钒钛烧结矿的特点
2019-02-14 10:39:49
(一)钒钛烧结矿的化学成分 钒钛烧结矿除含TiO2和V2O5外,其他化学成分与普通烧结矿比较也有较大差异,依据TiO2含量凹凸,钒钛烧结矿可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。 与普通烧结矿的化学成分比较,钒钛烧结矿具有“三低”、“三高”的特色。即烧结矿含铁低、FeO和SiO2含量低,TiO2、MgO、Al2O3含量高。 (二)钒钛烧结矿的矿藏组成 钒钛烧结矿的物相组成首要有:钛赤铁矿、钛磁铁矿、铁酸钙、钛榴石、钙钛矿、钛辉石、玻璃质等。 1.钒钛烧结矿的矿藏特色 钛赤铁矿是烧结矿中的首要含铁物相,一般可占烧结矿总量的40%~50%,是赤铁矿-钛铁矿固熔体,属六方晶系,反射光下呈灰白色,强非均质性,不透明,反射率25%,以Fe2O3为晶格,除Ti外,还固溶Mg、Al、Mn等元素。钒钛烧结矿中的钛赤铁矿以粒状、斑状结构为主,少量呈他型和自型柱状。一般出现在孔洞周围或钛磁铁矿晶粒周围构成包边或花边结构。钛赤铁矿的很多存在及其连晶效果,使烧结矿具有杰出的复原性和机械强度。 钛磁铁矿不同于普通烧结矿的磁性矿藏,是磁铁矿-钛铁晶石固溶体,是烧结矿中的首要含铁矿藏,其含量在25%~35%之间,是以Fe3O4为晶格的固熔体,其固溶有Ti、Mg、Mn、V、Al的氧化物。在反光下呈灰白色带褐彩、均质性、反射率为18%~22%,内反射不透明、强磁性、表面可被腐蚀、呈暗褐色。首要呈自形粒状和不规则他形柱状方法。也有从硅酸盐相中分出的自形、半自形八面体(多边形断面)及细微树枝状骸晶,部分钛磁铁矿常被赤铁矿色边。 铁酸钙首要存在于熔剂性钒钛烧结矿中,并随烧结碱度添加而添加,一般占烧结矿总量的3%~20%,在反光下为灰色带蓝彩,非均质性,反射率为16%。首要呈板粒状和针状,多与钛磁铁矿构成熔蚀结构和柱状交错结构。在剩余石灰颗粒边际构成很多的铁酸钙晶体。它具有好的复原性和高的抗压强度。 钛榴石在钒钛烧结矿中属硅酸盐相,一般占烧结矿总量的3%~15%,在熔剂性钒钛烧结矿中常可见到。首要呈粒状、浑圆状和树枝状集合体,单个区域钛榴石连成片。反射光下呈灰色,无内反色,反射率低(12%~13%).透射光下呈黄色、黄褐色,无解理,无双晶纹,属晚结晶的硅酸盐物相,对烧结矿起必定的粘结效果。从化学成分看,钒钛烧结矿中的钛榴石与天然钛榴石挨近。 钙钛矿是熔剂性钒钛烧结矿首要含钛矿藏,一般占烧结矿总量的2%~10%,属甲等轴晶系,反光下为灰白色,反射率为15%~16%,略低于钛磁铁矿固溶体,均质到非均质,内反射色为黄褐色,在透射光下,呈褐、黄、紫、红棕等多种色彩。干与色一级,有时出现反常干与色。钙钛矿在烧结矿中首要呈粒状、纺锤状、骨架状、树枝集合体,涣散于渣相或钛赤铁矿褐钛磁铁矿之间。其熔点很高(1970℃),结晶才能强,是晶出最早的物相。硬度高于钛磁铁矿。 钛辉石属斜方晶系,多呈短柱状,有时块状集合体存在,充填于钙钛矿、钛磁铁矿、钛赤铁矿之间,是钒钛烧结矿硅酸盐粘结相之一。在反射光下为深灰色,反射率稍高于玻璃相,透光下呈黄绿~浅红紫色,有用多色性。[next] 2.影响钒钛烧结矿矿藏组成的要素 烧结矿的矿藏组成,跟着烧结质料、烧结工艺条件等的改变有所区别。 (1)碱度的影响。不同碱度对钒钛烧结矿矿藏组成的影响见图.天然碱度钒钛烧结矿首要矿藏为钛磁铁矿、钛赤铁矿、铁橄榄石和玻璃隐晶质,钛赤铁矿和钛磁铁矿多为自形或半自形粗晶、晶体紧密结合为连晶,是天然碱度钒钛烧结矿的首要连接方法。其次是橄榄石和玻璃质,将连晶粘结,构成细孔均匀的海绵状结构,气孔一般为1~2mm.烧结矿结构细密、强度好、转鼓指数高、制品率高。但因很多磁铁矿被氧化,需求较长时刻,故笔直烧结速度低。 碱度1.0~2.0的熔剂性钒钛烧结矿,其首要矿藏为钛磁铁矿、钛赤铁矿、钙铁橄榄石、钛榴石、钙钛矿、铁酸钙、钛辉石和玻璃质。 碱度大于3.0的烧结矿,钛赤铁矿固熔体削减而钛磁铁矿固溶体添加,烧结矿外观发黑、光泽暗、铁酸钙显着添加。 (2)燃料用量对矿藏组成影响。钒钛烧结矿的矿藏组成随燃料用量的增减而改变,当燃料用量偏低时,烧结矿中钛赤铁矿含量高而玻璃质少,粘结相缺乏,烧结矿强度差。跟着燃料添加,复原气氛增强,烧结温度升高,烧结矿中钛磁铁矿和浮氏体显着添加,硅酸盐粘结相和铁酸钙添加,但钛赤铁矿很多削减,削弱钛赤铁矿连晶效果。当燃料超越必定量时,烧结矿中钛赤铁矿进一步下降,铁酸钙含量也低,而钙钛矿含量显着添加,此刻硅酸相无甚改变。因而,进步含碳量对进步钒钛烧结矿强度并晦气。 (3)TiO2含量对矿藏组成的影响。跟着烧结矿中TiO2含量的添加,钙钛矿量添加,铁酸钙量削减,一起钛辉石添加,玻璃质削减。[next] (三)钒钛烧结矿的冶金功能 1.钒钛烧结矿的转鼓强度 钒钛烧结矿的转鼓强度一般较普通烧结矿低。其原因首要是:(1)烧结矿中SiO2含量低,构成的硅酸盐粘结相少;(2)因为TiO2含量较高,烧结过程中与CaO易构成性脆的钙钛矿;(3)烧结液相量少,粘结才能差。别的,因为矿藏特性所决议,此种烧结矿还具有耐磨不耐摔的特色。 添加配碳量虽可改进钒钛矿的转鼓强度,但当配碳量超越必定配比时,强度反而下降。配碳量的添加可促进烧结液相量增多,有利于转鼓强度的进步,但一起因为配碳量的添加导致复原气氛加强,铁酸盐削减,钙钛矿量添加,因而,应操控恰当的配碳。 2.烧结矿储存功能 钒钛烧结矿有较好的储存功能,其储存天然粉化率比普通烧结矿低得多。原因在于烧结矿冷却过程中,当温度下降到675℃时普通烧结矿中的正硅酸钙(2CaO•SiO2)发作相变(由β-2CaO•SiO2向γ-2CaO改变),体积发作急剧胀大(添加10%),引起烧结矿粉化;而钒钛烧结矿在烧结过程中无2CaO•SiO2生成,因烧结矿中SiO2含量低,即便烧结碱度达1.70,其CaO含量也仅为9.5%~9.1%,且部分CaO与TiO2构成钙钛矿(CaO•TiO2),故游离CaO很少。 3.钒钛烧结矿的复原功能 钒钛烧结矿因为氧化度高、FeO含量低,其复原功能较普通烧结矿好。影响钒钛烧结矿复原性的要素首要有碱度、FeO含量等。 (1)碱度的影响。碱度对钒钛烧结矿复原性的影响规则与普通烧结矿类似,随烧结矿碱度的进步,复原度显着上升。 (2)FeO含量的影响。钒钛烧结矿中FeO首要以钛磁铁矿和钙铁橄榄石方法存在,其复原性较差,但与普通烧结矿比较,其含量较低,比较之下复原性仍较好。跟着FeO含量的添加,钒钛烧结矿复原度呈直线下降,因而,钒钛磁铁精矿烧结时,应操控适合的FeO含量,在确保钒钛烧结矿强度的条件下,使之具有杰出的复原性。 (3)TiO2含量的影响。随钒钛矿中TiO2含量的添加,烧结矿的复原度下降。一般以为因为TiO2含量的添加,势必会导致烧结矿中含铁物相(如钛赤铁矿、铁酸钙盐等)削减,而脉石矿藏(如钙钛矿、钛辉石等)添加,而晦气于复原气体的分散。 4.钒钛烧结矿的低温复原粉化功能 一般以为,烧结矿低温(400~500℃)复原粉化的发生,首要是因为赤铁矿复原为磁铁矿的过程中,晶形的改变所造成的。钛赤铁矿有各种晶型,如粒状、斑状、树枝状、叶片状、骸晶状等。关于不同晶型,其复原粉化功能不同,其间以骸晶状菱形钛赤铁矿复原粉化最为严峻。 钒钛烧结矿的低温复原粉化率RDI-3.15比普通烧结矿高得多。攀钢烧结矿的RDI-3.15一般大于55%~60%,且当普通烧结矿中参加部分钒钛物料时,烧结矿的复原粉化率也会显着上升。 钒钛烧结矿低温复原粉化率高的原因是:(1)烧结矿中含有很多的钛赤铁矿(40%~50%),其间约50%以骸晶状菱形赤铁矿存在,别的还有部分钛赤铁矿以网格状占有于钛铁矿的方位上。复原时,因为晶型改变而引起胀大粉化。(2)烧结矿中SiO2含量低,起粘结效果的硅酸盐相少,加之不起粘结效果的钙钛矿的存在,它不只自身性脆,并且还阻碍钛赤铁矿和钛磁铁矿间的连晶效果,抗胀大粉化的才能下降.(3)钒钛烧结矿的物相组成较普通烧结矿的物相组成杂乱,其不同的热胀大性引起的内应力,在低温复原阶段会导致很多微裂纹的构成,然后也下降了烧结矿强度。 虽然钒钛烧结矿低温复原粉化现象较为严峻,但实践生产中,没有因烧结矿的低温复原粉化率高而引起高炉上部块状带透气恶化而成为约束冶炼强化的环节。对小高炉冶炼钒钛烧结矿的解剖查询,所测得的烧结矿粒度组成也未发现反常。 进步烧结矿中FeO含量,能够削减再生赤铁矿的数量,下下降温复原粉化率,但FeO过高会引起烧结矿复原性的恶化。为此,攀钢在制品烧结矿上喷洒卤化物水溶液,使烧结矿低温复原粉化现象得到大幅度改进。 5.钒钛烧结矿的软熔滴落功能 烧结矿的矿藏组成决议了其软熔滴落功能,因为钒钛烧结矿高熔点矿藏多,致使其软化温度高,一起又因高熔点矿藏熔点不同大,因而其熔滴温度区间宽,且滴落过程中渣铁分离差,渣中带铁多。影响钒钛烧结矿软熔滴落功能的首要要素有烧结矿的碱度、TiO2含量等。 碱度对钒钛烧结矿软熔滴落功能的影响研讨。随碱度进步,烧结矿软化开端温度(Ta)、软化终了温度(Ts)(熔化开端温度)、开端熔滴温度(Tm)上升,软化温度区间(ΔTs-a)和熔滴温度区间(Tc)变窄,压差陡升,温度(TΔp)上升,最高压差(ΔPmax)减小,熔滴带厚度(H)变薄。 TiO2含量对钒钛烧结矿软熔滴落功能的影响的的研讨。随烧结矿中TiO2含量添加,开端滴落温度下降,压差陡升温度下降,最高压差减小,软熔温度区间变宽,滴落时刻延伸。
钒钛磁铁矿中钒的提取
2019-01-25 10:19:08
[next]
从钒钛磁铁矿中提取钒的方法可概括为两种:火法是通过钒铁精矿或钒渣间接提钒,湿法则是用钒铁精矿直接提钒。目前我国以间接提钒法为主。 火法提钒工艺:将选矿产品钒铁精矿直接进入高炉或电炉中冶炼,使矿石中的钒大部分进入铁水,再将含钒铁水入转炉送氧吹炼,使钒富集于渣中,成为钒渣。钒渣经焙烧、浸出、过滤、即得五氧化二钒。这一方法的最大优点是钒回收率高,特别适用于低品位钒矿石的利用。缺点是矿石处理量大,而生产规模小,与大规模的钢铁工业生产不相适应。 湿法提钒工艺:将钒铁精矿加芒硝制团,经焙烧、水浸、使钒酸钠进入溶液,再加硫酸使之转化为五氧化二钒。水浸后的球团再用于炼铁。湿法的优点是工艺流程短,钒的回收率高。 上图是钒钛磁铁矿提钒的生铁-钒渣工艺的流程。 近20年来我国积累了大量有关钒钛磁铁矿提钒工艺的经验,并首创高炉炼铁-雾化提钒法。目前攀枝花钢铁公司用此种方法大规模生产钒渣。高炉炼铁-雾化吹钒渣法的要旨是,将铁水在中间罐内撇渣和整流,在雾化器中雾化,雾化后的铁水进入雾化炉反应,提钒后的铁水(即“半钢”)流入半钢罐,使之在半钢罐面上形成钒渣层,将半钢分离即得钒渣(下图)。1978年攀枝花钢铁公司已建成两座120t雾化炉,其设计能力为年产8.31~8.9万t钒渣。
钛矿的选矿
2019-02-13 10:12:44
一般以为,岩矿和砂矿到达下列含量,才具有工业挖掘价值:岩矿的钛铁矿TiO2含量在10%~40%之间,或金红石TiO2含量在3%以上;砂矿含钛铁矿在15kg/m3以上,或金红石在2kg/3以上;某些伴生有多种有价值成分的共生矿,即便TiO2档次低一些,也可归纳考虑加以挖掘。
钛铁矿一般都稠浊有不少废砂石和复合其他矿藏,其TiO2档次较低。选矿就是依据这些矿藏不同的组成和不同的物理化学性质,选用不同的选矿办法,将钛铁矿与它们别离,以进步TiO2档次。因为钛铁矿常与许多矿藏伴生在一起,只用单一的选矿手法,很难选得TiO2档次高而杂质少的钛铁精矿。要进步TiO2档次,有必要依据不同的矿种,选用分段办法重复地选用不同的选矿办法组合加以选别,才干到达抱负的作用。
一、岩矿的选矿
岩矿主要是含钛复合铁矿,其结构细密,难采难选。一般选矿流程可分为以下几个阶段。
1.预 选
将挖掘得的岩矿,选丢掉部分尾砂,以进步选矿才能,进步当选档次和降低本钱,预选常用磁滑轮磁选、重介质旋流器及粗粒跳等法。
2.选 铁
经过选别含钛复合铁矿选铁,可以获得供炼铁用的铁精矿或钒铁精矿,而且可使大部分铁与钛别离。选铁常用磁选法。
3.选 钛
将选铁后的尾矿,经过多段破碎和筛分,依据各种矿源成分不同,选用重选、磁选、电选和少、浮选等各种办法,进步钛矿的TiO2档次。
二、砂矿的选矿
因为钛铁矿的物理化学性质安稳,相对密度较大,在多雨区域可以在冲刷、转移、水力分选的过程中堆积下来,富集在地表与河槽中,或被洪水冲至河流出口处、近海处堆积下来。所以钛铁矿广泛地产于海边砂矿、河槽砂矿、冲积砂矿、残坡砂矿和低谷砂矿中。
在河槽上的,常运用链斗式或搅吸式或斗轮式运送器将砂矿送至采矿船再处理。
在沙滩上的,常运用推土机、铲运机、装载机、斗轮挖掘机经皮带运输机或砂泵管道送到粗选厂。
采得的砂矿先经除渣、筛分、分级、脱泥和浓缩后进行粗选。云南矿还经湿辗。
粗选是依据矿藏的密度不同进行别离,丢掉密度小的脉石尾矿,获取密度大的重矿藏约90%,常用圆锥选矿机和螺旋选矿机,粗选厂都是移动式的,常与采矿结合在一起。
精选是选进行湿法的重选、湿法磁选和浮选,再进行干法的磁选、电选和重力别离等。[next]
三、常用的选矿办法
1.用手选矿的原理是依据不同矿藏的外形特征如顔色、光泽、粒度和晶型等不同,用目测手拣的办法将稠浊的杂质别离,开始将石英等脉石除掉,这是一种原始而简略的选矿办法以。适用于钛铁矿的粗选。
2.重力选
重力选亦属粗选,用于粗选的筛分。因为钛铁矿和其他杂质矿藏相对密度不同,在一种运动着的介质中,沉降速度的不同,使矿粒和杂质别离。含钛矿藏的相对密度大于4,选用重力选法可将大部分相对密度小于3的长石、石英等脉石矿藏除掉。钛铁矿的密度比少土大,选用流水冲刷,相对密度小的沙土就随水而流走,最终选分出密度较大的钛铁矿砂。可是经过重力选后的钛铁矿仍含有与钛铁矿相对密度附近的锆英石、独居石、金红石、白钛石、锡石、磁铁矿和铬铁矿等矿藏及一些脉石。大规模的重力选,可选用溜槽、筛选机、螺旋选矿机和摇床等。如选用洗矿、筛分和脱泥后再进行重力选,则可用螺旋机。筛分介质通常是水和空气。
3.浮 选
浮选是运用各种矿藏表面的化学或物理性质的不同,参加某些能发泡的浮选药剂,使其发生许多泡沫,因为不同矿藏在空气和水的界面上的浸湿度不同,发生有挑选的吸附,某种成分便随泡沫浮起而漂出,其他成分则沉积下来,而得以别离。在钛铁矿砂浮洗时,常用的浮选剂有硫酸化皂、邃古油、十二酸钠、水玻璃、、钠和烷基磺酸钠等。浮选设备有成套的标准设备。该法作用虽好。但本钱高,浮选剂的挑选和分配较杂乱,废水排放较难处理。
4.磁 选
磁选归于钛铁矿的精选。它是运用各种矿藏导磁率的不同,使它们经过一个磁场,因为对磁场的反响不同,导磁率高的被磁盘吸起,再失磁就掉下,集料漏斗将其搜集,导磁率低的不被吸起,留在原下或随转动着的皮带,作为尾矿带出去而得以别离。钛铁矿是能被磁铁招引而自身不能吸铁,可磁化又可去磁的顺磁性矿藏,其磁性属中性和弱磁性。矿藏的磁性由强到弱改变的次序是:磁铁矿>钛铁矿>赤铁矿>石榴石>黑云母>独居石。而锆英石和金红石为非磁性矿藏。将粗矿经过单盘式或三盘式的干式磁选机,弱磁性的石榴石、独居石和非磁性的锆英石、金红石和脉石等就经过皮带别离出去。从钛铁矿选矿的实例得知,经几回磁选的钛铁矿砂其矿藏组成仍十分杂乱,仍含有较多的非钛矿藏。磁场的强度、电流巨细和温度凹凸对磁选的作用影响较大。此法对钛铁矿的选矿用得许多,为了确保矿的纯度,尽可能地除掉非钛矿藏,以利于出产的顺利进行。常常是将购进来的杂矿,在雷蒙磨磨矿前,先经一次磁选再进行破坏。
5.电 选电选也归于钛铁矿的精选,在选用其他办法达平到分选要求时而运用。选用这种静电选,一般能得到较好的作用。电选是依据矿藏在高压电场内电性的不同,而将不同矿藏进行选分的一种分法。运用两种矿藏的整流性不同,或它们的分选电位差值 超越3800V时,用静电选矿机选分。常用的有静电进矿机和电晕选矿机等。北海选矿厂精选工艺流程如下图所示。
钒矿提钒工艺技术
2019-02-25 09:35:32
概 况
钒在地壳中的含量大约是地壳分量的0.02%,散布较广,但涣散。含钒矿藏已发现的就有70多种,其间的绿硫钒矿、钒云母矿和钒铅锌矿等含钒氧化物高达8-20%,钒钛磁铁矿含钒档次低,一般含v2o5为0.2-1.4%,但它的储量最多,国际储量在400亿吨以上,是提取钒的首要质料。
全球的钒铁磁铁矿和钒资源恰当丰厚,已查明国际钒铁磁铁矿的储量为400亿吨以上,且会集在少数几个国家,有前苏联、美国、我国和南非,首要赋存于钒钛磁铁矿、磷块岩矿、含铀砂岩和粉砂岩型矿床中。此外还有许多钒赋存于铝土矿和含碳质的原油、煤、油页岩和沥青沙中。
据美国矿藏局统计资料标明,按现在挖掘规划,已探明的钒资源可继续挖掘150年,且会集散布在南非洲、亚洲、北美洲等区域,(南非占47.0%,前苏联占24.6%,美国占13.1%,我国占9.8%,其他国家总和占小于6%)。
钒具有杰出的可塑性和可锻性,常温下可制成片、拉成丝和加工成箔。但少数的杂质,特别是空隙元素(如碳、氢、氧、氮)会显着影响钒的物理性质。如钒含氢0.01%时引起脆变,可塑性下降;含碳2.7%时其熔点升高到2458。K。钒的熔点高,硬度大,电阻率高,呈弱顺磁性,线胀系数小,钒的弹性模量密度和钢附近,可用作结构材料。
钒是重要的战略物资之一,首要用于冶金工业,作为合金元素增加剂,改进钢材的结构、功能,进步强度和耐性,次之与钛制成具有高温高强度合金,再次之是化学工业,以钒的氧化物形状,用作出产催化剂、触媒等等。
国外钒的提取基本上是从副产品中收回的,如南非、芬兰、前苏联等国家是从钒钛磁铁矿炼铁中收回,美国大部分钒是钾钒铀矿及磷铁矿中收回,加拿大是从焚烧石油焦搜集的尘中收回,少数国家还从石煤中提取钒。总归,国际上钒首要是从钒钛磁铁矿中收回的,现在从钒钛磁铁矿收回的钒,每年约为7万吨左右,约占总产量的%。
钒的产品分为初级产品、二级产品和三级产品。初级产品包含含钒矿藏,精矿、钒渣、作废的粹的废催化剂,作废触媒和其他残渣。二级产品包含v2o5,也可所以一种可用的工业产品,即出产硫酸的触媒和粹用的催化剂。三级产品包含钒铁、钒铝合金、钼钒铝合金、硅锰钒铁合金及钒化合物,其间钒铁是最为重要钒材料,它占钒消费量的85%。各国钒铁标准可分为50-60%和70-85%的二类。
我国钒工业起步于20世纪50年代,1958年康复并扩建锦州铁合金厂提钒车间,以承德大庙含钒铁矿精矿为提钒质料,1960年今后我国的其他提钒厂相继建成投产,70年代攀枝花钢铁公司建成投产,从此我国的钒工业便进入一个新的历史时期,至80年代中已成为国际首要产钒国家之一,能出产各种钒制品,钒的推广运用也取得较快的开展。
从含钒质料提取纯钒化合物的技能,视质料不同而有所差异。钒钛磁铁矿、钒铁精矿、含钒石煤、石油渣、钒铀矿、钒磷铁矿等等,现分述收回技能。
一、 钒钛磁铁矿提钒技能:
钒钛磁铁矿提钒能够概括为火法和湿法两大类。火法流程能够处理含钒档次低的质料,能够经过火法富集,然后处理收回,也称之为简接法;湿法流程具有流程短、收回率高的长处,但要求处理的质料含钒档次相对较高,也称之为直接法。
1.火法工艺流程
将选出的钒铁精矿参与高炉或电炉炼铁,矿石中的钒大部分进入铁水中,将含钒铁水送入转炉吹炼成钢,钒高度富集在表面渣中,即钒渣,钒渣再经破碎、焙烧、浸出、过滤即得到V2O5。这是前苏联、挪威和南非等国所选用的办法。我国也选用相似的办法收回钒。
2、湿法工艺流程
选用含钒铁精矿加芒硝制团、焙烧、水浸,使钒酸钠进入溶液,再加硫酸使之转化为V2O5沉积,过滤后直接得到V2O5,水浸后的球团用于炼铁质料。
南非海威尔德公司是西方国家一起运用以上两流程(即生铁—钒渣流程和焙烧浸出流程)的典型比如。
生铁—钒渣流程
含钒铁精矿
料仓配料
回转窑预复原
含钛炉渣 炼铁
暂存堆积未处理 含钒铁水
板坯 氧气 吹炼 出售
钢水 顶吹炼钢 半钢 钒渣
钢坯 出产V2O5
焙烧浸出流程
含钒铁精矿
H2O 芒硝(碱或Na2SO4)NaCl
配料制团
钠化氧化焙烧1000℃
水浸
过滤 铵盐
球团 溶液
炼铁 过滤 H2SO4
废液废液 V2O5
含钒铁精矿或钒渣的浸出首要化学反响为
(1)4FeO.V2O3+4Na2CO3+5O2=8NaVO3+2Fe2O3+4CO2
(2)4FeO.V2O3+8NaCl+5O2=2Fe2O3+8NaVO3+4Cl2
(3) 4FeO.V2O3 +8NH4Cl +5O2=2Fe2O3+8NH4VO3+4Cl2
(4)2NaVO3+H2SO4=V2O5 + Na2SO4+H2O
(5)2NH4VO3+H2SO4=V2O5 + (NH4)2SO4+H2O
3、生铁—钒渣流程主体设备
① 首要视炼铁的主体设备,曾经苏联炼铁主体设备是高炉,挪威、南非等国则是电炉。
② 吹炼:不同国家选用的设备也不相共同
a.底吹转炉提钒:前苏联丘索夫联合公司是将含钒铁水装入底吹转炉吹炼,在炼半钢进程氧化表面构成含钒渣,钒渣经破碎、焙烧、水浸收回V2O5,然后炼成钒铁。从精矿到钒铁、钒的总收回率为60%左右。
b.顶吹转炉双联提钒:前苏联下塔吉尔钢厂则用顶吹转炉将含钒铁水吹成半钢和钒渣。就铁水到钒渣钒的收回率达92%—94%。我国的承钢、马钢和攀钢也用该法出产钒渣,钒的收回率为80%—88%。
c.高炉铁水雾化法提钒,该法实际上是将含钒铁水倾入中间缸,然后进雾化器,经雾化反响之后,使钒由V2O3氧化成V2O5、 V2O4、V2O3的混合物流入半钢缸,半钢面上构成钒渣。该法由我国攀钢首要实验成功并投入出产运用的,并且是我国钒渣出产的首要办法,钒的氧化率达85~90%,收回率为73.6%,半钢收回率为93.9%。该法的首要长处是:炉龄长(最高炉龄已达12000炉)、处理才干大(可达366吨/时)、可半接连化出产、设备简略、操作简略。
d.曹式炉提钒:我国马钢曾用槽式炉吹炼提钒,槽式炉才干为70T/h,实验的首要技能目标,钒的氧化率达88.5~95.2%,钒的收回率为81.3~90.49%,半钢率90.20~94.1%,出产目标不如实验目标。该法的长处是能接连出产、设备简略、出产本钱低,缺陷、钒渣含铁高、钒收回率还欠低。因而现在已停止运用,需求进一步完善,仍不失可供挑选的好办法之一。
4、焙烧浸出流程设备
湿法流程即焙烧浸出流程的中心首要是使钒氧化然后转化构成水可溶性的钒酸盐,选用何种焙烧设备,完成其意图。
a. 南特殊特腊厂,所运用钒钛磁铁矿成分: Fe 50~60%,V2O5 2.5% ,TiO2 8~20%, Al2O31~9%, Cr2O31%,选用回转窑焙烧完成氧化和转化。
b. 前苏联和澳大利亚阿格纽克拉夫有限公司都选用欢腾炉焙烧使97~98%的钒转化可溶性钒而被浸出。
c. 芬生奥坦馬基,运用原矿成分Fe40%,TiO215.5%,VO26%(V2O5:0.71%)原矿制团,在竖炉焙烧和转化,转化率达80~90%。
二、钾钒铀矿和磷铁矿收回钒技能
1、 美国钒的出产供应商处理的质料的以钾钒铀矿石、铀钼钒矿和磷铁矿石为主,钾钒铀矿的化学式为:K2(VO2)2(V2O8)" 3H2O或K2O" 2UO2"V2O5"3H2O。最近澳大利亚西部伊利里的钙结石乐岩中发现大型钾钒铀矿,我国陕西、湖南区域也发现钒铀共生矿。国际上最大的矿冶公司——美国联合碳化物公司从钾钒铀矿石出产钒的工艺流程是焙烧、浸出、沉积、复原和再浸出。该法钒铀浸出率别离为70~80%和90~95%,其流程如下:
钾钒铀矿
6~9%NaCl 钠化氧化焙烧 (多膛炉850℃ φ5m.8层)
1~2%Na2CO3
急冷
浸出
H2SO4 浸出液中和煮沸
PH:3
NaOH或NH3 沉积PH7 钒滤液
滤饼 沉积
Na2CO3 或NaCl 复原熔化 钒化含物
H2O 浸出 钒溶液
含铀沉积物收回铀
酸法和碱法浸出含钒溶液,可用离子交换法、溶剂萃取法、或挑选性沉积法进行别离提纯。该公司年产V2O8454吨,V2O51360吨。
2、 钒铁矿的处理与钾钒铀矿有所不同,钒铁矿运用真空揉捏和焙烧炉,先将矿粉与盐混合,送揉捏机揉捏成条、堵截,焙烧浸出提纯沉积后得V2O5。
3、 钒磷铁矿的处理
钒磷铁矿电炉出产单质磷和磷肥的副产品(含钒磷铁)用来作提钒质料,美国的克尔麦吉(KerrMeGee)化学公司所用的含钒磷铁含钒3.26%~5.2%,磷24.7%~26.6%,铁59.9%~68.5%,铬3.4%~5.7%,镍0.84%~1.0%。
先将含钒磷铁磨至粒度小于0.42mm,配入1.4倍纯碱和0.1倍的食盐在回转窑中770~800℃下焙烧,钒便转变成水溶性的钠盐,焙砂在沸水中浸出,钒、铬、磷均溶入浸出液,过滤后滤液结晶折出磷酸钠晶体,粗磷酸钠可再行纯化直至产品合格。磷酸钠结晶母液含磷>0.98g/L,可参与适量CaCl2,使其以磷酸钙(CaPO4)沉积,然后水解收回钒,随后往母液中参与以沉积。此工艺的钒、铬和磷的收回率别离能够到达85%、65%和94%。
三、含钒褐铁矿收回钒技能
含钒褐铁矿五氧化二钒含量为0.5~2.5%,Fe20~40%,SiO230~65%.
矿石首要由针铁矿、赤铁矿和脉石组成。脉石以石英为主,其次是泥质还有少数的绢云母。钒在褐铁矿中没有呈独立矿藏存在,而是以离子型吸附状况存在于铁和泥质中。处理的准则流程是:破碎球磨 焙烧 浸出 沉积Nu4VO3 或V2O5。
研讨标明褐铁矿V2O5含量不同,钒的转化率受矿石组分的影响,其间首要影响要素是矿石CaO的含量,跟着的CaO的含量增加,影响钒的转化,焙烧温度的进步能进步钒的转化率。不同含钒矿石,最高转化率的温度是有差异的。
四、含钒石油渣提钒技能
一般讲,原油和石油砂都含有钒,虽然有些国家至今仍未把油含钒列为钒资源,但这些原油确是钒的潜在资源,全球的石油中钒的含量改动很大,委内瑞拉、墨西哥、加拿大和美国原油含钒为220~400ppm,是全球石油含钒量较高的少数几个国家。
美国、日本、德国、加拿大和俄罗斯等国家从石油渣,石油灰中提钒,提钒的终究产品首要是V2O5,但也能够直接炼成钒铁。提取的办法许多,首要依据质料成分或性质上的差异,挑选不同的工艺。
1、 从石油会集收回钒技能
委内瑞拉的原油经过裂化处理得到石油焦含0.4%V,石油焦用作蒸气锅炉的燃料,焚烧后烟尘用电收尘器收尘,尘含V2O5达15%,作为收回钒的质料。收回办法是将搜集烟尘直接酸浸,经过滤滤液加次(NaClO4)将钒氧化成五价,滤液由兰色变黄色后,加NH3调PH由0.3至1.7,使钒以铵盐方式沉出,然后枯燥锻烧得V2O5或V2O5熔化铸片。流程图:
石油焦尘埃 酸
浸出
滤液 残渣NaClO4氧化 沉积 调PH 洗刷
滤块 残渣 洗液
抛弃
烘干
锻烧 V2O5
首要化学反响:酸浸工序: V2O5+6HCl 2VOCl2+3H2O+Cl2 或V2O5+2H2SO4 VOSO4+2H2O
NaClO4氧化: VOCl2+NaClO4 NaVO3+2NaCl+Cl2VOSO4+NaClO4 NaVO3+NaSO4+Cl2
沉积锻烧 NaVO3+NH4Cl NH4VO3+NaCl2NH4VO3 V2O5+2NH3+H2O
2、 从炼油渣中收回钒技能
美国Amax和CRIVentures公司就是处理炼油渣、归纳收回钒、钼、钴、镍和铝。他们处理的工艺:炼油渣与烧碱混合磨矿进行加压浸出,在高温和加压下氧化,硫转化硫化物,碳氢化合物大部分分化,钒、钼溶入溶液,经过滤别离,从溶液收回钒钼。或石油渣加Na2CO3或NaCl配料后,在硫化物和硫酸盐存鄙人进行电炉熔炼,取得钒渣和镍锍。钒渣首要惯例处理办法制取工业V2O5。美国是20世纪80年代末开端用石油渣,石油灰为质料出产钒的,现在仍然是该质料出产钒的最大出产国。
五、石煤提炼钒技能
在普查磷矿时意外地发现了石煤含有钒,进而发现石煤中还有铀、铜和镍等金属和非金属60多种,就当时的技能水平而言,具有挖掘和商业价值的只要钒。我国的石煤资源非常丰厚,估计石煤中钒的总储存量为钒钛磁铁矿中钒总储存量的七倍。但石煤中含钒档次各矿相差甚大。现在条件下石煤含钒超越0.8%,才有挖掘价值。美国内华达州含钒页岩分为风化页岩(V2O30.93%)和碳质页岩(V2O50.84%)。我国石煤资源会集在南边各省,现有钒的厂20多家,年产量为2500~3000吨,本钱2.5~30万元/吨。
石煤提钒选用加食盐焙烧、浸出、萃取、沉积的出产工艺。含钒碳质页岩是用于烧锅炉或液态化床发电的脱碳焚烧,在焚烧进程中钒富集在烟灰中,富集钒烟灰加NaCl或Na2Co3进行化焙烧,使钒转变为水溶性的NaVO3和Na2V2O5.
4FeOV2O3+4Na2CO3+5O2=4Na2OV2O5+2Fe2O3+4Co2
NaCl+1/2O2= Na2O+Cl2
Na2O+V2O3=2NaVO3
用热水浸出钠化焙烧产品,钒酸钠和偏钒酸钠便溶于热水而与大部分不溶杂质别离,含钒浸出液经提纯和别离,产出钒的纯化合物。
美国内华达对含钒页岩提钒流程:
页岩
↓
破碎、枯燥
↓
焙烧
↓ H2O
残渣←弱酸浸出 H2SO4
NH3 ↓
浸出液除硅 PH值由2.5调至5
↙ ↘
硅渣 含钒溶液 PH5调回PH3
↓
萃取(三级)
萃取有机相 萃取废液
↓
再生萃取 ←二级反萃 ←NaCO3 溶液
有机相 ↓
含钒溶液
↓
NH4Cl →钒酸铵沉积
↓
过炉、洗刷、枯燥→废液
↓
制品
阐明:除硅需将溶液调至PH值5,但萃取别离又需将溶液PH从头调回至PH3,用的萃取剂是混合十三胺(DITDA),偏钒酸胺煅烧脱后能够得到V2O5。
在我国,已建有从含钒石煤中提取钒的工厂,各厂依据其资源特色开发出具有必定特色的提钒工艺流程,他们的准则流程是:
石煤提钒的准则流程
石煤破碎、磨矿
↓
加水→配料←NaCl
↓
成球
↓
平窑焙烧
↓
水浸
↙ ↘ ↙H2SO4或HCL
浸出渣 浸出液
↙ ↘
粗钒 废水
↓
NAOH → 碱熔
↓ NH4CL
水溶
↙ ↘
废水↓
热分化
↓
五氧化二钒
石煤提钒的新工艺有:1.石煤加食盐,欢腾焙烧—酸浸—离子交换法。2.石煤无盐焙烧—酸浸—溶剂萃取法。3.酸浸—中间盐提钒
新工艺的所谓新,会集在二个环节上,首要是焙烧所选用的炉型,由平窑焙烧转而运用欢腾炉,回转窑,竖炉等,成果是竖炉的操作条件不简略操控,转化率不稳定,劳动条件差,未能在工业上取得大规划运用。回转窑广泛运用于钒渣的钠化氧化焙烧,但石煤含硅(SiO2)较高(65%--68%),在焙烧进程中简略呈现粘窑、结圈、影向回转窑正常操作和钒的转化率,故不宜作为石煤焙烧设备,作为石煤焙烧设备最好是欢腾炉。
其次的环境是溶液的处理,除已有的化学沉积法外引证了离子交换法和溶剂萃取技能,因为新技能的引证,能够带来技能目标的进步,削减废水的处理,视操作的差异,或许影响加工本钱。
六、废催化剂和触媒的提钒技能:
钒的化合物具有杰出的催化功能,即它自身不参与化学反响,但在它的参与下,可加快反响的进行。用钒化合物与其载体作成的能改动某些化学反响速率,而自身又不参与反响的化学试剂,称之为催化剂。钒催化剂(V2O5•NH4VO3)替代铂用于出产硫酸,使SO2转化为SO3。在石油工业中,钒首要用做裂解催化剂(VS),以及脱硫剂。在橡胶工业中,用乙烯和的交联合成橡胶的催化剂(VCl4)。化学工业上的氧化成马来酐,蔡氧化成酞酐的钒催化剂(NH4VO3)等等。特别是化学工业和石油工业运用过的废钒催化剂数量较大,是很好的钒二次资源,不只能够从中收回许多的钒,并且一起收回镍、钼等价金属。
1. 石油裂解用废催化剂(VS)的收回技能
废硫化钒催化剂经焙烧得到产品,能够选用高温浸法,钒废质料在参与压煮器中,473。K温度下用1—14MOL/L浓度的压煮4小时,钒酸铵便溶于中,经过炉别离后,将钒酸铵滤液的温度降至323。K,便分出钒酸铵结晶,结晶浆液经过滤、水洗、枯燥后,在473--873。K温度下煅烧,便得到V2O3,结晶的母液回来浸出循环运用。
除以上办法外,也能够用碱浸出从这种钒废猜中收回钒,用NaOH或Na2Co3溶液在363--378。K温度下浸出1-6个小时,然后过滤别离,在浸液中通入和二氧化碳,坚持298--308。K温度,按1MOL钒参与1.5—5MOL量,并将溶液PH调至6—9。经处理,坚持308。K,便能够沉积出钒硫铵。滤液送解吸器,用蒸气驱逐液体中的NH3和CO2,然后回来浸出,钒硫铵处理同前。
2. 从原油脱硫用的废催化剂的收回技能:
废催化剂在1073。K温度下进行氧化焙烧,先制得含钒10.88%,钼5.49%,钴2.03%,镍1.94%,铝35.48%的焙烧料,然后按150g焙烧猜中参与300ml含溶液NaOH15%的溶液,在333。K温度下拌和浸出3小时,浸出料液在323。K温度下过滤,浸出液由323。K降至278。K,便分出含钒结晶体,母液回来运用,结晶体经水洗、枯燥、煅烧后得到V2O3。
除此之外,焙烧料也可用酸浸流程,催化剂除钒外,其他有价元素Mo、Ni、Co等都转入流液,除杂后钒用萃取别离法收回。
美国AMR是一家从石油裂变废催化剂提钒大公司,其处理的废催化剂的量占全美的50%,年处理废催化剂16000吨,能够归纳收回1500吨V2O3,1000多吨Mo,400—600吨Ni,110—180吨Co,还有部分Al2O3.
3、从《制酸废触媒(V2O5,NH4VO3)》收回钒技能
硫酸工业上用矾触媒进程中,因为SO2气体中的AS2O5和触媒中V2O5构成络合物,在触媒的正常操作温度480摄氏度下该络合物随气体蒸发掉。蒸发量占V2O5总量的40—50%,除此以外还有K2SO4和SiO2。新废触媒成分如下:
成分称号 V2O5 K2SO4 SiO2
新触媒成分 9---------10% 20-------------22% 20%
废触媒成分 5---------6% 10------------12% 80%
因而废触媒中的三中首要成分都是名贵资源。废触媒的处理,工业上能够选用①直接酸浸工艺②化焙烧水浸工艺:
直接酸浸工艺:为了下降溶液杂质和游离酸,削减酸碱耗费。用两段逆流浸出,一段为弱酸浸,二段为高酸浸。高酸浸出液参与到新加废触媒进行弱酸浸出。二段浸出成果钒浸出率可达88.5-91.1%,浸出渣含V2O5能够降到0.59%,当进步二段浸出酸浓度到80—100G/T,渣含V2O5可降到0.3%。溶液的净化选用N235或P204萃取,碱反萃取,用NH4Cl沉,煅烧得到V2O5。
考虑到直接酸浸液除钒外,还含有许多Fe离子为溶液处理带来费事。经过预焙烧使钒氧化成高价钒,一起使其转型,削减了提钒的困难。因为废触媒自身含有10%硫酸钾组分,因而氧化焙烧水浸流程可分为不加钠盐和加钠盐两种。前者焙烧温度900摄氏度到达最佳转化率(~80%)。再高或再低温度的焙烧,钒的转化率都不抱负,后者增加5%的Na2CO3在800摄氏度下焙烧2小时,钒的转化率可达92%,是比较抱负的。
焙砂进行两段浸出,即先水浸后酸浸或碱浸,它的特色是先将钾盐、钠盐和近80%钒水浸进入低酸溶液。这种溶液杂质少,易处理,可收回运用钾盐。酸浸或碱浸意图在于不容于水的钒盐尽或许多地溶解,以进步钒的收回率。
溶液中的钒用N235萃取别离,碱返萃,NH4CL沉积,煅烧得V2O5。
总归,流程的挑选,要视供应商的现状,以为钠化氧化焙烧水浸提钒工艺较好。物料过滤功能好,浸出液中钒呈高价,杂质少,下步钒别离、净化进程简略,也能够直接用NH4CL沉积,省去萃取进程,下降产品加工本钱。
七.钒铁出产技能:
钒和铁组成铁合金,首要在炼钢中用作合金增加剂,高钒钒铁还用作有色合金的增加剂。常用的钒铁含钒40%、60%和80%三种,国内外首要选用电炉铝热法和硅热法冶炼钒铁的工艺,先分述如下:
1. 铝热法:
电炉铝热法冶炼钒铁的质料,可所以V2O5或贱价氧化钒混合物(V2O4、V2O3等)或钒铁渣。用铝作复原剂,在碱性炉衬条件下进行。
首要反响:V2O5+ AL(豆或粒状)=V+AL2O3
V2O4(V2O5)+AL= V+AL2O3
铝热法冶炼钒铁反响为放热反响,反响速度快,因而冶炼进程V2O5喷溅丢失严峻,为削减丢失,进步钒的收回率,特意将V2O5加工成片状,一起将铝粒改为铝豆,恰当减缓反响,下降放热量。
以贱价氧化钒为质料时,则冶炼进程反响速度缓慢,反响热量合适,削减进程的喷溅。然后进步钒的收回率,一起吨铁钒节省了铝复原剂40—60公斤,钒铁含钒60—80%,钒的收回率达90—95%。
2. 硅热法:
该法的本质是:片状V2O5用75%的硅铁和少数铝作复原剂,在碱性电弧炉中,经复原,精粹两个阶段炼得合格产品。复原期是把复原剂和V2O5进行硅热复原。当渣中V2O5小于0.35%时,即可作为废渣处理(或作建筑材料用),作为冶炼作业讲,即能够转入精粹期,此刻再参与部分V2O5和CaO,用以脱除合金液中过剩的硅、铝等。当合金成分到达要求即可出渣和出含金,精粹期渣含V2O5达8—12%,此渣可回来冶炼复原期收回。合金液可铸成圆锭后破碎成制品。此法出产的钒铁含钒40—60%,钒收率可达98%。
除此之外,还开发了高钒铁、硅钒铁、硅锰钒铁、碳化钒、碳氮化钒、氮化钒铁以及金属钒等产品,在此不再赘述。
八、几点观点:
1.依据所用的含钒质料有:含钒铁水,钒铁精矿,钒渣、钒铀铁矿,钒磷铁矿,含钒石煤,含钒褐铁矿,含钒石油渣,以及化学石油以及橡胶工业用过的废催化剂等。
2.提取钒的流程遍及都存有:焙烧、浸出与净化、溶液中钒的提取和提取尾液处理四大过程组成,前两过程最为重要:
①焙烧:含钒质料和Na2CO3 NaClNa2SO4等钠盐混合在回转窑、竖炉、平窑、多膛炉或欢腾炉,在800—1000。C下进行氧化和转化,使钒转变为XNa2O•YV2O5以便溶于水。
单个情况下,含钒质料可加石灰或石灰乳(Ca(0H)2),在上述提取各种炉内进行焙烧,它的意图与钠化焙烧正好相反,使钠转化为不溶于水,但溶于碳酸盐溶液,构成钒酸钙,到达与其他杂质别离的意图。
②浸出:焙烧熟料浸出有:水浸、酸浸、碱浸和碳酸化浸出等四种办法,水浸时,钒酸钠进入溶液,酸浸则不同,能够有三种办法:A、含钒物料直接酸浸;B、含钒物料经焙烧后酸浸;C、含钒熟料经水浸之后再进行酸浸,酸浸还能够适用于处理其他物料,为钾钒铀矿、磷钒铁矿、含钒灰烬、废钒催化剂等。常用碱浸出剂有NaOH、Na2CO3或两者混合等,碱浸时还有必要使钒成高价态才行。氧化剂有氧气、空气、富氧空气,、、次、等。
溶液净化:含钒浸出液悬浮物可经过弄清除掉Fe、Mn、Si、Al可用中和沉积除掉,可用钙盐、镁盐沉积除掉P、AS,对高碱度溶液可用电渗析脱钠、收回碱。
③溶液中钒提取:有沉积法、溶剂萃取和离子交换法
沉积:A、铵盐沉积:生成(NH4)2V6O16沉积,生成Na2(NH4)4V10O28.11H2O沉积,生成NH4VO3沉积。
B、水解沉积:加H2SO4,分出赤色钒酸钙沉积,Na2H2-X.V12O31。
C、钙盐或铁盐沉积: 碱性溶液用CaCl2或其他CaO、Na(OH)2沉积出钒酸钙,或用高铁盐沉积出钒酸铁(XFe2O3•YV2O5•2H2O)。
溶剂萃取:钒和铀别离法:用二乙基已基磷酸 磷酸三丁酯及N235
离子交换:合适处理碱性溶液
④尾液处理:五价钒和六价铬离子游离酸、盐都是有毒的,有必要处理好才干扫除,工业上有三种处理办法:
A、 复原中和扫除法
B、 气体中二氧化硫复原法
C、 离子交换法
3、已探明的钒储量,按现在挖掘规划够150年运用,年产钒量已处在供需平衡状况,钒的供需改动随合金钢产量改动而改动
钒钛磁铁矿如何提取钒
2019-01-18 11:39:38
从钒钛磁铁矿中提取钒的方法可概括为两种:火法是通过钒铁精矿或钒渣间接提钒,湿法则是用钒铁精矿直接提钒。目前我国以间接提钒法为主。
火法提钒工艺:将选矿产品钒铁精矿直接进入高炉或电炉中冶炼,使矿石中的钒大部分进入铁水,再将含钒铁水入转炉送氧吹炼,使钒富集于渣中,成为钒渣。钒渣经焙烧、浸出、过滤、即得五氧化二钒。这一方法的最大优点是钒回收率高,特别适用于低品位钒矿石的利用。缺点是矿石处理量大,而生产规模小,与大规模的钢铁工业生产不相适应 。
湿法提钒工艺:将钒铁精矿加芒硝制团,经焙烧、水浸、使钒酸钠进入溶液,再加硫酸使之转化为五氧化二钒。水浸后的球团再用于炼铁。湿法的优点是工艺流程短,钒的回收率高。
上图是钒钛磁铁矿提钒的生铁-钒渣工艺的流程。
近20年来我国积累了大量有关钒钛磁铁矿提钒工艺的经验,并首创高炉炼铁-雾化提钒法。目前攀枝花钢铁公司用此种方法大规模生产钒渣。高炉炼铁-雾化吹钒渣法的要旨是,将铁水在中间罐内撇渣和整流,在雾化器中雾化,雾化后的铁水进入雾化炉反应,提钒后的铁水(即“半钢”)流入半钢罐,使之在半钢罐面上形成钒渣层,将半钢分离即得钒渣(下图)。1978年攀枝花钢铁公司已建成两座120t雾化炉,其设计能力为年产8.31~8.9万t钒渣。
从钒钛磁铁矿中提钒工艺
2019-01-04 11:57:12
钒钛磁铁矿是一种以含铁、钛、钒为主的共生磁性铁矿,钒的绝大部分和铁矿物质呈类质同象赋存于磁铁矿中。该类矿在世界上赋存量巨大,在世界六大洲均有大型矿床分布,世界上钒产量的88%是从钒钛磁铁矿中提取出来的。本文首先归纳我国开发的提钒技术,然后再介绍国外从钒钛磁铁矿和铁矿中提钒的成熟流程。
从钒钛磁铁矿中回收钒,常用的方法是将钒钛磁铁矿在高炉或电炉中冶炼出含钒生铁,再通过选择性氧化铁水,使钒氧化后进入炉渣,得到钒含量较高的炉渣作为下一步提钒的原料。
目前含钒铁水的处理方法有三种:1、吹炼钒渣法:此法是在转炉或其他炉内吹炼生铁水,得到含V2O512~16%的钒渣和半钢,吹炼的要求是“脱钒保碳”。此法是从钒钛磁铁矿中生产钒的主要方法,较从矿石中直接提钒更经济。目前世界上钒产量的66%是使用这种方法生产的。2、含钒钢渣法:此法是将含钒铁水直接吹炼成钢。钒作为一种杂质进入炉渣,钢渣作为提钒的原材料。但这种钢渣中氧化钙含量高达45~60%,使提钒困难。这种方法不仅省去吹炼炉渣设备,节省投资,而且回收了吹炼钒渣时损失的生铁,是新一代的提钒方法。3、钠化渣法:此法是把碳酸钠直接加入含钒铁水,使铁水中的钒生成钒酸钠,同时脱除铁水中的硫和磷。该种渣可不经焙烧直接水浸,提取五氧化二钒。所获得的半钢含硫、磷很低,可用无渣或少渣法炼钢。
钛和钒矿石的选矿方法
2019-01-29 10:09:24
(一)钒钛磁铁矿石
岩浆型钒钛磁铁矿石是我国钛和钒的主要资源。矿石中主要有用矿物有钛磁铁矿和钛铁矿,以中粒嵌布为主;脉石主要是硅酸盐矿物,有的也有碳酸盐矿物和磷灰石等;常伴生钒、硫和钴等成分。钒和钴常呈铁的类质同像分别赋存于钛磁铁矿和黄铁矿中。此类矿石的选矿,一般是先用弱磁选分出钒铁精矿,再用重选、强磁选、浮选、电选联合方法从尾矿中回收钛铁矿和用浮选回收黄铁矿,钒铁精矿所含的钛是选矿无法除去的,可以在冶炼中分离。为了满足高钛渣炼铁必需的渣量,过分提高钒铁精矿的铁品位,有时是不合理的。从磁选尾矿中回收钛的流程,首先要保证得到优质钛精矿。研究了重选、浮选、重选-浮选、重选-强磁选-浮选、重选-强磁选等各种流程。钛铁矿精矿用电选精选,可将二氧化钛品位提高到48%以上,钛铁矿的浮选是在酸性矿浆中进行的,浮选黄铁矿回收钴应在浮选钛铁矿前进行,如果矿石含有碳酸盐矿物,必须预先浮出。
钒铁精矿中钒的提取用冶炼方法有火法和湿法两种,火法提钒是钒铁精矿经高炉冶炼得含钒铁水,再经转炉吹炼钒渣,钒渣进一步用湿法提炼得含钒产品。火法提钒已用于工业生产中,但钒的回收率较低,湿法提钒是铁精矿直接进行钠化焙烧浸出,得到含钒和含铁产品,含铁产品送往炼铁。湿法提钒,资源的综合利用较好,钒的回收率较高,但尚处在工业试验阶段。热液型含钒铁矿石的提钒方法与以上相同。
(二)钛铁矿砂矿
钛砂矿中钛矿物以钛铁矿为主,金红石、白钛石和锐钛矿等较少;常与锆英石和独居石等共生,重砂矿物呈细粒状态;脉石以硅盐矿物为主,生产上采用重选,磁选和电选联合流程。砂矿先经圆锥选矿机、扇形溜槽、螺旋选矿机、跳汰或摇床等预先富集,得到含重砂矿物的粗精矿,再用中、强磁选回收钛铁矿;强磁选回收独居石;摇床除脉石;电选分离锆英石与金红石,得到多种精矿。为了得到合格精矿,一般粗精矿的精选流程作业多,变化大,有时钛铁矿精矿用浮选进一步除磷。
除钒钛磁铁矿石和钛砂矿外,还有少数钛的脉矿。对变质基性岩型金红石矿石用重选-强磁选-电选、浮选和浮选-焙烧磁选等流程试验,得到金红石精矿。对辉长岩型含磷灰石钛铁矿石用浮选-重选流程试验,得到钛铁矿和磷灰石两种精矿。
由于高钛矿物资源有限,研究了从钛铁矿制取入造金红石的各种方法,例如,选择氯化法和还原锈蚀法等。
(三)含钒炭质板岩
沉积型含钒炭质板岩也是我国钒矿资源中重要的一种,目前还处在研究阶段。矿石中钒呈微业嵌布的钒云母等矿物或及附状态存在,用选矿方法不易富集,因而研究了湿法冶金提钒。矿石先经煅烧除去炭质,然后进行钠化焙烧和水浸出。水浸残渣再用酸浸可以进一步提高钒的浸出率,有时原矿选经浮选富集成含钒粗精矿,再焙烧浸出,可以显著降低酸耗。
从某石煤钒矿中提取钒的试验
2019-02-19 10:03:20
石煤是我国特有的能够作为独自矿床挖掘的钒矿资源,其矿石类型首要是炭质、硅质岩,钒简直悉数赋存于含钒水云母(伊利石)、高岭石等黏土矿藏中,与铝、钾、铁以类质同象方式存在于矿藏晶格中,直接提取难度很大。西北某石煤钒矿属硅质岩夹炭质泥岩型,钒以类质同象方式存在于水云母中。实验选用氧化焙烧-硫酸浸出-复原-溶剂萃取-铵盐沉积工艺研讨了从该矿石中提取五氧化二钒,断定了最佳提取条件。
一、矿石与试剂
矿石首要化学成分为:1.07% V2O5,78.60% SiO2,2.60% Fe2O3,3.13% Al2O3,0.97% CaO,0.68% K2O,0.47% P2O5,0.95% S,1.40% C,烧失量3.94%。
试剂:硫酸,,,均为分析纯;铁屑,P2O4(二 (2-乙基己基)磷酸,TBP磷酸三丁脂),磺化火油,均为工业级。
二、实验办法
经过焙烧,先将V(Ⅲ)氧化为V(Ⅳ)或V(V)后用酸溶解,然后用对四价钒具有高挑选性的P2O4进行萃取,再用硫酸水溶液反萃取,反萃取液中的V(Ⅳ)氧化成V(V)后,再用铵盐沉积法沉积红钒,沉积的红钒经洗刷、烘干、热解,得到五氧化二钒产品。工艺流程如图1所示。 三、实验成果评论
(一)浸出探究实验、
矿石粒度0.089mm,温度95℃,直接酸浸实验成果(见表1)标明:在强化的浸出条件下,五氧化二钒浸出率较低。矿石造球后焙烧,然后用硫酸浸出(质料粒度0.124mm,造球Φ10mm;浸出温度90℃,浸出粒度-0.71mm,液固体积质量比1.2,浸出2h)实验成果(见表2)标明:以氧化焙烧-酸浸工艺处理该矿石,五氧化二钒浸出率比直接酸浸时有明显进步。
表1 直接酸浸探究实验成果序号浸出时刻/h液固体积质量比硫酸用量/%V2O5浸出率/%1
2
3
4
5
66
6
6
6
10
101.2
1.2
1.2
1.2
1.2
1.212
15
20
30
30
4024.75
31.81
40.20
65.13
67.15
71.05
表2 造球-焙烧-浸出探究实验成果序号焙烧温度/℃焙烧时刻/h硫酸用量/%V2O5浸出率/%1
2
3
4850
850
850
9002
2
2
210
15
20
2565.14
77.50
83.50
87.83
(二)焙烧实验
原矿磨细至-0.074 mm占90%,制球Φ10~20 mm,枯燥后焙烧。浸出温度90℃,浸出矿样粒度-0.71mm,硫酸用量25%,浸出时刻2h。
1、焙烧温度的影响
焙烧时刻2h,焙烧温度对五氧化二钒浸出率的影响实验成果如图2所示。能够看出:随焙烧温度升高,五氧化二钒浸出率升高,但温度升到900℃后,浸出率趋于稳定,这可能是因为烧结使钒被包裹或生成了捆绑钒的方钠石类与霞石类矿藏,使钒难于浸出的原因;但较低的焙烧温度缺乏以彻底氧化贱价钒,使得钒浸出率偏低。实验断定焙烧温度以900℃为宜。 2、焙烧时刻的影响
焙烧温度900℃,焙烧时刻对五氧化二钒浸出率的影响实验成果如图3所示。能够看出:焙烧1h,五氧化二钒浸出率仅为84.61%,钒浸出不彻底,这可能是焙烧时刻缺乏、矿藏结构未能彻底损坏而使得贱价钒氧化不充分;焙烧1.5h,钒浸出率达92.43%,再延伸焙烧时刻,浸出率改变不大。断定焙烧时刻为1.5h。 (三)浸出条件的断定
断定焙烧温度900℃,焙烧时刻1.5 h;焙砂破碎至-0.71mm,液固体积质量比1.2。
1、硫酸用量的影响
浸出温度90℃,时刻2h,硫酸用量对钒浸出率的影响实验成果如图4所示。能够看出:矿石焙烧后,仍需较高的酸度才干取得抱负的浸出率,这可能是矿石中耗酸物质较多的原因。浸出液pH升高,现已浸出的五价钒发作水解而沉积,使五氧化二钒的浸出率下降。实验选定酸参加量为20%。 2、浸出温度的影响
浸出时刻1h,硫酸用量20%,浸出温度对五氧化二钒浸出率的影响实验成果如图5所示。
由图5看出,温度对五氧化二钒浸出率的影响不明显。为下降能耗和削减温度对设备的更高要求,实验选定在常温下浸出。
3、浸出时刻的影响
常温下,硫酸用量20%,浸出时刻对五氧化二钒浸出率的影响实验成果如图6所示。 从图6看出:随浸出时刻的添加,五氧化二钒浸出率略有进步;浸出2h后,浸出率趋于稳定。实验断定浸出时刻以2h为宜。
(四)萃取-反萃取-铵盐沉钒
1、萃取-反萃取
浸出液经中和、铁屑复原后制得萃原液,V2O5的中和、复原回收率为97.52%。萃原液V2O5质量浓度为5~6g/L,pH值为2.2~2.45。混合时刻单级萃取实验成果见表3;质料pH值单级萃取实验成果如表4;萃取剂浓度单级萃取实验成果如表5。
表3 混合时刻单级萃取实验成果混合时刻/min萃取率/%3
5
7
1071.94
74.66
74.32
74.48
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;弄清时刻7min;料液pH=2.2。
表4 质料pH值单级萃取成果质料pH值萃取率/%1.50
2.20
2.30
2.5025.85
74.66
76.50
81.29
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;混合时刻5min;弄清时刻7 min。
表5 萃取剂浓度单级萃取成果V(P2O4)︰V (TBP )︰V(火油)萃取率/%10︰5︰85
15︰10︰75
20︰15︰6566.15
85.74
85.86
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;混合时刻5min;弄清时刻7min;料液pH值2.38。
由表3看出:萃取反响很快,两相触摸时刻在5min以内即达萃取平衡。实验断定萃取混合时刻为5min,弄清时刻挑选7min。
由表4看出,随料液pH升高,五氧化二钒萃取率升高,但当pH值到达2.5时,开端呈现少数絮状物,可能是水相中的杂质如铁、铝沉积所造成的。pH操控在2.3~2.5之间比较适合。
从表5看出,单级萃取时,萃取剂最佳组成为15%P2O4+10%TBP+75%火油。
在最佳条件下进行5级逆流萃取,成果见表6。
表6 5级逆流萃取实验成果萃取级数萃余液中ρ(V2O5)/(g·L-1)V2O5萃取率/%1
2
3
4
51.21
0.75
0.26
0.10
0.0776.69
85.55
94.99
98.07
98.48
萃取条件:萃原液V2O5质量浓度5.19g/L,萃取剂为75%磺化火油+15%P2O4+10%TBP,比较(Va/Vo)=1︰1,1,混合时刻5min,弄清时刻7min。
5级逆流萃取后,V2O5萃取率达98.48%,负载有机相V2O5质量浓度为5.28g/L,萃取剂经处理后可循环运用。萃取后的负载有机相用1.5moL/L硫酸溶液5级逆流反萃取,成果见表7。
表7 5级逆流反萃取实验成果反萃取级数贫有机相中ρ(V2O5)/(g·L-1)V2O5反萃取率/%1
2
3
4
51.00
0.16
0.01
0.003
0.00181.06
96.97
99.81
99.94
99.98
实验条件:Va/Vo=8︰1,混合时刻10min,弄清时刻10min。
5级逆流反萃取后,贫有机相中V2O5质量浓度为0.001g/L,V2O5反萃取率99.98%,反萃取液中V2O5质量浓度在45g/L以上。
2、产品五氧化二钒的制备
选用铵盐沉积法沉积红钒。实验条件为:反萃取液中V2O5质量浓度47.08g/L,参加质量浓度200g/L的溶液,60℃下拌和1h,操控氧化复原电位在-900MV以上;以调pH至2.1,在92℃左右拌和2h,沉积得红钒;红钒经洗刷、烘干、热解,得棕黄色粉状产品。沉钒过程中,V2O5沉积率为97.50%,V2O5煅烧回收率98.50%。终究产品成分分析成果为:98.78% V2O5,0.11% Si,0.30% Fe,0.0093% As,0.05% P,0.003%S,(0.026+0.041)%(Na2O+K2O),产品质量到达GB3283-1987冶金98标准。
四、定论
(一)对西北某石煤钒矿选用造球-氧化焙烧-浸出-中和-复原-萃取-氧化沉钒-煅烧工艺提取V2O5。原矿磨细至0.074mm占90%以上,造球后在900℃条件下氧化焙烧1.5 h,焙砂破碎至 0.84mm,常温下用硫酸溶液浸出1h,钒基本上彻底浸出。
(二)浸出液经中和、复原处理后,选用15% P2O4+10%TBP+75%磺化火油系统萃取、1.5moL/L硫酸溶液反萃取,反萃取液用按盐沉积红钒,红钒在550℃下锻烧,得到合格产品。
(三)工艺中五氧化二钒浸出率为88.66%,中和复原回收率97.52%,萃取率98.48%,反萃取率99.98%,沉积率97.50%,煅烧回收率98.5%,五氧化二钒总回收率81.76%。
(四)选用该工艺,五氧化二钒回收率较传统钠化焙烧工艺有大幅进步,且契合环保要求,有利于完成工业化。
提高石煤钒矿中钒浸出率的技术
2019-01-18 13:27:13
有效提高石煤钒矿的综合利用率,降低成本,钒的浸出率是关键。为了提高钒的浸出率,科研工作者做了大量的工作,所采用的方法有钠化焙烧-浸出、氧化焙烧-浸出、钙化焙烧-浸出等焙烧-浸出法、氧压浸出法及直接高酸浸出法。其中焙烧-浸出法投资大,由于工艺复杂,处理成本高,也不太容易大工业化应用,更为致命的是,由于矿石性质的复杂性,焙烧过程中会产生大量的废气,给周围环境造成严重的破坏;氧压浸出法目前尚处在实验室阶段,处理成本也较高,工业化尚待时日;直接酸法浸出法是目前较为先进的工艺,但是,石煤钒矿中钒的赋存状态较为复杂,在直接酸浸中,钒的浸出率高低就成为工艺应用的关键。陕西五洲矿业公司中村钒矿属吸附型的钒矿,以四价钒为主,相对较易浸出,直接采用硫酸浸出,浸出率可达80%。为了进一步提高浸出率,降低成本,我们对该矿石进行了深入的研究,通过添加助浸剂,使浸出率大幅度提高,浸出率可达93%以上。
一、矿石性质
矿石矿物组成以非金属矿物为主,金属矿物较少。金属矿物以褐铁矿为主,次为黄铁矿、钒铁矿、铁钒锐钛矿等;非金属矿物以石英、泥质为主,次为方解石、石墨、碳质等,副矿物为磷灰石。通过岩矿鉴定、电子探针等手段对钒的赋存状态研究认为,钒主要以吸附状态存在,在碳硅泥岩建造的泥硅质岩与碳硅质岩界面附近,电子探针分析V2O5含量可达9.42%~13.31%;钒有少量的独立矿物钒铁矿(V205989%)、钒铁锐钦矿(V205 26.11%),铁质结核中铁矿物含V205可达5%左右。依据矿石矿物成分、结构、构造,主要矿石类型为碳硅质岩夹互泥岩型钒矿石,局部为(碳质)泥岩型钒矿石。
(一)碳硅质岩夹互泥岩型钒矿石:由黑色碳硅岩夹互泥岩或互层组成,具有碳硅质岩型与泥岩型矿石的双重矿物成分和结构、构造,黑色碳硅岩组成矿物以石英为主,石英含量65%~95%;其次为戮土矿物(水云母、高岭石)10%、碳质10%、方解石1%、褐铁矿5%~7%、黄铁矿0.5%等。矿石呈隐晶结构。泥岩组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构。
(二)(碳质)泥岩型钒矿石:主要由泥(页)岩组成,可含个别碳硅质岩细条。组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质泥岩型矿石中碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构及藻屑结构。
二、试验方法
原矿经破碎到-2mm后缩分为每包500g备用。每次取矿样一包(500g)加入锥型球磨机(XMQ-67型)中,加入350mL自来水进行磨细,磨至-0.2mm95%,将矿浆过滤后,在105℃以下烘干,均分成每包l00g备用。每个浸出试验取1包(100g)矿粉,置于500mL玻璃圆底烧瓶中,加人助浸剂和浸液(一定浓度的硫酸),配可调速磁力机械搅拌装置和可调温度控制装置,并用100℃温度计测量物料温度。在相应的条件下,浸出完成后,用9mm布氏漏斗配合水抽对浸出体系进行抽滤和洗涤,浸出液标至一定体积,浸出渣105℃下烘干、称重;浸出液与浸出渣分别按国标进行分析化验。
三、试验结果与讨论
(一)硫酸用工对钒浸出率的影响 首先进行的是硫酸用量试验,试验结果见图1。其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h从图1所示结果可见,钒的浸出率随硫酸用量的增大而升高,当硫酸用量为8%时,钒的浸出率仅为53.71,当硫酸用量为15%时,钒的浸出率为74.82%,当硫酸用量达20%时,钒的浸出率为84.86%,虽然获得了较为理想的浸出效果,但是,随着硫酸用量的增大,浸出液中的游离酸浓度也随之升高;当硫酸用量达20%时,游离硫酸浓度高达2.20mol/L(H-浓度为4.40mol/L),而这么高的游离酸浓度会给后续的提钒处理工序带来较大的困难,增加生产成本;为此,我们研究以助浸剂A配合硫酸混合浸出以期获得满意的效果。
(二)助漫剂用量对钒浸出率的影响 图2和图3分别为硫酸用量10%和12%下助浸剂A的用量对浸出率的影响。从图2和图3可以总结出两点:(1)助浸剂的作用非常大,可大幅度提高钒的浸出率。当硫酸用量为10%时,不加助浸剂时钒的浸出率仅58.25%,加入2%的助浸剂时,钒的浸出率达到77%;当硫酸用量为12%时,不加助浸剂时钒的浸出率为63.25%,加入2.5%的助浸剂时,钒的浸出率达到88.38%。图2 硫酸用量为10%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h(2)助浸剂的最佳用量随着硫酸用量的增大而增大,当硫酸用量为10%时,助浸剂的最佳用量2%;当硫酸用量为12%时,助浸剂的最佳用量2.5%,这可能与助浸剂需要消耗酸有戈,助浸剂A之所以能有效地提高钒的浸出率,估计与其能破坏硅酸盐结构,使钒从矿石中释放出来,从而能被硫酸作用而进入水相的结果。图3 硫酸用量为12%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h其它试验条件:液固比1︰1,硫酸10%,助浸剂A2.5%,浸出时间8h
(三)浸出温度对钒浸出率的影响图4为浸出温度对浸出率的影响。从试验结果来看,提高浸出温度对钒的浸出非常有利;但考虑到这是常压浸出,如果温度超过90℃,浸出体系产生蒸汽挥发,既会恶化操作环境,也使得能耗增大,因此,综合相关因素,浸出温度以90℃为宜。
(四)浸出时间对钒浸出率的影响浸出时间对钒浸出率的影响见图5。由图可见,随着时间的增长,浸出率也随之增高;浸出时间为4h时,浸出率为74.45%;浸出时间为8h时,浸出率为77.45%;浸出时间为20h时,浸出率达到84.79%。四、工业试验结果通过实验室的系统研究,获得了理想的试验结果,在此基础上,我们在现场进行了工业试验,试验结果见表1。 表1 工业试验结果%浸出率助浸剂A用量原矿品位V205浸出渣品位V20500.990.24680.1520.8940.11293.05工业试验的条件为:磨矿细度-0.2mm95%;浸出液固比为1︰1;浸出硫酸用量10%;浸出温度90℃;浸出时间24h。工业试验结果验证了实验室试验的结果,在同等条件下,添加2%的助浸剂A,钒的浸出率从80.15%提高到93.05%,大幅度提高了钒的浸出率,降低了生产成本,提高了资源利用率。
五、结论
(一)所采用的助浸剂A具有特效作用,可破坏硅酸盐矿石结构,大幅度提高石煤钒矿中钒的浸出率。(二)工业试验中,在同等浸出条件下,添加2%的助浸剂A,钒浸出率从80.15%提高到93.05%。(三)助浸剂A的最佳用量与硫酸的用量有关,硫酸用量越大,助浸剂A的最佳用量就越大。
钛矿浮选了解
2019-02-22 16:55:15
常见的含钛矿藏有钛铁矿、金红石、钙钛矿和榍石。它们的可浮性如下。
钛铁矿(FeTiO3)和金红石(TiO2)用羧酸及胺类捕收剂都能浮游。但用羧酸类捕收时,脉石矿藏不易浮游,故羧酸类用得较多。工业上常用的详细药剂有油酸、塔尔油和环烷酸及其皂。并且常用火油为辅佐捕收剂。钛铁矿和金红石浮选之前,先用硫酸洗刷矿藏表面,能够进步它们的可浮性,下降捕收剂的用量。
用羧酸捕收钛铁矿和金红石时,pH=6~8,两种矿藏都浮游得比较好。在pH
钠和能够阻止十三酸和油酸钠在钛铁矿的表面固着,下降它们在钛铁矿表面的固着量,因而能按捺钛铁矿,硅酸钠关于钛铁矿也有必定的按捺作用。
钛铁矿浮选的回收率与调整时矿粒的絮凝和涣散状况有关。假如作调整槽传动轴的净功耗与调整时刻的联系曲线,可按其功耗的大小将调整时刻分红五个阶段,即感应阶段、絮凝阶段、絮凝高峰阶段、絮凝损坏阶段和涣散阶段。
矿浆开端絮凝时(絮凝阶段),净功耗、钛铁矿回收率和脉石回收率都上升;抵达絮凝高峰阶段,矿浆充沛絮凝,净功耗、钛铁矿回收率和脉石回收率都达到了极点;抵达絮凝损坏阶段,钛铁矿的回收率不变,精矿档次添加,净功耗和絮凝程度下降;抵达涣散阶段,精矿档次下降,回收率最小。
升高矿浆温度,捕收剂膜的疏水性增大,钛铁矿的回收率添加而精矿档次下降。充气对钛、锆矿藏有显着的影响。充空气60~120S,金红石和钛铁矿的回收率都上升而锆英石的回收率下降。若只充入氮气,则两种钛矿藏遭到按捺而锆英石能照旧浮游。
钙钛矿(CaTiO3)能够先用硫酸处理,经冲刷后用油酸或其他脂肪酸浮游。苏打和水玻璃能够按捺它,而铬酸盐和重铬酸盐能够活化它。当矿石中方解石多时,会使酸洗的耗酸量增大。为了削减酸的用量,在浮钙钛矿之前能够先浮方解石。
榍石CaTiSiO5能够用火油乳化的油酸捕收,能够被水玻璃按捺。其可浮性较其他含钛矿藏差,更比磷灰石等碱土金属盐类矿藏差,假如伴生的磷灰石多能够先浮磷灰石。
A钛锆矿的选别办法及实例
钛铅矿的选别办法钛铁矿、金红石和锆英石常常伴生,密度都在4.0~4.7g/cm3之间,用重选法选别时,它们一起进入重砂中。它们的可浮性也很挨近,用乳化油酸浮选时,它们一起进入混合精矿中。它们的混合精矿准则上有两种别离办法:
(1)先用磁选法分出钛铁矿(磁选也能够放在浮选之后),其非磁性部分用钠按捺锆英石,用乳化油酸在pH=3.8~4.6的介质中浮选金红石。
(2)用硫酸按捺金红石,用乳化油酸或阳离子捕收剂浮选锆英石。
B某钛锆矿浮选实例
该矿矿石为石英砂矿床,80%~95%的钛铁矿及金红石小于0.15mm,100%的铅英石小于0.15mm。先用摇床选别得到它们的混合精矿。