您所在的位置: 上海有色 > 有色金属产品库 > 钛渣冶炼工艺 > 钛渣冶炼工艺百科

钛渣冶炼工艺百科

钛渣术语

2019-01-25 13:37:03

钛渣:钛铁矿(钛精矿)配加一定量的含碳还原剂通过电炉熔炼,使矿中的铁氧化物被C还原,从而实现铁钛分离,钛氧化物被富集在炉渣中所形成的产品。      酸溶钛渣: 用作硫酸法钛白生产原料的钛渣     氯化钛渣: 用作氯化法钛白或海绵钛生产原料的钛渣     富钛料: 将钛铁矿通过各种方法进行富集而得到的高品位的含钛物料的总称     预处理: 在矿物进入电炉冶炼前,为了改善矿物性能等而对矿物进行一定的处理。     预还原: 在矿物进入电炉冶炼前,对矿物先进行还原处理,将矿中部分铁氧化物还原成低价铁或金属铁的处理方法。     预氧化: 在矿物进入电炉冶炼前,将矿物在中性或氧化气氛中进行焙烧的处理方法。     电炉冶炼法: 通过电炉并由电极输入电能来进行冶炼的方法。      电极: 将电流输入电炉内,并由此将电能转化为矿物冶炼所需要的能量的导电物体。     石墨电极: 采用石墨作为电极的主要原料,是一种已焙烧成形的电极。     自焙电极: 将电极糊填充在电极筒套中,通过冶炼过程中产生的热量来焙烧成形的电极。     还原剂: 用于将高价氧化物还原成低价氧化物或金属单质的物料     炉况: 电炉冶炼过程中炉内的状况。     翻渣: 在钛渣冶炼时,因炉料突然陷落造成还原反应瞬间激烈发生,产生大量CO气体经熔渣逸出,使渣出现沸腾和喷溅现象。     低价钛: 化合价低+4价的含钛化合物。     半钢: 钛渣冶炼时铁氧化物被还原后所生成的一种铁水,因含C介于钢与铁之间,故称半钢。      不溶钛: 不溶于硫酸的钛化合物。     挂渣: 在冶炼钛渣时,为防止钛渣对炉壁的腐蚀,在炉内壁挂上一层钛渣以保护炉壁的方法。     直流电炉: 采用直流电源的电炉。     交流电炉: 采用交流电源的电炉     明弧冶炼:在冶炼钛渣时,通过电极顶端发出弧光热量来熔化物料进行冶炼的方法。     埋弧冶炼: 冶炼时电极插入物料中通过物料的电阻产生热量来进行冶炼的方法。     铁、钛总量:原料中二氧化钛和三氧化二铁与氧化亚铁的总和。     配碳量:根据原料中铁含量与还原剂的碳含量及其还原程度来确定配碳的比例关系。

钛的冶炼

2019-03-05 09:04:34

钛在1791年被发现,而第一次制得纯洁的钛却是在1910年,中间阅历了一百余年。原因在于:钛在高温下性质非常生动,很易和氧、氮、碳等元素化合,要提炼出纯钛需求非常严苛的条件。    工业上常用硫酸分化钛铁矿的办法制取二氧化钛,再由二氧化钛制取金属钛。浓硫酸处理磨碎的钛铁矿(精矿),发作下面的化学反应:        FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2O        FeTiO3+2H2SO4 == TiOSO4+FeSO4+2H2O        FeO+H2SO4 == FeSO4+H2O        Fe2O3+3H2SO4 == Fe2(SO4)3+3H2O    为了除掉杂质Fe2(SO4)3,参加铁屑,Fe3+ 复原为Fe2+,然后将溶液冷却至273K以下,使得FeSO4·7H2O(绿矾)作为副产品结晶分出。        Ti(SO4)2和TiOSO4水解分出白色的偏钛酸沉积,反应是:        Ti(SO4)2+H2O == TiOSO4+H2SO4        TiOSO4+2H2O == H2TiO3+H2SO4    锻烧偏钛酸即制得二氧化钛:        H2TiO3 == TiO2+H2O    工业上制金属钛选用金属热复原法复原。将TiO2(或天然的金红石)和炭粉混合加热至1000~1100K,进行氯化处理,并使生成的TiCl4,蒸气冷凝。        TiO2+2C+2Cl2=TiCl4+2CO    在1070K 用熔融的镁在氩气中复原TiCl4可得多孔的海绵钛:        TiCl4+2Mg=2MgC12+Ti    这种海绵钛通过破坏、放入真空电弧炉里熔炼,最终制成各种钛材。

高炉富锰渣的冶炼工艺特点

2019-01-04 17:20:15

高炉富锰渣的冶炼工艺特点 高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点: 1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。 2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。 3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。 4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。 5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。 6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。 电炉富锰渣的生产 1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2) 48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。 2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm

酸溶性钛渣的酸解工艺

2019-02-13 10:12:38

用酸溶性钛渣作质料比钛铁矿作质料有以下长处。     a.因为钛渣中的TiO2含量高,产品总收率可进步2%~3%,并可节省相应的储运、枯燥、原矿破坏的费用;     b.因为钛渣中钛含量高、铁含量低,因而酸耗也明显下降,每吨钛的酸(H2SO4)耗可节省25%~30%,但反响时硫酸浓度较高;     c.无副产品硫酸亚铁,也不需求用铁屑来复原,防止废铁屑带进的杂质对成品质量的影响;     d.能耗低,可节省0.6t蒸汽/钛,节电8%、节油或燃气4%、节水5%、节省制作本钱12%;     e.工艺流程短,可省去复原、亚铁结晶与别离和浓缩3个工艺操作进程;     f.反响生成的钛液稳定性好,晶种增加量也较少;     g.废酸,废水、废渣排放量以每吨钛计比普通钛铁矿酸解工艺要少得多,三废管理的费用相对少。      因为酸溶性钛渣在高温冶炼时要参加复原剂(无烟煤),因而产品中不含Fe2O3而含有二价的FeO和金属铁,所以在酸解进程中不只不需求参加铁屑来复原高价铁,有时因为三价钛含量过高还要参加少数的氧化剂。别的因为酸溶性钛渣中二氧化钛含量高、总铁含量低、不含有Fe2O3,因而反响时放热低,需求蒸汽加热的时刻较长,反响时的硫酸浓度要求较高(91%)老练和浸取的时刻较长。       图1为运用加拿大QIT索利尔酸溶性钛渣的酸解反响进程,从图中能够看出:反响前的80min为加酸、投矿和拌和的进程,此刻的压缩空气流量为600m3/h,随后加稀释水7min,因为硫酸稀释放热温度从50℃升至80℃,然后通蒸汽加热25min温度上升至120℃,主反响当即开端,在5min内温度从120℃猛增至200℃左右。主反响期间保持约15min,从加稀释水前20min到主反响期间压缩空气的流量增大至800~1000m3/h,保温吹气0.5h,此刻压缩空气量可降至500m3/h,中止吹气老练约4h,在此期间温度从190℃缓慢降至85℃,接着在不超越90℃的情况下浸取约7h,浸取期间拌和用的压缩空气流量约800m3/h,所得钛液的相对密度为1.550g/cm3。[next]     图2是一个运用加拿大QIT索利尔酸溶性钛渣的工艺流程和物料平衡示意图。

含钽铌的冶炼渣的冶金富集工艺

2019-02-11 14:05:38

难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。 一、酸浸出-酸分化法处理锡渣 含钽铌的锡渣组成如下(%):                  Ta2O5   Nb2O5    TiO2      ZrO2    WO3     Sn    SiO2    CaO 3~9    3~10   15~40    3~13   3~12   2~6  5~15   2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。 二、复原-氧化法处理锡渣 复原-氧化法处理工艺流程见图1。图1  锡渣处理工艺流程 锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21 进程首要分为四步 (一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物; (二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品; (三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。 (四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。 三、复原-电解法处理锡渣 质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0 将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。 电解的反应为:3FeCl→Fe+2FeCl3 当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。

硅锰合金冶炼渣处理工艺及设备

2019-01-24 09:36:35

硅锰合金冶炼渣是冶炼硅锰合金时产生的固体废渣,一般呈绿色,硬脆,含有一定量的硅锰合金颗粒嵌布其中。硅锰合金冶炼渣如果不及时经过客户有效的处理,会对环境和人类健康造成一定的危害,这里公开一种新型的硅锰合金冶炼渣处理工艺流程及设备配置,不仅有效解决了硅锰合金渣的处理,还能够产生可观的经济效益。处理过程对环境不产生二次污染,具有高效,节能,环保等优势。基本可实现废渣的全吸收。 硅锰合金冶炼渣中存在一定量的硅锰合金颗粒,回收这些合金颗粒即可产生相当可观的经济效益,利用此工艺流程及设备配置投资小,见效快,是一种科学有效的硅锰渣处理工艺流程。下面详细介绍该工艺流程及设备配置。 回收硅锰渣中的合金颗粒就必须使合金颗粒和固体废渣基本单体分离,这就要求将废渣进一步破碎或研磨,选择破碎或者研磨需要根据废渣的具体情况确定,如果废渣中合金颗粒嵌布粒度较小,则考虑采用棒磨或者球磨,如果合金颗粒嵌布粒度较粗,直接进行破碎即可,选用高效细碎机或者细破碎机即可完成破碎过程。 破碎后的废渣中合金颗粒和废渣基本单体解离,由于合金颗粒具有较大的比重而废渣的比重较小,两者有较大的比重差,利用这一特点,我们可以采用重选的方法使合金颗粒和固体废渣分离。金属颗粒可再次冶炼或直接出售,其余废渣则销向水泥厂或新型建材厂作为新型建材产品的原材料。 硅锰合金冶炼渣的具体分选设备为跳汰机。跳汰机是一种重力选矿设备,它可以根据矿物与脉石的比重差进行分选,比重差越大分选效果越好,处理量越大。

钛渣的制取和分类

2019-02-13 10:12:44

尽管钛铁精矿能够直接用于出产钛,可是其TiO2档次低,铁和其他杂质多,产品质量无保证,三废量大,对环境污染严峻。跟着环保要求日趋严厉,不管氯化法仍是硫酸法的钛白出产,对钛质料的要求,都趋于高档次化。将钛铁矿进行富集处理制成钛渣,就能更多地将杂质从矿中别离出去,然后取得TiO2档次较高的富钛料,再将其用于钛出产,就能进步产品的质量和削减三废对环境的污染。     用钛铁和还原剂,在一种既不同于矿热炉,也不同于电弧炉的特殊电炉中,加热到1600~1800℃,进行高温溶炼,使钛铁矿中铁的氧化物被还原为金属铁,以铁水流出成为生铁而别离除掉大部分铁;钛铁矿中的钛,即进入熔炼渣中而成为钛渣。钛铁矿还原熔炼电弧暗示和敞口电炉出产高钛渣工艺准则流程别离如图1和图2所示。         电炉熔炼制钛渣的优点如下:①工艺流程短;②副产品铁水经脱硫、脱氧后,其含铁量达98.5%,可供出产可锻铸铁或粉末冶金用铁粉;③不发生固体和液体废料,三废少;④电炉煤气可回收使用;⑤工厂占地面积小,是一种高效的制取富钛料的办法以。     国外一般将TiO2含量>70%的熔炼称为钛渣。钛渣有高钛渣和低钛渣之分。一般将TiO2含量<80%的钛渣称为低钛渣,低钛渣易于被硫酸所溶解而称为酸溶性钛渣。酸溶性钛渣的基本要求如下:①具有杰出的酸溶性,一般酸解率≥94%;②要有适量的助溶剂FeO和MgO,以使钛渣具有杰出的酸解反响功能;③贱价钛含量要操控适量;④出产钛的有害杂质(特别是硫、磷、铬、钒)含量不能超支。而将TiO2含量≥90%的钛渣称为高钛渣,简称UGS.     我国高钛渣质量标准见下表。                                                      我国高钛渣质量标准(ZBH31001-87)等第化学组成(质量分数)/%ΣTiO2ΣFeCaO+MgOMnO2一级品 二级品 三级品≥94.0≤3.0≤1.0≤4.5≥92.0≤4.0≤1.5≤4.5≥80≤5.0≤11≤4.5     因为高钛渣杂质少,在氯化时发生的废副产品少,多用于氯化法钛白出产。只需酸溶性好,不管低钛渣和高钛渣,都能够用于硫酸法钛白出产。

铬铁冶炼渣处理工艺流程及设备配置

2019-01-04 09:45:48

铬渣是冶炼铬铁合金时产生的固体废渣,这些固体废渣如果不及时经过科学有效的处理,不仅会对环境和人类健康造成威胁,同时也会造成有用资源的浪费,这里简单介绍一下铬铁渣处理的工艺流程和设备配置。铬铁渣多为干渣,硬度较大,嵌布有粗,细布均匀的铬铁合金,回收这些铬铁合金可以产生可观的经济效益,也为铬铁渣的进一步处理打下铺垫,以下为铬铁渣处理工艺流程图:铬铁渣处理工艺流程简介: 该铬铁渣处理工艺流程以重力选矿的方法从铬铁矿渣中回收铬铁合金,采用两次跳汰机分选,分别获得粗粒和细粒铬铁合金颗粒,使铬铁回收的利益最大化。首先大块铬铁矿渣经过粗鄂式破碎机破碎成小块,小块铬铁矿渣进入细鄂式破碎机进行细破,使最终粒度控制在30mm以内,之后进入料仓,料仓下方设电磁振动给料机,将破碎后的铬铁渣均匀给入AM30跳汰机进行粗粒跳汰分选,得到粗粒铬铁合金和尾矿,尾矿中因嵌布有不少细粒铬铁合金,需采用棒磨机将AM30跳汰机尾矿进行研磨,得砂状铬铁矿渣,进入LTA1010/2跳汰机进行二次跳汰分选,得到细粒铬铁合金和废渣。该工艺流程对铬铁合金的总回收率在90%以上,是国内广泛应用的铬铁渣处理回收工艺流程。 铬铁渣处理设备配置清单:名称型号功率(KW)数量(台)粗鄂式破碎机PE400*600301细鄂式破碎机PEF250*1000371跳汰机AM3031LTA1010/231棒磨机Φ1200*4500551输送机600型5.5——给料机GZ30.351料仓20m³——1回收过铬铁合金后的铬铁渣中铬铁含量极低,均呈细粒状,可再次销售向水泥厂,新型建材厂等企业,制成新型建材,整个处理过程实现了对铬铁渣固体废料的全部回收利用,不仅减少了有用资源的浪费,同时也降低的固体废渣对土地的占用,对环境和人类健康的危害。我厂对铬铁渣,镍铁渣,不锈钢渣,硅锰渣等多种金属冶炼矿渣的处理和回收有丰富的经验和独到的见解,欢迎广大客户朋友到厂参观指导,共同探讨。

硅锰合金冶炼渣回收处理工艺流程

2019-01-24 09:37:13

硅锰合金冶炼渣也称为硅锰渣,是冶炼硅锰合金时产生的固体废渣,由于受冶炼工艺的限制,这些硅锰渣中含有一定量的硅锰合金,处理这些硅锰冶炼渣,回收其中的硅锰合金可以获取较为客观的经济效益,同时具有投资小,风险小等优势,因此硅锰合金冶炼渣的处理项目近年来被众多的中小型投资者所看中。下面介绍一种硅锰合金冶炼渣的处理工艺流程,仅供参考。 硅锰合金冶炼渣的处理工艺流程与铬铁合金冶炼渣的处理工艺流程基本相似,但也有一定的区别。铬铁合金冶炼渣中存在较粗的铬铁合金颗粒,而硅锰合金冶炼渣中的硅锰合金一般呈细粒不均匀嵌布,因此在处理工艺上,铬铁合金冶炼渣处理工艺为尽可能回收粗粒铬铁合金,同时回收细粒铬铁合金,而硅锰渣中由于基本上不存在粗粒硅锰合金颗粒,因此可直接破碎至细粒,然后依次选别回收所有的细粒硅锰合金。具体回收方法和设备主要是重选,重选法可以获得节能,高效,环保等选矿效果,同时选别效果也非常理想,对环境不产生二次危害。采用的重选设备主要是跳汰机,有时也用到摇床。 以下为硅锰合金冶炼渣的处理工艺流程图:由于硅锰合金渣硬度较大,该工艺采用了两段破碎流程,且均为鄂式破碎机,可有效降低破碎机的磨损,从而降低硅锰冶炼渣处理的成本。再跳汰机的选型上根据多年来调查发现,处理硅锰合金冶炼渣大多采用JT1070/2锯齿波形跳汰机,该机正常工作产生的跳汰周期曲线呈锯齿波型,对细粒级重矿物的回收效果极佳,而硅锰渣中又存在细粒的硅锰合金颗粒,因此采用锯齿波跳汰机处理硅锰渣是较为理想的选择。

富锰渣冶炼的有关计算

2019-01-25 15:49:32

一、高炉冶炼富锰渣的配料计算    正常炉况下的富锰渣成分,主要决定于配矿,富锰渣中的锰主要决定于矿石含锰量和锰铁比,或锰加铁总量。富锰渣中的磷含量和铁含量主要决定于炉温,前者主要由配料控制,后者主要由操作控制。在正常炉况下,都不会造成铁、磷出格,因此主要是搞好配料计算以解决锰合格问题。    1)配料计算的一般过程    (1)首先决定各元素和氧化物的分配率,根据理论分析和生产实践,各元素和氧化物的分配如表1。表1        富锰渣治炼各元素和氧化物的分配元素和氧化物入渣率/%入铁率/%吹损/%Mn85~903~83~8Fe2~585~903~8P2~585~903~8Al2O3,CaO,MgO92~9703~8SiO2其余以Si0.5计3~8     (2)确定矿石配比    ①根据原料的化学成分,确定初步配比。    ②计算入炉混合矿成分(用加权平均法)。    ③根据数理统计,含量35%的富锰渣入炉矿石的Mn和Fe的关系式如下:                              m(Fe)≥81.5-2.6m(Mh矿)    式中:m(Mn矿)为计算出的混合矿含锰量;m(Fe)为混合矿含m(Mn矿)时,得到含Mn35%的富锰渣要求含Fe的最小值。    计算确认m(Fe矿)≥m(Fe)时,一般可得到合格富锰渣。    (3)确定焦炭负荷。焦炭负荷根据生产实践经验来确定,理论计算复杂,日常生产中极少应用。焦炭负荷与入炉矿石含铁密切相关,一般混合矿含铁高,焦炭负荷轻。一般矿石含铁量20%左右,焦炭负荷取3~3.5,当含铁30%左右时,焦炭负荷取2.5~3.0。    (4)富锰渣和副产生铁成分的计算    ①以100kg矿石和相应的焦炭量,按入渣率计算成渣物量,并将其中锰、铁和磷换算成低价氧化物。    ②各种渣物量相加即为100kg矿石的渣量,然后进一步计算成分。    ③由渣量计算焦比和矿比。    ④同样以100kg矿石和相应的焦炭量,按入铁率计算铁量,并以生铁含碳4.5%折算出100kg矿石所得的铁量。    ⑤检验渣成分是否合格,若合格就计算出铁渣比。锰成分不合格或渣中A12O3大于20%,则调整配比后,再进行计算。    2)富锰渣配矿计算实例    以A,B,C三种不同类型的矿配矿,冶炼含锰35%以上,38%以下的富锰渣。[next]    (1)矿石成分及焦炭成分见表2。表2               矿石成分及入炉混合矿成焦炭灰分及成分(%)矿种MnFePSiO2CaOMgOAl2O3配比A28.015.00.2525.01.00.57.060B18.534.00.110.02.01.58.030C28.527.50.19.501.50.54.510混合矿25.1521.950.1918.951.350.87.05100焦炭灰分(含量20%)  0.2508.0 42.0      (2)拟定配矿比为:A矿60%,B矿30%,C矿10%;    (3)计算入炉混合矿成分,m(Mn)/m(Fe)=1.14,W(Mn+Fe)=47.1%;    (4)计算m(Fe):m(Fe)=81.5-2.6 m(Mn矿)=16.11,m(Fe矿)≥m(Fe)    可知冶炼所得的富锰渣可以含Mn量≥35%    (5)计算富锰渣成分    ①假定焦炭负荷为3.3,即100kg矿石需用30kg焦炭。    ②按100kg矿石和相应30kg焦炭计算渣量。    a.进入渣中的锰和氧化亚锰(锰入渣率按90%计算)。                                m(Mn)=25.15×90%=22.64kg                             m(MnO)=22.64×71÷55=29.22kg    b.进入渣中的铁和氧化亚铁(铁入渣率取3%计算)。                                m(Fe)=21.95×3%=0.66kg                               m(FeO)=0.66×72÷56=0.8kg    c.进入渣中的SiO2量,以SiO2入渣,其总量是入炉量的95%。    计算铁量,副产品铁含量80%~90%,以88%计算,铁元素进入生铁取92%计算,    则生铁量为:Q=21.95×92%÷88%=22.9kg     生铁Si含量为0.5%,则铁中Si量为                                m(Si)=22.94×0.5%=0.12kg    还原需要SiO2量为                                 0.12×60÷28=0.25kg    则进入渣中的SiO2量:                       m(SiO2)=18.95×95%+30×20%×50%×95%-0.25                              =20.6kg    d.进入渣中的Al2O3量,Al2O3入渣率取95%计:                       m(Al2O3)=7.05×95%+30×20%×42%×95%=9.09kg    e.进入渣的CaO和MgO量,CaO,MgO的入渣率取95%计:                       m(CaO)=1.35×95%+30×20%×8%×95%=1.73kg                       m(MgO)=0.8×95%=0.76kg    f.进入渣中的P2O5量                      m(P2O5)=(0.19+30×20%×0.2%)×3%×144÷62                            =0.014kg表3                富锰渣量及成分成分MnOFeOSiO2Al2O3CaOMgO质量/kg29.20.8420.69.091.730.76含量/%46.951.3433.114.62.771.22成分P2O5总和m(Mn)m(Fe)m(P) 质量/kg0.01462.2422.640.660.0075 含量/%0.02810036.361.050.012  [next]     (6)检验:富锰渣m(CaO+MgO)/m(SiO2)=0.12,m(SiO2)/m(Al2O2)=2.26,含Mn,Fe,P均符合要求。    (7)副产生铁成分计算    a.锰入铁量,锰入铁率取5%                        m(Mn)=25.15×5%=1.26kg    b.铁入铁量,铁入铁率取92%计                        m(Fe)=21.95×92%=20.19kg    c.还原入铁的Si量                        m(Si)=0.12kg    d.P入铁量,P入铁率取92%计                         m(P)=(0.19+30×20%×0.2%)×92%=0.19kg表4               生铁量与成分表元素MnFeSiPC总和质量/%1.2620.190.120.190.12522.89含量/%5.5488.20.520.834.9499.99     (8)矿比、焦比计算       矿比:1000÷62.24×100=1607kg/t       焦比:1607÷3.3=487kg/t    二、电炉富锰渣冶炼配料计算    比实例介绍一种简易计算方法    1)计算的原始条件    (1)锰矿石的化学成分    化学成分  Mn      Fe      P    SiO2    Al2O3    CaO    MgO    含量/%   24.50  31.00   0.03  12.5    12.5     0.6    0.5    (2)焦炭成分    固定碳:80%;灰分:17%表5         各元素的分配率/%项目MnFeP炉渣中8555生铁中139575挥发2 20     (3)焦炭的利用率为92%。    (4)设定由Fe2O3→FeO和MnO2→Mn3O4全为受热分解,不直接消耗焦炭。而由FeO→Fe,Mn3O4→MnO和MnO→Mn全部用焦炭还原。Si和P等还原耗焦炭甚少,由电极消耗来补充,而不另外耗焦炭,以简化计算。    2)简易配料计算    以100kg矿石为基础的计算方法,100kg锰矿石消耗干焦炭约13.5kg.    (1)富锰渣含量按下式计算    式中  w(Mn(矿))、w(Fe(矿))——锰矿石中含锰量、含铁量,%;          ηMn(入)、ηFe(入)——锰的入渣率、铁的入渣率,%;          A——每100kg矿所用焦炭灰分的重量,kg;          B——每100kg矿含SiO2,Al2O3,CaO,MgO的总重量,kg。[next]    将原始数据代入上式,则得富锰渣的含锰量为    从上述计算得出:    100kg锰矿石生产的富锰渣和生产铁数量和主要成分见表6。表6                富锰渣和生铁的数量与成分名称化学成分(%)产量/kgMnFeP富锰渣39.112.910.00353.25生铁9.2685.640.134.39     (3)焦炭消耗量的计算    焦碳消耗主要用于铁、锰的还原和生铁的渗碳等方面。    还原进入富锰渣的锰所需碳量:Mn3O4+C=3MnO+CO                            53.25×0.391×12÷165=1.15kg    还原进入生铁的锰所需碳量:MnO+C=Mn+CO                             34.29×0.0926×12÷55=0.68kg    还原进入生铁的铁所需碳量:FeO+C=Fe+CO                             34.39×0.8564×12÷56=6.31kg    副产生铁中渗碳量:34.39×0.045=1.55kg    上面四项合计需碳量为                              1.51+0.68+6.31+1.55=10.05kg    折合成干焦炭量为:10.05÷0.90×0.80=13.96kg    (4)锰矿石与焦炭的配料比为       锰矿石量/焦炭量=100/13.96    (5)每吨富锰渣消耗       锰矿石:1000÷53.25×100=1878kg       焦  碳:1878÷13.96=262kg

富锰渣冶炼对原料的要求

2019-01-18 11:39:40

富锰渣冶炼是自然碱度,不需要加熔剂,只有在少数情况下,为改善炉渣流动性,需添加少量萤石。因而富锰渣冶炼的原料主要是锰矿石、焦炭。        (1)锰矿石的化学成分     锰矿石的化学成分直接影响到富锰渣的产量、质量和消耗。锰矿石的化学成分王要有Mn,Fe,P,SiO2,Al2O3,CaO,MgO等。在高炉冶炼富渣时,锰有85%以上进入炉渣,SiO2,A12O3,CaO,Mg0几乎全进入炉渣,Fe和P大约90%进入生铁。     锰矿石含锰量增高时,富锰渣的含锰高,产量高,焦炭和矿石的消耗量则低。而当锰矿石含铁量增高时,矿石的化学失重大,富集效果好,有利于获得高品位的富锰渣。锰矿石含铁量高,去磷效果也好,因磷被还原后进入生铁。锰矿石含铁过高也不好,铁高富锰渣产量低,附产生铁多,焦炭消耗量大,锰的回收率低,同时操作上也难维持低炉温操作。     冶炼富锰渣,对矿石中锰和铁的要求,通常以m(Mn)/m(Fe)和w(Mn+Fe)两个指标来表示。当m(Mn)/m(Fe)一定时,w(Mn+Fe)愈高,渣的含锰愈高,但渣的产量却随w(Mn+Fe)增大而降低。这是因为w(Mn+Fe)增大,矿石中脉石减少的原因。而当w(Mn+Fe)一定时,m(Mn)/m(Fe)愈高,渣的含锰量和渣的产量均随之增加。这是因为m(Mn)/m(Fe)增加,矿石中铁量减少,进入渣中MnO增多。图1表示富锰渣品位、渣量和矿石m(Mn)/m(Fe)和w(Mn+Fe)的关系曲线。对锰矿石脉石要求,Al2O3,含量要尽可能低,因Al2O3高,增加炉渣粘度,升高炉渣熔点。要求矿石含CaO,MgO低一些,因CaO,MgO增高会促进锰的还原。当矿石中SiO2高时,富锰渣中SiO2会高,对冶炼锰硅合金的用户,要求富锰渣有一定含量的SiO2。而对冶炼碳素锰铁则要求SiO2低。     为了保证富锰渣的质量,要求锰矿石m(Mn)/m(Fe)在0.3~2.5时,其w(Mn+Fe)应为38%~60%,当m(Mn)/m(Fe)高时,w(Mn+Fe)则为低值。反之m(Mn)/m(Fe)低时,w(Mn+Fe)为高值。因此要求w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO+MgO)/m(SiO2)≤0.4。     在生产实践中,都是通过几种锰矿石配矿,调整炉料成分,最。终使入炉的混合矿成分能满足富锰渣生产的要求,同时又能获得好的技术经济指标。     各种锰矿的冶炼效果见表1。(2)锰矿石的物理性能     冶炼富锰渣与高炉冶炼锰铁一样,要求锰矿石粒度均匀,最好是8~40mm,含粉率低,小于5mm部分应小于5%,强度要求好,以改善料柱透气性和减少炉顶吹损。        (3)焦炭和萤石的要求     冶炼富锰渣要求焦炭强度好,粒度合适(20~80mm)、质量稳定。要求萤石含有效CaF2高,成分稳定,粒度均匀(20~40mm),含粉率低。

锰矿石冶炼富锰渣和生铁工艺流程

2019-01-04 17:20:18

锰矿石冶炼富锰渣和生铁工艺流程: 小高炉开启,原材料:锰矿石、焦炭。选择合量41以上的锰矿石(mn:23左右,fe:18左右).和碳质还原剂(通常用二级焦碳).原矿石和焦炭的配比为3.5:1,加进治炼炉里,经过炉加热炼两个小时成液体状。经管道流进指定的加有耐热材料的模具里(生铁重些从底下的口子流出.富锰渣从上面口子流出) 冷却后得到富锰渣和生铁。富锰渣和生铁出炉比例约为10:1。1.5吨原矿石经冶炼得到约一吨富锰渣和0.1吨生铁及付生铁。       冶炼一万吨原矿石需要消耗约三千吨二级焦炭。锰矿原矿石价格:锰矿石(mn:23,fe:18)  400元/吨 加减一度锰50元,加减一度铁15元。 二级焦炭:1300元/吨 一级焦炭:1800元/吨富锰渣(mn:33):1150元/吨. 生铁(含碳量2.5%--4%):2750/吨小高炉锰矿原矿石富锰渣焦炭生铁

钛渣酸溶性好的原因分析

2019-02-13 10:12:38

在电炉熔炼的1600~1800℃的中温条件下,除铁的氧化物被复原外,还有适当数量的TiO2被复原为贱价钛的氧化物(只要在更高的温度下,TiO2才被复原生成TiC和金属钛而溶于铁水中)。     在钛渣熔炼出炉后的冷却结晶过程中,大部分钛的氧化物与其他碱性较强的金属氧化物化合构成二钛酸盐(如FeO·2TiO2、MgO·2TiO2、MnO·2TiO2),并与A12O3·TiO2、Ti3O5等构成黑钛石固熔体。也有少数偏钛酸盐等构成塔柱石固熔体,还有少数钛的氧化物进入硅酸盐玻璃体。钛渣熔体在空气中冷却时,其间部分贱价钛还会被氧化生成游离TiO2,当这种氧化发生在温度>750℃时,氧化产品主要是金红石型TiO2。生成了金红石型TiO2,就不能被硫酸所溶解。因而出产酸溶性钛渣,很重要的一点是在高温期尽量让其保持在复原气氛,不让空气氧化。     钛渣酸溶标明,黑铁石固熔体的钛氧化物最易溶于硫酸,金红石型TiO2不溶于硫酸。因而作为酸溶性钛渣应满意以下几点:①应含有适量的助溶杂质(主要是FeO和MgO)以及一定量的Ti2O3,以使钛的氧化物尽可能存于黑钛石固熔体中;②在工艺上采纳喷水冷却,可防止高钛渣与空气触摸氧化生成不溶于硫酸的金红石型TiO2,一起也可加速冷却速度。一般温度在<750℃时,其钛的氧化产品为锐钛型TiO2,而不是金红石型TiO2;③像前独联体那样,在熔炼后期参加废钛屑,进步钛渣的复原度,防止高温被氧化成金红石型TiO2。     经分析攀枝花矿酸溶性钛渣物相标明,其渣中钛氧化物90%以上进入黑钛石固熔体中,有4%~7%进入硅酸盐相,有1%左右以金红石型TiO2方式存在。     钛渣中的Fe2+、Mg2+、Mn2+、Al3+为构成黑钛石固熔体供给了必要的二价和三价金属离子,它们具有安稳该固熔体的效果。其间FeO·2TiO2和MgO·2TiO2是最易溶于硫酸的,即FeO和MgO具有促进钛渣中钛氧化物溶于硫酸的效果,是酸溶性钛渣不行短少的助溶杂质。这两种氧化物增加了钛渣与硫酸的反响热,反响式如下:                             FeO+H2SO4===FeSO4+H2O+113.4kJ/mol                             MgO+H2SO4===MgSO4+H2O+163.8kJ/mol     经核算,攀枝花矿钛渣与硫酸的反响热比砂状钛铁矿(含TiO251%)只低15%左右。MgO是攀枝花矿钛渣与硫酸反响的重要热量来历,它占悉数反响热的42%左右。在酸解攀枝花矿钛渣时,当加热蒸汽压力>0.6MPa时,其反响速率较快,反响最高温度可达200℃左右。攀枝花矿钛渣具有杰出的反响功能,可满意硫酸法钛白出产的要求。     我国一些研讨和出产单位曾研制成酸溶性好的钛渣,其TiO2含量达75%~78%,当TiO2含量超越80%时,酸溶性便大为下降。一般运用档次高的钛渣时,需求运用更浓的硫酸才干使其酸解。用两广钛铁矿和用攀枝花钛精矿都能炼制出酸溶性好的钛渣。上海东升钛厂曾在年产2000吨硫酸法钛白出产设备上,完成了用南边流程出产的酸溶性好的钛渣制取出BA-0101型钛。

钛渣生产工职业技能要求

2019-01-25 13:37:03

1、职业道德1.1、职业道德基本知识1.2、职业守则    (1)遵章守纪,精心操作    (2)爱岗敬业,忠于职守    (3)认真负责,确保安全    (4)刻苦学习,不断进取    (5)团结协作,尊师爱徒    (6)谦虚谨慎,文明生产    (7)勤奋踏实,诚实守信    (8)厉行节约,降本增效    (9)自爱自强,立志钛业。2 、基本知识2.1、钛冶炼基本知识    (1)钛的资源和发展概况;    (2)钛及其化合物的性质、制取、用途;    (3)镁法炼钛的基本知识。2.2、质量基础知识    (1)质量管理体系基础知识;    (2)质量分析基本知识;    (3)质量统计基本知识。2.3、安全、消防和环境保护知识    (1)起重设备指挥基本知识;    (2)电工学基本知识    (3)消防基础知识;    (4)安全生产、工业卫生及环保的有关法律法规;    (5)安全规程。2.4、机械制图基础知识识图知识;2.5、计算机基本知识    (1)计算机基本知识;    (2)计算机控制基本知识。2.6、法律常识    (1)劳动法相关知识。    (2)合同法相关知识。3.工作要求    本标准对初级、中级、高级和技师技能要求依次递进,高级别包括低级别的要求。3.1 初级 [next] 3.2、中级3.3、高级[next] 3.4技师4.  比重表4.1理论知识4.2技能操作

铜的冶炼工艺

2018-12-13 10:40:31

从铜矿中开采出来的铜矿石,经过选矿成为含铜品位较高的铜精矿或者说是铜矿砂,铜精矿需要经过冶炼提成,才能成为精铜及铜制品。  目前,世界上铜的冶炼方式主要有两种:即火法冶炼与湿法冶炼(SX-EX)   1. 火法:  通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。   除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜:品位在90%以上;黄杂铜(电线):含铜物料(旧马达、电路板);由废铜和其他类似材料生产出的铜,也称为再生铜。   2.湿法:   一船适于低品位的氧化铜,生产出的精铜称为电积铜。  3. 火法和湿法两种工艺的特点  比较火法和湿法两种铜的生产工艺,有如下特点:  (1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。  (2) 后者有局限性,受制于矿石的品位及类型。  (3) 前者的成本约在70-80美分/磅(约合1540-1760美元/吨),后者仅为30-40美分/磅(约合660-880美元/吨)。  可见,湿法冶炼技术具有相当大的优越性,但其适用范围却有局限性,并不是所有铜矿的冶炼都可采用该种工艺。不过通过技术改良,这几年已经有越来越多的国家,包括美国、智利、加拿大、澳大利亚、墨西哥及秘鲁等,将该工艺应用于更多的铜矿冶炼上。湿法冶炼技术的提高及应用的推广,降低了铜的生产成本,提高了铜矿产能,短期内增加了社会资源供给,造成社会总供给的相对过剩,对价格有拉动作用。1997年铜的期价由1996年的2600美元/吨高位跌至目前1998年11月的1600美元/吨左右,与湿法冶炼工艺比重的大大提高导致大量低成本铜上市有着直接的关系。  目前由于铜的平均生产成本在1400-1600美元/吨(64-73美分/磅),期价下跌是价格向价值的合理回归,随着冶炼工艺中其比重的不断增加,铜的价格走向将会受到越来越深远的影响。据报道,目前湿法炼铜最低成本只有20美分/磅(合450美元/吨),最高77美分/磅(合1697.5美元/吨),平均约低于50美分/磅(合1100美元/吨)。需要指出的是,在1995年湿法炼铜的平均生产成本还只有39美分/磅,近来湿法炼铜平均生产成本有所上升,主要是由于湿法炼铜工艺推广到了处理铜的硫化矿物的缘故。湿法炼铜工艺较适合处理铜的氧化矿物和贫矿,而处理硫化矿物及较富矿石时,或当矿山地处寒冷地区,采用湿法炼铜工艺,其生产成本亦较高,多在50美分/磅以上。  中国自70年代开始研究从低品位铜矿中提取铜技术,1983年建立了第一座湿法冶炼铜的工厂,年产120吨,近来由于引进了国外优良的铜莘取剂,加上地方铜工业的发展,现在已建成了几十座小型的湿法冶炼厂,规模从几百到2000吨不等,但年产铜仅1.5万吨,这与我国年产精炼铜100万吨的规模相比远远不够。目前我国铜的生产成本大约在18500元左右,远远高于世界平均水平1477美元(67美分)。"95"期间国家计委和中国有色金属工业总公司把湿法冶炼项目列为重点攻关项目,在德兴铜矿、玉龙铜矿、大冶铜录山铜矿等地建几个示范工厂,经过几年努力,估计至本世纪末我国的湿法技术会有较大发展,届时年产能估计可达5万吨以上。  据统计,1980年湿法炼铜的精铜产量占世界精铜产量的2.5%,1994年该比重提高到10%,1997估计提高到18%预计最终湿法产铜的比例将提高到25-35%之间。  单位:万吨1980199419971998湿法产铜比重2.5%10%18%20-25%湿法产铜量24108172.3225

铜冶炼渣中铜的综合回收

2019-01-18 09:30:27

铜冶炼渣选矿与自然矿石相比,选矿多一道炉渣缓冷工序,这也是渣选矿与自然矿石选矿最大差别之处,钢冶炼炉渣实际是一种人造矿石,这种矿石中的铜矿物颗粒与相组成取决于炉渣冷却方式与冷却速度,炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收。炉渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。 目前,我国铜冶炼渣年产1100万吨,含铜27.5万吨,是二次铜资源的重要组成部分。铜冶炼炉渣的处理方式主要有火法贫化、湿法浸出和选矿富集几种。火法贫化的弃渣含铜高、能耗高、环境污染严重;选矿富集工艺虽然渣缓冷场占地面积大,基建投资较高,但铜回收率较高,选矿尾渣含铜可以控制在0.3%以内,并且渣中金银回收率较高、能耗低、成本低,因而被广泛应用。国内采用选矿富集处理铜冶炼渣的企业主要有白银有色集团、江西铜业集团、铜陵有色集团、大冶有色集团及祥光铜业集团等。 江西铜业贵溪冶炼厂、山东阳谷祥光铜业冶炼厂目前已成功应用“铜冶炼渣缓冷—半自磨+球磨—铜矿物浮选。”新工艺,有效解决了铜冶炼渣中铜晶体粒度过细导致难以单体解离、常规破碎因冶炼渣中夹带冰铜块导致的中细碎设备生产能力和运转率低等一系列技术难题,实现了钢冶炼渣中铜的有效回收。3年应用数据表明,对于含铜2.7%左右的铜冶炼渣,获得的铜精矿品位大于26%,尾渣品位含铜低于0.3%。 白银有色集团排渔场堆存的白银炉渣约为700万吨,并且毎年还在产出新的白银炉渣约30万吨。因白银炉与其他铜冶炼工艺的差异,决定了白银炉渣性质的特殊性,其选矿工艺及技术指标也有不同。为实现该二次资源综合利用,白银有色集团140×10 4t/a渣选矿系统于2012年5月投产,并于2012年年底达产达标,该项目采用“铜冶炼渣渣包缓冷—粗碎+半自磨+球磨—铜闪速浮选—中矿集中返回再磨”。新工艺代替冶炼过程的贫化电炉工艺后,每年可减少冶炼过程中SO2的排放量270t,渣尾含铜降低至0.28%,年回收铜金属2.2万吨。 刘春龙针对某铜冶炼炉渣选矿后铜尾矿品位较高的问题,开展了炉渣选矿试验研究,把中矿单独再磨再选改为返回二段球磨分级再磨,对药剂制度进行优化,重点保证一段浮选的药剂用量,强化对粗粒级和中粒级矿物的捕收。当炉渣含铜2.9%时,获得的铜精矿含铜26.20%、铜回收率92.26%,铜渣选矿尾矿铜品位降低至0.25%。王国红针对贵溪冶炼厂铜冶炼炉渣缓冷工艺提出了解决“渣包放炮”和“翻出红包”的多项措施,指出了延长渣包使用寿命、及时报废更新渣包、保证渣包使用安全、降低生产成本的途径。 云南某铜冶炼渣含铜0.62%、含铁35.58%,主要含铜矿物为黄铜矿、蓝铜矿和辉铜矿,铜矿物与主要脉石矿物橄榄石等嵌布关系复杂,嵌布粒度细微。王祖旭等人研究在细磨条件下、以冰铜为“载体”进行“载体浮选”,获得的铜精矿中含铜21.30%、铜回收率86.20%。

海绵钛冶炼技术的研究方向

2019-02-15 14:21:24

当时,我国钛工业伴跟着国际钛工业的添加,出现快速开展的气势。跟着需求的扩展,钛加工产能不断进步,2004年国内钛锭出产能力已到达约25000吨,可是,在这种高添加的气势下,海绵钛却成为限制钛加工的瓶颈。2004年我国出产的海绵钛仅为5000吨,远远不能满意需求,讨论我国海绵钛冶炼技能的开展,建造万吨级海绵钛出产基地是十分必要的。     国内海绵钛出产技能及改善研讨方向讨论     我国海绵钛出产,依托国内力气逐步完结技能进步,从固定床氯化到欢腾氯化,从填料塔精馏到浮阀塔精馏,从复原蒸馏别离到复原蒸馏联合,镁电解从有隔板到大型无隔板,以及完结了镁氯的闭路循环等。出产规划从百吨级到千吨级,直至到达5000吨经济规划。     但与国外先进水平比较,还存在较大距离。首要表现在技能经济指标、"三废"办理、设备配套水平缓自动操控等方面。     要把工厂规划扩展到万吨级,完结"清洁、文明、无公害化"的现代化出产,需求针对现在存在的问题,对现有工艺技能和设备进行改善研讨,首要研讨方向和课题可归纳如下。     1.高档次富钛料的制作技能西方国家运用高档次天然金红石和人工金红石为质料出产海绵钛。我国缺少高档次的天然金红石资源和没有高档次人工金红石的出产,出产海绵钛是以含TiO2适当量92%左右的高钛渣为质料。高钛渣是选用小型敞口电炉出产的,工厂规划小,技能和设备也很落后,因为要运用沥青为粘结剂,环境污染严峻。严厉来讲,这些高钛渣小厂是归于国家方针该陶汰的高能耗高污染的小电炉。     出产含TiO292%的高钛渣的技能改善适当困难,国外也没有相关的技能。国外的大型密闭电炉只能出产含TiO285%左右的钛渣。独联体国家的半密闭式电炉也只能出产90%左右的钛渣,并且有必要以优质钛铁矿为质料,假如以我国的钛铁矿为质料只能出产85~87%的钛渣。     与96%的天然金红石(杂质4%)和92~94%的人工金红石(杂质6~8%)比较,92%的高钛渣(杂质11%)已是一种"粗粮"。所以,工厂不期望运用档次比92%高钛渣更低的质料。     大型海绵钛冶炼厂期望运用高档次富钛料,处理高档次质料问题可供挑选的途径有:     1)建造大型化高档次富钛料工厂:     因为我国钛资源首要是低档次钛铁矿的特色,决议了需求选用除杂质能力强的富钛料工艺,才干取得高档次的富钛料。其间,浸出法制作人工金红石工艺道路,除杂质能力强,可将含高钙镁的低档次钛精矿加工成含TiO292~94%的高档次人工金红石,相关的技能研讨已挨近老练,可完结循环运用,弥补的可由氯化副产的供给。     2)进口高档次人工金红石:澳大利亚有十分丰厚的优质钛铁矿,选用复原锈蚀法制作的人工金红石TiO2含量达92~94%,已建成的工厂年产能力达80多万吨。     因此,能够考虑从澳大利亚进口这种人工金红石,它的粒度十分契合欢腾氯化的要求,一起还含有必定的贱价钛。     2.欢腾氯化炉的大型化技能的进一步研讨 [next]    我国海绵钛出产大型化过程中,遇到的最大困难是的制作技能,包含氯化和精制两个工序;与国外先进水平距离最大的,也是的制作技能;所以,往后应把欢腾氯化炉的大型化、氯化技能水平的进步(包含进步钛的氯化率、氯的利用率、氯化炉产能、下降尾气氯含量、进步收回率等)是往后研讨工作的要点之一。     3.除钒新工艺现在工业出产中,有铜丝、矿藏油和铝粉三种除钒办法。其间,铜丝除钒作用好,可取得高质量的,可是间歇操作,铜丝失效后的洗刷再生操作劳动强度大,操作环境差,铜耗高,除钒本钱高,仅合适小规划出产中运用。     矿藏除钒本钱低,但需求选用特殊的加热办法,发生体积巨大的残渣液,残渣易在加热壁上结疤,除钒后的中含有少数有机物不易别离除掉,较适用于氯化法出产钛白。     铝粉除钒的残渣量少,不易结疤,简单从残渣收回钒,除钒本钱低,是一种合适用于海绵钛出产的除钒办法。     铝粉除钒已在独联体国家海绵钛出产中成功运用多年,北京有研院等单位已成功地完结了小型实验研讨,阐明铝粉除钒是可行的工艺技能。但独联体国家运用的这种超细活性铝粉报价昂贵,并具有可爆性,需求研讨改善。     4.大型镁复原蒸馏联合法进步产品海绵化率     大型复原蒸馏联合法出产海绵钛,因为反响器容量的扩展,复原反响发生的热量不能有效地输出,形成部分高温,导致部分产品细密化;一起也防碍加料速度的进步,使出产周期添加,设备产能下降。     因此,有必要进一步研讨改善大型联合法的工艺和设备,以添加设备产能和进步产品的海绵化率。     5.大型无隔板槽镁电解下降电耗     曩昔海绵钛出产中,镁电解技能一向比较落后,自运用110KA无隔板槽镁电解工艺后,技能水平缓技能经济指标明显好转。     但在引入消化过程中,对这项技能中的一些技能决窍还把握不行,因此电流效率偏低,电耗偏高,需求进一步研讨改善。     6.出产过程的自动操控和办理海绵钛出产过程的自动操控技能已有必定的根底,往后应进一步研讨完结从富钛料制备、氯化、精制、复原蒸馏、破碎、分选、包装、镁电解全过程的计算机操控和办理。     研讨内容包含被测参数的感应元件、丈量外表、执行机构及计算机操控等,终究完结各工序的操控与主控室的计算机联网,使海绵钛出产办理全面完结自动操控。     7.制钛新办法的研讨成为国际钛业重视热门"制钛新工艺"一向是国际重视的热门研讨课题。近年来,这个国际性难题的研讨取得了一些发展,英国剑桥大学和澳大利亚CSIRO先后研讨了几种不同的TiO2电解法制钛新工艺,据称制钛本钱可下降50%左右。美、英联合正在进行扩展实验,方案将FFC工艺面向产业化。     假如能用TiO2电解法来制作新式钛合金,例如制作含少数铁的钛合金,则能够天然金红石或人工金红石为质料,其它合金元素以氧化物方式参加,这样制作的钛合金本钱就会大幅度下降。     经过上述课题研讨的完结,我国海绵钛出产技能水平将会大幅度提高,并可为完结万吨级规划海绵钛出产创造条件。     再经过几年的研讨和技能攻关,我国海绵钛出产技能将跨入国际先进水平队伍,进而完结万吨级出产规划。

铬渣处理工艺

2019-02-20 15:16:12

消除金属铬和铬盐出产进程中排出的废渣对环境的污染和使其得到综合运用的进程。铬渣是由铬铁矿参加纯碱、白云石、石灰石在1100~1200℃高温焙烧、用水浸出后的残渣。每出产1t铬酸盐约发生3~5t铬渣。 成分 铬渣的化学成分见下表。 铬渣的矿藏组成首要有方镁石(MgO)、硅酸二钙(β–2CaO•SiO2)、铁铝酸钙(4CaO•Al2O3•Fe2O3)、亚铬酸钙(α–Ca(CrO2)2)、铬尖晶石((Mg•Fe)(CrO2)2)、四水(4Na2CrO4•4H2O)等。其间,有很大一部分相似水泥的物相组成,故铬渣也有水硬性,在空气中吸水结块。损害 铬渣中的首要毒物为水溶性的四水,是强氧化剂,毒性强。铬渣堆置不只占有土地,并且细粒随风飘扬构成空气污染;铬渣露天堆积,受雨雪淋浸,所含的六价铬被溶出进入地下水或进入河流、湖泊中,污染环境。我国某铁合金厂的铬渣堆场,未采纳相应的防渗方法,致使地下水六价铬离子含量猛增到150~180mg/L,超越饮用水标准数千倍,构成严峻的污染公害,下流污染规模增加到15~20km2,污染区域几个村庄的日子用水,全赖由外面引入自来水或用车送水直销;各种农作物也都遭到不同程度的污染。六价铬、铬化合物以及铬化合物的气溶胶,能以多种形式损害人畜健康。因而,铬渣的堆存场有必要采纳铺地防渗和加设棚罩。 处理和运用 避免铬渣污染的方法是进行解毒处理。在有复原剂的酸性条件下,或在有碱金属硫化物、硫氢化物的碱性条件下,或在有硫、碳和碳化物存在的高温、缺氧条件下,六价铬都可复原为毒性较小的三价铬。铬渣的运用首要有六方面。 1、制烧结砖。将铬渣枯燥、破坏,按铬渣粉40%和粘土60%的份额混合配料,制坯、焙烧。在高温文强复原性环境中,六价铬复原为不溶于水的三价铬,消除剧毒,砖材可到达建筑要求。 2、制作水泥。用铬渣、石灰石、粘土等质料按普通硅酸盐水泥配料,能够烧制水泥熟料,用来制作水泥。运用碳复原后的铬渣同高炉粒化渣,转炉钢渣和硅酸盐水泥熟料。参加5%左右的石膏,也可制作少熟料钢铁渣水泥。 3、出产铬渣铸石。将30%铬渣、25%硅砂(含SiO2>95%)、45%烟道灰、3%~5%氧化铁皮(轧钢铁皮)混合、破坏、于1500℃池窑中熔融,在1300℃下浇铸成型,结晶、退火后缓慢降温即为制品,模仿辉绿铸石组分是优秀的耐酸耐腐蚀材料。 4、替代蛇纹石出产钙镁磷肥。蛇纹石的首要成分为MgO和SiO2,可用铬渣替代。先将铬渣造球,按无烟煤:磷矿:铬渣:硅石=37.5:50∶35∶15(分量比)的配料比装入高炉中,于1600℃进行熔融反响,经水淬骤冷,沥水别离,转筒内枯燥后,球磨破坏即得制品。 5、替代白云石、石灰石作炼铁熔剂。铬渣中CaO、MgO的含量与炼铁运用的白云石、石灰石中的量附近,能够替代白云石、石灰石炼铁。炼1t生铁耗用600kg铬渣,六价铬可悉数复原、解毒完全,并且生铁中铬成分上升、硬度、耐磨和耐腐蚀性都有所提高。 6、替代铬铁矿做玻璃着色剂。制作绿色玻璃时常用铬矿粉做着色剂,首要是运用三价铬离子在玻璃中的光学特性。铬渣中含有部分未反响掉的铬矿粉和六价铬,高温有利于六价铬转变为三价铬,完全除毒,所得制品色泽碧绿艳丽。铬渣参加量3%~5%为宜。 此外,水淬铬渣还可作为水泥混合材料、矿棉质料、耐热胶凝材料、熔融水泥质料等。因为铬渣具有毒性,难以运送,因而使它的运用受到了必定约束。

再生铜冶炼工艺

2018-12-05 10:43:33

一、再生铜冶炼工艺   再生铜处理工艺取决于原料,约2/3的高品位铜废料不需要熔炼处理而直接用于铜产品生产,1/3的废杂铜需要熔炼处理。目前国内外回收利用废杂铜的方法很多,主要可分为两大类:第一类是将高质量的废杂铜直接冶炼成紫精铜或铜合金后供用户使用,称作直接利用;第二类是将废杂铜冶炼成阳极板后经电解精炼成电解铜后供用户使用,称为间接利用。其中,第二类方法根据原料分为高品位和低品位,从冶炼工艺上分为一段、二段和三段法冶炼。  一段法:铜品位>98%的紫杂铜、黄杂铜、电解残极等直接加入精炼炉内精炼成阳极,再电解生产阴极铜。  二段法:废杂铜在熔炼炉内先熔化,吹炼成粗铜,再经过精炼炉—电解精炼,产出阴极铜。   三段法:废杂铜及含铜废料经鼓风炉(或ISA炉、TBRC炉、卡尔多炉等)熔炼—转炉吹炼—阳极精炼—电解,产出阴极铜。原料品位可以低至含铜1%。   三段法原料综合利用率高,产出的烟尘成分简单、容易处理,粗铜品位较高,精炼炉操作比较容易,设备生产率也比较高等优点,但又有过程复杂、设备多、投资大且燃料消耗多等缺点。因而,再生铜的冶炼一般采用两段法与三段法相结合的工艺流程,此法有利于降低能耗并提高有价金属的综合回收利用。      二、主要冶炼工艺介绍  1、北德精炼凯撒冶炼厂凯撒回收再生系统(KRS)   北德精炼凯撒冶炼厂是目前世界上最大最先进的再生铜精炼厂。凯撒冶炼厂用1台ISA炉取代3台鼓风炉和1台PS转炉,处理含铜1%~80%的残渣和杂铜;ISA炉间断地进行熔炼和吹炼,含铜残渣和杂铜,先在ISA炉中进行还原熔炼,产出黑铜和硅酸盐炉渣,黑铜继续吹炼,产出含铜95%的粗铜。  2、奥地利MontanwerkeBrixlegg冶炼厂鼓风炉-转炉-反射炉工艺   Montanwerke Brixlegg冶炼厂是奥地利唯一的铜冶炼厂,原料为废杂铜,含铜在15%~99%。生产工艺由鼓风炉、PS转炉、固定式阳极炉及电解组成,是典型的三段法。   该工艺的特点是:不同品位的残渣和紫杂铜用不同的工艺流程生产不同的产品。含铜15%~70%的残渣原料先进鼓风炉,用焦炭还原生产出黑铜,再进转炉生产出粗铜;含铜75%以上的黑铜和铜合金直接进转炉,生产出含铜96%以上的粗铜进阳极炉精炼;含铜品位较高的杂铜、粗铜则直接进阳极炉精炼;而含铜品位更高的光亮铜则无需冶炼处理,直接加入感应电炉生产铜材,对原料的适应性很强。  3、比利时Metallo-Chimique 冶炼厂氧气顶吹旋转转炉(TBRC)冶炼工艺   Metallo-Chimique 冶炼厂的TBRC炉对原料的适应性强,处理的原料非常杂,品种很多。主要原料为含铜25%~30%的工业残渣、各种铜合金(黄铜、青铜等)、废旧电机、海绵铜、电缆、各种品位的杂铜等等,尤以处理含铜、铅、锡的低品位工业残渣、铜合金、难处理的杂铜为主。  4、卡尔多炉处理低品位废杂铜   卡尔多炉处理低品位废铜是一种先进的熔炼技术,主要体现在金属回收率高和环境效益好等方面,可以处理含铜15%-99%的废杂铜,适应性强,物料不用预处理,可以直接入炉,可以控制氧化和还原气氛。处理低品位废杂铜分加料、熔炼、放渣、吹炼、出铜5个步骤,在一台炉内分阶段完成,粗铜品位可达到96%。其反应过程通常用废杂铜原料中的铁作为还原剂,添加石英石熔剂。卡尔多炉处理废杂铜工艺是国外二段法处理废杂铜的一种先进工艺,国内大型冶炼厂,如江西铜业也引进该方法处理废杂铜。  5、NGL炉精炼废杂铜工艺   针对现有废杂铜处理技术的不足,中国瑞林工程技术有限公司研发了“NGL”炉废杂铜火法精炼工艺。   NGL炉是结合倾动炉和回转式阳极炉的优点而开发的,侧面有大的加料门和渣门,另一侧有氧化还原口和透气砖,炉体可在一定角度内转动。“NGL炉精炼废杂铜成套工艺及装备”首次在废杂铜精炼工艺中采用了氮气搅动技术,有效强化了精炼过程的传质传热,提高了生产效率。该工艺采用氧气卷吸燃烧的方式供热,大大提高了热效率,缩短了生产周期,使排出的烟气量减少了65%以上。   NGL炉精炼废杂铜成套工艺及装备于2010年开始,分别在山东金升集团东部铜业有限公司和广西有色集团再生金属有限公司进行了大规模的工业化应用,其4套250吨的NGL炉系统均于2012年投产。

铝钛渣耐火性能解析

2019-01-10 11:46:23

通过添加改性树脂,可明显提高试样在埋炭和空气条件烧后的中低温强度,但不同温度埋炭气氛烧后试样的强度高于相同温度空气气氛烧后的。添加改性树脂对材料的抗氧化性略有负面影响,可能因为改性树脂对成型性能有不利的影响,气孔率较高导致。添加改性树脂的新型滑板使用效果明显优于普通不烧滑板,连滑率从1.3次提高至2.2次。结合铁合金厂铝钛渣的化学组成,按六铝酸钙理论组成中氧化铝和氧化钙的比例关系,对铝钛渣和活性石灰进行配料。   将基础配方87.0%的铝钛渣和13.0%的活性石灰置于高速研磨机,研磨1h.将研磨后物料加入5%水,低速混炼20min,利用活性石灰水化形成石灰乳作为结合剂,采用半干法成型,成型压力50MPa.成型后试样经110℃保温2h干燥后,分别在1400℃、1450℃和1500℃条件下,保温2h烧成,试样编号分别为前列~No.3。用日本电子JSM6480LV型SEM扫描电镜观察不同温度煅烧后试样断口的微观结构及组织形貌。用阿基米德法测量烧后试样的体积密度和显气孔率。   六铝酸钙材料相组成的分析试验通过XRD法,对比分析了煅烧温度对固相反应合成六铝酸钙材料的相组成。各配方试样的主要矿物组成包括主晶相六铝酸钙相和少量的刚玉相,随着煅烧温度的升高,六铝酸钙相衍射峰强度有逐渐增强趋势。

富锰渣冶炼的基本原理

2019-01-25 15:49:32

冶炼富锰渣的过程,就是锰在渣中的富集过程,包括在高温下矿石结晶水的分解,碳酸盐的分解,锰高价氧化物还原为低价氧化物的失氧和在还原气氛中铁、磷的选择性还原等作用。其中最根本的是铁、磷的选择性还原。    富锰渣冶炼的理论基础是按照热力学和动力学原理,通过控制热量和造渣过程对矿石中的氧化物进行选择性还原。    (1)富锰渣冶炼中氧化物的还原    锰矿石中的MnO2,Mn2O3,Mn3O4,Fe2O3,P2O5等氧化物都容易被CO或H2还原成MnO和FeO,但MnO和FeO进一步被C还原成金属,其条件就有所不同,MnO还原所需的温度和热量要高得多。其反应方程式如下:    由上面的反应方程式看出,铁和磷的还原温度较低,所需的热量也较少,故易还原,而锰的还原温度高,消耗热量大,还原较难。所以在还原剂适当的条件下,冶炼温度控制在1350℃以下,铁、磷优先还原出来,而锰则以MnO形式富集于炉渣中。    用焦炭还原含有二氧化硅、锰、铁、磷氧化物的锰矿石,若采用的焦炭量和温度不同时,则得到不同的产品(表1)。表1              采用不同温度和不同焦炭量进行选择还原所得的不同产品℃治炼温度/℃用焦碳量氧化物焦碳还原开始反应温度/℃得到的产品1300焦碳仅够FeO和P2O5FeO/P2O5~750~820富锰渣和高磷生铁1500焦碳完成以上反应还够还原MnOMnO~1420高碳锰铁1700焦碳完成以上反应,还够还原 SiO2SiO2~1650锰硅合金2000焦碳完成以上反应,还够还原Al2O3Al2O32000锰硅铝合金     在高炉冶炼条件下,各元素还原的先后和还原的程度不一样,产生这些差异的原因是各元素要求的还原条件不同,即高炉内所能创造的还原剂成分、温度和压力等条件下对还原反应所需达到平衡的难易程度有所不同。[next]    氧化物被还原的难易取决于元素对氧的亲合力的大小,也就是取决于氧化物分解压力的大小,可以用氧化物平衡分解压力Po2来衡量(见表2)与(图1)。对氧的亲合力大,氧化物分解压力小的元素还原就较难,氧化物就较稳定。反之亦然。表2          各种氧化物的热效应和不同温度下的分解压力氧化物名称标准热效应/kJ不同温度下的分解压力(lgPO2)500℃1000℃1500℃2000℃FeO54000-49.1-20.8-11.2-6.9MnO779580 -28.8-17.1-11.5SiO2870220-81.7-36.1-20.9-13.3Al2O310099780-103.8-46.4-27.3-17.7MgO1223380-116.3-52.5-31.2-20.6CaO1270271-121.7-55.4-33.3-22.2     从图表中可看出,温度愈低,纯氧化物的分解压愈小,各种纯氧化物之间的压差愈大,熔渣中氧化物的还原度愈小,各种氧化物之间还原度之差愈大。反之,温度愈高,分解压差愈小,熔渣中氧化物的还原度愈大,各种氧化物还原度之差愈小。    也由此看出,在高炉条件下,Cu2O,NiO和FeO较易被还原,因此在高炉内几乎全部被还原成金属;而Cr2O3,MnO,SiO2和TiO2是较难还原的氧化物;因此在高炉内只能被还原一部分。Al2O3,CaO,MgO在高炉内不能被还原,而全部进入炉渣。[next]    锰矿石中的锰大都是以MnO2,Mn2O3,Mn3O4,MnO等形式存在,锰的高价氧化物不如低价氧化物稳定,因而前三种氧化物容易在烧结或高炉冶炼过程中被烧损式还原成低价氧化物。锰的氧化物的还原过程与铁的氧化物还原一样,也是按高级氧化物到低级氧化物依次进行的。在高炉内反应方程式如下:                       2MnO2+CO===Mn2O3+CO2+226840kJ         (1)                      3Mn2O3+CO===2Mn3O4+CO2+170240kJ        (2)                        Mn3O4+CO===3MnO+CO2+51920KJ          (3)    反应(1)、(2)是不可逆的,在高炉压力和还原气氛下,反应很容易进行。反应(3)虽可逆,但实际上达到平衡时,气相中CO的浓度很小,因此在高炉内Mn3O4也是容易还原的。    MnO是相当稳定的氧化物,用CO还原MnO是非常困难的(图2).在1400℃时用CO还原MnO,其平衡相中CO2浓度为0.03%。用CO还原MnO只有在大量固体碳存在并不断与CO2作用的条件下才能进行,这样反应实际上已是直接还原,反应式如下:                                MnO+CO===Mn+CO2-121590kJ                                       C+CO2===2CO-157890kJ                                              MnO+C===Mn+CO-279480kJ     因MnO在反应前已进入炉渣,该反应实际上是在固相与液相之间进行的。在高炉条件下要抑制锰的还原,必须降低CO的分压和降低MnO的活度。这其中影响最大的是温度和炉渣碱度。    (2)冶炼温度的选择    富锰渣冶炼要抑制锰的还原,实际上就是控制渣中MnO的还原条件。MnO的直接还原反应MnO+C=Mn+CO是吸热反应。平衡气相中CO的分压,随温度上升而增加。即随冶炼温度升高,MnO还原加剧。因而控制冶炼温度是控制MnO还原,提高富锰渣品位的关键措施。图3是冶炼温度与MnO和MnSiO3还原度的关系曲线。图4是炉渣温度与渣中MnO含量的关系曲线。 [next]    富锰渣冶炼处理贫锰矿,渣中SiO2量比较高。在有足够SiO2存在的条件下,高炉内温度为1170℃时,几乎全部MnO与SiO2结合形成炉渣。从熔渣中还原Mn比从独立相中还原困难得多。试验指出,在1300℃条件下,MnSiO3只还原3%,另一方面,铁的还原比较容易进行,铁的还原FeO+C=Fe+CO从685℃就开始了,而高价氧化铁还原为低价氧化铁(FeO)在900~1000℃时即已完成,当温度达到1250℃时,硅酸铁(Fe2SiO4)也大量被还原。因而从保证铁充分还原与抑制锰的还原来看,富锰渣冶炼温度控制在1280~1350℃是适应的。在此温度下,炉渣的流动性也是有保证的。    (3)炉渣碱度的选择    碱性氧化物CaO和MgO对SiO2的亲合力比MnO大,故以将MnO从硅酸盐中置换出来,使之以自由MnO形态存在,MnO活度增大,降低了MnO开始还原温度,促进锰的还原。其反应式为                             MnSiO3+CaO===MnO+CaSiO3+59030KJ                                        MnO+C===Mn+CO-279470KJ                                                MnSiO3+CaO+C===Mn+CO+CaSiO3-220440KJ     这对富锰渣冶炼是不利的,因此在富锰渣冶炼中必须控制炉渣碱度。一般富锰渣冶炼中比值控制在0.4以下。贫锰矿自身的碱度就很低,所以在冶炼操作中通常是采用不添加熔剂的自然碱度。

镍渣及选矿工艺

2019-01-24 09:35:03

镍渣是冶炼镍铁合金时产生的固体冶炼废渣,这些冶炼废渣中仍存在少量的镍铁合金颗粒,由于镍铁价格高昂,回收这些镍铁冶炼渣中的镍铁颗粒可获得较为可观的经济效益,同时也减少了对固体废渣对土地的侵占和对环境的污染。  镍渣按照其形成的方法可分为干渣和水渣,干渣多成块状,性脆易碎。水渣的形成是干渣在融熔状态下淬水形成的细小颗粒,比重较小,性硬脆。因此,干渣和水渣的处理方法上也存在一定的区别,例如:干渣多为块状,镍铁颗粒嵌布在块状干渣中,要想回收这些合金颗粒,必须经过破碎,研磨打破连生体状态,使渣与合金颗粒分离。而水渣由于淬水后渣与合金已全部单体解离,基本不需要破碎与研磨即可进入分选流程。   区分了干渣与水渣之后,我们再来了解一下镍铁合金的组成。镍铁合金中镍含量高于7则称为是高镍,低于7则称为低镍。而这些合金随镍含量的提高导磁性逐渐下降,当镍含量达到14时,镍铁合金颗粒几乎没有任何磁性。因此要想分选出这些镍铁合金颗粒,处理需要知道镍渣是干渣还是水渣之外,还需知道合金为低镍合金还是高镍合金。   对于高镍合金,由于其导磁性较差,采用磁选方法和磁选设备难以获得较好的分选指标因此需要考虑采用重选的方法予以回收处理。镍铁合金的比重较大,废渣的比重较小,利用重选的方法很容易从镍渣中回收镍铁合金,但前提是必须使镍铁合金与固体废渣单体解离。  对于低镍合金,其自身带有磁性,采用中等强度磁场的磁选设备即可对其进行高效的分选,使分选过程更为简单方便。 镍矿选矿工艺流程 破碎为三段一闭路流程,最大给矿块度为400mm,最终破碎产品粒度为12mm。磨矿和浮选工序自投产以来,在原有设计的基础上,不断地改进和完善,将原来的两段磨矿和两段浮选流程改为三段磨矿,三段浮选流程。磨矿和浮选分为两个平行系统,每个系统的磨矿作业由6台1500×3000mm的球磨机分别与1200的螺旋分级机和500mm的旋流器相配合,组成三段闭路磨矿流程。采用了球磨机装球合理配比措施,将100、80、60和40mm的钢球分别按20%,30%,30%,20%配比添加,实践证明效果良好,使最终磨矿细度达80%-200目。浮选作业的粗,扫选采用JJF-4型浮选机,精选采用XJK浮选机,组成三段浮选回路。采取多点产出合格精矿,加丁基铵黑药等技术措施强化浮选,改善了选矿指标。当原矿含镍1.6%时,可得浮选镍精矿含镍6.3%,回收率88%~89%。 脱水工艺和设备的改进,将20平方米的圆筒式外过滤机改为折带式过滤机,可经精矿滤饼水分由原来的23%~20%。在过滤中采用矿浆蒸气加温工艺,改善了矿浆的分散性,从而进一步提高了过滤效率,降低了精矿滤饼水分;新建的精矿沉淀池,用于回收浓密机中的细粒精矿,同时为澄清水的循环使用创造了条件。

锌冶炼工艺简述

2019-02-26 10:02:49

现在国际上经过锌精矿出产精粹锌的冶炼首要有两种工艺:火法冶炼和湿法冶炼。 火法炼锌中的竖罐蒸馏炼锌已趋筛选,电炉炼锌规划小且未见新的开展。密闭鼓风炉炼铅锌是国际上最首要的几乎是仅有的火法炼锌办法。国际上总共有15台(包含国内ISP工厂)密闭鼓风炉在进行锌的出产,占锌的总产值12%-13%,其技能开展首要是添加二次含铅锌物料的处理办法;改善冷凝功率;富氧技能的运用等。 湿法炼锌是当今国际最首要的炼锌办法,其产值占国际总锌产值的85%以上。近期国际新建和扩建的出产能力均选用湿法炼锌工艺。湿法炼锌技能开展很快,首要表现在:硫化锌精矿的直接氧压浸出;硫化锌精矿的常压富氧直接浸出;设备大型化,高效化;浸出渣归纳收回及无害化处理;工艺进程自动操控系统等几个方面。一、火法炼锌 在高温下,用碳作复原剂从氧化锌物猜中复原提取金属锌的进程就叫做火法炼锌。 1、冶炼办法介绍(一)横罐炼锌 横罐炼锌是20世纪初选用的首要的炼锌办法,一座蒸馏炉约有300个罐,出产周期为24h,每罐一周期出产20~30kg,残渣中含锌月5~10%,锌收回率只要80~90%。 横罐炼锌的出产进程简略,基建投资少,但因为罐体容积少,出产能力低,难以完成接连化和机械化出产。并且燃料及耐火材料的耗费大,锌的收回率还很低,所以现在已根本筛选。 (二)竖罐炼锌 竖罐炼锌具有接连性作业,出产率、金属收回率、机械化成都都很高的有点,但存在制团进程杂乱、耗费贵重的碳化硅耐火材料等缺乏。竖罐炼锌是20实践30年代应用于工业出产,现在已根本筛选,但现在在我国的锌出产仍占必定的位置。 (三)电炉炼锌 电炉炼锌的特点是直接加热炉料的办法,得到锌蒸汽和熔体产品,如冰铜、熔铅和熔渣等。因而此法可处理多金属锌精矿。此法锌的收回率约为90%,电耗在3000~3600KW·h/t(Zn)。电炉炼锌仅适于电力廉价的区域。 (四)鼓风炉炼锌(ISP法) 英国于1950年开展的办法,此法与罐式蒸馏法直接加热的办法不同,它是将热交换和氧化锌复原进程在同一容器内进行。鼓风炉既能处理锌、铅混合硫化矿或锌铅氧化矿,也能处理铅锌烟尘等,现在为火法炼锌的首要工艺。 硫化锌铅精矿经烧结焙烧成烧结矿,配以焦炭,参加鼓风炉内,鼓入预热空气,使炭焚烧,在高温文强复原性气氛中进行复原熔炼。复原所得锌蒸汽从炉顶扫除,经铅雨冷凝得粗锌,一起从炉底排出复原熔炼所产的粗铅。 2、冶炼工艺介绍 (一)竖罐炼锌 在高于锌沸点的温度下,于竖井式蒸馏罐内,用碳作复原剂复原氧化锌矿藏的球团,反响所发作锌蒸气经冷凝成液体金属锌。我国葫芦岛锌厂是我国惟一和国际仅存的两家竖罐炼锌厂之一。竖罐炼锌的出产工艺由硫化锌精矿氧化焙烧、焙砂制团和竖罐蒸馏三部分组成。竖罐炼锌炉示意图 (1)硫化锌精矿的氧化焙烧 一般硫化锌精矿的成分是:Zn46%-62%,S27%-34%,Pb 首要焙烧反响为: 2ZnS+3O2=2ZnO+2SO2 2SO2+O2=2SO3 ZnO+SO3=ZnSO4 4FeS2+11O2=2Fe2O3+8SO2 ZnO进而与Fe2O3生成铁酸锌ZnO.Fe2O3。 大型欢腾炉断面为圆形,下部设有耐高温炉底,炉底上等间隔按必定规矩摆放着风帽。炉底以上1m高左右设有焙砂溢流口,炉顶有烟气出口。加料室建在炉底部分扩出部分。含水6%左右的锌精矿自前室加进炉内,在风帽吹出风力煽动下,敏捷混入流态化层,被加热,发作焙烧反响。经过溢流口产出的焙砂送去制球团,烟气净化后送硫酸出产系统,捕集的烟尘供归纳利用。 欢腾焙烧的首要技能经济目标是:脱硫率90%,锌收回率99.5%,镉收回率85%,烟尘率23%。 (2)焙砂制团与焦结 竖罐蒸馏炼锌是气固反响进程,要求参加的物料有必要具有杰出透气性和传热功能,以及适当的热强度,抗压强度在4.9MPa以上。为此将锌焙砂制成团块并焦结处理。工艺上首先将锌焙砂和复原用粉煤、胶粘剂充沛混合、碾磨、限制成团块,然后送入机械化燃油枯燥库枯燥。枯燥后团矿用机械进步从炉顶参加焦结炉,在800℃温度下,在团矿中的焦性煤发作粘结效果下使团块焦结,一起干团矿中的残存水分蒸发分被完全除掉。 (3)竖罐蒸馏 竖罐本体是用机械强度高、传热功能好、高温下化学性安稳的碳化硅材料砌成的直井状炉体,横断面成细长矩形,高8-12m,受热面积100-110m2。 近代大型竖罐的尺度为(2535mm×2mm)×290mm×12261mm,两长边罐壁外侧各有煤气焚烧室,对罐内团矿进行直接加热。来自焦结炉的热团矿经密封料钟参加罐顶,下降进程中被加热到1000℃以上,团矿中ZnO复原反响开端剧烈进行: ZnO+CO=CO2+Zn (1) CO2+C=2CO (2) ZnO复原反响首要是气一固反响,系统中(团矿中)配入过量的碳在1000℃高温下发作的CO在数量上完全能够确保反响(1)顺利完成。固体碳与ZnO间固一固复原反响只具有极非必须的含义。 复原发作的炉气中含气体锌约35%,经罐口下的上延部进入装有石墨转子的冷凝器,在转子扬起的锌雨捕集下,锌蒸气冷凝成了液态锌,守时从冷凝器中放出液态锌并铸成锌锭。出冷凝器的气体经过洗刷净化除掉剩下的锌,成为含CO80%左右、含H2约10%的罐气,悉数回来竖罐作为燃料。竖罐底部有接连工作的排渣机,蒸锌后的团块经此机械排出。竖罐炼锌的首要技能经济目标如下:锌冶炼收回率>94%;弃渣含锌 (二)密闭鼓风炉炼锌 该办法是在密闭炉顶的鼓风炉中,用碳质复原剂从铅锌精矿烧结块中复原出锌和铅,锌蒸气在铅雨冷凝中冷凝成锌,铅与炉渣进入炉缸,经中热前床使渣与铅别离。此办法是英国帝国熔炼公司(ImperialSmelting Corp.)研讨成功的,简称ISP,对质料适应性强,既能够处理原生硫化铅锌精矿,也能够熔炼次生含铅锌物料,能源耗费也比竖罐炼锌法低。密闭鼓风炉炼锌示意图 燃料焚烧和金属氧化物复原是密闭鼓风炉中的根本反响。参加炉内的焦炭在高温下与风口鼓入空气中的氧发作焚烧,发作炼锌进程所需的热量。首要熔炼反响为: C+O2=CO2 CO2+C=2CO ZnO+CO=Zn+CO2 CdO+CO2=Cd+CO2 PbO+CO=Pb+CO2 ISP的技能特点是:①选用密封高温炉顶(1000-1100℃),以避免锌蒸气进入铅雨冷凝器之前降温氧化;②选用高密度、低熔点、低蒸气压的铅作冷凝捕收锌蒸气介质,有利于锌蒸气的快速冷凝,避免氧化和铅锌别离;③选用高钙渣系(CaO/SiO2=1.0-1.5),渣型熔点高(125℃),密度较低,为下降炉渣含锌和渣与铅别离发明了有利条件。 密闭鼓风炉炼铅锌流程首要包含含铅锌物料烧结焙烧、密闭鼓风炉复原蒸发熔炼和铅雨冷凝器冷凝三部分。 (1)烧结焙烧 般铅锌精矿含Pb+Zn在45%-60%,与其他含锌物料混合配料后,在烧结机上脱硫烧结成块。烧结块要有必定的热强度,以确保炉内的透气性,烧结块的成分是(%):Zn41.4、Pb19.2、FeO 12、CaO 5.7、SiO2 3.8、S 0.8。 (2)密闭鼓风炉复原蒸发熔炼 前期炉子风口区断面积为5.1-6.4m2,现在最大的达27.2m2,大都工厂选用10m2和17.2m2。炉柱高度6m,炉高10.66m,风口内径159mm,共16个。炉顶设双层料钟密封加料器,炉身上部内砌轻质高铝砖,下部为高铝砖,炉缸用镁砖砌成,钢板外壁三杯水冷却。熔炼时,烧结块、石灰熔剂和经预热的焦炭分批自炉顶参加炉内,烧结块中的铅锌被复原,锌蒸气随CO2、CO烟气一道进入冷凝器,熔炼产品粗铅、铜锍和炉渣经过炉缸流进电热前床进行别离,炉渣烟气处理收回锌后弃去,锍和粗铅进一步处理。 (3)锌蒸气冷凝 冷凝设备为铅雨飞溅冷凝器,冷凝器外形长7-8m,高3m,宽5-6m,内设8个转子,浸入冷凝内的铅池中。转子扬起的铅雨使含锌蒸气炉气敏捷降温到600℃以下,使锌冷凝成锌液溶入铅池,铅液用泵不断循环,流出冷凝器铅液在水冷流槽中被冷却到450℃,然后进入别离槽,液体锌密度小在铅液上层,操控必定深度使其不断流出,浇铸成锌锭。 鼓风炉炼铅锌的首要技能经济目标为:热风温度950-1150℃,冷凝功率90%-92%,烟化炉渣含Pb 0.15%、Zn1.35%,粗锌含锌大于98%、含铅1.2%-1.5%,粗铅含铅大于98%、含锌0.1%,冶炼收回率Pb>93%、Zn>94%,原猜中S利用率90%-92%。 (三)电炉炼锌 20世纪30年代在国外呈现电炉炼锌技能。80年代,我国开端选用电炉炼锌技能,至今已有10多处小型火法炼锌厂推广应用,出产规划为500-2500t/a。 电炉炼锌是以电能为热源,在焦炭或煤等复原剂存在条件下,直接加热炉料使其间的ZnO成分接连复原成锌蒸气并冷凝成金属锌。该工艺能够处理高铜高铁锌矿,但要求质料含S不得大于1%,关于含S高的碳酸盐锌矿需求预脱除处理。 电炉形状为圆形或矩形,卧式,功率有500kW、1250kW、200kW和2250kW多种。炉床面积4-8m2,电极直径200-350mm。首要目标为:熔炼温度1250一1350℃,电能耗费4600kWh/tZn,残渣含锌3%-5%,粗锌档次98.7%,直收率80%,总收回率95%。 二、湿法炼锌 湿法炼锌是用稀硫酸(即废电解液)浸出锌焙烧矿得硫酸锌溶液,经净化后用电积的办法将锌从溶液中提取出来。当时,湿法炼锌具有出产规划大、能耗较低、劳动条件较好、易于完成机械化和自动化等优点在工业上占主导位置。 国际上近80-85%的锌均产自湿法冶炼,大大都选用酸浸出液电解,在惯例流程中,因为对其间浸渣的处理办法不同而派生出不同的湿法冶炼工艺。湿法炼锌示意图 (1)锌精矿焙烧 用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,一起除掉As、Sb、Cd等杂质的一种作业。焙烧产品焙砂,送去浸出锌,烟气或许制硫酸或许出产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保存1%-2%的硫以SO42-形状存在,以弥补锌焙砂浸出时缺乏的硫酸。而火法炼锌精矿焙烧期望悉数ZnS都氧化为ZnO,以进步冶炼收回率。 (2)锌焙砂浸出与浸出液净化 焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出选用废电解液,二段用硫酸作浸出液,酸度30-60 g/LH2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的要素有浸出温度、拌和速度、酸浓度、锌焙砂颗粒巨细等。ZnO浸出反响为: ZnO+H2SO4=ZnSO4+H2O 为了进步锌焙砂中锌浸出率,选用空气拌和,以强化浸出进程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。 (3)锌电解堆积 经过净化后的硫酸锌溶液参加添加剂,经过高位槽接连送入电解槽,槽中布以不溶性铅钙合金阳极和铝阴极。在南北极上施以直流电压时,电解液中的锌离子便不断在铅阴极上分出。电解最终发作的废电解液,部分送去作焙砂浸出剂,部分配成电解液回来。分出的锌铝阴极,每隔必守时刻(24-48h)取出,清洗后剥离锌片,然后熔化铸成锌锭,阴极经清洗加工后回来运用。锌电解堆积的根本反响是: 在阴极上 :Zn2++SO42-+2e=Zn+SO42- 在阳极上:2H+2OH--2e =1/2O2+2H++H20 总反响式:ZnSO4+H2O=Zn+H2SO4+1/2O2 三、部分冶炼厂冶炼工艺介绍

锑矿冶炼工艺概况

2019-02-22 14:08:07

锑矿冶炼工艺概略:锑的冶炼办法有火法和湿法两种。我国用的矿藏质料,主要是硫化矿(辉锑矿),其次是氧化矿和杂乱锑铅矿(主要是脆硫锑铅矿)。这些矿石一般要用选矿办法选出富块矿和精矿进行冶炼。 (1)火法炼锑 硫化矿经蒸发焙烧或蒸发熔炼,使Sb2S3变成Sb2O3(俗称锑氧),再经还原熔炼和精粹,成为金属锑。还可用沉积熔炼法直接出产粗锑。 (2)锑氧出产 有4种办法:①硫化锑块矿的蒸发焙烧;②硫化锑精矿闪速蒸发焙烧;③硫化锑精矿鼓风炉蒸发熔炼;④硫化锑精矿旋涡炉蒸发熔炼。 (3)还原熔炼和火法精粹蒸发焙烧和蒸发熔炼所产锑氧含杂质很少,配入煤和少数纯碱(Na2CO3),在反射炉内还原熔炼成粗锑。如需精粹,可持续参加纯碱,碱熔化后把压缩空气鼓入锑液,进行碱性精粹。 (4)电解精粹 选用电解办法进行精粹,能获得纯度较高的锑并能收回粗锑中的贵金属和其他有价值金属。 (5)沉积熔炼 此法适于处理富矿,不宜处理含铅的矿石。小规划出产多用坩埚炉,大规划出产用反射炉,有的厂用电炉。 (6)氧化锑矿石熔炼用鼓风炉熔炼成粗锑,鼓风炉习惯规划大,能够处理难熔矿石,对矿石档次要求不严厉,还答应氧化矿石中混有部分硫化矿。熔炼时以铁矿石、石灰石为熔剂,以焦炭为还原剂,产出粗锑。 (7)杂乱锑铅矿石熔炼这是一种难冶炼的矿石类型,广西大厂以脆硫锑铅矿为质料,选用欢腾炉焙烧,反射炉还原熔炼,所产粗合金吹炼蒸发锑、锑烟尘还原熔炼精粹出产高铅锑、精铅进行电解产精铅的办法。通过10多年的出产实践,已日趋老练,为杂乱的锑铅矿的处理积累了名贵经历。 火法炼锑是国内外传统选用的出产工艺,但由于在冶炼过程中,砷、硫污染环境严峻,因而迫使研讨使用新的湿法工艺。 (8)湿法炼锑用、溶液浸出硫化锑精矿,硫化锑与效果生成溶于水的硫代亚锑酸钠(Na3SbS3);以此溶液配制成阴极液,以溶液为阳极液,进行隔阂电积,得到含锑96%~98%的电锑。 我国对湿法炼锑的研讨使用已获得可喜的发展。80年代末,“氯化-水解法处理硫化锑精矿制取锑白新工艺实验”,已在几家厂商构成规划出产,“从浸取液中直接提取锑酸钠新工艺”研讨,也已使用于出产。氯(盐)氧化法制取锑酸钠,已在出产中选用。其特点是:质料习惯性强,含铅等杂质较高的锑矿也能处理,能归纳收回质猜中的锑和硫,基本上处理了硫烟污染问题。 (9)锑白出产锑白(Sb2O3)是锑的主要用途之一。我国用精锑出产锑白一般用反射炉。将精锑投入反射炉熔化,向锑液中鼓入一次空气,向液面上鼓入二次空气,使锑蒸气彻底氧化。氧化锑出炉后与很多冷空气集合,敏捷冷却,进入收尘体系,即得优质锑白。 (10)生锑生锑即工业用纯洁Sb2O3,是由高档次辉锑矿熔析而得,呈针状结晶,又称针锑。将硫化锑块矿破碎至粒度为20~30mm,在反射炉中增加1%~2%的纯碱助熔剂,于900~1000℃下,熔融分出,扒出残渣,出炉铸锭,即得含锑71%~73%的生锑。

钛矿选矿工艺

2019-02-25 09:35:32

钒钛磁铁矿:这是我国钛铁矿岩矿床的首要矿石类型。依据攀枝花矿山公司的选矿研讨和出产实践,其钛铁矿精矿的选矿是在对钒钛磁铁矿石经一段磨矿(-0.4mm),一粗、一精、一扫的磁选流程磁选出磁铁矿精矿(Fe51%~52%,TiO212.6%~13.4%,V2O50.5%~0.6%)之后的磁尾(矿)进行。 钒钛磁铁矿石以Fe与Ti方式细密共生赋存在钛磁铁矿中的TiO2(约占攀西区域TiO2总储量的53%),因为赋存状况、粒度,以及在高炉冶炼绝大部分没有被复原而以TiO2方式进入炉渣的化学反应特性等要素,现在还难以用机械选矿办法收回使用。 可是,跟着攀枝花钢铁研讨所和北京钢铁研讨总院对钛磁铁矿的铁、钛、钒归纳收回而对冶炼工艺和技能的改善与进步,现已基本上打通流程,取得了活跃的效果。此外,还展开了复原磨选制取铁粉和归纳收回钒钛的实验。其流程是: 钒钛铁精矿—铁粉燧道窑 碳复原—V2O5 破碎磨矿— 富钒钛料—湿法别离—TiO2 重磁选别离 钛铁矿、金红石砂矿:这是我国现在出产钛铁矿和金红石精矿的首要矿石类型。依据海南中兴精密陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜(铺前)、乌场(保定)4个国有钛(砂)矿的出产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技能指标如图3.5.10。采矿的回采率>95%,贫化率 为了进步资源的使用率和经济效益,削减中矿、尾矿的积压和对环境的污染,广州有色金属研讨院曾专题研讨了“海南岛海边砂矿难选中矿钛元素赋存状况及归纳收回途径”(第三届全国矿产资源归纳使用学术会议论文集,1990年)。该研讨、实验标明: ①钛元素首要赋存在以Ti4+与Fe2+呈类质同象置换而构成的钛-铁矿系列中;其间钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的份额达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。 ②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿藏,矿藏粒度0.2~0.08mm(属可选粒度);选用二介质作“沉浮”选矿,比重 3.3的有用重矿藏下沉产率达73.5%。 ③在下沉的重矿藏中,除主收钛铁矿外,可归纳收回锆石、独居石、富钛钛铁矿和金红石;其有用的选矿流程有二:其一是有用重矿藏经电磁选场强6000Oe分选出占钛铁矿矿藏份额88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最终经场强650Oe弱磁选,在磁选产品中可取得TiO250%~51%的钛铁矿精矿产品;其二是有用重矿藏(钛铁矿粗精矿,含TiO243%~46%)经电选(2.1kV,120r/min),在导体产品中可取得TiO251%~53%的钛铁矿精矿产品。 ④在经场强8000—12000Oe磁选的尾矿中,再选用浮选,可取得合格的独居石精矿;再对其经场强>20000Oe磁选的非电磁性重矿藏尾矿中,选用电选,可在非导体性产品中取得合格的锆石精矿,在导体性产品中取得合格的金红石精矿。 国内外钛矿资源的90%以上用于出产钛白,钛白的出产工艺流程,首要有先进的氯化法、法和传统的硫酸法。

钛材生产工艺

2019-01-25 13:37:03

目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为:钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。  上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。    钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。  故钛和钛合金的加工工艺必须考虑它们的这些特点。  钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。  针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。  钛材生产的原则流程  钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等

铜冶炼新工艺

2017-06-06 17:50:11

铜冶炼新工艺,其工艺流程是:首先将铜精矿进碾矿机碾细至200目-400目,再经摇床重选分离出三种品种:含铜量达90%以上铜精粉,中矿、尾矿,其中铜精粉经脱水后直接进入熔炼炉熔炼;中矿回流碾矿机;尾矿进入浮选,浮选出含铜量90%以上的铜精粉经脱水后进熔炼炉熔炼;经熔炼炉熔炼所得粗铜最后经电解得精铜成品;本发明克服了传统铜冶炼以炉炼为主,空气污染严重,能源消耗高,生产成本高,产品质量差,产品总回收率低的问题,本发明重在选矿,加大低能耗的选矿力度,减少高能耗的冶炼炉的使用,提高了产品的回收率,大大降低了生产成本。 铜冶炼技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法冶炼为主,其 产量 约占世界铜总 产量 的85%。1)火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。2)现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总 产量 的20%,湿法冶炼的推出使铜的冶炼成本大大降低。更多有关铜冶炼新工艺请详见于上海 有色 网

铬矿冶炼工艺了解

2019-01-04 09:45:31

增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。 1铬矿特性大致分类 1.1铬矿中的MgO/Al2O3值 传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。 1.2MgO/Al2O3值与铬矿冶炼性能 MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3 1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。 2参数选择 2.1二次工作电压 对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3 2.2极心圆直径 高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。 2.3炉膛深度 通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。 3渣型与碱度过控制 碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。 3.1MgO/Al2O3 在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3 3.2炉渣碱度 除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。 4合金成分控制 合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。 4.1[C] 根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。 4.2[Si] 合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。 4.3[S] 合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面: 4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。 4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。 5结束语  MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。

赋存不同的冶炼工艺

2019-03-05 12:01:05

金矿选矿设备加工技能首要选用浮选、磁选、重选等工艺或湿法冶炼等办法。而金矿石冶炼工艺首要有火法冶炼、湿法冶炼。依据矿藏质料性质和有害组分锌、砷、氟、镁等含量、赋存状况而选用不同的冶炼工艺。    火法冶炼是常用的炼铜工艺,又分为鼓风炉熔炼、反射炉熔炼、电炉熔炼、闪速炉熔炼、诺兰达接连炼铜法等。湿法冶炼首要用于处理氧化矿石或含天然铜不高的单一矿石。因为运用的浸出剂不同,可分为:    1、硫酸浸出法,用以处理二氧化硅含量很高的酸性氧化矿石;    2、浸出法,用以处理含多量碱性矿藏的氧化矿石或天然铜贫矿;    3、细菌浸出法,用以处理低档次硫化矿石。    依据矿石天然类型的不同按其氧化铜和硫化铜的份额划分为三种类型:硫化矿石、氧化矿石、混合矿石。其加工技能如下:    1、硫化矿石多金属硫化矿石,针对矿石组分特性而别离选用混合浮选法、优先浮选法、混合优先浮选法、浮选和重选联合选矿法、浮选和磁选联合选矿法,以及浮选和湿法冶炼联合处理等;    2、氧化矿石选矿常用浮选与湿法冶炼联合处理或用离析法与浮选联合处理;含结合式氧化铜高地矿石,常用湿法冶炼处理;    3、混合矿石选矿常用浮选法,它能独自处理,或与硫化矿石一同处理;也能选用浮选和湿法冶炼联合处理。

钼铁冶炼工艺的介绍

2019-01-29 10:09:51

钼是钢铁工业重要的合金元素之一,添加有钼的钢铁量占了世界钢铁总产量的1/10。     作钢铁的合金添加剂是钼最重要的用途,近年世界总消费量的83%~85%用作钢铁合金添加剂。     钼添加进钢铁时,通常以钼铁、钼酸钙和钼压块形式,尤以钼铁形式最常见。     钼与铁可以按任何比例组成合金,申哈认为钼-铁固体化合物通常为MoFe(它在1180~1540℃时稳定)、Mo2Fe3(它到1480℃稳定)、MoFe2(它到950℃是稳定的)。钼铁合金中,除了含有Mo、MoFe、Mo2Fe3、MoFe2外,其他成份是Fe。     钼是难熔金属,熔点2622℃±10℃,钼铁合金的熔点随其中钼含量的增加而上升。含钼高于50%后的钼铁熔点比较高,含钼60%的钼铁熔点约为1800℃。所以,冶炼时欲放出熔融的液态钼铁将很困难。     铁合金冶炼通常都是金属氧化物被还原成金属的过程,钼铁的冶炼正是氧化钼还原为钼的反应。其原料是钼焙砂——工业(粗)三氧化钼粉。     钼的氧化物中,不论是三氧化钼,或者是二氧化钼。它们都能很容易地被碳、硅或铝还原成金属钼。 钼铁冶炼所用还原剂可以是碳,亦可以是硅或硅加铝。随所用还原剂的不同,冶炼方法、工艺和设备也迥异。钼铁产品标准见下表。   表  钼铁质量标准  标准等级含       量(%)备注Mo≥WSiSPCCuAsSbSnPb≤中国 GB3649-87FeMo7065~75 1.50.100.050.100.5    最大块10kg<1mm小块5%FeMo6060.0 2.00.100.050.150.5 0.040.04 FeMo55A55.0 1.00.100.080.200.5 0.050.06 FeMo55B55.0 1.50.150.100.251.0 0.080.08 美国ASTMA 132-64A55~70 1.50.250.102.0~2.51.0     B60.0 1.00.150.050.101.0  0.0100.01美国克莱麦克斯1971标准 60.0 1.00.150.050.100.2     原西德 DIN17561FeMo7060~75 1.00.100.100.100.5     FeMo6258~65 2.00.100.100.51.0    日本JISG 2307-1967FMoH55~65 3.00.200.106.00.5     FMoL60~70 2.00.080.060.10.5    前苏联ROCT4759-69¢M158.00.60.80.100.050.050.50.030.020.015  ¢M255.01.01.50.150.100.101.50.050.050.050 ¢M355.01.02.00.200.200.202.50.100.100.100       其它主要成份主要为Fe。