富氧熔炼
2019-01-04 13:39:38
空气中含有21%(体积比)的氧,如果把纯氧掺进空气中,使得其中的氧大于21%,这样的混合气体就称做富氧空气。凡是采用富氧空气的熔炼过程,都叫做富氧熔炼。例如鼓风炉富氧熔炼,转炉富氧吹炼等。除了溶炼过程可以采用富氧外,其它冶金过程(如焙烧)也可以采用富氧。采用富氧熔炼不仅可以强化熔炼过程,提高生产率;并且可以降低燃耗,减少了烟气排放量,减轻了对大气的污染。现在世界各国在有色冶炼中,凡能得到廉价氧的地方,均较为普遍地采用富氧冶炼。
富锰潭生产的目的和富锰渣的用途
2019-01-25 15:49:32
处理贫锰矿和铁锰矿的方法,目前有三种:一是机械选矿,包括洗矿、焙烧、重选、强磁选、浮选、焙烧磁选等;二是火法选矿,对高铁高磷难选矿石,采用机械选矿效果不好时,采用火法选矿,又称富锰渣法;三是化学选矿,当对产品成分质量要求很纯,而上述方法又不能达到要求时,采用化学提纯(化学选矿)的办法。 高锰渣法是一种火法选矿方法,它是将不能直接用于冶炼的高铁高磷难选锰矿石,在高炉内,或电炉内进行选择还原,在保证铁、磷等元素充分还原的前提下,抑制锰的还原,从而得到高锰低磷,m(Mn)/m(Fe)比值大的富锰渣。这是符合中国情的锰矿石富集的方法,因我国富锰矿很少,而高铁高磷级选锰矿石占我国锰矿储量的40%以上。富锰渣法在我国得到国大力发展,为铁合金生产提供了优质原料。 火法选矿与机械选矿相比有以下优点。 (1)选别效果好,能处理各种类型的锰矿,尤其是对结构复杂含磷呈微细浸染零散布,锰铁胶结的高铁高磷锰矿石,采用机械选难以得到好的指标,而采用富锰渣法效果好(见表1)。表1 玛瑙山锰矿选矿指标比较项目主要成分(%)m(Mn)m(P)锰回收率/%MnFePm(Fe)m(Mn)机械选矿氧化锰矿17.2327.000.0390.6370.0026 焙烧磁选27.1311.520.0382.350.001463.91火法选矿氧化锰矿17.5141.200.020.4240.0015 富锰渣39.882.700.00814.800.000285.00
(2)产品质量好,主要含锰高,锰铁质量比高,含磷低。 (3)锰回收高,要达85%~90%,比机械选矿一般高5%(见表2)。表2 高炉冶炼富锰渣的质量指标工厂名称主要成分(%)m(Mn)m(P)锰回收率/%MnFePm(Fe)m(Mn)上海铁合厂35~421~20.0513~380.001581~90湘潭锰矿37.72.03.00.0512.40.001382~88营口铁合金厂35~371.50.00524.10.000290玛瑙山矿39~402.70.00814.80.000285道县治炼厂36~401.5~3.00.00813~240.000280~85东湖桥锰矿38~421.0~2.00.0321~380.000780~85黄阳司治炼厂40~451.5~3.00.02515~270.000680~85
(4)产品物理性能好,高锰渣强度好,且不受环境影响适于长期贮存和远距离运输。 高锰渣生产的不足之处是,冶炼要消耗大量焦炭和电,生产成本略高,冶炼过程只能除去铁和磷及其他有色金属,不能除去脉石,且由于焦炭带入灰分,还使杂质量增加。 富锰渣的主要用途有以下几个方面: (1)用作生产锰硅合金的原料,在电炉冶炼锰硅合金时,富锰渣配比一般为30%~40%,目的是调整入炉锰原料的m(Mn)/m(Fe)和m(P)/m(Mn)。由于富锰渣含SiO2高,主要用于生产锰硅合金。 生产高硅锰硅合金,由于要求含锰原料中的锰含量大于40%,铁小于1%,磷小于0.03%,几乎是全部使用富锰渣才能冶炼出合格产品。 (2)用于火法生产金属锰的原料,采用电硅热法生产金属锰时,全部使用富锰渣(w(Mn)>40%,w(Fe)<1%,w(P)<0.03%)作原料,用高硅锰合金做还原剂。 (3)用于生产电炉锰铁和中低碳锰铁的配料。 (4)用于冶炼高炉锰铁的配料。(3)(4)项中主要是调入炉原料的m(Mn)/m(Fe)和m(P)/m(Mn)以保证产品质量达到要求。
合金的记忆功能
2019-01-04 09:45:29
在茫茫无际的太空,一架美国载人宇宙飞船,徐徐降落在静悄悄的月球上。安装在飞船上的一小团天线,在阳光的照射下迅速展开,伸张成半球状,开始了自己的工作。是宇航员发出的指令,还是什么自动化仪器使它展开的呢?都不是。因为这种天线的材料,本身具有奇妙的“记忆能力”,在一定温度下,又恢复了原来的形状。 多年来,人们总认为,只有人和某些动物才有“记忆”的能力,非生物是不可能有这种能力的。可是,美国科学家在五十年代初期偶然发现,某些金属及其合金也具有一种所谓“形状记忆”的能力。这种新发现,立即引起许多国家科学家的重视。研制出一些形状记忆合金,广泛应用于航天、机械、电子仪表和医疗器械上。 为什么有些合金不“忘记”自己的“原形”呢?原来,这些合金都有一个转变温度,在转变温度之上,它具有一种组织结构,而在转变温度之下,它又具有另一种组织结构。结构不同性能不同。上面提及美国登月宇宙飞船上的自展天线,就是用镍钛型合金做成的,它具有形状记忆的能力。这种合金在转变温度之上时,坚硬结实,强度很大;而低于转变温度时,它却十分柔软,易于冷加工。科学家先把这种合金做成所需的大半球形展开天线,然后冷却到一定温度下,使它变软,再施加压力,把它弯曲成一个小球,使之在飞船上只占很小的空间。登上月球后,利用阳光照射的温度,使天线重新展开,恢复到大半球的形状。
稀土功能材料
2017-06-06 17:50:13
稀土功能材料:稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素。简称稀土。 稀土元素又称稀土
金属
。稀土
金属
已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。 稀土元素在地壳中丰度并不稀少,只是分布极不均匀,主要集中在中国、美国、印度、前苏联、南非、澳大利亚、加拿大、埃及等几个国家。中国是世界稀土资源储量最大的国家,主要稀土矿有白云鄂博稀土矿、山东微山稀土矿、冕宁稀土矿等等。中国稀土材料现状 “中东有石油,中国有稀土。”这是邓小平1992年南巡时说的一句名言。然而,在发达国家先后将稀土视为战略资源,并有所行动的时候,稀土在中国更多只被看作是换取外汇的普通商品。 中国稀土占据着几个世界第一:储量占世界总储量的第一,尤其是在军事领域拥有重要意义且相对短缺的中重稀土;生产规模第一,2005年中国稀土
产量
占全世界的96%;出口量世界第一,中国
产量
的60%用于出口,出口量占国际贸易的63%以上,而且中国是世界上惟一大量供应不同等级、不同品种稀土产品的国家。可以说,中国是在敞开了门不计成本地向世界供应。据国家发改委的报告,中国的稀土冶炼分离年生产能力20万吨,超过世界年需求量的一倍。而中国的大方,造就了一些国家的贪婪。以制造业和电子工业起家的日本、韩国自身资源短缺,对稀土的依赖不言而喻。中国出口量的近70%都去了这两个国家。至于稀土储量世界第二的美国,早早便封存了国内最大的稀土矿芒廷帕斯矿,钼的生产也已停止,转而每年从我国大量进口。西欧国家储量本就不多,就更加珍爱本国稀土资源,也是我国稀土重要用户。 发达国家的贪婪表现在,除了生产所需,它们不但通过政府拨款超额购进,存储在各自国家的仓库中——这种做法,日美韩等国行之有年;除了购买,还通过投资等方式规避中国法律,参与稀土开发,行公开掠夺之实。 遗憾的是,至今未见政府有效的控制举措。许多专家呼吁的战略储备制度,至今不见动静。而且,由于并未真正认识到稀土战略价值,导致中国的稀土开发变成了不折不扣的资源浪费——生产无序、竞争无度,中国在拥有对稀土资源垄断性控制的同时,却完全不具有定价权,稀土
价格
长期低位徘徊。 一拥而上的盲目开发以及
宏观
规划水平低劣,导致中国并未成为稀土开发大国,中国稀土科技远远落后于发达国家。鉴于稀土在提升军事科技方面的显著作用,如果任这种趋势发展,中国出口的稀土有朝一日将构成对中国国家安全以及世界和平严重的威胁,中国将为其短视以及不负责任的生产开发付出代价。 目前,中国稀土的主要购买国日本、韩国、美国,前二者与中国存在种种纠纷,后者则在台湾问题上构成对中国最大的现实威胁,而且是近些年世界局部战争主要参与者。事实上有些对抗已经在中国东海、黄海上演。但是,在这些对抗发生时,很少有人想到那些真正能威胁中国的战机、舰艇与导弹,监视中国的雷达上的关键部件可能就是中国不计后果出口的稀土造就的。美日韩都是稀土科技大国。以日本为例,日本在有关稀土应用的材料科学、雷达、微电子
产业
上甚至拥有比美国更强的技术制造能力。美军现役武器中,潜艇用高强度钢,导弹微电子芯片的80%由日本制造,战机引擎的特种陶瓷也是日本研发……日本科学家曾夸口说,如果不用日本芯片,美国巡航导弹的精度就不是10米,而是50米。不过,我们可以想象,这些微电子芯片、高强度钢如果缺少了稀土,可能根本就无法被制造出来。想要了解更多关于稀土功能材料的信息,请继续浏览上海
有色
网。
稀土功能
2017-06-06 17:50:13
稀土功能很为广泛,稀土也分为17中元素镧的功能非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。镨的广泛功能:(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕
金属
代替纯钕
金属
制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。铈的广泛功能:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的
金属
应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等
行业
。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及
有色金属
等。钷的主要功能有:(1)可作热源。为真空探测和人造卫星提供辅助能量。(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。钐钴的功能:钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。 钆在现代技革新中将起重要作用。钆的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。以上是稀土功能部分信息更多有关稀土功能的信息请查阅上海
有色
网
富锰渣的生产
2019-01-08 09:52:44
1.高炉富锰渣的生产 1)高炉冶炼富锰渣特点 高炉冶炼富锰渣工艺流程、主要设备与高炉冶炼生铁、锰铁基本相同,但工艺操作又有显著的特点。主要有: ①在高炉生产的所有产品中,高炉富锰渣冶炼炉温最低。原则上要求炉温控制在保证铁、磷充分还原,锰不还原或少量还原,且液体渣铁能有效分离的温度范围。一般为1250~1350℃,比生铁高炉低100~150℃,比锰铁高炉低200~250℃。 ②在所有高炉产品中,高炉富锰渣冶炼炉渣碱度最低。不添加熔剂,自然碱度冶炼,碱度一般小于0.4. ③高炉冶炼富锰渣一般是高负荷,低风温操作。矿石含铁低,风温低,负荷高;矿石含铁高,风温高,负荷低。 ④高炉冶炼富锰渣煤气热能和化学能利用较好。 ⑤富锰渣冶炼为大渣量冶炼,渣铁比高达3~5t/t,富锰渣的含锰量主要决定于矿石含锰和含铁量,锰回收率可达85%~90%。 ⑥入炉原料粒度,一般锰矿5~50mm,冶金焦炭20~80mm。 ⑦高炉冶炼富锰渣的煤气分布特点是,边缘气流要稍发展。因富锰渣冶炼渣量大,负荷重。 2)高炉冶炼富锰渣的操作制度 高炉冶炼富锰渣的操作制度包括热制度、造渣制度、装料制度和送风制度。这些制度的正确选择,是高炉顺行和取得良好技术指标的前提。 ①热制度,高炉热制度是指控制合理而稳定的炉缸温度。冶炼富锰渣的热制度应符合以下要求: a.有利于铁、磷的充分还原,有利于抑制锰的还原,使产品符合用户要求。 b.保证渣铁顺利从高炉排出,渣铁能有效分离,渣中不夹杂铁珠。 c.有利于充分利用风温和降低焦比。 冶炼富锰渣的热制度通过焦炭负荷和风温调节。一般是稳定焦炭负荷,调节风温来达到炉缸热制度合适而稳定,在稳定焦炭负荷时应考虑以下因素: a.入炉混合矿含铁量的高低,含铁愈高,负荷应愈低。 b.炉渣中锰含量高时,负荷要适当降低。 c.焦炭质量的好坏,焦炭中含固定碳愈高,负荷愈高。 d.热风温度的高低,热风温度高,负荷愈高。 ②造渣制度合理的造渣制度是高炉冶炼有效进行的基础,日常生产中主要通过控制炉渣碱度(nCaO/nSiO2)和其他氧化物含量来控制产品成分和保证高炉冶炼顺利进行。高炉冶炼富锰渣是选择性还原,对炉渣的要求是: a.在高炉冶炼中,铁和锰还原在方向上是一致的,关键是温度和所需的热量不同。铁的还原条件在高炉中容易得到满足,因此炉渣成分选择的重点是有利于抑制锰的还原,提高锰的入渣率。 b.因为是低温冶炼,炉渣成分必须保证在低温下有较好的流动性,以利渣铁排放和分离。富锰渣冶炼均采用高MnO的低碱度或自然碱度炉渣,nCaO/nSiO2<0.4. c.当渣中Al2O3大于20%,或 MnO高于58%时,渣的粘度大,流动性较差,甚至造成渣铁分离困难和炉况失常,一般是加萤石来改善炉渣性能。萤石加入量是使渣中CaF2达到2%左右。 ③装料制度,装料制度是指料批、料线和装料顺序。它直接关系到高炉的顺行和煤气热能和化学能的利用。 高炉冶炼富锰渣负荷重,炉温低,渣量大,因而料柱良好的透气性和较发展的边缘煤气流是十分必要的。装料制度要特别考虑如下因素。 a.有利于高炉顺行。顺行是高炉生产的基础。 b.有利于煤气热能和化学能的利用。 c.要考虑矿石、焦炭的粒度组成、相对密度、强度、堆角等特点。 富锰渣高炉装料制度是: a.料线:是指大钟开启后大钟下沿至料面的距离。富锰渣高炉要求比较发展的边缘气流,所以料线在炉料碰撞点以上。 b.料批:是指每批料矿石的重量。富锰渣高炉一般用较大的料批,料批的大小还要考虑原料的粒度组成、高炉内型,特别是炉喉直径的大小,炉喉直径大,料批也要大些。 c.装料顺序:是指矿石、焦炭装入的顺序。矿石先装为正装,加重边缘,反之亦然。富锰渣高炉一般以倒装为主。 料线、料批和装料顺序三者之间既相辅相成,又互相制约。装料制度的调节,主要从炉况顺行、煤气利用是否好、炉喉煤气曲线是否合理来判断。富锰渣高炉较合理的炉喉煤气曲线是边缘CO2较低的双峰曲线。[next] ④送风制度,高炉送风制度决定煤气流的初始分布和炉缸热量的收支,包括风量、风温和风速的确定。在风量、风温一定时,风速决定于风口个数和风口直径(风口的总进风面积),富锰渣高炉送风制度选择,主要考虑以下条件: a.原燃料条件好,强度高,粒度均匀,粉末少,有利于改善高炉料柱的透气性,可以用较大的风量和较高的风温。 b.风口风速要使炉缸活跃,但又不使中心过吹,边缘气流要适当发展又不能使中心堆积。炉缸直径越大,风口风速或鼓风动能也应越大。 c.高炉需要发展边缘,则要降低鼓风动能,即风口风速。 调节送风制度,一般调节风口直径和风温,为活跃炉缸和发挥设备能力都力求全风操作。只是在处理炉况必要时,才减风量。使用高风温是降低焦比的重要手段,一般要尽可能把风温用上去。富锰渣高炉的风温也可使用到800~900℃。 富锰渣高炉冶炼的生产技术经济指标见表1。 3)富锰渣高炉的类型
[next]
富锰渣高炉冶炼即不同于高炉冶炼生铁也不同于高炉冶炼锰铁,具有自身的特点。因此在高炉炉型设计上也应充分考虑高炉冶炼富锰渣的特点,为高炉稳定顺行创造可靠的基础。高炉类型的具体要求是: ①富锰渣高炉负荷重,原料粒度小,强度差,因此在炉型设计上应有利于边缘气流发展,炉身角β不宜太大,以80°~85°为宜。 ②富锰渣冶炼是大渣量冶炼,渣铁比可达4~5t/t。因此要求有较大的炉缸容积。 ③富锰渣冶炼是低温冶炼,下部要抑制锰的还原,炉缸直径也相对要大些,以使高温区不过于集中。 ④富锰渣高炉的炉型应是较矮胖型,H/D宜在3.5左右。 4)高炉冶炼富锰渣的技术进步 高炉富锰渣生产经过几十年的发展,技术也逐步成熟,综合利用和产品方案的革新取得了良好的经济效益和社会效益。 ①铅银回收。高炉冶炼富锰渣的产品有富锰渣、高锰高磷生铁和煤气。由于我国大部分铁锰矿都是多金属共生矿,含有较高的铅银等有色金属。在高炉内铅、银均被还原为金属,因而回收利用不但可以缓解对高炉生产的不良影响,还可大大冲减富锰渣的生产成本。 回收的方法是利用铅熔点低,相对密度大,渗透力强,在炉底设集铅槽和排铅口,集铅槽一般在炉底2~3层砖下,成丰字型。当炉基温度大于350℃时,可以开铅口排铅,所得粗铅含铅98%,含银1%,同时还含金等。 ②富锰渣和炼钢生铁同步冶炼 富锰渣冶炼主要是处理高铁高磷难选锰矿石,因此得到的副产品是高锰高磷铁,其使用价值大为降低。而我国大部分铁锰矿含磷并不高,一般在0.1%以下。通过配矿可以得到含磷0.4%~0.8%的含锰生铁。生铁中的锰也可以通过冶炼过程的控制来降低。 ③渣口喷吹空气冶炼富锰渣 为了提高富锰渣冶炼锰回收率,降低生铁中锰含量。根据硅、锰、铁、磷等元素对氧的亲合力不同,采取向高炉炉缸强制供氧方法,从高炉渣口喷吹压缩空气,使高炉内已被还原的锰、硅重新氧化返回炉渣中,从而提高锰的富集效果,又降低生铁中锰含量。 使用效果是锰回收率提高1.08%~4.77%,富锰渣含锰提高0.65%~1.29%,副产生铁中锰降到5%以下。 2.电炉富锰渣的生产 1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有: ①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。 ③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。 ④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。 ⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。 2)电炉冶炼富锰渣的原料 电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm,电炉富锰渣生产的主要技术经济指标见表2。
富锰渣的概念和应用
2019-01-04 09:45:43
富锰渣法是一种火法选矿方法,客观存在是将不能直接用于冶炼的高铁高磷难选锰矿石在高炉内或电炉内进行选择性还原,在保证铁磷等元素充分还原的前提下,抑制锰的还原,从而得到高锰低铁,MN/P比值大的富锰渣。火法选矿的优点: 1、选别效果好,能处理各种类型的锰矿。 2、产品质量好,含锰高,锰铁质量比高,含磷低,3、锰回收高,达85-90%,比机械选矿高水5%。4、产品物理性能好,适合长期贮存及长途运输。不足之处:需要大量的焦炭和电,生产成本略高,冶炼只能除去铁磷和其它有色金属,不能去脉石,由焦炭带入灰份,增加杂质量 富锰渣的用途富锰渣是一种中间产品,其来源可以是采用酸性渣法或偏酸性渣法生产高碳锰铁时的附产品,也可以作为一种产品单独生产。
其用途主要有: 1)用做生产硅锰合金的原料。由于富锰渣一般含SiO2较多,主要用于硅锰合金的冶炼。在电炉冶炼普通硅锰合金时,富锰渣的配比一般为30—40%,高的甚至达到70%。其目的主要在于调整入炉原料的Mn/Fe和P/Mn。有特殊要求的高硅硅锰合金,由于要求原料中Mn的含量大于40%,含铁小于1%,含磷小于0.03%,所以几乎全部要用富锰渣。2) 用做生产金属锰的原料。采用电硅热法生产金属锰时全部采用富锰渣做原料,要求为Mn大于40%,含铁小于1%,含磷小于0.03%。用高硅硅锰合金做还原剂。 3)用做生产电炉锰铁和中低碳锰铁的配料。由于原生矿中Mn/Fe,P/Mn往往达不到冶炼要求,一般配入一定比例含SiO2较低的富锰渣进行冶炼。 4)用做冶炼高炉锰铁的配料。高炉锰铁所用的矿石有贫化的趋势,当锰矿中Mn/Fe,P/Mn不符合要求时,可以配入40%--60%的富锰渣或更高,用以调配。目前生产富锰渣的方法有高炉法、电炉法和转炉法。生产富锰渣的高炉和冶炼生铁的高炉相似,主要包括加料、送风、冶炼、收尘几个工序。电炉冶炼富锰渣主要用矿热炉。转炉法工艺我国一般没有采用。富锰渣的生产方法-.高炉富锰渣的生产
1)高炉冶炼富锰渣特点 高炉冶炼富锰渣工艺流程、主要设备与高炉冶炼生铁、锰铁基本相同,但工艺操作又有显著的特点。主要有:①在高炉生产的所有产品中,高炉富锰渣冶炼炉温最低。原则上要求炉温控制在保证铁、磷充分还原,锰不还原或少量还原,且液体渣铁能有效分离的温度范围。一般为1250~1350℃,比生铁高炉低100~150℃,比锰铁高炉低200~250℃。②在所有高炉产品中,高炉富锰渣冶炼炉渣碱度最低。不添加熔剂,自然碱度冶炼,碱度一般小于0.4.③高炉冶炼富锰渣一般是高负荷,低风温操作。矿石含铁低,风温低,负荷高;矿石含铁高,风温高,负荷低。 ④高炉冶炼富锰渣煤气热能和化学能利用较好。⑤富锰渣冶炼为大渣量冶炼,渣铁比高达3~5t/t,富锰渣的含锰量主要决定于矿石含锰和含铁量,锰回收率可达85%~90%。⑥入炉原料粒度,一般锰矿5~50mm,冶金焦炭20~80mm。 ⑦高炉冶炼富锰渣的煤气分布特点是,边缘气流要稍发展。因富锰渣冶炼渣量大,负荷重。
2)高炉冶炼富锰渣的操作制度 高炉冶炼富锰渣的操作制度包括热制度、造渣制度、装料制度和送风制度。这些制度的正确选择,是高炉顺行和取得良好技术指标的前提。①热制度,高炉热制度是指控制合理而稳定的炉缸温度。冶炼富锰渣的热制度应符合以下要求: a.有利于铁、磷的充分还原,有利于抑制锰的还原,使产品符合用户要求。b.保证渣铁顺利从高炉排出,渣铁能有效分离,渣中不夹杂铁珠。 c.有利于充分利用风温和降低焦比。冶炼富锰渣的热制度通过焦炭负荷和风温调节。一般是稳定焦炭负荷,调节风温来达到炉缸热制度合适而稳定,在稳定焦炭负荷时应考虑以下因素:a.入炉混合矿含铁量的高低,含铁愈高,负荷应愈低。 b.炉渣中锰含量高时,负荷要适当降低。 c.焦炭质量的好坏,焦炭中含固定碳愈高,负荷愈高。d.热风温度的高低,热风温度高,负荷愈高。②造渣制度合理的造渣制度是高炉冶炼有效进行的基础,日常生产中主要通过控制炉渣碱度(nCaO/nSiO2)和其他氧化物含量来控制产品成分和保证高炉冶炼顺利进行。高炉冶炼富锰渣是选择性还原,对炉渣的要求是:a.在高炉冶炼中,铁和锰还原在方向上是一致的,关键是温度和所需的热量不同。铁的还原条件在高炉中容易得到满足,因此炉渣成分选择的重点是有利于抑制锰的还原,提高锰的入渣率。b.因为是低温冶炼,炉渣成分必须保证在低温下有较好的流动性,以利渣铁排放和分离。富锰渣冶炼均采用高MnO的低碱度或自然碱度炉渣,nCaO/nSiO2
富锰渣高炉装料制度是: a.料线:是指大钟开启后大钟下沿至料面的距离。富锰渣高炉要求比较发展的边缘气流,所以料线在炉料碰撞点以上。b.料批:是指每批料矿石的重量。富锰渣高炉一般用较大的料批,料批的大小还要考虑原料的粒度组成、高炉内型,特别是炉喉直径的大小,炉喉直径大,料批也要大些。c.装料顺序:是指矿石、焦炭装入的顺序。矿石先装为正装,加重边缘,反之亦然。富锰渣高炉一般以倒装为主。料线、料批和装料顺序三者之间既相辅相成,又互相制约。装料制度的调节,主要从炉况顺行、煤气利用是否好、炉喉煤气曲线是否合理来判断。富锰渣高炉较合理的炉喉煤气曲线是边缘CO2较低的双峰曲线。④送风制度,高炉送风制度决定煤气流的初始分布和炉缸热量的收支,包括风量、风温和风速的确定。在风量、风温一定时,风速决定于风口个数和风口直径(风口的总进风面积),富锰渣高炉送风制度选择,主要考虑以下条件:a.原燃料条件好,强度高,粒度均匀,粉末少,有利于改善高炉料柱的透气性,可以用较大的风量和较高的风温。b.风口风速要使炉缸活跃,但又不使中心过吹,边缘气流要适当发展又不能使中心堆积。炉缸直径越大,风口风速或鼓风动能也应越大。c.高炉需要发展边缘,则要降低鼓风动能,即风口风速。调节送风制度,一般调节风口直径和风温,为活跃炉缸和发挥设备能力都力求全风操作。只是在处理炉况必要时,才减风量。使用高风温是降低焦比的重要手段,一般要尽可能把风温用上去。富锰渣高炉的风温也可使用到800~900℃。富锰渣高炉冶炼即不同于高炉冶炼生铁也不同于高炉冶炼锰铁,具有自身的特点。因此在高炉炉型设计上也应充分考虑高炉冶炼富锰渣的特点,为高炉稳定顺行创造可靠的基础。高炉类型的具体要求是:①富锰渣高炉负荷重,原料粒度小,强度差,因此在炉型设计上应有利于边缘气流发展,炉身角β不宜太大,以80°~85°为宜。②富锰渣冶炼是大渣量冶炼,渣铁比可达4~5t/t。因此要求有较大的炉缸容积。③富锰渣冶炼是低温冶炼,下部要抑制锰的还原,炉缸直径也相对要大些,以使高温区不过于集中。 ④富锰渣高炉的炉型应是较矮胖型,H/D宜在3.5左右。
4)高炉冶炼富锰渣的技术进步 高炉富锰渣生产经过几十年的发展,技术也逐步成熟,综合利用和产品方案的革新取得了良好的经济效益和社会效益。①铅银回收。高炉冶炼富锰渣的产品有富锰渣、高锰高磷生铁和煤气。由于我国大部分铁锰矿都是多金属共生矿,含有较高的铅银等有色金属。在高炉内铅、银均被还原为金属,因而回收利用不但可以缓解对高炉生产的不良影响,还可大大冲减富锰渣的生产成本。回收的方法是利用铅熔点低,相对密度大,渗透力强,在炉底设集铅槽和排铅口,集铅槽一般在炉底2~3层砖下,成丰字型。当炉基温度大于350℃时,可以开铅口排铅,所得粗铅含铅98%,含银1%,同时还含金等。②富锰渣和炼钢生铁同步冶炼富锰渣冶炼主要是处理高铁高磷难选锰矿石,因此得到的副产品是高锰高磷铁,其使用价值大为降低。而我国大部分铁锰矿含磷并不高,一般在0.1%以下。通过配矿可以得到含磷0.4%~0.8%的含锰生铁。生铁中的锰也可以通过冶炼过程的控制来降低。③渣口喷吹空气冶炼富锰渣为了提高富锰渣冶炼锰回收率,降低生铁中锰含量。根据硅、锰、铁、磷等元素对氧的亲合力不同,采取向高炉炉缸强制供氧方法,从高炉渣口喷吹压缩空气,使高炉内已被还原的锰、硅重新氧化返回炉渣中,从而提高锰的富集效果,又降低生铁中锰含量。使用效果是锰回收率提高1.08%~4.77%,富锰渣含锰提高0.65%~1.29%,副产生铁中锰降到5%以下。 富锰渣的生产方法---电炉富锰渣的生产1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。 2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm,
铅基合金的各种神奇的功能特点
2019-01-11 09:43:24
铅基合金的各种神奇的功能特点
①铅基合金或锡基轴承合金。与铅基轴承合金统称为巴氏合金。含锑3%~15%,铜3%~10%,有的合金品种还含有10%的铅。锑、铜用以进步合金的强度和硬度。其摩擦系数小,有精良的韧性、导热性和耐蚀性,重要用以制造滑动轴承。
②铅锡焊料。以锡铅合金为主,有的锡焊料还含少量的锑。含铅38.1%的锡合金俗称焊锡,熔点约183℃,用于电器仪表产业中元件的焊接,以及汽车散热器、热互换器、食品和饮料容器的密封等。
③铅基合金涂层。使用锡合金的抗蚀性能,将其涂敷于种种电气元件外貌,既具有掩护性,又具有装饰性。常用的有锡铅系、锡镍系涂层等。
④铅基合金(包罗铅锡合金,无铅锡合金)可以用来生产制作种种精致合细软品、合金工艺品,如戒指、项链、手镯、耳饰、胸针、纽扣、领带夹、帽饰、工艺摆饰、合金相框、宗教徽志、微型塑像、怀念品等。
铅基合金(用作合细软品、合金工艺品质料)的特点
1.铅基合金性能稳固,熔点低,活动性好,紧缩性小。
2.铅基合金晶粒幼细,韧性精良,软硬相宜,外貌平滑,无砂洞,无疵点,无裂纹,磨光及电镀结果好。
3.铅基合金离心铸造性能好,韧性强,可以铸造形状庞大、薄壁的细密件,铸件外貌平滑。
4.铅基合金产物可举行外貌处置处罚:电镀、喷涂、喷漆。
5.铅基合金晶体布局致密,在质料方面确保铸件尺寸公役小,外貌精致,后处置处罚瑕疵少.
在简朴络离子的酸性电解液中,铅锡合金在很低的电流密度下即可孕育发生共沉积.铅锡合金镀层比同样 厚度的铅镀层和锡镀层孔隙率低.含锡60%、含铅40%的铅锡合金具有较低的共熔点183℃,它的焊接性能远远凌驾纯锡镀层.因此,在航空航天、电子电器 行业得到了遍及的应用. 性能稳固,熔点低,活动性好,紧缩性小。晶粒幼细,韧性精良,软硬相宜,外貌平滑,无砂洞,无疵点,无裂纹,磨光及电镀结果好。
富锰渣的生产方法
2019-01-21 09:41:30
富锰渣法是一种火法选矿方法,客观存在是将不能直接用于冶炼的高铁高磷难选锰矿石在高炉内或电炉内进行选择性还原,在保证铁磷等元素充分还原的前提下,抑制锰的还原,从而得到高锰低铁,MN/P比值大的富锰渣。
火法选矿的优点:
1、选别效果好,能处理各种类型的锰矿。
2、产品质量好,含锰高,锰铁质量比高,含磷低。
3、锰回收高,达85-90%,比机械选矿高水5%。
4、产品物理性能好,适合长期贮存及长途运输。
不足之处:
需要大量的焦炭和电,生产成本略高,冶炼只能除去铁磷和其它有色金属,不能去脉石,由焦炭带入灰份,增加杂质量 富锰渣的用途富锰渣是一种中间产品,其来源可以是采用酸性渣法或偏酸性渣法生产高碳锰铁时的附产品,也可以作为一种产品单独生产。
其用途主要有:
1)用做生产硅锰合金的原料。由于富锰渣一般含SiO2较多,主要用于硅锰合金的冶炼。在电炉冶炼普通硅锰合金时,富锰渣的配比一般为30—40%,高的甚至达到70%。其目的主要在于调整入炉原料的Mn/Fe和P/Mn。有特殊要求的高硅硅锰合金,由于要求原料中Mn的含量大于40%,含铁小于1%,含磷小于0.03%,所以几乎全部要用富锰渣。
2)用做生产金属锰的原料。采用电硅热法生产金属锰时全部采用富锰渣做原料,要求为Mn大于40%,含铁小于1%,含磷小于0.03%。用高硅硅锰合金做还原剂。
3) 用做生产电炉锰铁和中低碳锰铁的配料。由于原生矿中Mn/Fe,P/Mn往往达不到冶炼要求,一般配入一定比例含SiO2较低的富锰渣进行冶炼。
4)用做冶炼高炉锰铁的配料。高炉锰铁所用的矿石有贫化的趋势,当锰矿中Mn/Fe,P/Mn不符合要求时,可以配入40%--60%的富锰渣或更高,用以调配。
目前生产富锰渣的方法有高炉法、电炉法和转炉法。生产富锰渣的高炉和冶炼生铁的高炉相似,主要包括加料、送风、冶炼、收尘几个工序。电炉冶炼富锰渣主要用矿热炉。转炉法工艺我国一般没有采用。
富锰渣的生产方法-.高炉富锰渣的生产 :
1)高炉冶炼富锰渣特点 高炉冶炼富锰渣工艺流程、主要设备与高炉冶炼生铁、锰铁基本相同,但工艺操作又有显著的特点。
主要有:
①在高炉生产的所有产品中,高炉富锰渣冶炼炉温最低。原则上要求炉温控制在保证铁、磷充分还原,锰不还原或少量还原,且液体渣铁能有效分离的温度范围。一般为1250~1350℃,比生铁高炉低100~150℃,比锰铁高炉低200~250℃。
②在所有高炉产品中,高炉富锰渣冶炼炉渣碱度最低。不添加熔剂,自然碱度冶炼,碱度一般小于0.4.
③高炉冶炼富锰渣一般是高负荷,低风温操作。矿石含铁低,风温低,负荷高;矿石含铁高,风温高,负荷低。
④高炉冶炼富锰渣煤气热能和化学能利用较好。
⑤富锰渣冶炼为大渣量冶炼,渣铁比高达3~5t/t,富锰渣的含锰量主要决定于矿石含锰和含铁量,锰回收率可达85%~90%。
⑥入炉原料粒度,一般锰矿5~50mm,冶金焦炭20~80mm。
⑦高炉冶炼富锰渣的煤气分布特点是,边缘气流要稍发展。因富锰渣冶炼渣量大,负荷重。
2)高炉冶炼富锰渣的操作制度高炉冶炼富锰渣的操作制度包括热制度、造渣制度、装料制度和送风制度。这些制度的正确选择,是高炉顺行和取得良好技术指标的前提。
①热制度,高炉热制度是指控制合理而稳定的炉缸温度。冶炼富锰渣的热制度应符合以下要求:
a.有利于铁、磷的充分还原,有利于抑制锰的还原,使产品符合用户要求。
b.保证渣铁顺利从高炉排出,渣铁能有效分离,渣中不夹杂铁珠。
c.有利于充分利用风温和降低焦比。 冶炼富锰渣的热制度通过焦炭负荷和风温调节。
一般是稳定焦炭负荷,调节风温来达到炉缸热制度合适而稳定,在稳定焦炭负荷时应考虑以下因素:
a.入炉混合矿含铁量的高低,含铁愈高,负荷应愈低。
b.炉渣中锰含量高时,负荷要适当降低。
c.焦炭质量的好坏,焦炭中含固定碳愈高,负荷愈高。
d.热风温度的高低,热风温度高,负荷愈高。
②造渣制度合理的造渣制度是高炉冶炼有效进行的基础,日常生产中主要通过控制炉渣碱度(nCaO/nSiO2)和其他氧化物含量来控制产品成分和保证高炉冶炼顺利进行。高炉冶炼富锰渣是选择性还原,对炉渣的要求是:
a.在高炉冶炼中,铁和锰还原在方向上是一致的,关键是温度和所需的热量不同。铁的还原条件在高炉中容易得到满足,因此炉渣成分选择的重点是有利于抑制锰的还原,提高锰的入渣率。
b.因为是低温冶炼,炉渣成分必须保证在低温下有较好的流动性,以利渣铁排放和分离。富锰渣冶炼均采用高MnO的低碱度或自然碱度炉渣,nCaO/nSiO2
③装料制度,装料制度是指料批、料线和装料顺序。它直接关系到高炉的顺行和煤气热能和化学能的利用。高炉冶炼富锰渣负荷重,炉温低,渣量大,因而料柱良好的透气性和较发展的边缘煤气流是十分必要的。装料制度要特别考虑如下因素:
a.有利于高炉顺行。顺行是高炉生产的基础。
b.有利于煤气热能和化学能的利用。
c.要考虑矿石、焦炭的粒度组成、相对密度、强度、堆角等特点。
富锰渣高炉装料制度是:
a.料线:是指大钟开启后大钟下沿至料面的距离。富锰渣高炉要求比较发展的边缘气流,所以料线在炉料碰撞点以上。
b.料批:是指每批料矿石的重量。富锰渣高炉一般用较大的料批,料批的大小还要考虑原料的粒度组成、高炉内型,特别是炉喉直径的大小,炉喉直径大,料批也要大些。
c.装料顺序:是指矿石、焦炭装入的顺序。矿石先装为正装,加重边缘,反之亦然。富锰渣高炉一般以倒装为主。料线、料批和装料顺序三者之间既相辅相成,又互相制约。装料制度的调节,主要从炉况顺行、煤气利用是否好、炉喉煤气曲线是否合理来判断。富锰渣高炉较合理的炉喉煤气曲线是边缘CO2较低的双峰曲线。
④送风制度,高炉送风制度决定煤气流的初始分布和炉缸热量的收支,包括风量、风温和风速的确定。在风量、风温一定时,风速决定于风口个数和风口直径(风口的总进风面积),富锰渣高炉送风制度选择,主要考虑以下条件:
a.原燃料条件好,强度高,粒度均匀,粉末少,有利于改善高炉料柱的透气性,可以用较大的风量和较高的风温。
b.风口风速要使炉缸活跃,但又不使中心过吹,边缘气流要适当发展又不能使中心堆积。炉缸直径越大,风口风速或鼓风动能也应越大。
c.高炉需要发展边缘,则要降低鼓风动能,即风口风速。调节送风制度,一般调节风口直径和风温,为活跃炉缸和发挥设备能力都力求全风操作。只是在处理炉况必要时,才减风量。使用高风温是降低焦比的重要手段,一般要尽可能把风温用上去。富锰渣高炉的风温也可使用到800~900℃。
富锰渣高炉冶炼即不同于高炉冶炼生铁也不同于高炉冶炼锰铁,具有自身的特点。因此在高炉炉型设计上也应充分考虑高炉冶炼富锰渣的特点,为高炉稳定顺行创造可靠的基础。高炉类型的具体要求是:
①富锰渣高炉负荷重,原料粒度小,强度差,因此在炉型设计上应有利于边缘气流发展,炉身角β不宜太大,以80°~85°为宜。
②富锰渣冶炼是大渣量冶炼,渣铁比可达4~5t/t。因此要求有较大的炉缸容积。
③富锰渣冶炼是低温冶炼,下部要抑制锰的还原,炉缸直径也相对要大些,以使高温区不过于集中。
④富锰渣高炉的炉型应是较矮胖型,H/D宜在3.5左右。
4)高炉冶炼富锰渣的技术进步 高炉富锰渣生产经过几十年的发展,技术也逐步成熟,综合利用和产品方案的革新取得了良好的经济效益和社会效益。
①铅银回收。高炉冶炼富锰渣的产品有富锰渣、高锰高磷生铁和煤气。由于我国大部分铁锰矿都是多金属共生矿,含有较高的铅银等有色金属。在高炉内铅、银均被还原为金属,因而回收利用不但可以缓解对高炉生产的不良影响,还可大大冲减富锰渣的生产成本。回收的方法是利用铅熔点低,相对密度大,渗透力强,在炉底设集铅槽和排铅口,集铅槽一般在炉底2~3层砖下,成丰字型。当炉基温度大于350℃时,可以开铅口排铅,所得粗铅含铅98%,含银1%,同时还含金等。
②富锰渣和炼钢生铁同步冶炼富锰渣冶炼主要是处理高铁高磷难选锰矿石,因此得到的副产品是高锰高磷铁,其使用价值大为降低。而我国大部分铁锰矿含磷并不高,一般在0.1%以下。通过配矿可以得到含磷0.4%~0.8%的含锰生铁。生铁中的锰也可以通过冶炼过程的控制来降低。
③渣口喷吹空气冶炼富锰渣为了提高富锰渣冶炼锰回收率,降低生铁中锰含量。根据硅、锰、铁、磷等元素对氧的亲合力不同,采取向高炉炉缸强制供氧方法,从高炉渣口喷吹压缩空气,使高炉内已被还原的锰、硅重新氧化返回炉渣中,从而提高锰的富集效果,又降低生铁中锰含量。使用效果是锰回收率提高1.08%~4.77%,富锰渣含锰提高0.65%~1.29%,副产生铁中锰降到5%以下。
富锰渣的生产方法---电炉富锰渣的生产1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:
①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。
②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。
③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。
④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。
⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。
2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm。
富锰渣行情
2017-06-06 17:49:52
富锰渣行情,富锰渣法是一种火法选矿方法,客观存在是将不能直接用于冶炼的高铁高磷难选锰矿石在高炉内或电炉内进行选择性还原,在保证铁磷等元素充分还原的前提下,抑制锰的还原,从而得到高锰低铁,MN/P比值大的富锰渣。品名规格钢厂/产地出厂含税价(元/吨)涨跌备注 富锰渣Mn30% Fe<3.5%广西1280-- 富锰渣Mn33%广西1550-- 富锰渣Mn30%湖南1280-- 富锰渣Mn40-42% Fe<2%P0.02Si20广西--- 富锰渣的用途 富锰渣是一种中间产品,其来源可以是采用酸性渣法或偏酸性渣法生产高碳锰铁时的附产品,也可以作为一种产品单独生产。其用途主要有: 1) 用做生产硅锰合金的原料。由于富锰渣一般含SiO2较多,主要用于硅锰合金的冶炼。在电炉冶炼普通硅锰合金时,富锰渣的配比一般为30—40%,高的甚至达到70%。其目的主要在于调整入炉原料的Mn/Fe和P/Mn。有特殊要求的高硅硅锰合金,由于要求原料中Mn的含量大于40%,含铁小于1%,含磷小于0.03%,所以几乎全部要用富锰渣。 2) 用做生产金属锰的原料。采用电硅热法生产金属锰时全部采用富锰渣做原料,要求为Mn大于40%,含铁小于1%,含磷小于0.03%。用高硅硅锰合金做还原剂。 3) 用做生产电炉锰铁和中低碳锰铁的配料。由于原生矿中Mn/Fe,P/Mn往往达不到冶炼要求,一般配入一定比例含SiO2较低的富锰渣进行冶炼。 4) 用做冶炼高炉锰铁的配料。高炉锰铁所用的矿石有贫化的趋势,当锰矿中Mn/Fe,P/Mn不符合要求时,可以配入40%--60%的富锰渣或更高,用以调配。 目前生产富锰渣的方法有高炉法、电炉法和转炉法。生产富锰渣的高炉和冶炼生铁的高炉相似,主要包括加料、送风、冶炼、收尘几个工序。电炉冶炼富锰渣主要用矿热炉。转炉法工艺我国一般没有采用。更多关于富锰渣的信息和资讯,请继续关注本站锰频道!
富锰渣价格
2017-06-06 17:49:50
富锰渣价格,上海有色网资讯:什么是富锰渣?你说的是工业冶炼方面的问题.就是冶炼后的废弃物,里面的锰含量很高.国家提倡要提高资源的利用率.可以将富锰渣里面的锰再提炼出来或者锰的化合物加以利用.富锰渣的用途只要有四个方面:1用作生产硅锰合金的原料 2 用作生产金属锰的原料 3 用作生产电炉锰铁和中低锰铁的配料 4 用作冶炼高炉锰铁的配料品名规格钢厂/产地出厂含税价(元/吨)涨跌备注相关资源富锰渣Mn30% Fe<3.5%广西1450--查看富锰渣Mn33%广西1550--查看富锰渣Mn30%湖南1450--查看富锰渣Mn40-42% Fe<2%P0.02Si20广西2000-2200<td nowrap="now
铝门窗型材的力学功能
2018-12-24 09:29:08
铝门窗型材的力学功能:
铝门窗型材的力学性能:抗拉强度бb不小于157N/mm2;规定非比例伸长应力бp0.2不小于108N/mm2;伸长率不小于8%;硬度HV不小于58。
饱和树脂淋洗富液的处理
2019-03-05 12:01:05
因为饱满树脂能够选用不同的淋洗剂淋洗,因而得到的淋洗富液的性质也不相同。在断定淋洗富液的处理办法时,能够依据淋洗富液的性质,结合现场的具体条件,断定其处理办法。但运用最遍及的是加碱(如、、石灰或氧化镁等)沉积,铀以重铀酸盐的方式沉积出来(即得到黄饼)。
一、沉积的一般常识
咱们知道,不同的物质在必定的温度条件下,在水中都有必定的溶解度。当溶液的浓度超越饱满浓度时,就有结晶分出(即沉积生成)。关于任何结晶进程来说都包含两个阶段:即晶核的构成和晶粒的长大。而晶核的构成与晶粒的长大均与溶液的过饱满度有关。所谓过饱满度,就是过饱满溶液浓度与该条件下的饱满溶液浓度之比,即:
S=式中,S-溶液的过饱满度;
C-过饱满溶液的浓度;
C+-该条件下的饱满溶液浓度。
若溶液的过饱满度过大,则晶核构成的速度大于晶粒生长的速度。因而,结晶进程应将溶液操控在较低的过饱满度内进行。而溶液的过饱满度与溶液的浓度和温度有关。若溶液的温度不变,添加溶液中的沉积剂浓度会使溶液的过饱满度升高;当溶液浓度不变时,下降溶液的温度也可使未饱满的溶液到达饱满或过饱满而分出沉积。如图1所示。图中纵坐标表明溶液的浓度,横坐标表明溶液的温度,图内实线为饱满溶液线。当溶液浓度处在不饱满浓度的区域内时,无结晶构成(图中实线以下部分);溶液的浓度或过饱满度到达结晶能主动分出的区域,该区称为不安稳区(图中虚线以上部分);当溶液浓度处在这两区之间,该区称为介稳区(图中虚实线之间部分),这时尽管溶液浓度亦已超越饱满浓度,但结晶还不或许主动分出。由图中能够看出,当不饱满溶液的浓度添加或保持浓度不变下降溶液温度时,都能够添加溶液的过饱满度,而使其到达不安稳区,发生结晶。一般以为,介稳区因为过饱满度小,首要决议晶粒的生长;而不稳区,过饱满度大,首要决议晶核的很多构成。因而,为了得到粒度大的结晶可将溶液操控在介稳区并且具有较低的过饱满度,即接近实线为宜。图1 沉积与温度、浓度的联系
二、淋洗富液的碱沉积工艺
(一)沉积铀
沉积铀的反响如下:
2UO22++6NaOH Na2U2O7↓+4Na++3H2O
沉积的pH值一般操控在6.5~6.8。所用的一般配成30%浓度的溶液缓慢参加。也能够选用或往淋洗富液中通气沉积铀,还能够用氧化镁沉积铀。
(二)碳酸铵沉积铀
碳酸铵沉积反响如下:
UO22++3(NH4)2CO3 (NH4)4[UO2(CO3)3]↓+2NH4+
沉积得到的三碳酸铀酰铵是黄色结晶,室温下三碳酸铀酰铵在空气中缓慢分化,温度升高时分化速度加速,分化反响为
(NH4)4[UO2(CO3)3] UO3+4NH3↑+3CO2↑+2H2O
加热温度一般操控在95℃左右,分化释放出的气和二氧化碳能够收回循环运用。
三、淋洗富液的过氧化氢沉积
过氧化氢沉积铀的反响如下:
UO22++H2O2+xH2O UO2·xH2O+2H+
沉积的pH值一般操控在1.5~3.5。在酸性介质中沉积铀,因为其他杂质一般在此pH条件下不发生沉积,因而,用过氧化氢沉积铀得到的产品质量很高。
四、影响沉积的要素
(一)pH值
操控沉积进程的pH值十分重要,假如pH值过低,铀的沉积不完全。可是假如pH值过高,溶液中杂质的沉积添加,有的杂质水解构成胶体,使产品的过滤功能变差,终究产品的质量下降,含水率添加,并且碱的耗量也明显添加。
(二)温度
升高温度,溶液的粘度下降,溶液离子的运动速度加速,有利于沉积的进行。更重要的是,因为沉积进程构成的微细晶粒和粗晶粒的溶解度差异,恰当进步溶液温度,使微细晶粒处于安稳区,即未饱满区,加速微细晶粒的溶解,而关于粗晶粒则仍处于介稳区,即处于过饱满状况,溶解的细晶粒从头结晶到粗晶粒的表面,加速粗品粒的增长速度。因而进步温度对沉积进程有利。
可是,沉积的温度并不是越高越好。例如用沉积或用过氧化氢沉积时,因为温度升高,及过氧化氢极易分化,使沉积剂的用量急骤添加。美国矿业局沙比尔(Shabbir)等人曾报导,用过氧化氢沉积铀,温度在20~100℃范围内,温度每添加10℃,过氧化氢的耗量添加2.2倍。
(三)拌和
拌和的效果在于使沉积进程的温度、沉积剂浓度散布均匀。并且拌和有利于细晶核的溶解及粗晶粒的增大。因而,恰当地拌和能够加速沉积进程的进行。但有必要留意,拌和强度不能太大,不然,拌和会将现已构成的晶粒打碎,阻止沉积的进行。
(四)沉积剂的剩下浓度
一般沉积进程并不是严厉按化学式计量进行的。由浓度积原理可知,沉积剂剩下浓度的进步,有利于下降母液中的铀浓度,进步铀的收回率。因而,一般沉积进程沉积剂都是不同程度地过量参加。
(五)分步沉积
假如淋洗富液含铁过高,要得到较纯的黄饼产品,考虑分步沉积是必要的。首要缓慢参加石灰乳,调整溶液的pH到3.5左右,溶液中构成石膏沉积,能够下降溶液中的硫酸根和铁含量。将沉积别离后再加碱调整溶液的pH到6.5左右沉积铀。这样能够得到较纯的产品。并且通过第一步石膏沉积除掉硫酸根和铁,有利于沉积母液回来制造淋洗液。(六)淋萃流程 假如用硫酸作淋洗剂,得到的淋洗富液因为酸度高而不宜用碱沉积。一般是将硫酸淋洗的富液送到萃取工段去进一步纯化和富集铀,这就是所谓淋萃流程(在北美称之为Eluex,而在南非简称为Bufflex)。含硫酸的萃余液能够回来作淋洗液,以下降淋洗的本钱。而富集了铀的反萃液能够用前面叙说的几种办法处理。
富锰渣冶炼的有关计算
2019-01-25 15:49:32
一、高炉冶炼富锰渣的配料计算 正常炉况下的富锰渣成分,主要决定于配矿,富锰渣中的锰主要决定于矿石含锰量和锰铁比,或锰加铁总量。富锰渣中的磷含量和铁含量主要决定于炉温,前者主要由配料控制,后者主要由操作控制。在正常炉况下,都不会造成铁、磷出格,因此主要是搞好配料计算以解决锰合格问题。 1)配料计算的一般过程 (1)首先决定各元素和氧化物的分配率,根据理论分析和生产实践,各元素和氧化物的分配如表1。表1 富锰渣治炼各元素和氧化物的分配元素和氧化物入渣率/%入铁率/%吹损/%Mn85~903~83~8Fe2~585~903~8P2~585~903~8Al2O3,CaO,MgO92~9703~8SiO2其余以Si0.5计3~8
(2)确定矿石配比 ①根据原料的化学成分,确定初步配比。 ②计算入炉混合矿成分(用加权平均法)。 ③根据数理统计,含量35%的富锰渣入炉矿石的Mn和Fe的关系式如下: m(Fe)≥81.5-2.6m(Mh矿) 式中:m(Mn矿)为计算出的混合矿含锰量;m(Fe)为混合矿含m(Mn矿)时,得到含Mn35%的富锰渣要求含Fe的最小值。 计算确认m(Fe矿)≥m(Fe)时,一般可得到合格富锰渣。 (3)确定焦炭负荷。焦炭负荷根据生产实践经验来确定,理论计算复杂,日常生产中极少应用。焦炭负荷与入炉矿石含铁密切相关,一般混合矿含铁高,焦炭负荷轻。一般矿石含铁量20%左右,焦炭负荷取3~3.5,当含铁30%左右时,焦炭负荷取2.5~3.0。 (4)富锰渣和副产生铁成分的计算 ①以100kg矿石和相应的焦炭量,按入渣率计算成渣物量,并将其中锰、铁和磷换算成低价氧化物。 ②各种渣物量相加即为100kg矿石的渣量,然后进一步计算成分。 ③由渣量计算焦比和矿比。 ④同样以100kg矿石和相应的焦炭量,按入铁率计算铁量,并以生铁含碳4.5%折算出100kg矿石所得的铁量。 ⑤检验渣成分是否合格,若合格就计算出铁渣比。锰成分不合格或渣中A12O3大于20%,则调整配比后,再进行计算。 2)富锰渣配矿计算实例 以A,B,C三种不同类型的矿配矿,冶炼含锰35%以上,38%以下的富锰渣。[next] (1)矿石成分及焦炭成分见表2。表2 矿石成分及入炉混合矿成焦炭灰分及成分(%)矿种MnFePSiO2CaOMgOAl2O3配比A28.015.00.2525.01.00.57.060B18.534.00.110.02.01.58.030C28.527.50.19.501.50.54.510混合矿25.1521.950.1918.951.350.87.05100焦炭灰分(含量20%) 0.2508.0 42.0
(2)拟定配矿比为:A矿60%,B矿30%,C矿10%; (3)计算入炉混合矿成分,m(Mn)/m(Fe)=1.14,W(Mn+Fe)=47.1%; (4)计算m(Fe):m(Fe)=81.5-2.6 m(Mn矿)=16.11,m(Fe矿)≥m(Fe) 可知冶炼所得的富锰渣可以含Mn量≥35% (5)计算富锰渣成分 ①假定焦炭负荷为3.3,即100kg矿石需用30kg焦炭。 ②按100kg矿石和相应30kg焦炭计算渣量。 a.进入渣中的锰和氧化亚锰(锰入渣率按90%计算)。 m(Mn)=25.15×90%=22.64kg m(MnO)=22.64×71÷55=29.22kg b.进入渣中的铁和氧化亚铁(铁入渣率取3%计算)。 m(Fe)=21.95×3%=0.66kg m(FeO)=0.66×72÷56=0.8kg c.进入渣中的SiO2量,以SiO2入渣,其总量是入炉量的95%。 计算铁量,副产品铁含量80%~90%,以88%计算,铁元素进入生铁取92%计算, 则生铁量为:Q=21.95×92%÷88%=22.9kg 生铁Si含量为0.5%,则铁中Si量为 m(Si)=22.94×0.5%=0.12kg 还原需要SiO2量为 0.12×60÷28=0.25kg 则进入渣中的SiO2量: m(SiO2)=18.95×95%+30×20%×50%×95%-0.25 =20.6kg d.进入渣中的Al2O3量,Al2O3入渣率取95%计: m(Al2O3)=7.05×95%+30×20%×42%×95%=9.09kg e.进入渣的CaO和MgO量,CaO,MgO的入渣率取95%计: m(CaO)=1.35×95%+30×20%×8%×95%=1.73kg m(MgO)=0.8×95%=0.76kg f.进入渣中的P2O5量 m(P2O5)=(0.19+30×20%×0.2%)×3%×144÷62 =0.014kg表3 富锰渣量及成分成分MnOFeOSiO2Al2O3CaOMgO质量/kg29.20.8420.69.091.730.76含量/%46.951.3433.114.62.771.22成分P2O5总和m(Mn)m(Fe)m(P) 质量/kg0.01462.2422.640.660.0075 含量/%0.02810036.361.050.012
[next]
(6)检验:富锰渣m(CaO+MgO)/m(SiO2)=0.12,m(SiO2)/m(Al2O2)=2.26,含Mn,Fe,P均符合要求。 (7)副产生铁成分计算 a.锰入铁量,锰入铁率取5% m(Mn)=25.15×5%=1.26kg b.铁入铁量,铁入铁率取92%计 m(Fe)=21.95×92%=20.19kg c.还原入铁的Si量 m(Si)=0.12kg d.P入铁量,P入铁率取92%计 m(P)=(0.19+30×20%×0.2%)×92%=0.19kg表4 生铁量与成分表元素MnFeSiPC总和质量/%1.2620.190.120.190.12522.89含量/%5.5488.20.520.834.9499.99
(8)矿比、焦比计算 矿比:1000÷62.24×100=1607kg/t 焦比:1607÷3.3=487kg/t 二、电炉富锰渣冶炼配料计算 比实例介绍一种简易计算方法 1)计算的原始条件 (1)锰矿石的化学成分 化学成分 Mn Fe P SiO2 Al2O3 CaO MgO 含量/% 24.50 31.00 0.03 12.5 12.5 0.6 0.5 (2)焦炭成分 固定碳:80%;灰分:17%表5 各元素的分配率/%项目MnFeP炉渣中8555生铁中139575挥发2 20
(3)焦炭的利用率为92%。 (4)设定由Fe2O3→FeO和MnO2→Mn3O4全为受热分解,不直接消耗焦炭。而由FeO→Fe,Mn3O4→MnO和MnO→Mn全部用焦炭还原。Si和P等还原耗焦炭甚少,由电极消耗来补充,而不另外耗焦炭,以简化计算。 2)简易配料计算 以100kg矿石为基础的计算方法,100kg锰矿石消耗干焦炭约13.5kg. (1)富锰渣含量按下式计算 式中 w(Mn(矿))、w(Fe(矿))——锰矿石中含锰量、含铁量,%; ηMn(入)、ηFe(入)——锰的入渣率、铁的入渣率,%; A——每100kg矿所用焦炭灰分的重量,kg; B——每100kg矿含SiO2,Al2O3,CaO,MgO的总重量,kg。[next] 将原始数据代入上式,则得富锰渣的含锰量为 从上述计算得出: 100kg锰矿石生产的富锰渣和生产铁数量和主要成分见表6。表6 富锰渣和生铁的数量与成分名称化学成分(%)产量/kgMnFeP富锰渣39.112.910.00353.25生铁9.2685.640.134.39
(3)焦炭消耗量的计算 焦碳消耗主要用于铁、锰的还原和生铁的渗碳等方面。 还原进入富锰渣的锰所需碳量:Mn3O4+C=3MnO+CO 53.25×0.391×12÷165=1.15kg 还原进入生铁的锰所需碳量:MnO+C=Mn+CO 34.29×0.0926×12÷55=0.68kg 还原进入生铁的铁所需碳量:FeO+C=Fe+CO 34.39×0.8564×12÷56=6.31kg 副产生铁中渗碳量:34.39×0.045=1.55kg 上面四项合计需碳量为 1.51+0.68+6.31+1.55=10.05kg 折合成干焦炭量为:10.05÷0.90×0.80=13.96kg (4)锰矿石与焦炭的配料比为 锰矿石量/焦炭量=100/13.96 (5)每吨富锰渣消耗 锰矿石:1000÷53.25×100=1878kg 焦 碳:1878÷13.96=262kg
镁铝平尺的特性及功能
2019-01-11 09:43:31
随着纺织业的发展,纺织机械的发展也得到了空前的提高,镁铝平尺主要被用于纺织机械中,起到了一定的检修和测量的作用。镁铝平尺是一种长形的一种测量的工具,还可以通过镁铝平尺来进行划线等等。 镁铝平尺在日常不使用的时候不管是平放还是悬挂都可以,保管很方便,而且也不会由于长时间平放导致其发生弯曲的现象。镁铝平尺精度高,与铸铁平尺差不多,使用是来相对更加轻松方便;镁铝平尺不容易变形,轻微的碰撞不会影响精度,在曲服点的比较上,镁铝平尺是曲服点较高的,抗弯性远远超过其他的材质。
铝青铜的特色——金利铜铝
2019-05-28 09:59:04
青铜棒就是以青铜为质料制备出的铜棒,提到青铜棒要先了解青铜的一些特色,所谓知己知彼,方能制胜,制造青铜棒怎能不先了解青铜的特色呢!青铜较铜坚固,熔点较低,简略熔化和铸造;青铜也较纯铁坚固,不同合金成分的青铜适于制造炮管和机器轴承。在东西和兵器中,前史上以铁替代青铜并不是铁自身有任何特殊优势,而是因为铁较铜和锡丰厚。钟青铜的特性是受敲击时能宣布洪亮的声响。其含锡量较高,为1/4~1/7.雕塑青铜含锡量低到1/10,有时还参加锌和铅的混合物。锌能进步硬度,轴承合金中一般含少数的锌。青铜中参加少数的磷能改进其功用和强度;磷青铜含磷量铸锭可达1~2%,铸件只含微量;它的强度高,特别适用于作泵的柱塞、阀和套。青铜也广泛用于制造钱币;许多铜币实际上是用青铜铸造的,其典型成分是4%的锡和1%的锌,青铜具有熔点低、硬度大、可塑性强、耐磨、耐腐蚀、色泽亮光等特色,适用于铸造各种用具、机械零件、轴承、齿轮等,在青铜器上加以镶嵌以添加漂亮,这种技能很早就呈现了。镶嵌的材料,第一种是绿松石,这种绿色的宝石,至今仍应用在首饰上。第二种是玉,有玉援戈,玉叶的矛,玉刃的斧钺等。第三种陨铁,如铁刃铜钺,铁援铜刃,经判定,铁刃均为硕铁。第四种是嵌红铜,用红铜来组成兽形斑纹。春秋战国时也有用金、银来镶嵌装修的青铜器。闻名的越王剑也是由青铜铸造的。
贵金属功能材料
2019-02-18 10:47:01
贵金属及其合金材料具有共同的物理、化学功能,在现代工业、国防建设和高新技术的各个领域中发挥着特殊的效果,有“现代工业维他命 ”的称赞。我公司长久以来一直在系统地展开贵金属及其合金材料的研讨和试制作业,现在,已建成较完好的贵金属材料研讨--试制--出产系统,开发的贵金属材料数百种,屡次荣获国家、部、省级奖赏。 本公司除了供给各种标准型和非标准型的贵金属合金材料外,还可依据用户的要求,供给不同规格的有特殊用处的合金材料。我公司将用户利益放在首位,重视材料质量,考究诺言,诚挚为国内外用户供给优质产品和完善的效劳,热忱欢迎用户的广泛支撑与密切合作。产品系列主 要产品测温材料 铂铑10-铂热偶丝(契合IEC标准) 铂铑13-铂热偶丝(契合IEC标准) 铂铑30-铂铑6热偶丝(契合IEC标准) 高纯铂丝(用于制作标准铂电阻温度计) 钎焊材料 金锡合金钎料 钯合金钎料 银复合钎料 低蒸汽压低熔点银基钎料 合金材料 电接点材料 银和银合金电接点材料 金和金合金电接点材料 铂和铂合金电接点材料 钯和钯合金电接点材料 电刷、滑动接点材料 电位器绕组材料 导电环材料 弹性材料 氧化催化网合金材料和收回捕集网材料
富锰渣冶炼的基本原理
2019-01-25 15:49:32
冶炼富锰渣的过程,就是锰在渣中的富集过程,包括在高温下矿石结晶水的分解,碳酸盐的分解,锰高价氧化物还原为低价氧化物的失氧和在还原气氛中铁、磷的选择性还原等作用。其中最根本的是铁、磷的选择性还原。 富锰渣冶炼的理论基础是按照热力学和动力学原理,通过控制热量和造渣过程对矿石中的氧化物进行选择性还原。 (1)富锰渣冶炼中氧化物的还原 锰矿石中的MnO2,Mn2O3,Mn3O4,Fe2O3,P2O5等氧化物都容易被CO或H2还原成MnO和FeO,但MnO和FeO进一步被C还原成金属,其条件就有所不同,MnO还原所需的温度和热量要高得多。其反应方程式如下: 由上面的反应方程式看出,铁和磷的还原温度较低,所需的热量也较少,故易还原,而锰的还原温度高,消耗热量大,还原较难。所以在还原剂适当的条件下,冶炼温度控制在1350℃以下,铁、磷优先还原出来,而锰则以MnO形式富集于炉渣中。 用焦炭还原含有二氧化硅、锰、铁、磷氧化物的锰矿石,若采用的焦炭量和温度不同时,则得到不同的产品(表1)。表1 采用不同温度和不同焦炭量进行选择还原所得的不同产品℃治炼温度/℃用焦碳量氧化物焦碳还原开始反应温度/℃得到的产品1300焦碳仅够FeO和P2O5FeO/P2O5~750~820富锰渣和高磷生铁1500焦碳完成以上反应还够还原MnOMnO~1420高碳锰铁1700焦碳完成以上反应,还够还原 SiO2SiO2~1650锰硅合金2000焦碳完成以上反应,还够还原Al2O3Al2O32000锰硅铝合金
在高炉冶炼条件下,各元素还原的先后和还原的程度不一样,产生这些差异的原因是各元素要求的还原条件不同,即高炉内所能创造的还原剂成分、温度和压力等条件下对还原反应所需达到平衡的难易程度有所不同。[next] 氧化物被还原的难易取决于元素对氧的亲合力的大小,也就是取决于氧化物分解压力的大小,可以用氧化物平衡分解压力Po2来衡量(见表2)与(图1)。对氧的亲合力大,氧化物分解压力小的元素还原就较难,氧化物就较稳定。反之亦然。表2 各种氧化物的热效应和不同温度下的分解压力氧化物名称标准热效应/kJ不同温度下的分解压力(lgPO2)500℃1000℃1500℃2000℃FeO54000-49.1-20.8-11.2-6.9MnO779580 -28.8-17.1-11.5SiO2870220-81.7-36.1-20.9-13.3Al2O310099780-103.8-46.4-27.3-17.7MgO1223380-116.3-52.5-31.2-20.6CaO1270271-121.7-55.4-33.3-22.2
从图表中可看出,温度愈低,纯氧化物的分解压愈小,各种纯氧化物之间的压差愈大,熔渣中氧化物的还原度愈小,各种氧化物之间还原度之差愈大。反之,温度愈高,分解压差愈小,熔渣中氧化物的还原度愈大,各种氧化物还原度之差愈小。 也由此看出,在高炉条件下,Cu2O,NiO和FeO较易被还原,因此在高炉内几乎全部被还原成金属;而Cr2O3,MnO,SiO2和TiO2是较难还原的氧化物;因此在高炉内只能被还原一部分。Al2O3,CaO,MgO在高炉内不能被还原,而全部进入炉渣。[next] 锰矿石中的锰大都是以MnO2,Mn2O3,Mn3O4,MnO等形式存在,锰的高价氧化物不如低价氧化物稳定,因而前三种氧化物容易在烧结或高炉冶炼过程中被烧损式还原成低价氧化物。锰的氧化物的还原过程与铁的氧化物还原一样,也是按高级氧化物到低级氧化物依次进行的。在高炉内反应方程式如下: 2MnO2+CO===Mn2O3+CO2+226840kJ (1) 3Mn2O3+CO===2Mn3O4+CO2+170240kJ (2) Mn3O4+CO===3MnO+CO2+51920KJ (3) 反应(1)、(2)是不可逆的,在高炉压力和还原气氛下,反应很容易进行。反应(3)虽可逆,但实际上达到平衡时,气相中CO的浓度很小,因此在高炉内Mn3O4也是容易还原的。 MnO是相当稳定的氧化物,用CO还原MnO是非常困难的(图2).在1400℃时用CO还原MnO,其平衡相中CO2浓度为0.03%。用CO还原MnO只有在大量固体碳存在并不断与CO2作用的条件下才能进行,这样反应实际上已是直接还原,反应式如下:
MnO+CO===Mn+CO2-121590kJ
C+CO2===2CO-157890kJ
MnO+C===Mn+CO-279480kJ
因MnO在反应前已进入炉渣,该反应实际上是在固相与液相之间进行的。在高炉条件下要抑制锰的还原,必须降低CO的分压和降低MnO的活度。这其中影响最大的是温度和炉渣碱度。 (2)冶炼温度的选择 富锰渣冶炼要抑制锰的还原,实际上就是控制渣中MnO的还原条件。MnO的直接还原反应MnO+C=Mn+CO是吸热反应。平衡气相中CO的分压,随温度上升而增加。即随冶炼温度升高,MnO还原加剧。因而控制冶炼温度是控制MnO还原,提高富锰渣品位的关键措施。图3是冶炼温度与MnO和MnSiO3还原度的关系曲线。图4是炉渣温度与渣中MnO含量的关系曲线。
[next] 富锰渣冶炼处理贫锰矿,渣中SiO2量比较高。在有足够SiO2存在的条件下,高炉内温度为1170℃时,几乎全部MnO与SiO2结合形成炉渣。从熔渣中还原Mn比从独立相中还原困难得多。试验指出,在1300℃条件下,MnSiO3只还原3%,另一方面,铁的还原比较容易进行,铁的还原FeO+C=Fe+CO从685℃就开始了,而高价氧化铁还原为低价氧化铁(FeO)在900~1000℃时即已完成,当温度达到1250℃时,硅酸铁(Fe2SiO4)也大量被还原。因而从保证铁充分还原与抑制锰的还原来看,富锰渣冶炼温度控制在1280~1350℃是适应的。在此温度下,炉渣的流动性也是有保证的。 (3)炉渣碱度的选择 碱性氧化物CaO和MgO对SiO2的亲合力比MnO大,故以将MnO从硅酸盐中置换出来,使之以自由MnO形态存在,MnO活度增大,降低了MnO开始还原温度,促进锰的还原。其反应式为
MnSiO3+CaO===MnO+CaSiO3+59030KJ
MnO+C===Mn+CO-279470KJ
MnSiO3+CaO+C===Mn+CO+CaSiO3-220440KJ
这对富锰渣冶炼是不利的,因此在富锰渣冶炼中必须控制炉渣碱度。一般富锰渣冶炼中比值控制在0.4以下。贫锰矿自身的碱度就很低,所以在冶炼操作中通常是采用不添加熔剂的自然碱度。
富铂镍冰铜的直接氯化浸出
2019-03-05 09:04:34
鹰桥(Falconbridge)镍公司挪威精粹厂原处理含贵金属总量0.002%的转炉高冰镍,是先将高冰镍磨细,再用浓挑选性浸出镍,使硫化铜和贵金属留于浸出渣中。浸出渣经溶剂萃取除上杂质后产出结晶氯化镍,再于欢腾反响器内转化为粒状氧化镍,继而在回转窑顶用复原,产出含98%镍的产品镍。浸出渣经焙烧除硫后,用废的铜电解液浸出铜。再从除铜浸出渣中收回贵金属。
当该工厂用此法处理来自南非的富含铂族金属(1~2kg∕t)的镍冰铜时,发现在焙烧、浸出工序中贵金属丢失较大,严重影响经济效益。故将浓浸出镍后的浸出渣改用水溶化法浸出除锅,产出不到镍冰铜分量1%的贵金属精矿。
一、富铂镍冰铜和高冰镍的化法浸出
在富铂镍冰铜经浓浸出除镍后的浸出渣中,铜首要以硫化铜的方式存在。化法浸出硫化铜,是向含铜。镍的溶液和硫化铜浸渣的混合矿浆中通入。浸出进程中,为避免生成氯化亚铜沉积,浸出液中有必要含有如氯化镍或游离等氯化物。此刻,铜的氯化反响为:
2Cu++Cl2 2Cu2++2Cl- (1)
Cu2S+Cu2+ CuS+2Cu+ (2)
CuS+Cu2+ 2Cu2++S (3)
S+2e S2- (4)
Cu2++S2- CuS (5)
铜的彻底浸出取决于反响式(3)。反响式(4)和(5)只表明铜是呈硫化物沉积仍是经过调整浸出进程的氧化复原电位(用铂与饱满甘电极刺进溶液中测定)使铜进入溶液?即在高的氧化复原电位下,反响按(3)式进行;而在低的氧化复原电位和特定的温度、酸度、铜浓度条件下,会加快反响式(4)和(5)的进行,而生成很多的硫离子和硫化物。当其间的硫化铜浓度超越它的溶度积时,则会生成硫化铜沉积,这时的铜就不能彻底被浸出。
为使铜尽或许彻底浸出一切必要的最低氧化复原电位,首要取决于溶液中的铜浓度、酸度和温度。但在实践中,浸出作业的电位规模(图1)在0.35~0.45V之间。在此电位规模内铜的氧化浸出率最高,且贵金属基本不溶解。这或许因贵金属在此电位区间不发生溶解,或或许与铜的反响相同,溶解后再接式(6)、(7)反响再次生成沉积:
S+2e S2- (6)
P3++S2- PS (7)图1 不同电位的溶解率
浸出进程中,一切游离硒,都会与贵金属离子反响〔或许像式(6)和(7)那样〕生成不溶性的硒化物沉积。
为了进步铜的浸出率和尽或许不让贵金属进入溶液,能够预先从图1的曲线中选用适宜的氧化复原电位。但应该指出,图中铜和贵金属的溶解曲线会受溶液中的铜浓度、酸度和温度改变的影响。当在高酸、低铜浓度的溶液及高温的操作条件下,曲线会略微移向左边;而在低酸度和高铜浓度以及低温的操作条件下,曲线会略微移向右侧。
水溶化法浸出富铂镍冰铜的工艺,也适用于处理该厂本来的含有贵金属、硫和硒的转炉高冰镍。当在所挑选的氧化复原电位下浸出由上述组成的高冰镍浸出渣时,浸出渣经浸出除硫后,精矿中贵金属的含量比高冰镍进步100倍。故此法能够统筹处理富铂镍冰铜和高冰镍以收回贵金属精矿。这样就能够削减工厂向鹰桥总厂运送中间产品高冰镍,并充分利用挪威厂的镍精粹才能。
二、富铂镍冰铜化浸出的工艺流程
挪威镍精粹厂,经改善后用于处理南非富铂镍冰铜(和转炉高冰镍)的工艺流程和产品状况如下。
(一)浓浸出镍。镍冰铜经磨细后,于橡胶面料的拌和浸出槽中浸出。镍以氯化镍方式进入溶液,硫化铜和贵金属留在浸出渣中。氯化镍液经萃取净化除掉杂质后,制成结晶氯化镍,并于欢腾反响器中转化为粒状氧化镍,再于回转窑顶用复原产出纯度98%的产品金属镍。
(二)除镍浸出渣的脱铜。浸出镍后的渣首要含硫化铜。将其于氯化镍或液中通氯化,硫和贵金属留于浸出渣中。浸出除铜亦用橡胶面料的拌和浸出槽。浸出槽装有两套各自独立的铂-饱满甘电极,所测定的数据送电子计算机处理。一套电极用于丈量浸出进程的氧化复原电位,以操控的供入最;另一套用于宣布预调的氧化复原电位规模过高或过低时的报警信号,并随时能够读出高于或低于预调电位的数值,以确保在所选定的氧化复原电位规模内操作。选用这样的设备,首要是为了确保供入的不会过量,避免因氧化复原电位的升高而导致贵金属的溶解,或因电位过低而使铜的溶解不彻底。除铜停止后,经丙二醇酯板框压滤机压滤,产出含硫的贵金属精矿。向过滤出的液中通入使铜生成硫化铜沉积,送铜体系处理。
(三)除铜精矿的脱硫。压滤的滤饼,经由装有称量传感器的供料槽,接连供入由夹套直接加热的玻璃面料拌和槽中,参加热溶免除硫,溶解硫后的矿浆,由不锈钢离心泵接连泵至蒸汽外套加热的密封压滤机压滤出贵金属精矿。滤液分出硫结晶后,经离心机脱水收回硫。液经再生回来下次脱硫用。
(四)贵金属精矿的富集。脱硫后的精矿于小型焙烧炉内进行硫酸盐化焙烧。焙烧是将精矿置于炉内的钢盘中,调理空气入炉速度以操控焙烧速度。为了避免空气入炉速度过快而引起焙烧尘粒的丢失,焙烧速度不宜过快。炉温操控在约500℃。焙砂经稀硫酸浸出除掉重金属硫酸盐,过滤、洗刷、烘干,于“V”型旋转混料器(容量1000kg)中混匀排出,称重和主动取样送化验。实践中所产出的终究贵金属精矿档次,在很大程度上取决于镍冰铜质料的贵金属含量和不溶组分。在不溶组分中,以硅的含量影响最大。在通常状况下,处理含0.07%~0.08%铅的镍冰铜质料时,产出的贵金属精矿含15%~30%铂和相当量的其他贵金属。
因为出产进程系接连作业,所以要精确测定一批质料和精矿的分量与档次是很困难的。表1和表2所列为实验室分批处理富铂镍冰铜所得的分析数据,这些数据不包括出产进程中运送和烟尘等的丢失。从表中能够看出,在此处理进程中,各种贵金属在精矿中均富集到330倍以上,收回率均大于92%。终究精矿的产出率小于1%。
表1 镍冰铜和精矿的档次及贵金属富集率分类组分及富集倍数AuPtPdRhRuIr镍冰铜∕%0.00690.07320.03290.00330.00740.0013精矿∕%2.4326.5511.771.202.640.43富集率∕倍352362357363357330
表2 质料和产品的金属平衡分类质量∕g组分及富集倍数AuPtPdRhRuIr镍冰铜∕%900062165882961297666117精矿∕%25.0160866402944300660108收回率∕%0.2897.90>10099.42>10099.9992.30
富锰渣冶炼对原料的要求
2019-01-18 11:39:40
富锰渣冶炼是自然碱度,不需要加熔剂,只有在少数情况下,为改善炉渣流动性,需添加少量萤石。因而富锰渣冶炼的原料主要是锰矿石、焦炭。
(1)锰矿石的化学成分
锰矿石的化学成分直接影响到富锰渣的产量、质量和消耗。锰矿石的化学成分王要有Mn,Fe,P,SiO2,Al2O3,CaO,MgO等。在高炉冶炼富渣时,锰有85%以上进入炉渣,SiO2,A12O3,CaO,Mg0几乎全进入炉渣,Fe和P大约90%进入生铁。
锰矿石含锰量增高时,富锰渣的含锰高,产量高,焦炭和矿石的消耗量则低。而当锰矿石含铁量增高时,矿石的化学失重大,富集效果好,有利于获得高品位的富锰渣。锰矿石含铁量高,去磷效果也好,因磷被还原后进入生铁。锰矿石含铁过高也不好,铁高富锰渣产量低,附产生铁多,焦炭消耗量大,锰的回收率低,同时操作上也难维持低炉温操作。
冶炼富锰渣,对矿石中锰和铁的要求,通常以m(Mn)/m(Fe)和w(Mn+Fe)两个指标来表示。当m(Mn)/m(Fe)一定时,w(Mn+Fe)愈高,渣的含锰愈高,但渣的产量却随w(Mn+Fe)增大而降低。这是因为w(Mn+Fe)增大,矿石中脉石减少的原因。而当w(Mn+Fe)一定时,m(Mn)/m(Fe)愈高,渣的含锰量和渣的产量均随之增加。这是因为m(Mn)/m(Fe)增加,矿石中铁量减少,进入渣中MnO增多。图1表示富锰渣品位、渣量和矿石m(Mn)/m(Fe)和w(Mn+Fe)的关系曲线。对锰矿石脉石要求,Al2O3,含量要尽可能低,因Al2O3高,增加炉渣粘度,升高炉渣熔点。要求矿石含CaO,MgO低一些,因CaO,MgO增高会促进锰的还原。当矿石中SiO2高时,富锰渣中SiO2会高,对冶炼锰硅合金的用户,要求富锰渣有一定含量的SiO2。而对冶炼碳素锰铁则要求SiO2低。
为了保证富锰渣的质量,要求锰矿石m(Mn)/m(Fe)在0.3~2.5时,其w(Mn+Fe)应为38%~60%,当m(Mn)/m(Fe)高时,w(Mn+Fe)则为低值。反之m(Mn)/m(Fe)低时,w(Mn+Fe)为高值。因此要求w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO+MgO)/m(SiO2)≤0.4。
在生产实践中,都是通过几种锰矿石配矿,调整炉料成分,最。终使入炉的混合矿成分能满足富锰渣生产的要求,同时又能获得好的技术经济指标。
各种锰矿的冶炼效果见表1。(2)锰矿石的物理性能
冶炼富锰渣与高炉冶炼锰铁一样,要求锰矿石粒度均匀,最好是8~40mm,含粉率低,小于5mm部分应小于5%,强度要求好,以改善料柱透气性和减少炉顶吹损。
(3)焦炭和萤石的要求
冶炼富锰渣要求焦炭强度好,粒度合适(20~80mm)、质量稳定。要求萤石含有效CaF2高,成分稳定,粒度均匀(20~40mm),含粉率低。
高炉富锰渣的冶炼工艺特点
2019-01-04 17:20:15
高炉富锰渣的冶炼工艺特点
高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点:
1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。
2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。
3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。
4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。
5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。
6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。
电炉富锰渣的生产
1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。
2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm
铝青铜的相关介绍及其机械功能
2019-05-30 19:57:34
铝青铜的相关介绍及其机械功用 含铝量普通不逾越11.5%,有时还参与过量的铁、镍、锰等元素,以进一步改进功用。铝青铜可热处置强化,其强度比锡青铜高,抗低温氧化性也较好。机械功用及用途 铝青铜棒具有优秀的切削磨削功用,可焊接,易热制作成型。铝青铜棒合金非必须用于制作支架、齿轮、轴套、衬套、接纳嘴、法兰盘、摇臂、导阀、泵杆、凸轮、活动螺母等高强度和耐磨的结构零件。 铝青铜有较高的强度 优秀的耐磨性 用于强度比较高的螺杆、螺帽、铜套、密封环等,和耐磨的零部件,最一般的特性便是其优秀的耐磨性
云母主要规格 / 特殊功能
2019-01-04 09:45:37
云母具有较高的绝缘强度和较大的电阻、较低的电介质损耗和抗电弧、耐电晕等优良的介电性能,而且质地坚硬,机械强度高,耐高温和温度急剧变化并具有耐酸碱等良好的物化性能,因此,广泛用于无线电工业、航空工业、电机制造,它还广泛用于涂料、油漆、塑料、油毡、造纸、油田钻井、装饰化妆等行业,在油漆中可减少紫外线或其它光和热对漆膜的破坏,增加涂层的耐酸、碱和电绝缘性能,提高涂层的抗冻性、抗腐蚀性、坚韧性和密实性、降低涂层的透气性,防止斑点和龟裂。云母粉还可用在屋面材料中,起防雨保暖、隔热等,云母粉与矿棉树脂涂料混合,可做混凝土、石材、砖砌外墙的装饰作用,云母碎用于油毡,管道砂浆,胶结剂;在橡胶制品中,云母粉可做润滑剂、脱膜剂,以及做高强度的电绝缘和耐热、耐酸碱制品的填充剂。云母还可做云母纸,云母板、云母陶瓷,珠光云母颜料、云母熔铸制品等。工业上主要利用它的绝缘性和耐热性,以及抗酸、抗碱性、抗压和剥分性,用作电气设备和电工器材的绝缘材料;其次用于制造蒸汽锅炉、冶炼炉的炉窗和机械上的零件。云母碎和云母粉可以加工成云母纸,也可代替云母片制造各种成本低廉、厚度均匀的绝缘材料。物理特性:云母是一种含有水的层状硅酸盐矿物,种类很多,云母粉具有独特的耐酸、耐碱、化学稳定性能,还具有良好的绝缘和耐热性、不燃性、防腐性。云母规格:10 目 20目 40目 60目 80目 100目 200目 325目 400目 500目 800目
富氧浸出的试验研究与生产实践
2019-03-04 16:12:50
四方金矿选矿厂规划规划100t/d,选用全泥化-炭浆提金工艺,经过二期扩建及技能改造,规划已到达800t/d,各项出产目标均优于原规划要求。但为了下降出产本钱,进步经济效益,2003~2004年选用先进的富氧浸出工艺替代惯例浸出。经过实验及出产使用均证明该工艺能显着进步浸吸速度,下降耗量,获得显着的经济效益及社会效益。
一、矿石性质
矿石类型为石英脉型及蚀变千枚岩金矿石,首要金属矿藏为褐铁矿、黄铁矿、磁黄铁矿、少数黄铜矿。脉石矿藏首要是石英、绢云母、铁白云石,次为绿泥石、方解石、菱铁矿等。金矿藏首要是天然金,少数以银金矿的方式存在。
金矿藏以中细粒金为主,其间+74 的粗粒金约占28.38%,-100+74 中细粒金约占63.24%,-100 的微粒金仅占8.38%,天然金常呈不规则粒状、浑圆状、片状、枝叉状等。
二、出产工艺流程
破碎选用两段一闭路,粗碎选用JC40×60,细碎为PYD1200mm圆锥破碎机,振荡筛网16mm×16mm,破碎产品粒度-14mm。
球磨分为两系列,每系列均为两段两闭路(其间一段磨矿为ZQM2100mm×2700mm,分级机为FLG1500mm,二段磨矿为ZQM1500mm×3500mm,旋流器为 300mm ),总处理才能为800t/d,磨矿细度-74 占88%。
浸吸选用惯例化浸出,分为两系列(每系列均为一个预浸槽和七个炭浸槽,炭浸槽规格为 5000mm×5500mm),1号浸槽[CN」为3.5/万,矿浆浓度为40%~42%,pH为9~11。
三、富氧浸出机理
在溶液中有氧存在时金按下式被溶解
4Au+8CN-+2H2O+O2=4Au(CN)2-+4OH-
依分散理论,可推导出,[CN-]/[O2]=6时,金溶解速度到达极限,也就是说当浸出溶液中游离根和溶解在水中分子氧即溶解氧浓度到达6时,金的浸出速度最佳。
选用惯例浸出,1号浸槽[NaCN]为3.5/万,即[CN]为7.15×10-3mol/L,而[O2]最高只到达8~1Omg/L,即0.25×10-3mol/L,此刻[CN]/[O2]=28~23,金溶解速度即浸出速度遭到[O2]的约束而违背最佳状况,欲进步金的溶解速度,应添加[O2],使之到达38mg/L。在常温常压下水中[O2]的饱满值为8.2mg/L(即0.25×10-3mol/L)无法完成。但在常温常压下向矿浆中充入氧气,可使[O2]显着进步,一般可到达0.85×10-3mol/L以上,而使[CN]/[O2]趋于6,到达进步溶解速度的意图。
四、小型实验
在两份工艺条件完全相同的矿浆中,别离充入相同压力的氧气和压缩空气,实验4h。取开始样和完毕样,一切样品均取平行样,以下数据为平均值,所加炭为洗后新炭。实验容器为两个2000m1的量筒。
三次小型实验的工艺条件和分析成果见表1、表2。
表1 小型实验的工艺条件实验序号时刻/h体积/ml压力/MPa浓度/%细度/%[CN]/万[CaO]/万加炭量/g1
2
34
4
42000
2000
20000.06
0.06
0.0640
42
4288.6
57.4
90.43.1
3.1
3.06.0
5.4
3.540
40
40
表2 小型实验分析成果项目渣样水样炭样浸出率差开始完毕浸出率开始完毕开始完毕1富氧
惯例1.025
1.1000.1
0.3190.24
71.820.02
0.0230.02
0.0230
040.6
22.6218.422富氧
惯例2.940
3.3850.15
1.29594.90
61.740.100
0.1300.035
0.0350
051.04
27.8433.163富氧
惯例1.335
1.4150.33
0.7075.28
50.530.02
0.020.02
0.020
030.16
20.1324.75
三次小型实验验证,富氧比惯例浸出率进步了25.44%,从炭样的档次也能很好地验证富氧浸出状况优于惯例浸出。
五、半工业实验
该实验是在一系列2号浸吸槽中进行的,实验时把该槽从体系中断开,实验时刻8h。取开始、4h、完毕三次样。
富氧比惯例前4h浸出率高出44.39%,8h高出17.18%。
从以上数据能够看出,富氧浸出工艺对我矿矿石性质是习惯的。平等条件下和惯例浸出比较,能显着进步浸出率。为了获取更为翔实的数据,需要做进一步的工业实验。
六、工业实验
在工艺条件根本相同的两个系列中,别离充入氧气(用两组氧气瓶替换供气)和空气,经过对样品分析成果的纵向和横向比照分析,断定富氧浸出工艺作业条件。工业实验工艺条件、实验开始时槽内炭密度及档次状况和实验成果见表4、表5、表6。
表3 实验条件和分析成果项目时刻
/h浓度/%细度/%[CN]/万[CaO]/万炭密度/
(g·L-1)开始
渣样4h渣样浸出率/%8h渣样浸出率/%惯例
富氧8
840
39.590.8
89.52.2
2.13.4
3.521.16
23.691.01
0.740.735
0.2127.23
71.630.31
0.169.31
86.49
表4 工业实验工艺条件项目处理量/(t·h-1)矿浆浓度/%磨矿细度/%供气压力/MPa[CN]/万[CaO]/万作业时刻/h实验系列
惯例系列16.35
15.9440.73
40.6490.87
90.640.121
0.1212.85
2.843.64
3.7032
32
表5 实验开始时槽内炭密度及档次状况槽号2345678实验系列炭密度/(g·L-1)
档次/(g·t-1)22.11
1653.9020.53
1637.2522.74
1082.2524.32
715.9517.79
416.2523.69
222.0023.69
144.30惯例系列炭密度/(g·L-1)
档次/(g·t-1)23.69
1670.5522.11
1326.4522.11
904.6523.26
555.0025.26
277.5024.00
155.4022.11
172.05
从以上实验成果能够看出,在现有条件下,选用富氧工艺,4个槽子浸出能够合格,6个槽子吸附能够合格。和惯例工艺比较,浸出时刻缩短一半,吸附时刻能够缩短25%。
七、出产状况
依据工业实验成果,咱们对浸出体系进行改造,具体措施是装置PAS-80m3/h的制氧机组给两个浸吸系列供氧,自投入出产以来,制氧机组工作正常,各项目标均到达规划要求。制氧机组运转根本目标见表7。
施行富氧浸出工艺后,矿浆中溶解氧显着进步,实测成果见表8。
为了与曾经的出产状况比照,在选用富氧工艺前后别离进行流程调查,成果见表9。
表6 实验成果样品称号浸原1号
排矿2号
排矿3号
排矿4号
排矿5号
排矿6号
排矿7号
排矿固样档次/
(g·t-1)实验系列
惯例系列1.418
2.1551.111
1.9480.731
1.7400.219
1.4300.072
1.1250
0.7190
0.4330
0.210作业浸出率/%实验系列
惯例系列0
021.65
9.6134.20
10.6870.04
17.2867.12
21.23100
36.09100
39.78100
51.50累计浸出率/%实验系列
惯例系列0
021.65
9.6148.45
19.2684.56
33.6494.92
47.80100
66.64100
79.91100
90.23累计浸出时刻/h0481216202428样品称号浸原1号排矿2号排矿3号排矿4号排矿5号排矿6号排矿7号排矿水样档次/
(g·t-1)实验系列
惯例系列0.028
0.1130.335
0.4930.320
0.4180.275
0.3150.155
0.220.061
0.1350.0336
0.1080.0113
0.040作业吸附率/%实验系列
惯例系列0
00
045.61
33.8358.42
49.7941.55
57.5569.95
72.4944.92
66.8466.37
84.42累计吸附率/%实验系列
惯例系列0
00
045.61
33.8366.76
47.1883.25
72.4993.73
87.3996.55
91.4498.84
97.16累计吸附时刻/h004812162024表7 制氧机组运转根本目标制氧量/(m3·h-1)纯度/%充氧压力/MPa氧气罐压力/MPa左右制氧罐压力/MPa空气罐压力/MPa空压机/Mpa83.8920.140.260.28/0.280.330.16/0.38
表8 溶解氧实测成果充气条件系列12345678充氧气/
(mg·L-1)1
228.3
28.735.4
36.737.6
40.143.5
42.344.2
44.941.8
43.542.3
43.440.04
44充空气/
(mg·L-1)1
25.5
3.47.5
4.88.1
4.57.9
5.27.7
7.27.8
7.57.8
7.97.2
7.4
表9 流程调查分析成果比照项目浸原1号
排矿2号
排矿3号
排矿4号
排矿5号
排矿6号
排矿7号
排矿8号
排矿渣样/
(g·t-1)选用
未选用1.349
1.3400.999
1.1600.573
0.8500.286
0.6600.141
0.5000.100
0.3400.100
0.2200.100
0.1400.100
0.120作业浸出率/%选用
未选用25.95
13.4342.64
26.7250.09
22.3550.7
24.2429.08
320
35.290
36.360
14.29累计浸出率选用
未选用25.95
13.4357.52
36.5778.8
50.7589.55
62.6992.59
74.6392.59
83.5892.59
89.5592.59
91.04累计浸出时刻/h选用
未选用4.491
4.9668.982
9.93213.473
14.89817.964
19.86422.455
24.83026.946
29.79631.437
34.76235.928
39.728项目浸原1号
排矿2号
排矿3号
排矿4号
排矿5号
排矿6号
排矿7号
排矿8号
排矿水样/
(g·m-3)选用
未选用0.345
0.290.344
0.220.258
0.150.149
0.0890.0571
0.0660.0224
0.0420.020
0.0240.020
0.022作业吸附率/%选用
未选用33.50
32.6551.8
56.7357.99
65.3367.61
66.2760.77
71.2310.71
74.830
41.07累计吸附率/%选用
未选用33.50
32.6541.10
66.9181.50
84.1193.14
90.1097.31
94.3897.60
9797.60
97.30累计吸附时刻/h选用
未选用4.491
4.9668.982
9.93213.473
14.89817.964
19.86422.455
24.83026.946
39.79631.437
34.762补白未选用时处理量为674.42t/d,NaCN耗量444.83g/t;
选用时处理量745.62t/d,NaCN耗量402.35g/t。
八、NaCN的耗量实验
在确保出产目标的条件,应尽量削减NaCN的消耗量,经过实验断定在富氧条件下NaCN最经济合理的单位耗量,为此进行了NaCN的耗量实验(在保持正常出产条件下,仅对NaCN的耗量进行调整),实验成果见表10。
从表10能够看出,选用富氧浸出可下降NaCN耗量,单耗下降0.22kg/t,年节约NaCN 52.8t,节约本钱73.92万元。
表10 实验成果NaCN的耗量/(kg·t-1)[CN]/万浸原档次/%尾渣档次/%尾液档次/%浸出率/%吸附率/%回收率/%浸吸时刻/h0.42
0.30
0.203.5
2.0
1.21.42
1.63
1.380.10
0.10
0.100.02
0.02
0.0292.96
93.87
92.7597.72
98.03
97.7690.84
92.02
90.5824
28
32
九、结语
富氧浸出在四方金矿使用是成功的。选用该技能可进步浸吸速度,下降出产本钱,年发明效益73.92万元,在黄金矿山具有推广使用价值。
石墨烯的功能化及其相关应用
2019-03-07 09:03:45
现在,石墨烯的功用化研讨才刚刚开始,从功用化的办法来看,首要分为共价键功用化和非共价键功用化两种。本文将要点介绍石墨烯功用化的首要展开及其相关使用,并对往后的研讨方向进行了展望。
石墨烯的共价键功用化
石墨烯的共价键功用化是现在研讨最为广泛的功用化办法。虽然石墨烯的主体部分由安稳的六元环构成,但其边缘及缺陷部位具有较高的反响活性,可以经过化学氧化的办法制备石墨烯氧化物((Grapheneoxide)。因为石墨烯氧化物中含有很多的羧基、羟基和环氧键等活性基团,可以使用多种化学反响对石墨烯进行共价键功用化。
石墨烯的有机小分子功用化
石墨烯氧化物及其功用化衍生物具有较好的溶解性,但因为含氧官能团的引进,损坏了石墨烯的大π共扼结构,使其导电性及其他功用显着下降。
2006年,Stankovich等使用有机小分子完成了石墨烯的共价键功用化,他们首要制备了氧化石墨,然后使用异酸酷与氧化石墨上的按基和轻基反响,制备了一系列异酸酷功用化的石墨烯(图1)。图1 异酸酯功用化石墨烯的结构示意图
该功用化石墨烯可以在N,N-二甲基甲酞胺(DMF)等多种极性非质子溶剂中完成均匀涣散,并可以长期坚持安稳。该办法进程简略,条件温文(室温),功用化程度高,为石墨烯的进一步加土和使用供给了新的思路。
石墨烯的聚合物功用化
选用不同的有机小分子对石墨烯进行功用化,可以取得具有水溶性或有机可溶的石墨烯。在此根底上,Ye等选用共聚的办法制备了两亲性聚合物功用化的石墨烯。如图2所示,他们首要选用化学氧化和超声剥离的手法,制备了石墨烯氧化物,然后用复原,取得了结构相对完好的石墨烯,接下来,在自由基引发剂过氧化二甲酞(BPO)效果下,选用乙烯和酞胺与石墨烯进行化学共聚,取得了聚乙烯-聚酞胺(PS-PAM)嵌段共聚物改性的石墨烯。图2 乙烯-丙稀酰胺共聚物功用化石墨烯的制备
因为聚乙烯和聚酞胺分别在非极性溶剂和极性溶剂中具有较好的溶解性,使得该石墨烯既能溶解于水,也能溶解十二。该办法进一步改进了石墨烯的溶解性,而且,PS-PAM功用化的石墨烯作为添加物,可以在多种聚合物中均匀涣散,使其在聚合物复合材料等范畴有很好的使用远景。
根据共价键功用化的石墨烯杂化材料
石墨烯的共价键功用化不只可以进步石墨烯的溶解性,还可以经过化学交联引进新的官能团,取得具有特殊功用的新式杂化材料。Chen等研讨了强吸光基团卟啉对石墨烯的共价键功用化,卟啉是广泛使用的电子给体材料,而石墨烯是优异的电子受体,经过带基的四基卟啉(TPP)与石墨烯氧化物缩合,初次取得了具有分子内给体-受体(Donor-Acceptox)结构的卟啉-石墨烯杂化材料(图3)。图3 卟啉-石墨烯(给体-受体)杂化材料示意图
检测结果表明,石墨烯与卟啉之间发生了显着的电子及能量转移,该杂化材料具有优异的非线性光学性质。他们还研讨了C60共价键功用化的石墨烯杂化材料,相同使其非线性光学性质大幅度进步。
石墨烯的非共价键功用化
除了共价键功用化外,还可以用π-π相互效果、离子键以及氢键等非共价键效果,使润饰分子对石墨烯进行表面功用化,构成安稳的涣散系统。
石墨烯的兀键功用化
在选用化学氧化办法制备石墨烯的进程中,一般是先制备石墨烯氧化物,然后经过化学复原或高温焙烧来取得石墨烯材料。石墨烯氧化物在水中具有较好的溶解性,但其复原产品简略发生集合,而且很难再次涣散。图4 PmPV非共价键功用化的石墨烯带
聚类高分子PmPV具有大π共扼结构,Dai等使用PmPV与石墨烯之间的π-π相互效果,制备了PmPV非共价键功用化的石墨烯带。他们将胀大石墨涣散到PmPV的二溶液中,然后在超声波效果下取得了PmPV润饰的石墨烯纳米带,在有机溶剂中具有杰出的涣散性(图4)。
石墨烯的离子键功用化
离子相互效果是另一类常用的非共价键功用化办法。Penicaud等经过离子键功用化制备了可溶于有机溶剂的石墨烯。他们选用老练的办法制备了碱金属(钾盐)石墨层间化合物,然后在溶剂中剥离取得了可溶于N-甲基毗咯烷酮(NMP)的功用化石墨烯。图5石墨烯的离子键功用化
该办法不需要添加表面活性剂及其它涣散剂,使用了钾离子与石墨烯上按基负离子之间的相互效果,使石墨烯可以安稳地涣散到极性溶剂中(图5)。
石墨烯的氢键功用化
氢键是一种较强的非共价键,因为石墨烯氧化物的表面具有很多的羧基和羟基等极性基团,简略与其它物质发生氢键相互效果,因而,可以使用氢键对石墨烯氧化物进行功用化。
表1不同PH值下石墨烯氧化物与阿霉素中可构成氢键的基团石墨烯的氢键功用化不只可以用于进步石墨烯的溶解性,还能使用氢键完成有机分子在石墨烯上的负载。Chen等使用氢键效果将抗肿瘤药物阿霉素负载到石墨烯上。他们系统研讨了该系统的氢键品种及构成办法,因为阿霉素中含有羧基和羟基等基团,与石墨烯氧化物的羧基和羟基之间会构成多种氢键,如表1所示,跟着PH值的改动,氢键的品种也会发生变化。
功用化石墨烯的相关使用
经过对石墨烯进行功用化,不只可以进步其溶解性,而且可以赋子石墨烯新的性质,使其在聚合物复合材料,光电功用材料与器材以及生物医药等范畴有很好的使用远景。
聚合物复合材料图6石墨烯聚介物复介材料的光驱动性质
根据石墨烯的聚合物复合材料是石墨烯迈向实践使用的一个重要方向。因为石墨烯具有优异的功用和低价的本钱,而且,功用化今后的石墨烯可以选用溶液加土等惯例办法进行处理,十分适用于开发高功用聚合物复合材料。Ruoff等首要制备了石墨烯-聚乙烯导电复合材料,引起了极大的重视。他们先将基异酸酷功用化的石墨烯均匀地涣散到聚乙烯基体中,然后用二甲阱进行复原,成功地康复了石墨烯的本征导电性,其导电临界含量仅为0.1%。
光电功用材料与器材
新式光电功用材料与器材的开发对电子、信息及通讯等范畴的展开有极大的促进效果。其间,非线性光学材料在图画处理、光开关、光学存储及人员和器材维护等许多范畴有重要的使用远景。好的非线性光学材料一般具有大的偶极矩和二系统等特色,而石墨烯的结构特征正好契合这些要求。图7根据功用化石墨烯的有机光伏器材
Chen等研讨了具有溶液可处理性的功用化石墨烯(SPFGraphene)在通明电极和有机光伏等器材中的使用。根据石墨烯的柔性通明导电薄膜在80%的透光率下,其方块电阻为~102Ω/square,可望在通明电极及光电器材等方面取得广泛的使用;他们还规划并制备了以SPFGraphene作为电子受体,具有体相异质结结构的有机光伏器材,其在空气条件下的光电转化功率可达1.4%(图7)。
生物医药使用
因为石墨烯具有单原子层结构,其比表面积很大,十分合适用作药物体。Dai等首要制备了具有生物相容性的聚乙二醇功用化的石墨烯,使石墨烯具有很好的水溶性,而且可以在血浆等生理环境下坚持安稳涣散;然后使用π-π相互效果初次成功地将抗肿瘤药物喜树碱衍生物((SN38)负载到石墨烯上,敞开了石墨烯在生物医药方面的使用研讨。
结语及展望
如上所述,在短短的几年内,关于石墨烯功用化及其相关使用研讨现已取得了很大的展开。但要真实完成石墨烯的可控功用化及产业化使用,还面对很多的问题和应战。共价键润饰的长处是在添加石墨烯的可加土性的一起,为石墨烯带来新的功用,其缺陷是会部分损坏石墨烯的本征结构,并会改动其物理化学性质;非共价键功用化的长处是土艺简略,条件温文,一起能坚持石墨烯自身的结构与性质,其缺陷是在石墨烯中引进了其他组分(如表面活性剂等)。
经过在石墨烯功用化范畴展开愈加广泛深化的研讨,除了使人们对这一新式二维纳米材料的本征结构和性质取得愈加全面深入的了解外,必将发生一系根据石墨烯的功用愈加优胜的新式材料,从而为完成石墨烯的实践使用奠定科学和技能根底。
硅藻土饰材的诸多优点及功能
2019-03-05 09:04:34
A. 调理湿度功用:研讨成果标明,用硅藻土出产的室内装饰材料除了不会散发出对人体有害的化学物质外,还有改进寓居环境的作用。首要,能够主动调理室内湿度。硅藻土的主要成分是硅酸盐,用它出产的饰材具有超纤维、多孔质等特性,其超微细孔比木炭还要多出5000到6000倍。在室内的湿度上升时,硅藻土饰材上的超微细孔能够主动吸收空气中的水分,将其储存起来。假如室内空气中的水分削减、湿度就会下降,硅藻土饰材就能够将储存在超微细孔中的水分开释出来。 B. 消除异味功用:硅藻土饰材还具有消除异味的功用,坚持室内清洁。研讨和试验结果标明,硅藻土能起到除臭剂的作用。假如在硅藻土中增加氧化钛制成复合材料,能够长期消除异味和吸收、分化有害化学物质,并能够长期坚持室内墙面清洁,即便家中有吸烟者,墙面也不会发黄。 C. 医疗保健功用:硅藻土装饰材料还能够吸收和分化导致人过敏的物质,有医疗功用。硅藻土饰材对水分的吸收和开释能够发生瀑布作用,将水分子分化成正负离子。正负离子群在空气中四处浮游,有灭菌才能。一起由于硅藻土有优异的防潮及防霉变的功用。所以能够有用按捺细菌的繁殖和延伸。 D.防火功用:由于是由彻底的无机物质所组成,所以硅藻土具有不燃性,不会发生有害气体。在1300℃的高温下硅藻土会溶解,可是不会着火和发生烟雾。 E.隔热、保温功用:粉状的纤细孔能发挥高度的隔热性和保温性。热传导率为0.1cal/mn℃,具有灰浆土10倍的隔热、保温功用。 F.隔音功用:硅藻土的纤细小孔能够吸收声响,吸音、隔音作用很高,能够代替吸音板。 G.美化功用:硅藻土饰材具有极强的意匠性,使用传统东西和工艺,经过手工操作能够表现出自然力、艺术感染力的个性化的饰面作用。为您营建愈加漂亮、舒适的生活环境。
锌灰分离机功能介绍
2018-04-26 18:15:29
锌灰分离机设备内物料的运行是靠风机完成的且是负压运行,没有粉尘逸出,所以可达到环保要求,设备结构紧凑自动化程度高,占地面积小(16平米),工作效率高,占用人工少(2人可操作),生产成本低,回收率高(金属回收率80%-95%)改善了工人的工作环境,所以得到了用户的好评。锌灰锌渣是热镀锌厂和电解锌厂在生产过程中产生的一种副产品,主要成分为氧化锌,金属锌和部分杂质.其中氧化锌和金属锌都有着较高的经济价值,但是必须把它们分离开才能使用.传统的处理工艺和设备污染大,回收率低,工作效率差,工作环境恶劣,处理成本高.很难达到国家环保要求.氧化锌及杂质(直接销售或进一步加工制取氧化锌,氯化锌,硫酸锌等)
阐述:门窗产品的功能性质量
2019-03-12 10:12:51
门窗是居室中最引人重视的内容,它不只关系到采光、通风、密封等功能需求,也关系到线条、色泽等建筑装修需求,更代表主人的审美情味甚至抱负的延伸、心灵的皈依。门窗在居室中是一个静态的物质,但带给主人的是动态的感触。在我国古文明中,门窗既是建筑的表现手法,也是画中有诗的道具。门窗作为一个职业独立存在时,门窗的文明概念也构成了有必要。与其它职业的开展相同,当门窗注入了文明内在时,门窗业的竞赛也进入了高层次的竞赛。 与人们的日子休戚相关,门窗的文明也与时髦、档次等社会的盛行价值观密不可分。什么是时髦日子?什么是档次日子?社会上纷论繁复,但就其注入的内在来讲,无非是表现以下三个方面:高品质的运用质量、引领盛行潮流和特性张扬、代表前展的文明层面。这三个方面是一个产品步入文明竞赛的有必要,也是一个品牌赖以构成和存在的根底。作为一个工业产品,要构成品牌概念的时分,除运用质量有必要优秀外,还有必要要有共同的特性文明。
门窗业界助怎么到达和深化上面三个方面的内容,是咱们业界所有必要考虑和处理的。北京美驰门窗公司在各界的支撑与关心下,以时髦门窗规划理念、打造民族品牌为己任,取得了注目的成果。
门窗产品的功能性质量源自规划质量、加工质量、装置质量和服务质量几个方面,下面别离做一简略的论述。
1、规划质量:产品功能性质量首要来源于产品的规划质量。全体上看,我国门窗业现有两大规划阵营:一是我国传统的门窗结构规划和窗型规划;二是九十年代中期引入我国的以欧式窗特别是德国窗结构为主的规划。传统的门窗在工业化进程中没有得到长足的开展,已逐渐地被筛选,而以塑钢窗为代表兴起的新一代欧式窗,从结构上满足了底子的运用要求。在国家工业政策的引导下,2000年塑钢窗的产值到达了空前的高度,但尔后其商场占有量一向呈下滑趋势,底子的原因是低水平的制作工艺改变了人们对它的知道,当然也和铝合金的改善是分不开的。干流门窗的体系规划方面,我国简直都是学生。塑料窗以veka为代表,铝窗以旭格为代表,木窗以美驰引入的68系列为代表。这三种窗型占有了悉数门窗商场90%。这种体系的规划的质量是国内门窗业同享的。看看现在的一些门窗厂商简介,十有是引入了欧洲的技能或设备。表面上看体系的规划质量差异不大,但现实并非如此。首要是对引入体系的了解,其次是对引入体系的改善。一些从不出国门的厂商大谈欧式门窗的体系,常常会引起一些业界的笑话。如门窗体系中的气压平衡原理,被一些厂商拿多道密封向商场推广其优胜的密封。有些厂商在核算门窗最大答应面积时,只考虑玻璃的抗风压才能,而不核算是否超出玻璃压条最大负荷。
只要正确的了解,才有或许进行合理的改善。例如欧式窗中配纱网的较少,也没有外开,而这种本地化的需求在做一些科学的改善后均可完成。这种细微的改善使产品的差异化加大,为共同性创造条件。
规划质量的还有一个层面是有用窗型规划。咱们业务人员最常诉苦的一名话就是“他人小厂都能这样做咱们为什么不能做”。欧洲门窗体系规划中对窗型规划有严厉的要求,塑钢窗的代表veka公司加工手册中明确规定门的高度应为2200mm,单块玻璃最大答应面积为四个平方,但商场上超越这两个标准的门窗举目皆是。如咱们在马路上随意昂首看一眼,就能发现许多窗型规划上的缺点:切割份额不协调、敞开面积不行等等,更有甚者在安全上考虑不周,超大超高的窗型都敢做。门窗的单体跨度一定要核算简支梁的惯性距,扁钢做成横挺想起到加强运用,是毫无作用的。这种常见的规划缺点在一些有适当规模的厂商也适当遍及,不知道他们把客户的满足与安满是怎么考虑的!
2、加工质量:塑钢窗在国外是作为一个老练工业进入我国的,业界助士都知道,进入我国的大多是德国的门窗的体系和工艺设备,但这些仅处理了根底工艺,对工艺的操控才能各厂商各自有不同的操控水平,这也决议了相同的材料相同的设备做后的质量彻底不同。估且不管那些偷工减料、出产现场连卫生都不能确保的厂商。高级门窗中,木窗对环境和设备的保养要求更高:除尘、刀具、打磨、油漆,有一个环节不细心,门窗的质量则受影响。美驰公司在门窗的加工方面力求比他人细心一点、仔细一点、担任一点来打造精品。
3、装置质量:门窗的装置行内助士都认为是十分简略,其实也存在许多问题。如许多厂商用四边都打胀大螺栓的办法固定窗框,这是不科学的。依照欧式门窗的装置办法,左右两头用胀大
铝型材废水处置中的功能体现
2019-03-01 09:02:05
细说铝型材废水处理中的具体功用表现,铝揉捏供应商为你教学:将调理池的池型分为间歇跟继续两种。人工调理时需将调理池分红两格,每格池废水的逗留韶光为轮番间歇使用,以便于人工调理;自动调理只需一格调理池,由于铝型材废水含有大批的铝,而铝在溶液中呈情况铝首要存在形状为氧化铝成为Al3+的重要存在状况;大部分氢氧化铝便水解为带负电荷的络合阴离子。所以,在工调必需将pH值操纵在恰当的领域,以使铝能以氢氧化铝的形状足够沉淀。深圳铝型材出产进程首要包括对成型铝材的脱脂、碱蚀酸洗、氧化、封孔及上色,而经上述工序处置后的型材均需用水进行清洗,这部分型材清洗水以溢流形式排出清洗槽,是铝型材厂废水的首要来源。
断桥铝窗的分类及其功能特点
2019-01-11 10:52:02
断桥铝窗的款式很多,从功能特点上也不尽相同,选择时较好根据自己的需要合理搭配,这也是节省花费的重要环节。 平开窗:是一种传统的窗型,应用范围也较为广泛,内开、外开两种。内开启便于擦窗,但开时占据室内空间,如果制作不合格,雨天会向内渗水。向外开的窗扇防水性能好,开启时不占室内空间,但大风雨天容易受损,对五金配件要求较高。平开窗较大的特点就是密封性能好,窗扇能够全部打开,便于通风、结构简单;缺点是五金件成本较高,价格较贵。 推拉窗:分左右、上下推拉两种。推拉窗有不占室内空间的优点,但通风面积受到一定限制,密封性也没有平开的好,所以断桥铝材质的窗,推拉形式的一般不采用。 射窗:射窗的结构与平开窗相似,只是铰链(合页)安装的位置不同,是安装在顶部的。射窗比较适合厨房、卫生间等小窗户或有中央空调的宾馆、写字楼,有时是与平开窗、推拉窗配套使用的。 翻转平开窗:也就是平开上悬窗,这是德国应用较广泛的窗型,其技术含量相对较高。它通过转动执手选择门窗的关闭,向内平开及顶部向内上悬,从而达到密封、通风、适量通风及防盗的目的。其五金配件多为国外进口,价格相对较高,也是现在家居门窗装修选择较多的一种窗型,引领潮流。 平开(推拉)窗:类似于平开(推拉)窗,只是因其尺寸较大,因而需要更大断面的型材及更大强度的五金件,价格也就相对更高。