技术 vt ——金属切向速度分量; rp ——顶头半径; b ——轧辊和管坯接触宽度[13]; b= re ——轧前管坯半径,即为 re = 椭圆度 2 Rre r Rr + (ξ  1) R + re R+r dp (4.23) 2 ; ab dh ; 式中: a b ——导盘距离; d h ——轧辊距离; ξ= 4.9.1.4 轧制压力 P 的计算 P = p×F (4.24) 4.9.2 顶头轴向力的确定 确定斜轧穿孔时轴向力的大小对于生产有很重要的意义。 轴向力即为作用在顶杆上的压 力,轴向上的大小直接影响着顶杆强度及工作的稳定性。 顶头轴向力对轧辊所受的轴向力大小和轧制力矩的大小有直接影响。 因此在设计中, 为 了计算轧辊止推轴承,电机功率,顶杆的弯曲强度和顶杆的止推轴承,都要求较准确的确定 顶头轴向力的大小。如图 4-11 所示。 图 4-11 作用在顶头上的力 顶头的轴向力是由作用在顶头尖端上和主体上的两部分轴向力所组成。 顶头主体是由头 部、定径段和圆柱段组成。试验表明顶头尖端的轴向力只占顶头轴向力的 15%左右。因此, 顶头上的轴向力主要由作用在主体上的力决定。主体上的轴向力与坯料每转的送进距离有 关,送进距离越大,金属与工具接触面增大,作用在顶头上的轴向力就增大。 送进角愈大,送进距离也愈大,轴向速度增加,同时由于轧制压力的增加,其轴向分力 也增加,所有这些因素都使顶头所受的轴向力有较大的增长。 第四章 穿孔 33 穿孔过程中与顶头有关的重要力能参数指标有两个: 一个是顶头对金属的轴向力, 这个 力越大,顶杆产生的弯曲也越大,这样导致毛管壁厚不均匀增加;另外一个指标是顶头的轴 向力与轧辊上所受的总压力的比值 Q / P ,这个比值越小,金属对轧辊的轴向滑动就越小, 因而越有利于穿孔过程的力能条件。 顶头轴向力的确定用理论方法计算是很复杂的。 根据顶头受力的平衡条件而求出的轴向 力解析计算公式十分庞大,式中的各分力很难正确算出,因此在实际中无法应用。 作用在顶头轴向上的力基本公式计算为[12]: Q = QH + 2 P0 (sin  0 + f cos  0 cos θ c ) (4.25) 式中: Q, QH 作用在顶头上和作用在顶头鼻部上的轴向力; P0 作用在顶头上的正压力;  0 顶头母线的倾斜角; θ c 倾斜角。 目前在设计时广为应用的办法是根据实际测定的 Q / P 比值来确定。 Q / P 比值的范围 在 27%~44%内,故推荐经验公式: Q =(0.35~0.50) P (4.26) Q =0.35 P 。 我们这里暂定为 4.9.3 斜轧力矩计算 4.9.3.1 转动轧辊所需的力矩 当没有顶头的情况下如图 4-12 所示,即轧件在前进方向没有受到轴向阻力时: 图 4-12 在没有顶头作用下斜轧的受力分析 34 无缝钢管生产技术 b   M z = P R sin ω cos α + cos ω  2 ω 角由下式确定; tan ω = b dx 式中: b ——轧辊与轧件平均接触宽度; d x ——轧制力作用面内的坯料直径; (4.27) (4.28) α 送进角。 R ——合压力作用面上轧辊半径; 当有顶头时如图 4-13 所示,在前进方向受到顶头的轴向阻力(Q),这时传动轧辊所需 总轧制力矩为: 图 4-13 二辊穿孔机轧辊受力分析 M z = P ( R sin ω cos α + b Q cos ω ) + R sin α 2 K (4.29) 式中: K 轧辊数目; Q 顶头上的轴向力。 4.9.3.2 电机所需力矩 电机所需力矩除了轧制力矩外,还有摩擦力矩,空转力矩,动力矩。这些力矩的计算方 法与一般纵轧相同。 当不考虑动力矩时所需电机力矩: M 电= k η1η 2 ( M Mm + + Mk) i i (4.30) 式中: K ——轧辊数; M ——一个轧辊所需的轧制力矩; i ——减数箱传动比; M m ——产生在轧辊轴承中的摩擦力矩。 第四章 穿孔 35 由于传动扭矩是由穿孔主电机直接经主传动轴传至轧辊。所以减数箱传动比 i =1; (4.31) 式中: f ——轧辊轴承中的摩擦系数, 滚珠轴承可取 f =0.004~0.006, 滑动轴承可取 f =0.08~0.1; M m = Pf dm 2 η1 ——齿轮机座传动效率,一般取 0.92~0.95; η 2 ——接轴传动效率,为 0.99; M k ——空转力矩,空载时传动轧机主机列所需的力矩,它应 等于所有转动机件空转力矩之和。 一般可按经验方法确 定如下: P ——轧制力; d m ——轴承摩擦园直径,即为轧辊辊颈直径; M k ≈ 0.03M H M H ——电动机的额定转矩。 额定功率=3800kw 转速=62~110r/min (4.32) M H = 9.55 Ph 3800 = 9.55 × = 585.3kN  m n 62 (4.33) M k = 17.55kN  m 4.9.3.3 电机功率的计算 根据已转换到电机轴上的总力矩 M 电,可求出电机功率: N = 0.105M 电 n 式中: N ——电机功率,kw; M 电 ——总力矩,kN. m ; (4.34) n ——电机转速,r/min。 4.9.3.4 穿孔机轧制时间的确定 在电机校核中,需要用到纯轧时间和间隙时间。 1 纯轧时间的计算 斜轧的纯轧时间是指轧件通过变形区所需的时间——由管坯前端接触轧辊起到轧出的 毛管尾端离开轧辊止的时间间隔。 l+L πD n η x 1 r sin α 60 式中: l ——变形区长度; L ——毛管长度; T ——纯轧时间; T= (4.35) η x ——出口断面的轴向滑动系数; 36 无缝钢管生产技术 α ——送进角 D1 ——出口断面上的轧辊直径; nr ——轧辊的转速; 由此可见,为提高轧机生产效率,缩短纯轧时间,可以通过提高轧辊转速和加大送进角 来实现。 虽然也可以通过加大轧辊直径和增加滑动系数使纯轧时间减少, 但受到轧机结构和 咬入条件的限制,后面的方法是不可取的。 2 间隙时间的确定 由实际情况确定。 4.10 4.10.1 穿孔机的设备组成 斜轧穿孔机的设备由哪几部分组成? 斜轧穿孔机的设备由哪几部分组成 穿孔机设备由主传动、前台、机架和后台四大部分组成。主传动一般由主电机或主电极 +变速箱组成。前台设备一般包括受料槽、导管和推钢机组成。机架中包括轧辊和导向设备 (导盘或导板)。 后台设备主要包括定心辊、毛管回送辊道、顶杆小车、顶杆小车的止推座及将毛管从穿 孔机组运送到轧辊机组的运输设备,常见的运输设备有传送链、回转臂和电动车。 4.10.2 主传动的方式及特点? 主传动的方式及特点 穿孔机的主传动电机可以使用直流电机或交流电机。 直流电机一般通过传动轴直接与轧 辊连接,而交流电机则通过减速机和传动轴与轧辊连接。 一个机组可以使用一个电机,即一个电机连接减速机,减速机输出两个输出轴。也可以 两个电机串联后再接减速机单独驱动一个轧辊。 穿孔机使用的接轴有万向接轴和十字头接轴。 十 字头接轴具有良好的调节性能, 无论在 水平面和垂直平面内都可以产生相对的角位移。 4.10.3 管坯定心机的组成结构? 管坯定心机的组成结构 定心方法有两种,即热定心和冷定心。热定心是用压缩空气或液压在热状态下冲孔。特 点是生产效率高,设备简单,同时由于冲头形状与顶头鼻部形状相适应,能获得良好的定心 孔形状。从近些年的发展来看,热定心工序有逐步被取消的趋势。 冷定心是在离线状态下在机床上钻孔,冷定心仅在高合金或重要用途钢管的生产中采 用。 4.10.4 穿孔机机座(牌坊)有哪几部分组成 穿孔机机座(牌坊)有哪几部分组成? 穿孔机的机座大多由包括以下几部分: 转鼓,又称作轧辊箱。作用是放置轧辊,轧辊在转鼓内滑动或与转鼓紧固在一起。 轧辊倾角调整装置,常用的驱动设备是电机+蜗轮蜗杆+定位器(编码器),作用在转 鼓上。一般放置的位置在牌坊的侧面。由于立式穿孔机的下转鼓在水平面以下,冷却水及氧 化铁皮的长时间冲刷,工作环境恶劣,给电机的维护带来困难,用液压马达替代电极可以解 决此问题。 第四章 穿孔 37 轧辊倾角调整的平衡装置 与轧辊倾角调整装置组合,消除穿孔过程中产生的间隙和冲击。根据转鼓的形状不同, 安装的位置可以与倾角调整装置在一侧或另外一侧。常使用液压缸实现此功能。 轧辊的平衡装置 作用是消除穿孔过程中对轧辊的瞬间冲击。 机盖 机盖上一般安装轧辊间距的调整装置。 4.10.5 导盘调整方式有哪几种? 导盘调整方式有哪几种 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 4.10.6 三辊定心的作用和结构? 三辊定心的作用和结构 由于顶杆很长且直径较小, 因此顶杆的刚度较差。 为了增加顶杆刚度和防止顶杆在穿孔 过程中的抖动,在穿孔机的后台设置定心辊装置。老式穿孔机因毛管较短,定心辊的数目一 般为 3~4 架,随着毛管长度的增加现代的穿孔机定心辊数目为 6~7 架。 每一台定心辊装置有三个互为 1200 布置定心辊组成,即上定心辊和 2 个下定心辊。 在轧制过程中定心辊的另外作用是: 当毛管未接近定心辊时,三个定心棍将顶杆抱住,并随顶杆而转动。作用是使顶杆轴线 始终保持在轧制线上,不至于因弯曲而产生甩动; 当毛管接近定心辊时,上下定心辊同时打开一定距离(小打开位置),使毛管进入三个 定心辊之间,毛管就在三个定心辊中旋转前进,其导向的作用; 当一只毛管完全穿透之后,上定心辊向上抬起一个较大的距离(大打开位置),布置在 定心辊之间的升降辊同时将毛管托住。 定心辊的驱动最早是由气缸完成的, 使用在小机组上。 后来被液压缸代替。 定心辊小打开的间距需要根据毛管直径的变化而调整, 调整距离指导行毛管时三个辊的 距离,距离的大小为毛管直径加毛管跳动量,毛管的跳动量一般为 8~12 毫米左右,薄壁管 可以取上限,厚壁管取下限。 小打开位置调整一般通过调整丝杠来限制液压缸的行程, 最新型的液压缸缸体内带有位 置检测装置,调整行程只需在调整终端上修改数值即可,具有简单、安全、快捷的优点。 第一架三辊定心辊的位置大多放置在机架以外, 为了减小毛管头部的壁厚不均, 最新的 设计机组将第一架三辊定心辊伸入到机架内或者在机架内设立四辊或三辊式的定心装置。 4.10.7 顶杆的冷却形式有哪些? 顶杆的冷却形式有哪些 顶杆的循环方式主要有两种。 38 无缝钢管生产技术 一种为顶杆不循环,此种方式顶杆一般为内水冷式,而顶头为外水冷式,每穿孔一次更 换一个顶头或者直到一个顶头损坏才更换; 另一种方式为顶杆循环使用,此种顶杆结构简单、维护方便,每组一般需要 6~12 支才 能循环使用。 4.10.8 顶头的使用方式有几种? 顶头的使用方式有几种? 顶头的使用方式主要有以下几种: 顶头与顶杆连接在一起一同进行循环的。顶头损坏后需要离线进行更换,一般情况下, 一组顶杆 6~7 支,冷却站在轧线之外,占地面积较大。 顶头在线循环。即使用一支顶杆,每穿孔一次,顶头更换一次,一般情况下使用三个顶 头,顶头循环的次序是 1,2,3,再 1,2,3。这种方式只更换顶头,使用方便,生产节奏 快。但要求顶头的定位精确,工具加工精度高,设备运转正常,否则的话,容易发生顶头与 顶杆连接不牢,顶头脱落的情况。 一个顶头/顶杆单独使用。当顶头损坏后,须在线更换顶头顶杆。

钛材在湘澧盐矿的应用(二)

2019-02-18 10:47:01

钛材运用作用     钛材在湘澧盐矿的运用以来,收效是明显的;(见表2)    1、延伸了设备的运用寿数,削减检修次数,节省能源,添加有用出产时刻。例如,芒硝车间的冷冻泵(6SH一6型)曩昔是用铸铁的,每三个月替换一次,叶轮寿数仅一个月。换上钛泵后,运转近6年,未发现腐蚀,仅叶轮稍有机械磨损,每年只需补焊一次,其他部位与装置时相同。又如蒸发器,运用5年未发现腐蚀,一起钛管还充分发挥了管壁润滑,不易结垢的优越性,洗蒸发器(洗罐)时刻可削减二分之一,下降了能耗,添加了有用出产时刻。再如,盐浆输送管,碳钢管用2个月,不锈钢管用6个月都产生点蚀、穿孔等现象,而钛管运用5年多尚无腐蚀,并且表面还保存有原雪白光泽。此外,其他凡用钛材的当地,设备及部件运用寿数,均比碳钢延伸数倍至数十倍,从根本上处理了盐硝出产中的跑冒滴漏现象,车间相貌为之一新。    2、运用钛材在经济上合理。为削减设备、材料费用,下降出产本钱供给了有利的条件。运用钛材一次出资虽较多,但从久远、从全面看,是经济的。例如,钛盐浆管,我矿77年5月开端,至今已装置Ø108*3,Ø89*3 等盐浆管道440m,运用5年多未发现腐蚀,还可运用多年。而不锈钢盐浆管运用寿数仅半年,从材料费用上看,以每m一次出资计:不锈钢管Ø89*4,152元/m(Ø108X 4.5,208元/m);钛材Ø89*3,445元/m,(Ø108*3,544元/m),钛材管运用5年多,未发现腐蚀,假如不锈钢管则需替换11次,计出资1672元(2288元),是钛材出资的3.76倍(4.2倍)。即运用钛材盐浆管,一年半即可回收一次出资。又如钛泵,77年3月芒硝车间开端用6SH-6钛冷冻循环泵,已运转5年零八个月未发现腐蚀,原用6SH-6铸铁泵运用寿数仅3个月,钛泵一次出资4770元/台,铸铁泵585元/台,如运转5年零8个月需替换铸铁泵22台,即需求投12870元,是钛泵一次出资的2.7倍,即运用钛泵2年零2个月即可回收一次出资。再如钛蒸发器,碳钢设备1.5万元/台,运用寿数10个月,钛材设备25万元/台,77年10月开端运用,至今完好无缺,预汁还能够运用10年,以运用寿数15年核算,可少用碳钢设备18台,合资金27万元,除掉钛设备一次出资外,尚可节省资金2万元。     钛材报价是不锈钢的4-5倍,但其比重仅为不锈钢的二分之一(钛比重4.51g/cm3,不锈钢比重7.93g/cm3),相同规格的设备,钛材比不锈钢材料用量削减一半。这样,钛材实践报价只要不锈钢的2-2.5倍。因为钛材耐腐蚀性强,制作设备时,在满意规划压力的前提下,材料厚度可适当选薄一些,也可节省出资。因为钛制品运用寿数长,削减设备更新费用和频频的检修费用,实践上节省了开支,下降了本钱。    湘澧盐矿已运用钛设备、钛铸件、钛盐浆管道共约60吨,与原运用碳钢、不锈钢、铜材比较,每年可节省设备替换费用35万元(钛设备按估计运用寿数核算,钛铸件和盐浆管道按已运用时刻核算)。假如加上因削减设备修理而节省的人工费用及辅助材料费用,以及添加产值,下降本钱的收益,其经济效益就愈加明显。    3、为进步盐、硝产品质量发明了有利条件。曩昔芒硝车间冷冻体系的首要设备腐蚀严峻,出产极不正常,芒硝产值低、质量差。向制盐车间供给的精卤达不到要求,以致产品精盐中含芒硝量超越部颁标准要求,严峻影响产品质量和厂商诺言。改用钛材设备、盐浆管道后,腐蚀问题基本处理,加上工艺及设备的技能改造,加强厂商管理,出产逐渐走向正常。芒硝产值的进步,满意了制盐出产需求的精卤,因此确保了精盐质量。81年精盐,一级品率到达73.85%。消除了三级盐,1982年精盐一级品率上升到93.93%。雪牌精制盐81年被评为湖南省优质产品。一起,芒硝质量也大进步,产品由滞销变为热销,求过于供。芒硝81年均匀硫酸钠含量上升为98.86%(其间出口无水芒硝中硫酸钠含量均匀99.3%)。钻塔牌无水硫酸钠82年被评为湖南省优质产品。82年9月份在轻工业部盐务总局同类产品评比中,湘澧盐矿芒硝被评为第一名。    总归,湘澧盐矿到77年3月运用钛材以来,的确收到了明显的经济效益。实践现已证明,钛材是盐、硝出产中优异的耐腐蚀材料,它能够延伸设备的运用寿数,有利于产品质量的安稳与进步,技能经济效益非常明显。能够承认, 钛材在真空制盐工业中的推广运用是有意义,有出路的。咱们决计把这项作业坚持下去,并不断总结、进步。

T2紫铜带市场推涨热情不减

2019-02-27 13:43:35

27日唐山T2紫铜带午后涨10报3840含税出厂,现在唐山及周边部分钢厂普方坯含税出厂3840元/吨,迁安部分资源报3840,供应商裸价3550。国内其他商场坯价早盘震动偏强。尽管今日钢坯直发偏弱交投空气一般,但在成材钢厂出厂价全体拉涨带动下,T2紫铜带商场推涨热心不减,其间华东区建筑钢材涨80-100不等。受此带动方坯午后小涨10元照应。 今黑色系期货全线持红,逻辑是限产导致现货紧缺,现货继续升水期货,短期坯价易涨难跌。今淄博普碳坯3880元/ 吨;安阳普碳坯3910元/吨;江苏普碳坯3910元/吨,低合金坯4030元/吨;广州普碳坯3910元/吨,低合金坯4030元/吨。以上区域皆为现 款含-税价。 从短期看,明日报价仍保持报价窄幅上涨可能性高。归纳来看,现在商场资源规格仍然缺少,供应商惜售心态较强,成交状况较好,估计短期报价仍将易涨难跌。11月27日,太行钢铁对部分产品出厂报价进行调整如下:螺纹钢上调110元/吨,现Φ12mm HRB400E履行报价为4430元/吨,Φ14mm HRB400E履行报价为4430元/吨。         

钠长石的适用性

2019-01-04 09:45:34

钠长石的适用性:   1、长石是坯釉中的主要熔剂原料,如长石质瓷,长石在坯体中占25%左右,在釉中占50%左右,主要作用是降低坯釉烧成温度.   2、钠长石较钾长石降低坯釉烧成温度的作用更大,同时能提高制品的半透明度,但烧成温度范围没有钾长石宽.   3、在烧成前,长石和石英一样是非可塑性原料,可缩短坯体干燥时间,减少干燥收缩和变形.   4、长石在高温下熔融成长石玻璃,填充于坯体颗粒之间,并能溶解其它矿物,如高岭石,石英等,使坯体致密,有助于提高制品的机械强度,电气性能和半透明度.

钢管的特性

2019-03-15 09:13:19

钢管工业的生产技术不仅发展迅速,而且推陈出新,钢管生产在钢铁工业中占有不可替代的位置。 钢管分类: 按生产方法可分为两大类:无缝钢管和焊接钢管。 按制管材质(即钢种)可分为:碳素管和合金管、不锈钢管等。 按管端联接方式可分为:光管(管端不带螺纹)和车丝管(管端带有螺纹)。 按表面镀涂特征可分为:黑管(不镀涂)和镀涂层管。 按用途分类:1.管道用管。2.热工设备用管。3.机械工业用管。4.石油地质钻探用管。5.化学工业用管。 6.其他各部门用管。 按横断面形状可分为:圆钢管和异形钢管。 钢管的特性: (1)输送流体:具有封闭的中空几何形 状,可以作为液、气体及固体的输送管 道。 (2)做结构件:在同样重量下,钢管相 对于其他钢材具有更大的截面模数,也 就是说它具有更大的抗弯、抗扭能力, 属于经济断面钢材、高效钢材。 钢管生产的基本方法  钢管生产的一般模式为:坯料→成型 →精整→一次成品→再加工→二次成品。 一般以产品的要求确定生产工艺、选 择生产设备,同时对工艺、设备不断改造 更新以适应产品 不断提高的要求。 按照成型的不同可以分成无缝管生产 和有缝管生产,而冷加工属于管材的二次生产。 热轧无缝管:实心管坯→穿孔→延伸 →定减径→冷却→精整。 焊管:板带坯料→成型(管筒状) →焊 接成管→精整。钢管的技术要求与发展趋势 ⑴ 对多种腐蚀介质的高抗蚀性、对高温强度 和低温韧性的要求越来越高,使得管材产品的 化学成分不断变化,冶炼、加工工艺不断改进。 ⑵ 管材产品尺寸(壁厚精度)、形状精度的要 求促使在线检测、自动控制技术不断进步。 ⑶ 对管材产品成本降低的要求使得其生产过 程向短流程、近终成型方向发展。 ⑷ 对管材产品要求总的趋势是优质、廉价、 高效、低耗。  热轧无缝钢管生产 自动轧管机组生产工艺: 自动轧管机组生产工艺: 冷定心) (冷定心) 加热 管坯→加热→热定心→穿孔→轧管→ 管坯→加热→热定心→穿孔→轧管→均整 定径 再加热→减径→冷却→矫直→切管→ 再加热→减径→冷却→矫直→切管→ 热处理→检查→ 热处理→检查→入库   管坯的制备 根据穿孔方式、轧管方法及制管材质的不同,一般采用以下四种坯料: (1)连铸圆坯:是目前国际上应用较多的坯料,也是衡量一 个国家钢管生产技术水平的标志之一。其具有成本低、 能耗少、组织性能稳定等特点,是管坯发展的主流,也 是钢管实现连轧的首要条件。 (2)轧坯:一般为圆坯,生产中也经常使用。 (3)铸(锭)坯:主要有方(锭)坯,用于P.P.M轧制方式(或压 力穿孔)。 (4)锻坯:用于穿孔性能较差的合金钢与高合金钢管的生产。 管坯技术标准按国家或企业的技术标准执行,包括化学 成分、断面形状、几何尺寸、内部组织、机械性能等因素。

改善冷镦钢坯表面振痕的结晶器振动参数优化

2019-01-25 15:49:17

武钢榜首炼钢厂(以下简称一炼钢)2005年冷镦钢产量近5万t,典型钢种有SWRM6、SWRM8、SWRM10等。浇铸该类钢种时,铸坯表面振痕深度达0.5~0.7mm,一起在振痕谷底处常伴有肉眼可见微裂纹。这些表面缺点严重影响了铸坯的质量,影响了冷镦钢的后续加工功能。现在对冷镦钢连铸时铸坯表面振痕问题的研讨很少,尤其是碳含量较低的SWRM6、SWRM8等钢种。因而有必要结合一炼钢的实践出产工艺条件,找呈现在冷镦钢连铸时构成铸坯表面振痕缺点的首要原因,进步铸坯的表面质量。 1方坯表面振痕描摹及构成机理  一炼钢出产的SWRM8方坯表面振痕状况。坯样取自2号连铸机,浇注条件是:过热度3O℃,拉速1.6m/min,二冷选用强冷准则。可以看出,SwRM8方坯表面首要有以下缺点。(1)振痕。凹形深振痕,均匀深达0.5mm,且振痕曲折。(2)洼陷。接近角部区域呈现纵向洼陷,最深处达3.5~4.0mm,且洼陷部位有粘渣现象。经过对不同连铸条件下的铸坯表面振痕进行金相分析,最常见的振痕形状首要有两类:洼陷状振痕和带钩状振痕。  为了改进铸坯表面质量,减小振痕深度,人们对维护渣存在状况下的连铸坯振痕构成的原因进行了深人详尽的研讨,在弯月面处,因为钢液的过热度及钢液对流的影响,弯月面处0.3s期间内构成的凝结坯壳或许表现为刚体,也或许表现为液体的性质,即具有流变性。因为结晶器的振荡,弯月面区域的维护渣中发生压力。在负滑移期间,结晶器向下振荡的速度大于拉坯速度时,弯月面会被维护渣道中构成的正压力面向钢液中,在正滑脱期间,当初始凝结坯壳强度不大,维护渣中构成的负压力和动摇钢液的惯性力将坯壳面向结晶器内壁,导致初始凝结坯壳曲折或堆叠,构成不带钩状的振痕。当初始凝结坯壳的厚度较大,强度高的时分,初始凝结坯壳不能面向结晶器内壁,因而钢液会掩盖在弯月面上,构成一种带钩状的振痕。2振痕缺点构成原因分析  针对一炼钢出产的SWRM8方坯振痕状况,振荡参数不合理(振幅大、频率低),负滑脱时振痕间长,维护渣理化功能不适宜等振痕曲折滑不良,摩擦阻力大使振痕沿拉坯方向曲折。2.1振痕构成的影响要素  振痕距离和振痕深度是衡量振痕的重要参数。因而,考虑连铸坯振痕的影响要素时,应别离考虑这两个参数。一起,很多研讨标明,无论是低碳钢仍是中碳钢,当振痕距离增大时,振痕的深度随之增大。合理的操控振痕距离对操控振痕深度有重要作用。2.2振荡参数对振痕的影响  连铸过程中铸坯的振痕都与结晶器的振荡参数密切相关,其振荡模式首要为正弦振荡。振痕构成机理及试验研讨均标明振痕是在负滑脱期间发生的,负滑脱时刻越长,振痕的深度就越大,因而操控负滑脱时刻的长短,可以有用地操控振痕的形状。3结晶器振荡参数的优化3.1现行振荡参数特色(1)跟着拉速的不断进步,负滑脱率在不断的下降;(2)拉速的不断进步,对负滑脱时刻的影响不大;(3)拉速的进步,使得结晶器导前显着增加。3.2结晶器振荡参数的断定  在实践振荡过程中,断定适宜的结晶器振荡基本参数振幅和频率厂是取得高质量的铸坯的要害,断定上述参数的首要准则是以取得合理的工艺参数为条件,可以依据工艺要求调理振幅、频率得到。断定工艺参数的总准则是应尽量减小铸坯表面振痕深度及改进结晶器和坯壳之间的光滑,这便要求可以取得较小的负滑脱时刻,较大的正滑脱时刻,尽量小的正滑脱速度差,足够大的负滑脱量NSA以及恰当的负滑脱速度比率NS和负滑脱时刻比率NSR。3.3振荡参数优化计划及作用  依据以上对结晶器振荡工艺参数与基本参数联系的分析,结合振痕构成机理可知:要削减振痕深度,就要减小负滑脱时刻,可经过减小振程或许进步振频,或许两个参数都恰当改动的方法来完成。4结语  依据一炼钢的状况,提出了3种振荡参数优化计划,经过核算比较分析,再结合结晶器振荡参数断定准则,得最佳计划。计划在整个拉速范同内均满意条件,负滑脱时刻保持在0.10s左右,在作业拉速规模(1.2~1.8m/min)内,负滑脱率在28~30%之间,结晶器导前1.5~2.5mm,振痕距离8~11mm。除结晶器导前稍微偏小外,其他工艺参数均在最佳取值规模内,且负滑脱时刻较现行振荡参数状况下缩短约0.02S,能有用减小振痕深度。选用计划3后,经过5个浇次的取样分析,方坯表面振痕得到显着改进,均匀振痕深度为0.372mm。

铝合金型材典型缺陷及产生原因

2018-12-29 11:29:12

1.  型材湾曲扭拧、波浪  由于模孔设计不合理,挤压速度过快,模孔润滑不适当,导路不合适或未安装导路等原因引起。 2.  气泡与起皮  由于挤压筒内径磨损超差,挤压垫与筒间隙过大;挤压筒和挤压垫粘有油污水分等;锭坯表面有气孔、砂眼、油污且锭坯表面过于粗糙;挤压筒温度和锭坯温度过高,填充过快;挤压时模具抹油等原因引起。 3.  挤压裂纹  由于挤压锭坯温度过高,挤压速度太快;锭坯均匀化处理不好;模具设计不合理,以致中心与边缘流速差过大等原因造成。 4.  麻点或麻面  由于筒和锭坯温度太高,挤压速度过快或不均匀;模子工作带粘有金属、不光洁;模具工作台带硬度不够或工作带内宽;锭坯过长等原因引起。 5.  划痕与凸棱  由于模具工作带有缺陷或有棱;模具空刀有尖棱、不光滑;工作台面有异物、不清洁;锭坯中硬性夹杂物堵于模孔等原因引起。 6.  尺寸不合格  由于模具设计错误或制造缺陷;修模不当;挤压时锭坯温升过高,挤压速度变化太大;锭坯长度计算不准确而不够定尺长度等原因引起。 7.  成层  由于锭坯表面有油污、灰尘;锭坯表面质量不好,有较大的偏析瘤;在模子表面上留有残料;锭 坯本身有分层、气泡等原因引起。 8.  缩尾  由于挤压残料留得太短,挤压垫片涂油或不干净,锭坯表面不清洁,制品切层长度不够,挤压终了时突然提高挤压速度等原因引起。 9.  性能不合格  由于挤压温度过低,型材达不到淬火温度;人工时效制度不合适;仪表失控、炉温过高或过低;锭坯组织不均匀,冷却风量不足等原因引起。 10.  挤压横纹  由于模具设计不合理,相同部位的工作带不等长;挤压速度控制不当;挤压机运行不平稳等原因引起。

利用隧道窑煅烧优质镁砂试验

2019-01-07 17:37:56

我矿菱镁矿易烧结,采用二步煅烧工艺,以煤气隧道窑做为煅烧设备,进行了优质镁砂的煅烧试验。试制出了MgO含量为96.28%、体积密度为3.33g/cm3的优质镁砂。 一、原料及结合剂 原料为我矿选矿厂浮选提纯的两种镁精矿粉,编号分别为MB和MC,其化学组成见表1。 表1  镁精矿粉的化学组成,%镁精矿粉轻烧是在隧道窑内进行,需将镁精矿粉压成荒坯,镁精矿粉本身无结合性能,需要加入一定量的结合剂。我们在试验中选用了轻烧氧化镁粉做为镁精矿粉压坯用的结合剂,其性能指标:灼减1.60%、SiO2 0.55%、Fe2O3 1.12%、Al2O3 0.35%、CaO 1.27%、MgO 96.74%,细度小于74μm占90%。 二、轻烧 混合设备采用JW250型强制式涡浆搅拌机。混合时先加镁精矿粉和7%(外加)的轻烧氧化镁粉,干混2min,再加自来水5%(外加),湿混3min出料。将混合好的镁精矿粉在300t摩擦压砖机上压成长230宽115高65mm的荒坯。荒坯体积密度均大于2.3g/cm3。压坯时荒坯不得有层裂,以避免荒坯在轻烧过程中散裂,造成“倒垛”。 压制后的荒坯在24.5m隧道式干燥器内干燥32h。干燥后的荒坯水分不大于0.5%。荒坯在窑车上采用侧立放,坯垛为空心,高温气体可进入坯垛内,增加了与荒坯之间的换热面积,以达到缩短轻烧时间的目的。 荒坯的轻烧是在隧道窑内进行,窑净空尺寸:长82.7宽2.3高1.4m,共33个车位,15~20#车位为煅烧带,以热发生炉煤气为燃料,煅烧带温度为1000~1050℃,推车时间间隔1h,即每辆窑车在煅烧带停留6h。轻烧后的荒坯经粉碎设备粉碎后就得到了具有一定细度的轻烧氧化镁粉。两种镁精矿粉轻烧后得到的轻烧氧化镁粉的指标见表2。 表2  轻烧氯化镁粉指标1)轻烧氧化镁粉编号MQB、MQC与对应的镁精矿粉编号分别是MB和MC。 三、死烧 磨细是本试验中的关键工序之一。因为隧道窑尽管窑温较高(最高煅烧温度1630℃),但与超高温竖窑相比,窑温至少要低250℃左右。表2中轻烧氧化镁粉的细度远不能满足工艺要求。因此,必须对轻烧氧化镁粉进行再磨细。磨细能够破坏轻烧氧化镁中存在的母盐假象,破坏轻烧氧化镁的未分解的菱镁矿的结晶架,增加轻烧氧化镁粉的比表面积和表面缺陷,进一步提高其烧结活性,以达到在较低的烧结温度下获得致密的烧结镁砂之目的。 本试验采用筒磨机为磨细设备。为了找出最适宜的细度,我们将表2中所列的两种轻烧氧化镁粉磨至不同的细度,以便比较。磨细后的轻烧氧化镁粉细度:MQB小于45μm为98%;MQC小于45μm为89.5%,MQC为80%。 混料是采用人工混合。将磨细的轻烧氧化镁粉放入干净的水泥地面上,然后往上面喷水(外加6%),边喷水边翻动,并借助于工县反复地搅拌加挤压,直到把物料混好(手握即可成团)。 将混好的料在300t摩擦压砖机上压成长230宽115高60mm的荒坯。由于物料细,吸附的空气较多,在压坯时特别加强了排气操作,增加了冲压次数,每块荒坯冲压5次,按照“先轻后重,逐次增压”的要求进行操作。压出的荒坯体积密度均大于2.3g/cm3、最高达2.28g/cm3。压好的湿坯在隧道式干燥器内干燥48h,干燥后坯体水分小于1%。 将干坯体按装车图装在窑车上,推入隧道窑内死烧。隧道窑净空尺寸为:长404宽2高1.25m,52个车位,25#-34#车位为煅烧带,以热发生炉煤气为燃料,最高煅烧温度为1630℃,推车时间间隔2h。煅烧出的镁砂指标见表3。 表3  镁砂理化指标1)镁砂编号MSB、MSC1和MSC2对应轻烧氧化镁粉编号分别为MQB、MQC1和MQC2。 四、结语 试验表明,以我矿浮选提纯的镁精矿粉为原料,采用二步煅烧工艺,在隧道窑内煅烧,可生产出纯度高、体积密度高的优质烧结镁砂。

精巧的铜线

2017-06-06 17:50:11

精巧的铜线哪里买:精巧的铜线一般是做出来的,学珠宝加工,一学就会做,拿铜锭做的。  镀银铜线在某些场合称之为镀银铜丝或镀银丝,是在无氧铜线或低氧铜线上镀银后,经过拉丝机拉细而成的细线。镀银铜线分为镀银软圆铜线和镀银硬圆铜线。镀银软圆铜线是经过退火,改变其物理特性,以达到变软的目的。好的镀银铜线镀层连续牢固地附在导体表面,经试样后样品表面不变黑。镀银的镀层表面应该光滑连续、没有银粒、毛刺、机械损伤等有害缺陷。   镀银铜线是铜芯上同心地镀覆银层而制成的。它综合了两种 金属 的特点,具有很好的导电性能,以及明亮而光泽的表面,而且银层具有很高的耐腐蚀性。正因为这些优点,镀银铜线成为高频线和 有色 纺织线的首选产品。  铜线试验方法  5.1 化学成分分析方法  T1、TU1牌号铜线坯的化学成分分析方法按GB/T13293的规定进行;T2、T3、TU2牌号铜线坯的化学成分分析方法按GB/T5121的规定进行。  5.2 尺寸测量方法 铜线坯的尺寸测量方法按GB4909.2的规定进行。  5.3 力学性能检验方法 铜线坯的室温拉伸试验按GB4909.3的规定进行  5.4 扭转试验方法  5.4.1 扭转试验按GB4909.4的规定进行  5.4.2 试样应从经过4.7.1和4.7.2检查合格的铜线坯上取样。原始标距长度为300mm,扭转速度应不超过30r/min;绕试样轴线方向转10转,然后反向转10转。  5.5 电性能检验方法  5.5.1 铜线坯电阻率测试方法按GB3048.2的规定进行。  5.5.2 电阻率试验可在经酸洗但未经进一步加工和退火的铜线坯试样上直接进行。  5.5.3 电阻率试验也可按下述方法制备试样进行测定,试样经酸洗并加工至直径为2mm,去油污,经500~550℃保护性气氛中退火30min,然后在同一保护气氛中快速冷却或在空气中快速转移到水中冷却。  5.5.4 仲裁试验应按5.5.3条进行。  5.6 表面质量检查方法 铜线坯的表面质量用目视检查。铜线检验规则  6.1 检查和验收  6.1.1 铜线坯应由供方技术监督部门进行检验,保证产品质量符合本标准的规定,并填写质量证明书。  6.1.2 需方应对收到的产品按本标准的规定进行检验,如检验结果与本标准的规定不符时,应在收到产品之日起1个月内向供方提出,由供需双方协商解决。如需仲裁,仲裁取样由供需双方共同进行,以仲裁检验结果为最终判定结果。  6.2 组批 铜线坯应成批提交验收,第批应由同一牌号、状态和规格的铜线坯组成。每批重量应不大于60t。  6.3 仲裁检验项目 当供需双方对铜线坯的化学成分,尺寸偏差,力学性能,扭转特性,电性能和表面质量有争议时,可就争议内容进行单项或多项仲裁检验。  6.4 仲裁取制样方法和取样数量  6.4.1 取样方法和取样数量 根据不同的检验项目,每批铜线坯应采用表8规定的按卷数或重量两种方法计算取样数量,以取样数量多者确定为最终取样方法,并以此方法确定出取样数量,从该批铜线坯中随机抽取相应数量的样品。    更多关于精巧的铜线哪里买的信息请关注上海 有色 网