钛渣术语
2019-01-25 13:37:03
钛渣:钛铁矿(钛精矿)配加一定量的含碳还原剂通过电炉熔炼,使矿中的铁氧化物被C还原,从而实现铁钛分离,钛氧化物被富集在炉渣中所形成的产品。 酸溶钛渣: 用作硫酸法钛白生产原料的钛渣 氯化钛渣: 用作氯化法钛白或海绵钛生产原料的钛渣 富钛料: 将钛铁矿通过各种方法进行富集而得到的高品位的含钛物料的总称 预处理: 在矿物进入电炉冶炼前,为了改善矿物性能等而对矿物进行一定的处理。 预还原: 在矿物进入电炉冶炼前,对矿物先进行还原处理,将矿中部分铁氧化物还原成低价铁或金属铁的处理方法。 预氧化: 在矿物进入电炉冶炼前,将矿物在中性或氧化气氛中进行焙烧的处理方法。 电炉冶炼法: 通过电炉并由电极输入电能来进行冶炼的方法。 电极: 将电流输入电炉内,并由此将电能转化为矿物冶炼所需要的能量的导电物体。 石墨电极: 采用石墨作为电极的主要原料,是一种已焙烧成形的电极。 自焙电极: 将电极糊填充在电极筒套中,通过冶炼过程中产生的热量来焙烧成形的电极。 还原剂: 用于将高价氧化物还原成低价氧化物或金属单质的物料 炉况: 电炉冶炼过程中炉内的状况。 翻渣: 在钛渣冶炼时,因炉料突然陷落造成还原反应瞬间激烈发生,产生大量CO气体经熔渣逸出,使渣出现沸腾和喷溅现象。 低价钛: 化合价低+4价的含钛化合物。 半钢: 钛渣冶炼时铁氧化物被还原后所生成的一种铁水,因含C介于钢与铁之间,故称半钢。 不溶钛: 不溶于硫酸的钛化合物。 挂渣: 在冶炼钛渣时,为防止钛渣对炉壁的腐蚀,在炉内壁挂上一层钛渣以保护炉壁的方法。 直流电炉: 采用直流电源的电炉。 交流电炉: 采用交流电源的电炉 明弧冶炼:在冶炼钛渣时,通过电极顶端发出弧光热量来熔化物料进行冶炼的方法。 埋弧冶炼: 冶炼时电极插入物料中通过物料的电阻产生热量来进行冶炼的方法。 铁、钛总量:原料中二氧化钛和三氧化二铁与氧化亚铁的总和。 配碳量:根据原料中铁含量与还原剂的碳含量及其还原程度来确定配碳的比例关系。
钛的冶炼
2019-03-05 09:04:34
钛在1791年被发现,而第一次制得纯洁的钛却是在1910年,中间阅历了一百余年。原因在于:钛在高温下性质非常生动,很易和氧、氮、碳等元素化合,要提炼出纯钛需求非常严苛的条件。 工业上常用硫酸分化钛铁矿的办法制取二氧化钛,再由二氧化钛制取金属钛。浓硫酸处理磨碎的钛铁矿(精矿),发作下面的化学反应: FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2O FeTiO3+2H2SO4 == TiOSO4+FeSO4+2H2O FeO+H2SO4 == FeSO4+H2O Fe2O3+3H2SO4 == Fe2(SO4)3+3H2O 为了除掉杂质Fe2(SO4)3,参加铁屑,Fe3+ 复原为Fe2+,然后将溶液冷却至273K以下,使得FeSO4·7H2O(绿矾)作为副产品结晶分出。 Ti(SO4)2和TiOSO4水解分出白色的偏钛酸沉积,反应是: Ti(SO4)2+H2O == TiOSO4+H2SO4 TiOSO4+2H2O == H2TiO3+H2SO4 锻烧偏钛酸即制得二氧化钛: H2TiO3 == TiO2+H2O 工业上制金属钛选用金属热复原法复原。将TiO2(或天然的金红石)和炭粉混合加热至1000~1100K,进行氯化处理,并使生成的TiCl4,蒸气冷凝。 TiO2+2C+2Cl2=TiCl4+2CO 在1070K 用熔融的镁在氩气中复原TiCl4可得多孔的海绵钛: TiCl4+2Mg=2MgC12+Ti 这种海绵钛通过破坏、放入真空电弧炉里熔炼,最终制成各种钛材。
钛渣的制取和分类
2019-02-13 10:12:44
尽管钛铁精矿能够直接用于出产钛,可是其TiO2档次低,铁和其他杂质多,产品质量无保证,三废量大,对环境污染严峻。跟着环保要求日趋严厉,不管氯化法仍是硫酸法的钛白出产,对钛质料的要求,都趋于高档次化。将钛铁矿进行富集处理制成钛渣,就能更多地将杂质从矿中别离出去,然后取得TiO2档次较高的富钛料,再将其用于钛出产,就能进步产品的质量和削减三废对环境的污染。
用钛铁和还原剂,在一种既不同于矿热炉,也不同于电弧炉的特殊电炉中,加热到1600~1800℃,进行高温溶炼,使钛铁矿中铁的氧化物被还原为金属铁,以铁水流出成为生铁而别离除掉大部分铁;钛铁矿中的钛,即进入熔炼渣中而成为钛渣。钛铁矿还原熔炼电弧暗示和敞口电炉出产高钛渣工艺准则流程别离如图1和图2所示。
电炉熔炼制钛渣的优点如下:①工艺流程短;②副产品铁水经脱硫、脱氧后,其含铁量达98.5%,可供出产可锻铸铁或粉末冶金用铁粉;③不发生固体和液体废料,三废少;④电炉煤气可回收使用;⑤工厂占地面积小,是一种高效的制取富钛料的办法以。
国外一般将TiO2含量>70%的熔炼称为钛渣。钛渣有高钛渣和低钛渣之分。一般将TiO2含量<80%的钛渣称为低钛渣,低钛渣易于被硫酸所溶解而称为酸溶性钛渣。酸溶性钛渣的基本要求如下:①具有杰出的酸溶性,一般酸解率≥94%;②要有适量的助溶剂FeO和MgO,以使钛渣具有杰出的酸解反响功能;③贱价钛含量要操控适量;④出产钛的有害杂质(特别是硫、磷、铬、钒)含量不能超支。而将TiO2含量≥90%的钛渣称为高钛渣,简称UGS.
我国高钛渣质量标准见下表。 我国高钛渣质量标准(ZBH31001-87)等第化学组成(质量分数)/%ΣTiO2ΣFeCaO+MgOMnO2一级品
二级品
三级品≥94.0≤3.0≤1.0≤4.5≥92.0≤4.0≤1.5≤4.5≥80≤5.0≤11≤4.5
因为高钛渣杂质少,在氯化时发生的废副产品少,多用于氯化法钛白出产。只需酸溶性好,不管低钛渣和高钛渣,都能够用于硫酸法钛白出产。
富锰渣冶炼的有关计算
2019-01-25 15:49:32
一、高炉冶炼富锰渣的配料计算 正常炉况下的富锰渣成分,主要决定于配矿,富锰渣中的锰主要决定于矿石含锰量和锰铁比,或锰加铁总量。富锰渣中的磷含量和铁含量主要决定于炉温,前者主要由配料控制,后者主要由操作控制。在正常炉况下,都不会造成铁、磷出格,因此主要是搞好配料计算以解决锰合格问题。 1)配料计算的一般过程 (1)首先决定各元素和氧化物的分配率,根据理论分析和生产实践,各元素和氧化物的分配如表1。表1 富锰渣治炼各元素和氧化物的分配元素和氧化物入渣率/%入铁率/%吹损/%Mn85~903~83~8Fe2~585~903~8P2~585~903~8Al2O3,CaO,MgO92~9703~8SiO2其余以Si0.5计3~8
(2)确定矿石配比 ①根据原料的化学成分,确定初步配比。 ②计算入炉混合矿成分(用加权平均法)。 ③根据数理统计,含量35%的富锰渣入炉矿石的Mn和Fe的关系式如下: m(Fe)≥81.5-2.6m(Mh矿) 式中:m(Mn矿)为计算出的混合矿含锰量;m(Fe)为混合矿含m(Mn矿)时,得到含Mn35%的富锰渣要求含Fe的最小值。 计算确认m(Fe矿)≥m(Fe)时,一般可得到合格富锰渣。 (3)确定焦炭负荷。焦炭负荷根据生产实践经验来确定,理论计算复杂,日常生产中极少应用。焦炭负荷与入炉矿石含铁密切相关,一般混合矿含铁高,焦炭负荷轻。一般矿石含铁量20%左右,焦炭负荷取3~3.5,当含铁30%左右时,焦炭负荷取2.5~3.0。 (4)富锰渣和副产生铁成分的计算 ①以100kg矿石和相应的焦炭量,按入渣率计算成渣物量,并将其中锰、铁和磷换算成低价氧化物。 ②各种渣物量相加即为100kg矿石的渣量,然后进一步计算成分。 ③由渣量计算焦比和矿比。 ④同样以100kg矿石和相应的焦炭量,按入铁率计算铁量,并以生铁含碳4.5%折算出100kg矿石所得的铁量。 ⑤检验渣成分是否合格,若合格就计算出铁渣比。锰成分不合格或渣中A12O3大于20%,则调整配比后,再进行计算。 2)富锰渣配矿计算实例 以A,B,C三种不同类型的矿配矿,冶炼含锰35%以上,38%以下的富锰渣。[next] (1)矿石成分及焦炭成分见表2。表2 矿石成分及入炉混合矿成焦炭灰分及成分(%)矿种MnFePSiO2CaOMgOAl2O3配比A28.015.00.2525.01.00.57.060B18.534.00.110.02.01.58.030C28.527.50.19.501.50.54.510混合矿25.1521.950.1918.951.350.87.05100焦炭灰分(含量20%) 0.2508.0 42.0
(2)拟定配矿比为:A矿60%,B矿30%,C矿10%; (3)计算入炉混合矿成分,m(Mn)/m(Fe)=1.14,W(Mn+Fe)=47.1%; (4)计算m(Fe):m(Fe)=81.5-2.6 m(Mn矿)=16.11,m(Fe矿)≥m(Fe) 可知冶炼所得的富锰渣可以含Mn量≥35% (5)计算富锰渣成分 ①假定焦炭负荷为3.3,即100kg矿石需用30kg焦炭。 ②按100kg矿石和相应30kg焦炭计算渣量。 a.进入渣中的锰和氧化亚锰(锰入渣率按90%计算)。 m(Mn)=25.15×90%=22.64kg m(MnO)=22.64×71÷55=29.22kg b.进入渣中的铁和氧化亚铁(铁入渣率取3%计算)。 m(Fe)=21.95×3%=0.66kg m(FeO)=0.66×72÷56=0.8kg c.进入渣中的SiO2量,以SiO2入渣,其总量是入炉量的95%。 计算铁量,副产品铁含量80%~90%,以88%计算,铁元素进入生铁取92%计算, 则生铁量为:Q=21.95×92%÷88%=22.9kg 生铁Si含量为0.5%,则铁中Si量为 m(Si)=22.94×0.5%=0.12kg 还原需要SiO2量为 0.12×60÷28=0.25kg 则进入渣中的SiO2量: m(SiO2)=18.95×95%+30×20%×50%×95%-0.25 =20.6kg d.进入渣中的Al2O3量,Al2O3入渣率取95%计: m(Al2O3)=7.05×95%+30×20%×42%×95%=9.09kg e.进入渣的CaO和MgO量,CaO,MgO的入渣率取95%计: m(CaO)=1.35×95%+30×20%×8%×95%=1.73kg m(MgO)=0.8×95%=0.76kg f.进入渣中的P2O5量 m(P2O5)=(0.19+30×20%×0.2%)×3%×144÷62 =0.014kg表3 富锰渣量及成分成分MnOFeOSiO2Al2O3CaOMgO质量/kg29.20.8420.69.091.730.76含量/%46.951.3433.114.62.771.22成分P2O5总和m(Mn)m(Fe)m(P) 质量/kg0.01462.2422.640.660.0075 含量/%0.02810036.361.050.012
[next]
(6)检验:富锰渣m(CaO+MgO)/m(SiO2)=0.12,m(SiO2)/m(Al2O2)=2.26,含Mn,Fe,P均符合要求。 (7)副产生铁成分计算 a.锰入铁量,锰入铁率取5% m(Mn)=25.15×5%=1.26kg b.铁入铁量,铁入铁率取92%计 m(Fe)=21.95×92%=20.19kg c.还原入铁的Si量 m(Si)=0.12kg d.P入铁量,P入铁率取92%计 m(P)=(0.19+30×20%×0.2%)×92%=0.19kg表4 生铁量与成分表元素MnFeSiPC总和质量/%1.2620.190.120.190.12522.89含量/%5.5488.20.520.834.9499.99
(8)矿比、焦比计算 矿比:1000÷62.24×100=1607kg/t 焦比:1607÷3.3=487kg/t 二、电炉富锰渣冶炼配料计算 比实例介绍一种简易计算方法 1)计算的原始条件 (1)锰矿石的化学成分 化学成分 Mn Fe P SiO2 Al2O3 CaO MgO 含量/% 24.50 31.00 0.03 12.5 12.5 0.6 0.5 (2)焦炭成分 固定碳:80%;灰分:17%表5 各元素的分配率/%项目MnFeP炉渣中8555生铁中139575挥发2 20
(3)焦炭的利用率为92%。 (4)设定由Fe2O3→FeO和MnO2→Mn3O4全为受热分解,不直接消耗焦炭。而由FeO→Fe,Mn3O4→MnO和MnO→Mn全部用焦炭还原。Si和P等还原耗焦炭甚少,由电极消耗来补充,而不另外耗焦炭,以简化计算。 2)简易配料计算 以100kg矿石为基础的计算方法,100kg锰矿石消耗干焦炭约13.5kg. (1)富锰渣含量按下式计算 式中 w(Mn(矿))、w(Fe(矿))——锰矿石中含锰量、含铁量,%; ηMn(入)、ηFe(入)——锰的入渣率、铁的入渣率,%; A——每100kg矿所用焦炭灰分的重量,kg; B——每100kg矿含SiO2,Al2O3,CaO,MgO的总重量,kg。[next] 将原始数据代入上式,则得富锰渣的含锰量为 从上述计算得出: 100kg锰矿石生产的富锰渣和生产铁数量和主要成分见表6。表6 富锰渣和生铁的数量与成分名称化学成分(%)产量/kgMnFeP富锰渣39.112.910.00353.25生铁9.2685.640.134.39
(3)焦炭消耗量的计算 焦碳消耗主要用于铁、锰的还原和生铁的渗碳等方面。 还原进入富锰渣的锰所需碳量:Mn3O4+C=3MnO+CO 53.25×0.391×12÷165=1.15kg 还原进入生铁的锰所需碳量:MnO+C=Mn+CO 34.29×0.0926×12÷55=0.68kg 还原进入生铁的铁所需碳量:FeO+C=Fe+CO 34.39×0.8564×12÷56=6.31kg 副产生铁中渗碳量:34.39×0.045=1.55kg 上面四项合计需碳量为 1.51+0.68+6.31+1.55=10.05kg 折合成干焦炭量为:10.05÷0.90×0.80=13.96kg (4)锰矿石与焦炭的配料比为 锰矿石量/焦炭量=100/13.96 (5)每吨富锰渣消耗 锰矿石:1000÷53.25×100=1878kg 焦 碳:1878÷13.96=262kg
富锰渣冶炼对原料的要求
2019-01-18 11:39:40
富锰渣冶炼是自然碱度,不需要加熔剂,只有在少数情况下,为改善炉渣流动性,需添加少量萤石。因而富锰渣冶炼的原料主要是锰矿石、焦炭。
(1)锰矿石的化学成分
锰矿石的化学成分直接影响到富锰渣的产量、质量和消耗。锰矿石的化学成分王要有Mn,Fe,P,SiO2,Al2O3,CaO,MgO等。在高炉冶炼富渣时,锰有85%以上进入炉渣,SiO2,A12O3,CaO,Mg0几乎全进入炉渣,Fe和P大约90%进入生铁。
锰矿石含锰量增高时,富锰渣的含锰高,产量高,焦炭和矿石的消耗量则低。而当锰矿石含铁量增高时,矿石的化学失重大,富集效果好,有利于获得高品位的富锰渣。锰矿石含铁量高,去磷效果也好,因磷被还原后进入生铁。锰矿石含铁过高也不好,铁高富锰渣产量低,附产生铁多,焦炭消耗量大,锰的回收率低,同时操作上也难维持低炉温操作。
冶炼富锰渣,对矿石中锰和铁的要求,通常以m(Mn)/m(Fe)和w(Mn+Fe)两个指标来表示。当m(Mn)/m(Fe)一定时,w(Mn+Fe)愈高,渣的含锰愈高,但渣的产量却随w(Mn+Fe)增大而降低。这是因为w(Mn+Fe)增大,矿石中脉石减少的原因。而当w(Mn+Fe)一定时,m(Mn)/m(Fe)愈高,渣的含锰量和渣的产量均随之增加。这是因为m(Mn)/m(Fe)增加,矿石中铁量减少,进入渣中MnO增多。图1表示富锰渣品位、渣量和矿石m(Mn)/m(Fe)和w(Mn+Fe)的关系曲线。对锰矿石脉石要求,Al2O3,含量要尽可能低,因Al2O3高,增加炉渣粘度,升高炉渣熔点。要求矿石含CaO,MgO低一些,因CaO,MgO增高会促进锰的还原。当矿石中SiO2高时,富锰渣中SiO2会高,对冶炼锰硅合金的用户,要求富锰渣有一定含量的SiO2。而对冶炼碳素锰铁则要求SiO2低。
为了保证富锰渣的质量,要求锰矿石m(Mn)/m(Fe)在0.3~2.5时,其w(Mn+Fe)应为38%~60%,当m(Mn)/m(Fe)高时,w(Mn+Fe)则为低值。反之m(Mn)/m(Fe)低时,w(Mn+Fe)为高值。因此要求w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO+MgO)/m(SiO2)≤0.4。
在生产实践中,都是通过几种锰矿石配矿,调整炉料成分,最。终使入炉的混合矿成分能满足富锰渣生产的要求,同时又能获得好的技术经济指标。
各种锰矿的冶炼效果见表1。(2)锰矿石的物理性能
冶炼富锰渣与高炉冶炼锰铁一样,要求锰矿石粒度均匀,最好是8~40mm,含粉率低,小于5mm部分应小于5%,强度要求好,以改善料柱透气性和减少炉顶吹损。
(3)焦炭和萤石的要求
冶炼富锰渣要求焦炭强度好,粒度合适(20~80mm)、质量稳定。要求萤石含有效CaF2高,成分稳定,粒度均匀(20~40mm),含粉率低。
高炉富锰渣的冶炼工艺特点
2019-01-04 17:20:15
高炉富锰渣的冶炼工艺特点
高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点:
1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。
2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。
3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。
4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。
5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。
6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。
电炉富锰渣的生产
1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。
2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm
酸溶性钛渣的酸解工艺
2019-02-13 10:12:38
用酸溶性钛渣作质料比钛铁矿作质料有以下长处。
a.因为钛渣中的TiO2含量高,产品总收率可进步2%~3%,并可节省相应的储运、枯燥、原矿破坏的费用;
b.因为钛渣中钛含量高、铁含量低,因而酸耗也明显下降,每吨钛的酸(H2SO4)耗可节省25%~30%,但反响时硫酸浓度较高;
c.无副产品硫酸亚铁,也不需求用铁屑来复原,防止废铁屑带进的杂质对成品质量的影响;
d.能耗低,可节省0.6t蒸汽/钛,节电8%、节油或燃气4%、节水5%、节省制作本钱12%;
e.工艺流程短,可省去复原、亚铁结晶与别离和浓缩3个工艺操作进程;
f.反响生成的钛液稳定性好,晶种增加量也较少;
g.废酸,废水、废渣排放量以每吨钛计比普通钛铁矿酸解工艺要少得多,三废管理的费用相对少。
因为酸溶性钛渣在高温冶炼时要参加复原剂(无烟煤),因而产品中不含Fe2O3而含有二价的FeO和金属铁,所以在酸解进程中不只不需求参加铁屑来复原高价铁,有时因为三价钛含量过高还要参加少数的氧化剂。别的因为酸溶性钛渣中二氧化钛含量高、总铁含量低、不含有Fe2O3,因而反响时放热低,需求蒸汽加热的时刻较长,反响时的硫酸浓度要求较高(91%)老练和浸取的时刻较长。
图1为运用加拿大QIT索利尔酸溶性钛渣的酸解反响进程,从图中能够看出:反响前的80min为加酸、投矿和拌和的进程,此刻的压缩空气流量为600m3/h,随后加稀释水7min,因为硫酸稀释放热温度从50℃升至80℃,然后通蒸汽加热25min温度上升至120℃,主反响当即开端,在5min内温度从120℃猛增至200℃左右。主反响期间保持约15min,从加稀释水前20min到主反响期间压缩空气的流量增大至800~1000m3/h,保温吹气0.5h,此刻压缩空气量可降至500m3/h,中止吹气老练约4h,在此期间温度从190℃缓慢降至85℃,接着在不超越90℃的情况下浸取约7h,浸取期间拌和用的压缩空气流量约800m3/h,所得钛液的相对密度为1.550g/cm3。[next]
图2是一个运用加拿大QIT索利尔酸溶性钛渣的工艺流程和物料平衡示意图。
钛渣酸溶性好的原因分析
2019-02-13 10:12:38
在电炉熔炼的1600~1800℃的中温条件下,除铁的氧化物被复原外,还有适当数量的TiO2被复原为贱价钛的氧化物(只要在更高的温度下,TiO2才被复原生成TiC和金属钛而溶于铁水中)。
在钛渣熔炼出炉后的冷却结晶过程中,大部分钛的氧化物与其他碱性较强的金属氧化物化合构成二钛酸盐(如FeO·2TiO2、MgO·2TiO2、MnO·2TiO2),并与A12O3·TiO2、Ti3O5等构成黑钛石固熔体。也有少数偏钛酸盐等构成塔柱石固熔体,还有少数钛的氧化物进入硅酸盐玻璃体。钛渣熔体在空气中冷却时,其间部分贱价钛还会被氧化生成游离TiO2,当这种氧化发生在温度>750℃时,氧化产品主要是金红石型TiO2。生成了金红石型TiO2,就不能被硫酸所溶解。因而出产酸溶性钛渣,很重要的一点是在高温期尽量让其保持在复原气氛,不让空气氧化。
钛渣酸溶标明,黑铁石固熔体的钛氧化物最易溶于硫酸,金红石型TiO2不溶于硫酸。因而作为酸溶性钛渣应满意以下几点:①应含有适量的助溶杂质(主要是FeO和MgO)以及一定量的Ti2O3,以使钛的氧化物尽可能存于黑钛石固熔体中;②在工艺上采纳喷水冷却,可防止高钛渣与空气触摸氧化生成不溶于硫酸的金红石型TiO2,一起也可加速冷却速度。一般温度在<750℃时,其钛的氧化产品为锐钛型TiO2,而不是金红石型TiO2;③像前独联体那样,在熔炼后期参加废钛屑,进步钛渣的复原度,防止高温被氧化成金红石型TiO2。
经分析攀枝花矿酸溶性钛渣物相标明,其渣中钛氧化物90%以上进入黑钛石固熔体中,有4%~7%进入硅酸盐相,有1%左右以金红石型TiO2方式存在。
钛渣中的Fe2+、Mg2+、Mn2+、Al3+为构成黑钛石固熔体供给了必要的二价和三价金属离子,它们具有安稳该固熔体的效果。其间FeO·2TiO2和MgO·2TiO2是最易溶于硫酸的,即FeO和MgO具有促进钛渣中钛氧化物溶于硫酸的效果,是酸溶性钛渣不行短少的助溶杂质。这两种氧化物增加了钛渣与硫酸的反响热,反响式如下:
FeO+H2SO4===FeSO4+H2O+113.4kJ/mol
MgO+H2SO4===MgSO4+H2O+163.8kJ/mol
经核算,攀枝花矿钛渣与硫酸的反响热比砂状钛铁矿(含TiO251%)只低15%左右。MgO是攀枝花矿钛渣与硫酸反响的重要热量来历,它占悉数反响热的42%左右。在酸解攀枝花矿钛渣时,当加热蒸汽压力>0.6MPa时,其反响速率较快,反响最高温度可达200℃左右。攀枝花矿钛渣具有杰出的反响功能,可满意硫酸法钛白出产的要求。
我国一些研讨和出产单位曾研制成酸溶性好的钛渣,其TiO2含量达75%~78%,当TiO2含量超越80%时,酸溶性便大为下降。一般运用档次高的钛渣时,需求运用更浓的硫酸才干使其酸解。用两广钛铁矿和用攀枝花钛精矿都能炼制出酸溶性好的钛渣。上海东升钛厂曾在年产2000吨硫酸法钛白出产设备上,完成了用南边流程出产的酸溶性好的钛渣制取出BA-0101型钛。
钛渣生产工职业技能要求
2019-01-25 13:37:03
1、职业道德1.1、职业道德基本知识1.2、职业守则 (1)遵章守纪,精心操作 (2)爱岗敬业,忠于职守 (3)认真负责,确保安全 (4)刻苦学习,不断进取 (5)团结协作,尊师爱徒 (6)谦虚谨慎,文明生产 (7)勤奋踏实,诚实守信 (8)厉行节约,降本增效 (9)自爱自强,立志钛业。2 、基本知识2.1、钛冶炼基本知识 (1)钛的资源和发展概况; (2)钛及其化合物的性质、制取、用途; (3)镁法炼钛的基本知识。2.2、质量基础知识 (1)质量管理体系基础知识; (2)质量分析基本知识; (3)质量统计基本知识。2.3、安全、消防和环境保护知识 (1)起重设备指挥基本知识; (2)电工学基本知识 (3)消防基础知识; (4)安全生产、工业卫生及环保的有关法律法规; (5)安全规程。2.4、机械制图基础知识识图知识;2.5、计算机基本知识 (1)计算机基本知识; (2)计算机控制基本知识。2.6、法律常识 (1)劳动法相关知识。 (2)合同法相关知识。3.工作要求 本标准对初级、中级、高级和技师技能要求依次递进,高级别包括低级别的要求。3.1 初级
[next]
3.2、中级3.3、高级[next]
3.4技师4. 比重表4.1理论知识4.2技能操作
铜冶炼渣中铜的综合回收
2019-01-18 09:30:27
铜冶炼渣选矿与自然矿石相比,选矿多一道炉渣缓冷工序,这也是渣选矿与自然矿石选矿最大差别之处,钢冶炼炉渣实际是一种人造矿石,这种矿石中的铜矿物颗粒与相组成取决于炉渣冷却方式与冷却速度,炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收。炉渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。
目前,我国铜冶炼渣年产1100万吨,含铜27.5万吨,是二次铜资源的重要组成部分。铜冶炼炉渣的处理方式主要有火法贫化、湿法浸出和选矿富集几种。火法贫化的弃渣含铜高、能耗高、环境污染严重;选矿富集工艺虽然渣缓冷场占地面积大,基建投资较高,但铜回收率较高,选矿尾渣含铜可以控制在0.3%以内,并且渣中金银回收率较高、能耗低、成本低,因而被广泛应用。国内采用选矿富集处理铜冶炼渣的企业主要有白银有色集团、江西铜业集团、铜陵有色集团、大冶有色集团及祥光铜业集团等。
江西铜业贵溪冶炼厂、山东阳谷祥光铜业冶炼厂目前已成功应用“铜冶炼渣缓冷—半自磨+球磨—铜矿物浮选。”新工艺,有效解决了铜冶炼渣中铜晶体粒度过细导致难以单体解离、常规破碎因冶炼渣中夹带冰铜块导致的中细碎设备生产能力和运转率低等一系列技术难题,实现了钢冶炼渣中铜的有效回收。3年应用数据表明,对于含铜2.7%左右的铜冶炼渣,获得的铜精矿品位大于26%,尾渣品位含铜低于0.3%。
白银有色集团排渔场堆存的白银炉渣约为700万吨,并且毎年还在产出新的白银炉渣约30万吨。因白银炉与其他铜冶炼工艺的差异,决定了白银炉渣性质的特殊性,其选矿工艺及技术指标也有不同。为实现该二次资源综合利用,白银有色集团140×10 4t/a渣选矿系统于2012年5月投产,并于2012年年底达产达标,该项目采用“铜冶炼渣渣包缓冷—粗碎+半自磨+球磨—铜闪速浮选—中矿集中返回再磨”。新工艺代替冶炼过程的贫化电炉工艺后,每年可减少冶炼过程中SO2的排放量270t,渣尾含铜降低至0.28%,年回收铜金属2.2万吨。
刘春龙针对某铜冶炼炉渣选矿后铜尾矿品位较高的问题,开展了炉渣选矿试验研究,把中矿单独再磨再选改为返回二段球磨分级再磨,对药剂制度进行优化,重点保证一段浮选的药剂用量,强化对粗粒级和中粒级矿物的捕收。当炉渣含铜2.9%时,获得的铜精矿含铜26.20%、铜回收率92.26%,铜渣选矿尾矿铜品位降低至0.25%。王国红针对贵溪冶炼厂铜冶炼炉渣缓冷工艺提出了解决“渣包放炮”和“翻出红包”的多项措施,指出了延长渣包使用寿命、及时报废更新渣包、保证渣包使用安全、降低生产成本的途径。
云南某铜冶炼渣含铜0.62%、含铁35.58%,主要含铜矿物为黄铜矿、蓝铜矿和辉铜矿,铜矿物与主要脉石矿物橄榄石等嵌布关系复杂,嵌布粒度细微。王祖旭等人研究在细磨条件下、以冰铜为“载体”进行“载体浮选”,获得的铜精矿中含铜21.30%、铜回收率86.20%。
海绵钛冶炼技术的研究方向
2019-02-15 14:21:24
当时,我国钛工业伴跟着国际钛工业的添加,出现快速开展的气势。跟着需求的扩展,钛加工产能不断进步,2004年国内钛锭出产能力已到达约25000吨,可是,在这种高添加的气势下,海绵钛却成为限制钛加工的瓶颈。2004年我国出产的海绵钛仅为5000吨,远远不能满意需求,讨论我国海绵钛冶炼技能的开展,建造万吨级海绵钛出产基地是十分必要的。 国内海绵钛出产技能及改善研讨方向讨论 我国海绵钛出产,依托国内力气逐步完结技能进步,从固定床氯化到欢腾氯化,从填料塔精馏到浮阀塔精馏,从复原蒸馏别离到复原蒸馏联合,镁电解从有隔板到大型无隔板,以及完结了镁氯的闭路循环等。出产规划从百吨级到千吨级,直至到达5000吨经济规划。 但与国外先进水平比较,还存在较大距离。首要表现在技能经济指标、"三废"办理、设备配套水平缓自动操控等方面。 要把工厂规划扩展到万吨级,完结"清洁、文明、无公害化"的现代化出产,需求针对现在存在的问题,对现有工艺技能和设备进行改善研讨,首要研讨方向和课题可归纳如下。 1.高档次富钛料的制作技能西方国家运用高档次天然金红石和人工金红石为质料出产海绵钛。我国缺少高档次的天然金红石资源和没有高档次人工金红石的出产,出产海绵钛是以含TiO2适当量92%左右的高钛渣为质料。高钛渣是选用小型敞口电炉出产的,工厂规划小,技能和设备也很落后,因为要运用沥青为粘结剂,环境污染严峻。严厉来讲,这些高钛渣小厂是归于国家方针该陶汰的高能耗高污染的小电炉。 出产含TiO292%的高钛渣的技能改善适当困难,国外也没有相关的技能。国外的大型密闭电炉只能出产含TiO285%左右的钛渣。独联体国家的半密闭式电炉也只能出产90%左右的钛渣,并且有必要以优质钛铁矿为质料,假如以我国的钛铁矿为质料只能出产85~87%的钛渣。 与96%的天然金红石(杂质4%)和92~94%的人工金红石(杂质6~8%)比较,92%的高钛渣(杂质11%)已是一种"粗粮"。所以,工厂不期望运用档次比92%高钛渣更低的质料。 大型海绵钛冶炼厂期望运用高档次富钛料,处理高档次质料问题可供挑选的途径有: 1)建造大型化高档次富钛料工厂: 因为我国钛资源首要是低档次钛铁矿的特色,决议了需求选用除杂质能力强的富钛料工艺,才干取得高档次的富钛料。其间,浸出法制作人工金红石工艺道路,除杂质能力强,可将含高钙镁的低档次钛精矿加工成含TiO292~94%的高档次人工金红石,相关的技能研讨已挨近老练,可完结循环运用,弥补的可由氯化副产的供给。 2)进口高档次人工金红石:澳大利亚有十分丰厚的优质钛铁矿,选用复原锈蚀法制作的人工金红石TiO2含量达92~94%,已建成的工厂年产能力达80多万吨。 因此,能够考虑从澳大利亚进口这种人工金红石,它的粒度十分契合欢腾氯化的要求,一起还含有必定的贱价钛。 2.欢腾氯化炉的大型化技能的进一步研讨 [next] 我国海绵钛出产大型化过程中,遇到的最大困难是的制作技能,包含氯化和精制两个工序;与国外先进水平距离最大的,也是的制作技能;所以,往后应把欢腾氯化炉的大型化、氯化技能水平的进步(包含进步钛的氯化率、氯的利用率、氯化炉产能、下降尾气氯含量、进步收回率等)是往后研讨工作的要点之一。 3.除钒新工艺现在工业出产中,有铜丝、矿藏油和铝粉三种除钒办法。其间,铜丝除钒作用好,可取得高质量的,可是间歇操作,铜丝失效后的洗刷再生操作劳动强度大,操作环境差,铜耗高,除钒本钱高,仅合适小规划出产中运用。 矿藏除钒本钱低,但需求选用特殊的加热办法,发生体积巨大的残渣液,残渣易在加热壁上结疤,除钒后的中含有少数有机物不易别离除掉,较适用于氯化法出产钛白。 铝粉除钒的残渣量少,不易结疤,简单从残渣收回钒,除钒本钱低,是一种合适用于海绵钛出产的除钒办法。 铝粉除钒已在独联体国家海绵钛出产中成功运用多年,北京有研院等单位已成功地完结了小型实验研讨,阐明铝粉除钒是可行的工艺技能。但独联体国家运用的这种超细活性铝粉报价昂贵,并具有可爆性,需求研讨改善。 4.大型镁复原蒸馏联合法进步产品海绵化率 大型复原蒸馏联合法出产海绵钛,因为反响器容量的扩展,复原反响发生的热量不能有效地输出,形成部分高温,导致部分产品细密化;一起也防碍加料速度的进步,使出产周期添加,设备产能下降。 因此,有必要进一步研讨改善大型联合法的工艺和设备,以添加设备产能和进步产品的海绵化率。 5.大型无隔板槽镁电解下降电耗 曩昔海绵钛出产中,镁电解技能一向比较落后,自运用110KA无隔板槽镁电解工艺后,技能水平缓技能经济指标明显好转。 但在引入消化过程中,对这项技能中的一些技能决窍还把握不行,因此电流效率偏低,电耗偏高,需求进一步研讨改善。 6.出产过程的自动操控和办理海绵钛出产过程的自动操控技能已有必定的根底,往后应进一步研讨完结从富钛料制备、氯化、精制、复原蒸馏、破碎、分选、包装、镁电解全过程的计算机操控和办理。 研讨内容包含被测参数的感应元件、丈量外表、执行机构及计算机操控等,终究完结各工序的操控与主控室的计算机联网,使海绵钛出产办理全面完结自动操控。 7.制钛新办法的研讨成为国际钛业重视热门"制钛新工艺"一向是国际重视的热门研讨课题。近年来,这个国际性难题的研讨取得了一些发展,英国剑桥大学和澳大利亚CSIRO先后研讨了几种不同的TiO2电解法制钛新工艺,据称制钛本钱可下降50%左右。美、英联合正在进行扩展实验,方案将FFC工艺面向产业化。 假如能用TiO2电解法来制作新式钛合金,例如制作含少数铁的钛合金,则能够天然金红石或人工金红石为质料,其它合金元素以氧化物方式参加,这样制作的钛合金本钱就会大幅度下降。 经过上述课题研讨的完结,我国海绵钛出产技能水平将会大幅度提高,并可为完结万吨级规划海绵钛出产创造条件。 再经过几年的研讨和技能攻关,我国海绵钛出产技能将跨入国际先进水平队伍,进而完结万吨级出产规划。
铝钛渣耐火性能解析
2019-01-10 11:46:23
通过添加改性树脂,可明显提高试样在埋炭和空气条件烧后的中低温强度,但不同温度埋炭气氛烧后试样的强度高于相同温度空气气氛烧后的。添加改性树脂对材料的抗氧化性略有负面影响,可能因为改性树脂对成型性能有不利的影响,气孔率较高导致。添加改性树脂的新型滑板使用效果明显优于普通不烧滑板,连滑率从1.3次提高至2.2次。结合铁合金厂铝钛渣的化学组成,按六铝酸钙理论组成中氧化铝和氧化钙的比例关系,对铝钛渣和活性石灰进行配料。
将基础配方87.0%的铝钛渣和13.0%的活性石灰置于高速研磨机,研磨1h.将研磨后物料加入5%水,低速混炼20min,利用活性石灰水化形成石灰乳作为结合剂,采用半干法成型,成型压力50MPa.成型后试样经110℃保温2h干燥后,分别在1400℃、1450℃和1500℃条件下,保温2h烧成,试样编号分别为前列~No.3。用日本电子JSM6480LV型SEM扫描电镜观察不同温度煅烧后试样断口的微观结构及组织形貌。用阿基米德法测量烧后试样的体积密度和显气孔率。
六铝酸钙材料相组成的分析试验通过XRD法,对比分析了煅烧温度对固相反应合成六铝酸钙材料的相组成。各配方试样的主要矿物组成包括主晶相六铝酸钙相和少量的刚玉相,随着煅烧温度的升高,六铝酸钙相衍射峰强度有逐渐增强趋势。
富锰渣冶炼的基本原理
2019-01-25 15:49:32
冶炼富锰渣的过程,就是锰在渣中的富集过程,包括在高温下矿石结晶水的分解,碳酸盐的分解,锰高价氧化物还原为低价氧化物的失氧和在还原气氛中铁、磷的选择性还原等作用。其中最根本的是铁、磷的选择性还原。 富锰渣冶炼的理论基础是按照热力学和动力学原理,通过控制热量和造渣过程对矿石中的氧化物进行选择性还原。 (1)富锰渣冶炼中氧化物的还原 锰矿石中的MnO2,Mn2O3,Mn3O4,Fe2O3,P2O5等氧化物都容易被CO或H2还原成MnO和FeO,但MnO和FeO进一步被C还原成金属,其条件就有所不同,MnO还原所需的温度和热量要高得多。其反应方程式如下: 由上面的反应方程式看出,铁和磷的还原温度较低,所需的热量也较少,故易还原,而锰的还原温度高,消耗热量大,还原较难。所以在还原剂适当的条件下,冶炼温度控制在1350℃以下,铁、磷优先还原出来,而锰则以MnO形式富集于炉渣中。 用焦炭还原含有二氧化硅、锰、铁、磷氧化物的锰矿石,若采用的焦炭量和温度不同时,则得到不同的产品(表1)。表1 采用不同温度和不同焦炭量进行选择还原所得的不同产品℃治炼温度/℃用焦碳量氧化物焦碳还原开始反应温度/℃得到的产品1300焦碳仅够FeO和P2O5FeO/P2O5~750~820富锰渣和高磷生铁1500焦碳完成以上反应还够还原MnOMnO~1420高碳锰铁1700焦碳完成以上反应,还够还原 SiO2SiO2~1650锰硅合金2000焦碳完成以上反应,还够还原Al2O3Al2O32000锰硅铝合金
在高炉冶炼条件下,各元素还原的先后和还原的程度不一样,产生这些差异的原因是各元素要求的还原条件不同,即高炉内所能创造的还原剂成分、温度和压力等条件下对还原反应所需达到平衡的难易程度有所不同。[next] 氧化物被还原的难易取决于元素对氧的亲合力的大小,也就是取决于氧化物分解压力的大小,可以用氧化物平衡分解压力Po2来衡量(见表2)与(图1)。对氧的亲合力大,氧化物分解压力小的元素还原就较难,氧化物就较稳定。反之亦然。表2 各种氧化物的热效应和不同温度下的分解压力氧化物名称标准热效应/kJ不同温度下的分解压力(lgPO2)500℃1000℃1500℃2000℃FeO54000-49.1-20.8-11.2-6.9MnO779580 -28.8-17.1-11.5SiO2870220-81.7-36.1-20.9-13.3Al2O310099780-103.8-46.4-27.3-17.7MgO1223380-116.3-52.5-31.2-20.6CaO1270271-121.7-55.4-33.3-22.2
从图表中可看出,温度愈低,纯氧化物的分解压愈小,各种纯氧化物之间的压差愈大,熔渣中氧化物的还原度愈小,各种氧化物之间还原度之差愈大。反之,温度愈高,分解压差愈小,熔渣中氧化物的还原度愈大,各种氧化物还原度之差愈小。 也由此看出,在高炉条件下,Cu2O,NiO和FeO较易被还原,因此在高炉内几乎全部被还原成金属;而Cr2O3,MnO,SiO2和TiO2是较难还原的氧化物;因此在高炉内只能被还原一部分。Al2O3,CaO,MgO在高炉内不能被还原,而全部进入炉渣。[next] 锰矿石中的锰大都是以MnO2,Mn2O3,Mn3O4,MnO等形式存在,锰的高价氧化物不如低价氧化物稳定,因而前三种氧化物容易在烧结或高炉冶炼过程中被烧损式还原成低价氧化物。锰的氧化物的还原过程与铁的氧化物还原一样,也是按高级氧化物到低级氧化物依次进行的。在高炉内反应方程式如下: 2MnO2+CO===Mn2O3+CO2+226840kJ (1) 3Mn2O3+CO===2Mn3O4+CO2+170240kJ (2) Mn3O4+CO===3MnO+CO2+51920KJ (3) 反应(1)、(2)是不可逆的,在高炉压力和还原气氛下,反应很容易进行。反应(3)虽可逆,但实际上达到平衡时,气相中CO的浓度很小,因此在高炉内Mn3O4也是容易还原的。 MnO是相当稳定的氧化物,用CO还原MnO是非常困难的(图2).在1400℃时用CO还原MnO,其平衡相中CO2浓度为0.03%。用CO还原MnO只有在大量固体碳存在并不断与CO2作用的条件下才能进行,这样反应实际上已是直接还原,反应式如下:
MnO+CO===Mn+CO2-121590kJ
C+CO2===2CO-157890kJ
MnO+C===Mn+CO-279480kJ
因MnO在反应前已进入炉渣,该反应实际上是在固相与液相之间进行的。在高炉条件下要抑制锰的还原,必须降低CO的分压和降低MnO的活度。这其中影响最大的是温度和炉渣碱度。 (2)冶炼温度的选择 富锰渣冶炼要抑制锰的还原,实际上就是控制渣中MnO的还原条件。MnO的直接还原反应MnO+C=Mn+CO是吸热反应。平衡气相中CO的分压,随温度上升而增加。即随冶炼温度升高,MnO还原加剧。因而控制冶炼温度是控制MnO还原,提高富锰渣品位的关键措施。图3是冶炼温度与MnO和MnSiO3还原度的关系曲线。图4是炉渣温度与渣中MnO含量的关系曲线。
[next] 富锰渣冶炼处理贫锰矿,渣中SiO2量比较高。在有足够SiO2存在的条件下,高炉内温度为1170℃时,几乎全部MnO与SiO2结合形成炉渣。从熔渣中还原Mn比从独立相中还原困难得多。试验指出,在1300℃条件下,MnSiO3只还原3%,另一方面,铁的还原比较容易进行,铁的还原FeO+C=Fe+CO从685℃就开始了,而高价氧化铁还原为低价氧化铁(FeO)在900~1000℃时即已完成,当温度达到1250℃时,硅酸铁(Fe2SiO4)也大量被还原。因而从保证铁充分还原与抑制锰的还原来看,富锰渣冶炼温度控制在1280~1350℃是适应的。在此温度下,炉渣的流动性也是有保证的。 (3)炉渣碱度的选择 碱性氧化物CaO和MgO对SiO2的亲合力比MnO大,故以将MnO从硅酸盐中置换出来,使之以自由MnO形态存在,MnO活度增大,降低了MnO开始还原温度,促进锰的还原。其反应式为
MnSiO3+CaO===MnO+CaSiO3+59030KJ
MnO+C===Mn+CO-279470KJ
MnSiO3+CaO+C===Mn+CO+CaSiO3-220440KJ
这对富锰渣冶炼是不利的,因此在富锰渣冶炼中必须控制炉渣碱度。一般富锰渣冶炼中比值控制在0.4以下。贫锰矿自身的碱度就很低,所以在冶炼操作中通常是采用不添加熔剂的自然碱度。
硅锰合金冶炼渣处理工艺及设备
2019-01-24 09:36:35
硅锰合金冶炼渣是冶炼硅锰合金时产生的固体废渣,一般呈绿色,硬脆,含有一定量的硅锰合金颗粒嵌布其中。硅锰合金冶炼渣如果不及时经过客户有效的处理,会对环境和人类健康造成一定的危害,这里公开一种新型的硅锰合金冶炼渣处理工艺流程及设备配置,不仅有效解决了硅锰合金渣的处理,还能够产生可观的经济效益。处理过程对环境不产生二次污染,具有高效,节能,环保等优势。基本可实现废渣的全吸收。
硅锰合金冶炼渣中存在一定量的硅锰合金颗粒,回收这些合金颗粒即可产生相当可观的经济效益,利用此工艺流程及设备配置投资小,见效快,是一种科学有效的硅锰渣处理工艺流程。下面详细介绍该工艺流程及设备配置。
回收硅锰渣中的合金颗粒就必须使合金颗粒和固体废渣基本单体分离,这就要求将废渣进一步破碎或研磨,选择破碎或者研磨需要根据废渣的具体情况确定,如果废渣中合金颗粒嵌布粒度较小,则考虑采用棒磨或者球磨,如果合金颗粒嵌布粒度较粗,直接进行破碎即可,选用高效细碎机或者细破碎机即可完成破碎过程。
破碎后的废渣中合金颗粒和废渣基本单体解离,由于合金颗粒具有较大的比重而废渣的比重较小,两者有较大的比重差,利用这一特点,我们可以采用重选的方法使合金颗粒和固体废渣分离。金属颗粒可再次冶炼或直接出售,其余废渣则销向水泥厂或新型建材厂作为新型建材产品的原材料。
硅锰合金冶炼渣的具体分选设备为跳汰机。跳汰机是一种重力选矿设备,它可以根据矿物与脉石的比重差进行分选,比重差越大分选效果越好,处理量越大。
含钽铌的冶炼渣的冶金富集工艺
2019-02-11 14:05:38
难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。
一、酸浸出-酸分化法处理锡渣
含钽铌的锡渣组成如下(%):
Ta2O5 Nb2O5 TiO2 ZrO2 WO3 Sn SiO2 CaO 3~9 3~10 15~40 3~13 3~12 2~6 5~15 2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。
二、复原-氧化法处理锡渣
复原-氧化法处理工艺流程见图1。图1 锡渣处理工艺流程
锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21
进程首要分为四步
(一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物;
(二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品;
(三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。
(四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。
三、复原-电解法处理锡渣
质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0
将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。
电解的反应为:3FeCl→Fe+2FeCl3
当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。
钒钛磁铁矿高炉冶炼的强化
2019-03-04 11:11:26
一、概述
用普通大型高炉冶炼钒钛磁铁矿,尤其是冶炼时炉渣中TO2>22%的高钛型钒钛磁铁矿,曩昔国内外都认为是不可能的。因为技能上的原因,用惯例办法冶炼将会呈现炉渣粘稠,渣铁不分,炉缸堆积等现象,使正常出产难以进行。
我国攀枝花区域蕴藏着丰厚的钒钛磁铁矿,是我国三大铁矿之一。与铁矿共生的钒、钛资源在全国和国际都占有重要位置。
通过60年代中期的大规划工业性科学实验,处理了根本工艺问题,创始了高炉冶炼钒钛矿技能,为攀枝花资源的开发利用奠定了根底。并因而曾获国家发明奖。但因为一些重要的技能难题未能处理,如泡沫渣、铁水粘罐、铁损高以及档次低、渣量大等问题长时间困扰出产,冶炼工艺及操作技能也尚不彻底 泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是老练,使攀钢高炉目标低下。自1970年投产后,历经10年,高炉利用系数才到达不高的规划目标(1-40t/m3·d ),尔后长时间徜徉在1.5~1.6t/m3·d的较低水平,且耗费高,焦比在620kg/t以上,经济效益差,比年亏本。
进入90年代中期,攀钢以钒钛磁铁矿高炉强化冶炼为中心,展开了体系的科技攻关,进行了系列的科学实验和理论研讨,成功地开发了钒钛磁铁矿高炉强化冶炼的新技能,获得严重的打破性发展。使各项目标大幅度进步,在入炉档次低的质料条件下,高炉利用系数到达国内外先进水平,自1998年下半年以来,利用系数(未经折算的实践值)一向保持在2.0t/m3·d以上,1999年一季度均匀利用系数为2.143t/m3·d,入炉焦比降到484kg/t,吨铁喷煤98.54Kg,获得巨大经济效益(表1)。
表1 攀钢炼铁厂1990~1998年度首要技能经济目标
Table1 Maintechnicaleconomicindexfrom21990to1998forIronmakingPlantofPangang二、首要技能难题的打破
泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是钒钛矿高炉冶炼实验中的重要技能难题,也是攀钢高炉投产后长时间困扰出产的首要问题。
(一)泡沫渣问题 冶炼钒钛矿的高炉渣流入渣罐后,发生很多气体,使炉渣成泡沫状欢腾上涨,溢出罐外。而涨落之后,罐内只要小半罐渣,渣罐容积不能充分利用,而高炉则因出不净渣铁,导致炉内压差升高,被逼减风,无法进步冶炼强度。
通过理论研讨和出产实验,弄清了泡沫渣构成机理并找到了消除办法。从热力学分析,渣中TiO2被TiC以及饱满碳和非晶太碳复原发生很多CO气体,是导致欢腾现象的原因(图1)
图1 有关TiC反响的△G与t的联系从动力学分析,当渣中发生的CO气泡的生成速率和气泡的稳定性到达必定程度时,泡沫渣就发生欢腾现象。
Vt≥15.56u-0.3016式中Vt-气泡发生速度
CTi(C,N)-Ti(C,N)在渣中的浓度
u-参数,取值1~8
△ G-形核的活化能
△ Gf-气、渣二相体积自由能改变
△ Gh-复原成CO的化学反响自由能改变。
根据对首要参数的分析,可得出泡沫渣构成的区间(图2)
图2 泡沫渣构成的条件(全钒钛高钛渣)通过调整炉渣成分,操控渣中TiO2在23%~24%,改变了钛渣结构,使渣中TiO2活度下降,并进步炉内高温区的氧势,然后按捺了TiO2的过复原,有用地消除了泡沫渣欢腾现象。
(二)铁水粘罐问题
铁水粘罐是钒钛矿冶炼的特有现象。普通矿冶炼时铁水罐尽管也有粘结的状况,但其粘结物的熔化温度低于出铁温度,下次出铁时可被熔化,罐衬越刷越薄,一般可用300~400次。而钒钛铁水的粘罐物中则因含有V、Ti的氧化物,熔点很高,高于出铁温度,在下次出铁时不能被熔化,越结越厚,铁水罐只能用几十次。严重影响了高炉正常出产。
在研讨弄清了粘罐的机理后,发明晰吹氧化罐和氧燃化罐技能熔化粘罐物,又采纳冷扣罐、喷涂和运用腊石砖砌罐帽,炉前选用焖砂口操作根绝高炉渣过渣进罐,铁水罐加蛭石保温等办法,彻度处理了铁水粘罐问题。
(三)消除粘渣和下降铁损
跟着高炉内复原进程的进行,炉渣中一部分TiO2被复原生成钛的碳、氮化合物。TiC的熔点为3140℃±90℃,TiN 熔点为2950℃±50℃,远高于炉内最高温度,它们通常以几微米但具有极大比表面积的固相质点弥散在炉渣中和包裹在铁珠周 围,使铁珠难以聚合,渣中带铁增多,粘度增大数十倍,构成粘渣和高铁损。因为构成“高温亲液胶体”和“类网状结构”,其粘度已不能用牛顿力学核算。实验标明,在1480℃变稠的炉渣粘度η=2.817e105.34φ,其间
高炉选用低硅、钛操作,操控炉热水平,以按捺TiO2过复原。又选用特殊办法,使变稠的炉渣消稠,并活泼炉缸。强化炉前操作,缩短渣铁在炉内停留时间以及选用合理炉料结构,操控TiO2在适宜规划,然后有用地消除了粘渣,下降了铁损。
(四) 钛渣脱硫才能的改进
因为TiO2在炉渣中呈弱酸性,所以高钛渣的脱硫才能远低于普通高炉渣,Ls仅为5~9,而一般炉渣Ls为20~30。
实验室研讨标明,钛渣的碱度R 可表达为系数α=0.7,β=0.15,γ=0.6。
通过科技攻关,采纳优选适宜的炉温、炉渣碱度,关在冶炼操作中削减其标准偏差,改进钛渣功能,添加流动性,强化冶炼,活泼炉缸以及改进入炉质料质量,进步风温,下降硫负荷,然后改进了钛渣脱硫才能,明显地进步了生铁质量,使铁水均匀含硫由0.075%降至0.054%。
三、优化炉料结构,进步钒钛烧结矿的强度
为改进质料质量,将烧结矿碱度由1.2进步到1.75,避开了钒钛烧结矿低强度区间,削减了粉末,又使高炉配猜中不再加石灰石,促进焦比下降。
为了施行精料政策,改变大渣量对强化冶炼构成的困难,近年来,将进步入炉矿石档次作为优化炉料结构的要点之一。通过适度进步钒钛铁精矿档次,添加烧结中富矿粉用量以及进步熔剂的有用CaO等办法,使入炉矿石档次由1995年的45.47%进步至1998年的46.57%,1999年1季度又进步至47.01%。不只入炉铁量添加,并且因为渣量削减,改进了炉内压差散布,下降了铁损和焦比,使攀钢高炉获得了进步1%档次,添加产值3%以上的效益。
高钛型钒钛磁铁精矿的特色是TiO2、Al2O3高, SiO2低,成球性差,液相量少,是一种特别难烧的矿石。针对上述特色,成功地开发了一系列技能办法,如高负压厚料层操作、配加生石灰和钢渣、富氧焚烧、添加复合粘结剂、选用ISF偏析布料技能、燃料二次分加、烧结矿喷洒卤化物等,使钒钛烧结矿的冷、热强度明显进步,质量改进,产值添加。
四、高炉操作的优化与冶炼的强化
在处理了钒钛矿冶炼的技能难题、出产步入正常的根底上,环绕高炉冶炼,不断优化工艺操作参数和操作准则,发明晰一套完善的工艺技能。包含钒钛矿冶炼合理的热准则与造渣准则,上部调剂的高压操作、无钟炉顶的多环布料与中心加焦技能,中部调剂操控适宜的暖流强度,下部调剂以120~150KJ/s的高鼓风动能以及防止钛渣变稠的特有办法来到达活泼炉缸,强化冶炼的意图。
喷吹煤粉关于冶炼高钛型钒钛矿的攀钢高炉,长时间以来一向是技能领域里的一个禁区。1967年在首钢老2号高炉进行钒钛矿冶炼模仿实验时,曾两次试喷煤粉均告失败。因为一部分未彻底焚烧的煤粉进入炉缸,与高温熔渣触摸,构成渣焦反响,碳与效果的成果,生成高溶点的钛的碳氮化合物。TiO2+3C=TiC+2CO2, △F0t=125500-80.29T;TiO2+3C+1/2N2=TiN+2CO2,△F0t=90100-61.24T。使炉渣变稠,渣铁难分,正常出产无法进行,被逼停喷。
从80年代开端,攀钢高炉再次实验喷吹煤粉。为了确保煤粉的快速彻底焚烧,防止炉渣变稠,研发发明晰氧煤喷。据查新,其时在国内外均属创始。1991年攀钢高炉氧煤混喷技能又列入国家“八五”要点科技攻关项目,进一步完善了喷吹体系,并进行了不同结构氧煤的出产实验(图3),获得较好效果,完成了用最少数氧到达最大喷煤量的意图。现在,喷煤量已到达均匀120kg/t的水平。
此外,攀钢高炉还开发了钒钛矿冶炼的富氧鼓风、炉前操作的强化技能与焖砂口的运用等。
图3 氧煤结构示意图 为了树立高炉冶炼钒钛矿的数学模型,以逐步完成冶炼进程的自动化操控,在攀钢4号高炉开发了核算机专家体系。用美国西屋公司WDPF核算机开发炉况判别和热状况判别两个子体系,热状况又以预告铁水钛含量作为高炉操作炉热水平操控的根据。[Ti]的预告选用自适应和人工神经网络归纳预告体系,当炉况正常时用自适应体系,炉况不顺时用人工神经网络体系预告,在差错±0.03%规划内命中率为86.8%,有必定参阅效果(图4、5、6。)
图4 攀钢4号高炉炉况断定及操作辅导专家体系结构图图5 铁水钛含量归纳预告体系结构图6 神经网络预告钛含量结构五、冶炼钒钛矿的高炉炉体解剖及护炉效果研讨
为了深化探究高炉冶炼钒钛矿的规则,在410厂0.8m3小高炉进行了解剖实验0。该高炉用攀枝花钒钛矿冶炼,炉渣TiO2为27%~28%。
通过解剖看出,整个微观状况仍然明显地存在自上而下的块状带、软熔带、滴落带和风口回旋区。炉内剖面如图7。
图7 0.8m3高炉冶炼钒钛磁铁矿的剖面状况通过解剖实验,了解了高炉内铁、钒、钛等元素的行为,炉内温度的散布状况以及Ti (C ,N)的生成状况(图8),对钒钛矿高炉冶炼的理论研讨和出产实践都有重要参阅效果。
图8 不同高度上t, RFe RTi,η的改变冶炼钒钛矿对高炉的炉缸、炉底有维护效果。这是在攀钢1、2、3号高炉大修停炉查询时观察到的。
冶炼钒钛矿的高炉在炉缸和炉底的砖衬上有一层结构细密的沉积物,经化学物相、岩相、X射线和扫描电镜分析,它是含有很多高熔点贱价钛化合物与特殊形状的金属铁和其它渣相矿藏的一种多相物质。沉积物的上部含有较多的黑钛石,下部含有较多的Ti(C,N)固溶体。因为熔点高,熔化终了温度达1500℃以上,在该区域的温度下不能熔化,然后维护了炉缸炉底的砖衬(图9)。
图9 攀钢2号高炉炉缸炉底腐蚀状况冶炼钒钛矿的高炉、炉缸、炉底腐蚀远较冶炼普通矿的高炉轻缓,用粘土砖砌筑炉底就可保10年以上寿数。在冶炼普通矿的高炉中配加少数含钛物料(TiO27~15Kg/t)也可起到护炉效果。1980年今后在国内高炉逐步推行,已有64座高炉运用攀枝花的钒钛矿护炉,对延伸高炉寿数起了很大效果。
六、体系理论的树立
通过很多的科学实验研讨和出产实践验证,树立了钒钛磁铁矿高炉冶炼的体系理论,归于国际创始。
这一理论包含高炉冶炼钒钛磁铁矿的根本原理,钒钛磁铁矿的复原进程,铁、钒、钛等元素在高炉内的行为,钒、钛氧化物复原反响的热力学和动力学以及高钛渣的各种特性及其机理,高炉冶炼钒钛磁铁矿的规则以及钒钛磁铁精矿的烧结特性等。
在正确理论的辅导下,攀钢高炉冶炼钒钛磁铁矿的出产技能得到迅速发展。
七、结语
攀钢高炉通过科学实验和技能攻关,成功地开发了钒钛磁铁矿强化冶炼的新技能,树立了善的理论与运用技能,使首要出产目标获得严重打破。在入炉矿石档次仅46%的条件下,运用难冶炼的钒钛矿,高炉利用系数到达2.0t/m3·d以上,居国内外同类型高炉前列。因为规划产值添加,耗费下降,质量改进以及钒制品收益添加,每年为攀钢添加经济效益达数亿元。此外,钒钛矿护炉效果在国内高炉推行运用,为延伸高炉寿数起了很大效果,社会效益也非常明显。
探讨海绵钛冶炼技术研究方向
2019-02-15 14:21:24
当时,我国钛工业伴跟着国际钛工业的添加,出现快速开展的气势。跟着需求的扩展,钛加工产能不断进步,2004年国内钛锭出产能力已到达约25000吨,可是,在这种高添加的气势下,海绵钛却成为限制钛加工的瓶颈。2004年我国出产的海绵钛仅为5000吨,远远不能满意需求,讨论我国海绵钛冶炼技能的开展,建造万吨级海绵钛出产基地是十分必要的。 国内海绵钛出产技能及改善研讨方向讨论 我国海绵钛出产,依托国内力气逐步完结技能进步,从固定床氯化到欢腾氯化,从填料塔精馏到浮阀塔精馏,从复原蒸馏别离到复原蒸馏联合,镁电解从有隔板到大型无隔板,以及完结了镁氯的闭路循环等。出产规划从百吨级到千吨级,直至到达5000吨经济规划。 但与国外先进水平比较,还存在较大距离。首要表现在技能经济指标、"三废"办理、设备配套水平缓自动操控等方面。 要把工厂规划扩展到万吨级,完结"清洁、文明、无公害化"的现代化出产,需求针对现在存在的问题,对现有工艺技能和设备进行改善研讨,首要研讨方向和课题可归纳如下。 1.高档次富钛料的制作技能西方国家运用高档次天然金红石和人工金红石为质料出产海绵钛。我国缺少高档次的天然金红石资源和没有高档次人工金红石的出产,出产海绵钛是以含TiO2适当量92%左右的高钛渣为质料。 高钛渣是选用小型敞口电炉出产的,工厂规划小,技能和设备也很落后,因为要运用沥青为粘结剂,环境污染严峻。严厉来讲,这些高钛渣小厂是归于国家方针该陶汰的高能耗高污染的小电炉。 出产含TiO292%的高钛渣的技能改善适当困难,国外也没有相关的技能。国外的大型密闭电炉只能出产含TiO285%左右的钛渣。独联体国家的半密闭式电炉也只能出产90%左右的钛渣,并且有必要以优质钛铁矿为质料,假如以我国的钛铁矿为质料只能出产85~87%的钛渣。 与96%的天然金红石(杂质4%)和92~94%的人工金红石(杂质6~8%)比较,92%的高钛渣(杂质11%)已是一种"粗粮"。所以,工厂不期望运用档次比92%高钛渣更低的质料。 大型海绵钛冶炼厂期望运用高档次富钛料,处理高档次质料问题可供挑选的途径有: 1)建造大型化高档次富钛料工厂: 因为我国钛资源首要是低档次钛铁矿的特色,决议了需求选用除杂质能力强的富钛料工艺,才干取得高档次的富钛料。其间,浸出法制作人工金红石工艺道路,除杂质能力强,可将含高钙镁的低档次钛精矿加工成含TiO292~94%的高档次人工金红石,相关的技能研讨已挨近老练,可完结循环运用,弥补的可由氯化副产的供给。 2)进口高档次人工金红石:澳大利亚有十分丰厚的优质钛铁矿,选用复原锈蚀法制作的人工金红石TiO2含量达92~94%,已建成的工厂年产能力达80多万吨。 因此,能够考虑从澳大利亚进口这种人工金红石,它的粒度十分契合欢腾氯化的要求,一起还含有必定的贱价钛。 [next] 2.欢腾氯化炉的大型化技能的进一步研讨 我国海绵钛出产大型化过程中,遇到的最大困难是的制作技能,包含氯化和精制两个工序;与国外先进水平距离最大的,也是的制作技能;所以,往后应把欢腾氯化炉的大型化、氯化技能水平的进步(包含进步钛的氯化率、氯的利用率、氯化炉产能、下降尾气氯含量、进步收回率等)是往后研讨工作的要点之一。 3.除钒新工艺现在工业出产中,有铜丝、矿藏油和铝粉三种除钒办法。其间,铜丝除钒作用好,可取得高质量的,可是间歇操作,铜丝失效后的洗刷再生操作劳动强度大,操作环境差,铜耗高,除钒本钱高,仅合适小规划出产中运用。 矿藏除钒本钱低,但需求选用特殊的加热办法,发生体积巨大的残渣液,残渣易在加热壁上结疤,除钒后的中含有少数有机物不易别离除掉,较适用于氯化法出产钛白。 铝粉除钒的残渣量少,不易结疤,简单从残渣收回钒,除钒本钱低,是一种合适用于海绵钛出产的除钒办法。 铝粉除钒已在独联体国家海绵钛出产中成功运用多年,北京有研院等单位已成功地完结了小型实验研讨,阐明铝粉除钒是可行的工艺技能。但独联体国家运用的这种超细活性铝粉报价昂贵,并具有可爆性,需求研讨改善。 4.大型镁复原蒸馏联合法进步产品海绵化率 大型复原蒸馏联合法出产海绵钛,因为反响器容量的扩展,复原反响发生的热量不能有效地输出,形成部分高温,导致部分产品细密化;一起也防碍加料速度的进步,使出产周期添加,设备产能下降。 因此,有必要进一步研讨改善大型联合法的工艺和设备,以添加设备产能和进步产品的海绵化率。 5.大型无隔板槽镁电解下降电耗 曩昔海绵钛出产中,镁电解技能一向比较落后,自运用110KA无隔板槽镁电解工艺后,技能水平缓技能经济指标明显好转。 但在引入消化过程中,对这项技能中的一些技能决窍还把握不行,因此电流效率偏低,电耗偏高,需求进一步研讨改善。 6.出产过程的自动操控和办理海绵钛出产过程的自动操控技能已有必定的根底,往后应进一步研讨完结从富钛料制备、氯化、精制、复原蒸馏、破碎、分选、包装、镁电解全过程的计算机操控和办理。 研讨内容包含被测参数的感应元件、丈量外表、执行机构及计算机操控等,终究完结各工序的操控与主控室的计算机联网,使海绵钛出产办理全面完结自动操控。 7.制钛新办法的研讨成为国际钛业重视热门"制钛新工艺"一向是国际重视的热门研讨课题。近年来,这个国际性难题的研讨取得了一些发展,英国剑桥大学和澳大利亚CSIRO先后研讨了几种不同的TiO2电解法制钛新工艺,据称制钛本钱可下降50%左右。美、英联合正在进行扩展实验,方案将FFC工艺面向产业化。 假如能用TiO2电解法来制作新式钛合金,例如制作含少数铁的钛合金,则能够天然金红石或人工金红石为质料,其它合金元素以氧化物方式参加,这样制作的钛合金本钱就会大幅度下降。 经过上述课题研讨的完结,我国海绵钛出产技能水平将会大幅度提高,并可为完结万吨级规划海绵钛出产创造条件。 再经过几年的研讨和技能攻关,我国海绵钛出产技能将跨入国际先进水平队伍,进而完结万吨级出产规划。
硅锰合金冶炼渣回收处理工艺流程
2019-01-24 09:37:13
硅锰合金冶炼渣也称为硅锰渣,是冶炼硅锰合金时产生的固体废渣,由于受冶炼工艺的限制,这些硅锰渣中含有一定量的硅锰合金,处理这些硅锰冶炼渣,回收其中的硅锰合金可以获取较为客观的经济效益,同时具有投资小,风险小等优势,因此硅锰合金冶炼渣的处理项目近年来被众多的中小型投资者所看中。下面介绍一种硅锰合金冶炼渣的处理工艺流程,仅供参考。
硅锰合金冶炼渣的处理工艺流程与铬铁合金冶炼渣的处理工艺流程基本相似,但也有一定的区别。铬铁合金冶炼渣中存在较粗的铬铁合金颗粒,而硅锰合金冶炼渣中的硅锰合金一般呈细粒不均匀嵌布,因此在处理工艺上,铬铁合金冶炼渣处理工艺为尽可能回收粗粒铬铁合金,同时回收细粒铬铁合金,而硅锰渣中由于基本上不存在粗粒硅锰合金颗粒,因此可直接破碎至细粒,然后依次选别回收所有的细粒硅锰合金。具体回收方法和设备主要是重选,重选法可以获得节能,高效,环保等选矿效果,同时选别效果也非常理想,对环境不产生二次危害。采用的重选设备主要是跳汰机,有时也用到摇床。
以下为硅锰合金冶炼渣的处理工艺流程图:由于硅锰合金渣硬度较大,该工艺采用了两段破碎流程,且均为鄂式破碎机,可有效降低破碎机的磨损,从而降低硅锰冶炼渣处理的成本。再跳汰机的选型上根据多年来调查发现,处理硅锰合金冶炼渣大多采用JT1070/2锯齿波形跳汰机,该机正常工作产生的跳汰周期曲线呈锯齿波型,对细粒级重矿物的回收效果极佳,而硅锰渣中又存在细粒的硅锰合金颗粒,因此采用锯齿波跳汰机处理硅锰渣是较为理想的选择。
黄金冶炼氰化尾渣提金及综合利用
2019-02-18 15:19:33
效果称号:黄金冶炼化尾渣提金及归纳使用请求单位:清华大学判定编号:鉴字[教SW2003]第008号判定日期:2003年09月07日学 科:土建水效果简介: 该技能在国内外未见报导,由金涌院士掌管的项目评价以为,该技能到达国际先进水平。由教育部掌管的项目判定以为,该项目工艺先进可行,立异显着,规模经济效益高。 跟着金矿挖掘程度的加深,难选金矿的产值越来越大,使用传统的化法提金,会发生很多金含量高的黄金冶炼尾渣。在现有的现已揭露的技能或宣布的专利文献中,对难选金精矿或黄金冶炼尾渣,特别是含硫化物或砷化物较多的难选金精矿,可以工业化的技能一般选用焙烧法,此法能使金的收回率有所进步,也可以收回其间硫,但金的收回率进步的起伏有限,并且发生很多的污染废渣,砷也难处理。含硫铁矿较高的尾渣大多外卖到水泥厂,作水泥辅料,发生硫、砷和铅的污染。假如堆放在冶炼厂邻近,会发生自燃,也会发生煤烟污染,跟着天然雨水等进入地下水,引起环境恶化。为此研讨催化氧化法处理难选金精矿和尾渣:该办法选用催化剂,在常压下使用空气中的氧气氧化黄金冶炼化尾渣,以提取金属银、金属铜、铅的化合物、锌的化合物,制备铁系颜料等,一起提取黄金。处理后尾渣中包裹金的硫化物、砷化物被催化氧化,添加金与催化剂触摸的几率,进步金的收回率。一起,还可归纳收回银、铜、铅、砷等,使用其间的铁出产通明超细铁红,各种污染物质也一起变为无污染物质。 催化氧化后的尾渣残有量20%左右,有的低于5%,并可以归纳使用,金、银、同铁盒铁的收回率到达99%。因而,该办法不光处理了含硫化物或砷化物较高的金精矿金收回率低的难题,还最大极限进步有价金属的收回率,处理了黄金冶炼尾渣堆放活处理难的问题。 别的该技能的成功开发,有利于改善厂商落后的化提金工艺,进步科学技能水平,增强厂商在国际贸易中的竞争力,添加工作。 该技能现已在蓬莱黄金冶炼厂施行,估计处理三万吨化尾渣,出资5000万元,厂商获效益3000万元。
铬铁冶炼渣处理工艺流程及设备配置
2019-01-04 09:45:48
铬渣是冶炼铬铁合金时产生的固体废渣,这些固体废渣如果不及时经过科学有效的处理,不仅会对环境和人类健康造成威胁,同时也会造成有用资源的浪费,这里简单介绍一下铬铁渣处理的工艺流程和设备配置。铬铁渣多为干渣,硬度较大,嵌布有粗,细布均匀的铬铁合金,回收这些铬铁合金可以产生可观的经济效益,也为铬铁渣的进一步处理打下铺垫,以下为铬铁渣处理工艺流程图:铬铁渣处理工艺流程简介:
该铬铁渣处理工艺流程以重力选矿的方法从铬铁矿渣中回收铬铁合金,采用两次跳汰机分选,分别获得粗粒和细粒铬铁合金颗粒,使铬铁回收的利益最大化。首先大块铬铁矿渣经过粗鄂式破碎机破碎成小块,小块铬铁矿渣进入细鄂式破碎机进行细破,使最终粒度控制在30mm以内,之后进入料仓,料仓下方设电磁振动给料机,将破碎后的铬铁渣均匀给入AM30跳汰机进行粗粒跳汰分选,得到粗粒铬铁合金和尾矿,尾矿中因嵌布有不少细粒铬铁合金,需采用棒磨机将AM30跳汰机尾矿进行研磨,得砂状铬铁矿渣,进入LTA1010/2跳汰机进行二次跳汰分选,得到细粒铬铁合金和废渣。该工艺流程对铬铁合金的总回收率在90%以上,是国内广泛应用的铬铁渣处理回收工艺流程。 铬铁渣处理设备配置清单:名称型号功率(KW)数量(台)粗鄂式破碎机PE400*600301细鄂式破碎机PEF250*1000371跳汰机AM3031LTA1010/231棒磨机Φ1200*4500551输送机600型5.5——给料机GZ30.351料仓20m³——1回收过铬铁合金后的铬铁渣中铬铁含量极低,均呈细粒状,可再次销售向水泥厂,新型建材厂等企业,制成新型建材,整个处理过程实现了对铬铁渣固体废料的全部回收利用,不仅减少了有用资源的浪费,同时也降低的固体废渣对土地的占用,对环境和人类健康的危害。我厂对铬铁渣,镍铁渣,不锈钢渣,硅锰渣等多种金属冶炼矿渣的处理和回收有丰富的经验和独到的见解,欢迎广大客户朋友到厂参观指导,共同探讨。
铋冶炼的综合回收-从银渣中回收银
2019-01-31 11:06:04
从火法精粹Ag-Zn渣中回收银。质料组成列于下表。
表 银渣的组成(%)一、工艺流程。
首要有必要将银渣中的银进一步富集,别离银与铋后再提银,其工艺流程如图1。图1 从银渣中回收银工艺流程图
二、首要技能条件。
焙烧是先将银渣配入5~6%的CaO作粘结剂,前期低温焙烧,温度550~650℃,时刻4小时;中期缓慢升温至750℃,时刻2~3小时;后期升温至850℃,时刻2~3小时。焙烧在反射式焙烧炉内进行,焙烧中物料有必要常常翻动,充沛氧化,焙烧后物料呈疏松粒状,灰色,含银10%左右。
浸出:因为铋与锌的氧化物溶于稀而银不溶解,银的氧化物即便溶解也生成AgCl沉积。焙烧渣经球磨至-60目,选用稀二段逆流浸出。
一次浸出:液固比3∶1,浓度1.5%,常温拌和1~2小时,静置弄清,抽出上清液。
二次浸出:液固比3~4∶1,浓度15%,浸出温度90℃左右,保温拌和1~2小时,浸出银渣成分为(%);Ag 80~85,Bi1~2,Zn<0.1,银入渣率96~98%,铋浸出率高于99%,锌浸出率高于99%。
复原熔炼与开始火法精粹:在小转炉内用重油加热进行熔炼,熔炼温度1200~1300℃。配料比:纯碱为浸出银渣量的8~10%;为2~3%;复原煤为渣量的3~4%。熔炼时刻16小时左右,清渣后粗银档次(%):Ag93~96,Bi1~3,Sn0.5~1。之后持续用风管向银液中鼓入压缩空气,并加适量Na2CO3与NaNO3进行碱性精粹,氧化精粹时刻4~8小时,至合金中含银高于97%时,铸成阳极板。银在转炉中熔炼与精粹的直收率达95%以上。
银电解:阳极用双层涤纶袋套住,阴极用2毫米厚不锈钢板;电解液成分(克/升):Ag60~120,HNO3 4~15,pb<],Bi 0.2~0.5:电流密度250~400安/米2;槽压0.6~2.2伏,同极距6~7厘米。在阴极分出银粉。电解液运用一段时刻后,当杂质含量升高时,可选用热分免除铜。用银粉铸成电银,档次达99.95~99.99%。银阳极混含银高于40%,含金10%左右,用作提金的质料。
提金:假如选用氯化溶液电解法提金,则在出产过程中积压金量太大,所以宜选用溶解-复原湿法提金,其工艺如图2所示。
三、首要设备。
焙烧反射炉一台,炉膛2.6米2;球磨机一台,浸出罐二台,其间一台选用机械拌和夹套式珐琅反应釜,另一台选用机械拌和的浸出槽;置换槽一只:小转炉一台,银电解槽选用30升有机玻璃槽;300安硅整流器一台;铸型坩埚炉一台;提金设备一套。图2 湿法提金工艺流程
锰矿石冶炼富锰渣和生铁工艺流程
2019-01-04 17:20:18
锰矿石冶炼富锰渣和生铁工艺流程: 小高炉开启,原材料:锰矿石、焦炭。选择合量41以上的锰矿石(mn:23左右,fe:18左右).和碳质还原剂(通常用二级焦碳).原矿石和焦炭的配比为3.5:1,加进治炼炉里,经过炉加热炼两个小时成液体状。经管道流进指定的加有耐热材料的模具里(生铁重些从底下的口子流出.富锰渣从上面口子流出) 冷却后得到富锰渣和生铁。富锰渣和生铁出炉比例约为10:1。1.5吨原矿石经冶炼得到约一吨富锰渣和0.1吨生铁及付生铁。 冶炼一万吨原矿石需要消耗约三千吨二级焦炭。锰矿原矿石价格:锰矿石(mn:23,fe:18) 400元/吨 加减一度锰50元,加减一度铁15元。 二级焦炭:1300元/吨 一级焦炭:1800元/吨富锰渣(mn:33):1150元/吨. 生铁(含碳量2.5%--4%):2750/吨小高炉锰矿原矿石富锰渣焦炭生铁
日立冶炼厂阳极泥湿出渣的电炉熔炼
2019-01-07 17:38:34
日本矿业公司的日立冶炼厂为了提高金、银的直收率,减少中间产品和缩短熔炼工时及减少流动资金的积压,而于1967年改用电炉熔炼阳极泥脱铜浸出渣,1968年用氧化炉熔炼贵铅,产出的粗银再入分银炉精炼。
电炉生产初期,由于沿袭了原熔炼炉的作业条件,使需返回处理的冰铜及渣量较大,且氧化炉产出的氧化铅再处理后也返回大量金、银原料。为了降低炉渣含金、银量和减少中间产品产出量,经试验后,于1969年12月改用了新的电炉配料。改进前后的配料列于表1。采用新的电炉配料后,电炉至分银炉熔炼过程中需返回处理的主要中间产品由6种减少至3种,且大大降低了各中间产品的金、银含量(如表2)。据改进配料后的1971年的月平均统计,炉料的金、银品位及产品的数量、品位和回收率列于表3。
表1 改进前后的电炉配料改进前后原料配料名称%焦粉铁屑石英硅酸矿硫化矿PbO或(和)分银炉渣改进前浸出渣10036355氧化铅100355冰铜100363改进后浸出渣1002533~50
表2 中间产品及金银含量比较名称改进配料前改进配料后Au∕kgAg∕kgAu∕kgAg∕kg电炉冰铜12.41560氧化铅贵铅15.61450氧化铅冰铜1.5980氧化铅0.41190.2104分银炉渣3.51802.1140硝石碳酸钠渣0.1100合计33.542902.3244
表3 月平均给料品位及产品回收率分类名称质量∕t含量∕kg回收率∕%AuAgAgAg炉料阳极泥焙砂38.9188.69960氧化铅6.61110分银炉渣13.03.6221其他1.821.1117合计53.7219.911408100100产品电炉贵铅19.1216.91110798.6497.36炉渣24.11.41550.641.36烟尘3.20.2660.080.58合计46.4218.51132899.3699.30
改进电炉配料后的试验和生产实践证明,采用新的电炉配料具有如下的一些优点:
(一)由于减少了还原剂,因而浸出渣及氧化铅中的铅大部分进入渣中,使渣的流动性变好。
(二)几乎未发现生成冰铜。
(三)降低了电炉贵铅中的含铅量;金、银得到富集,从而提高了直收率。
(四)减少了需返回处理的中间产品数量,降低了金、银含量,减少了再处理量,加快了流动资金周转。
钒钛磁铁矿高炉冶炼的主要难度在哪?
2019-01-04 17:20:18
1、原料方面,钒钛烧结矿的强度一般比普通烧结矿强度低,其转鼓指数一般为81~82%,而普通烧结矿转鼓指数可达83~85%。钒钛烧结矿冷却后的转鼓指数比冷却前提高6~7%,说明钒钛烧结矿在热状态下脆性大,强度不如普通烧结矿好。同时,钒钛烧结矿的低温还原粉化率比普通烧结矿高得多,一般大于60%,高的达80~85%。
2、炉渣特点,高炉冶炼的炉渣,主要成分来源于原燃料所带入的脉石成分。冶炼普通矿形成四元(CaO-MgO-SiO2-Al2O3)渣系;而冶炼钒钛矿则为五元(CaO-MgO-SiO2-Al2O3-TiO2)渣系。五元渣系炉渣相对于四元渣系炉渣最大的特点在于:炉渣熔化温度升高、泡沫渣的形成、炉渣变稠、炉渣脱S能力低,其中,低钛炉渣的熔化温度与普通四元渣系相近,泡沫渣的形成在高钛型炉渣的冶炼中较为明显。炉渣变稠是随着高炉内还原过程的进行,炉渣中一部分TiO2被还原生成钛的碳、氮化合物。TiC的熔点为3140±90℃,TiN的熔点为2950±50℃,远高于炉内最高温度所致。而高钛渣的脱硫能力远低于普通高炉渣,Ls仅为5~9。
3、铁水方面,钒钛铁水的粘罐物中则因含有钒、钛的氧化物,熔点很高,高于出铁温度,在下次出铁时不能被熔化,越结越厚,造成铁水罐容积迅速减小,铁水罐只能用几十次,严重影响铁水罐的正常使用与周转,并给高炉正常出铁的计划安排带来困难。
ZN801-锡矿、锡泥、锡冶炼渣捕收剂
2019-01-16 17:42:25
品 名:ZN801-锡矿、锡泥、锡冶炼渣捕收剂 主要成份:水杨基肟酸衍生物 分 子 式: ROH-RonHOH(R-烷基或环烷基) 性状:产品为粉红至桔红色膏状至粉状固体,微溶于水,易溶于碱溶液,性质稳定。
主要用途:在特定条件下,ZN801-捕收剂比水杨氧肟酸有着更好的选择性。该品能与锡、钨、稀土、铜、铁等金属形成稳定的鳌合物,而与碱土金属及碱金属形成不稳定的鳌合物,所以,ZN-801在某些金属矿物的浮选作业中显示出具有较好的选别效果。经选矿工业应用表明,ZN801-捕收剂对锡的选择性较强,该品在锡石选矿中通常与P86配套使用,并具有一定的起泡性。该产品还具有药量少、适用性强等特点,具有极高的推广应用价值。
废镍渣
2017-06-06 17:49:54
废镍渣有铁磁性和延展性,能导电和导热。常温下,镍在潮湿空气中表面形成致密的氧化膜,不但能阻止继续被氧化,而且能耐碱、盐溶液的腐蚀。块状镍不会燃烧,细镍丝可燃,特制的细小多孔镍粒在空气中会自燃。加热时,镍与氧、硫、氯、溴发生剧烈反应。细粉末状的金属镍在加热时可吸收相当量的氢气。镍能缓慢地溶于稀盐酸、稀硫酸、稀硝酸,但在发烟硝酸中表面钝化。镍的氧化态为-1、+1、+2、+3、+4 ,简单化合物中以+2价最稳定,+3价镍盐为氧化剂。镍的氧化物有NiO和Ni2O3。氢氧化镍〔Ni(OH)2〕为强碱,微溶于水,易溶于酸。硫酸镍(NiSO4)能与碱金属硫酸盐形成矾 Ni(SO4)2o6H2O(MI为碱金属离子)。+2价镍离子能形成配位化合物。在加压下,镍与一氧化碳能形成四羰基镍〔Ni(CO)4〕,加热后它又会分解成金属镍和一氧化碳。废镍渣银白色金属,密度8.9克/厘米3。熔点1455℃,沸点2730℃。化合价2和3。质坚硬,具有磁性和良好的可塑性。有好的耐腐蚀性,在空气中不被氧化,又耐强碱。在稀酸中可缓慢溶解,释放出氢气而产生绿色的正二价镍离子Ni2+;对氧化剂溶液包括硝酸在内,均不发生反应。镍是一个中等强度的还原剂。镍不溶于水,二价镍可能是主要生物类型,在生物体内能与很多物质络合、螯合或结合。废镍渣大量用于制造合金。在钢中加入镍,可以提高机械强度。如钢中含镍量从2.94%增加到了7.04%时,抗拉强度便由52.2公斤/毫米2增加到72.8公斤/毫米3。镍钢用来制造机器承受较大压力、承受冲击和往复负荷部分的零件,如涡轮叶片、曲轴、连杆等。含镍36%、含碳0.3-0.5%的镍钢,它的膨胀系数非常小,几乎不热胀冷缩,用来制造多种精密机械,精确量规等。含镍46%、含碳0.15%的高镍钢,叫“类铂”,因为它的膨胀系数与铂、玻璃相似,这种高镍钢可熔焊到玻璃中。在灯泡生产上很重要,可作铂丝的代用品。一些精密的透镜框,也用这种类铂钢做,透镜不会因热胀冷缩而从框中掉下来。由67.5%镍、16%铁、15%铬、1.5%锰组成的合金,具有很大的电阻,用来制造各种变阻器与电热器。
钛矿物
2019-01-30 10:26:34
已发现二氧化钛含量大于1%的钛矿物有140多种,但从储量和品位来看,至今只有钛铁矿和金红石以及作为混合矿物的白钛石(钛铁矿风化产物),具有开采价值,锐钛矿(金红石的变体)、钙钛矿和榍石矿床只具有较小的经济价值。几种主要钛矿物见下表。
表 重要钛矿物表矿物化学式TiO2理论含量%密度g∕cm2硬度颜色钛铁矿(ilmenite)FeTiO352.664.5~5.65~6铁黑至淡褐黑或
钢灰色金红石(rutile)TiO2100.004.5~5.26~6.5淡红褐、血红、
淡黄、淡蓝、紫、
黑等色锐钛矿(octahcdrfte)TiO2100.003.82~3.955.5~6黄褐、蓝、黑等色板钛矿(broekite)TiO2100.003.78~4.085.5~6发褐、淡黄、淡红、
淡红褐、铁黑等色白钛矿(leucosphenite)TiO2·nH2O~943.5~4.54~5.5白、黄、褐等色钙钛矿(perovskite)CaTiO358.003.97~4.065.5淡黄、淡红褐、
灰黑等色榍石(titanite)CatisiO540.83.4~3.65~5.5褐、灰、黄、绿、
紫红及黑色等
富锰渣渣皮的深加工
2019-01-25 13:37:59
火法富集锰,是提高锰品位的一种方法,火法富集锰的主要产品是富锰渣渣和副产品生铁。生铁作为钢铁生产的用料,而富锰渣扎除作为硅锰合金的主要原料外,在化工上也有广泛的用途。用它作为化工原料,与原矿相比可以节省许多工序和能源。比如:生产硫锰。用它直接与硫酸反应,这样就省去用原矿煅烧还原的工序。 但是,目前富锰渣的价格较高,而且价格以其品位的提高而提高。目前的价格是每度43.00元,用它来生产硫酸锰很不合算,而生产富锰渣的另一副产品——渣皮其价格较便宜,每吨随市场价一般在250—400元之间。用它来作为生产锰盐及其他化工产品有着广阔的前景。笔者长期接触高炉火法集锰,在工作过程中摸索出渣皮中含有各种成分及数据:锰含量:24~30%,泥沙:32~36%,铁:12~15%,磷:1.5~1.8%,水分:6~8%渣皮中的含锰量与该高炉生产的富锰渣含量有直接的关系。渣皮中的二氧化硅含量除原矿原来含有之外,还与该高炉的操作工和业主的素质有关,渣皮中生铁的存在,是造成渣皮含铁高不能与富锰渣等价卖出的主要原因,渣皮中的水分,是长期堆放在露天日晒雨淋造成的。笔者通过研究和反复实验,成功地解决上述问题,为渣皮的用途翻开了新的一页。 目前这一技术已经形成成熟的生产工艺,生产的产品主要元素如下:粒度30目的含锰量为31%,含铁量为3.8,二氧化硅含量为28,磷为0.064~0.09,水分为1;粒度20目的含锰量为31%,含铁量为4.2,二氧化硅含量为29,磷为0.064~0.09,水分为1;粒度10的含锰量为30.57%,含铁量为4.58,二氧化硅含量为30.35,磷为0.064~0.09,水分为1。
硅锰水渣
2017-06-06 17:50:02
硅锰水渣作为在铸造硅锰合金后残留下来的废物品。如利用硅锰水渣在中频炉中生产硅锰合金以及利用硅锰水渣和锡渣烧制硅酸盐水泥熟料等。每年随着硅锰合金的产出会产生大量的硅锰水渣,如何利用先进技术让这些硅锰水渣变废为宝成为未来一个具有前景的
行业
。 硅锰水渣具有二次回收利用的价值。
铅锌冶炼
2017-06-06 17:50:12
铅锌冶炼的相关信息: 工业协会铅锌部主任赵翠青9月11日称,2010年全年中国铅产量预计为400至405万吨,同比增加7%-8%;锌产量预计为495至500万吨,同比增加14%-15%。受2009年铅锌产量“前低后高”的影响,今年下半年铅锌产量环比增速将放缓。在“2010上海铅锌峰会”上,赵翠青详细介绍了我国今年1至7月铅锌工业的运行情况。数据显示今年1至7月,铅月产量由1月的23.17万吨稳步递增至7月的36.32万吨;而同期锌月产量则呈现“倒U型”,5月最高单月产量达45.22万吨,7月回落至40.26万吨。赵翠青认为,尽管电解铅产量同比增幅下降了近10%,但7月单月产量已上升接近去年12月份时产量,而这其中再生铅是1至7月铅增产的主导因素。据中国有色金属工业协会统计,今年1至7月,铅产量共计216.32万吨,同比增加6.87%,其中矿产铅140.59万吨,同比增加4.36%。由此可推算出今年1至7月中国再生铅产量约为75.73万吨,同比增加11.88%。在谈到铅锌工业的固定资产投资时,赵翠青指出,今年1至7月冶炼完成投资118.1亿元,已远远超过矿山完成投资的88.99亿元。反映了近年来冶炼产能增幅加速,矿山产能增幅赶不上的情况,这将容易造成无矿企业吃不饱的局面。因此,赵翠青明确表示不鼓励无矿、少矿企业扩张冶炼流水线,特别是在“十一五”节能减排冲刺的关键时刻。同时冶炼产能的扩张过度将引起原料供应紧张,导致加工费下降,从而使行业陷入恶性循环中。更多有关铅芯冶炼请详见于上海有色网。