氯化锌生产工艺
2019-02-14 10:39:49
氯化锌(ZnC12),白色棒状、粒状或粉状晶体,密度2.91 g/cm3,熔点283℃,沸点723℃,无味,潮解性强,能自空气中吸收水分而溶化。 氯化锌易溶于水,水溶液呈酸性;能溶于甲醇、乙醇、丙醇、等含氧有机溶剂;及溶于、等含氮溶剂;还具有溶解金属氧化物纤维的特性;不溶于液。熔融的氯化锌具有很好的导电功能。氯化锌有毒性,腐蚀性很强,应密闭储存。 氯化锌产品用于电池工业作电解质,出产活性炭的活化剂,在有机工业中用作聚腈的溶剂及有机组成的脱水剂、缩合剂,石油工业用作净化剂,染料工业用作显色稳定剂、活性染料和阳离子染料的出产,印染工业用作媒染剂、丝光剂、上浆剂。此外,还用于造纸、木材防腐、医药、纺织、电焊、电镀、颜料等工业部门。 氯化锌的出产工艺流程如下图所示。 现在,我国氯化锌出产大都选用锌浮渣、锌烟尘、锌铸型渣,也有选用锌锭或氧化锌(含Zn0 90%)为质料,工艺简略,产品质量好。可是,跟着工业的开展,锌锭和氧化锌求过于供。因而要寻觅扩展氯化锌工业开展的途径。我国菱锌矿资源丰富,亟待开发使用。研讨使用菱锌矿直接出产氯化锌是开展氯化锌工业的途径之一。 用菱锌矿出产氯化锌的关键在于原矿杂质含量高,
铝电解生产工艺技术(三)
2019-01-25 13:38:15
2.铝电解生产的主要设备—铝电解槽简介 (1)铝电解槽的演变在铝电解工业中,电解槽的大小,一般也称电解槽的容量,皆以其电流强度的大小表示。铝电解槽的电流强度,也是经历了由小到大逐步增加的过程。第二次世界大战前,世界各国铝厂的系列电解槽的电流强度,在2-5万安培,战后到1952年发展到6-8万安培。20世纪80年代初期发展到15-20万安培,目前则已达到30万安培以上,并已开始研究开发更大容量的电解槽。 ①第一阶段(初期的预焙槽) 在铝电解法投入工业生产初期,电解槽很小,电流强度低,使用的阳极是预焙的石墨或碳素制成的,阳极电流密度高达6-7A/cm2,电耗增高至90000 kW.h/t铝,生产成本高,铝价昂贵。例如,1888年时用于生产的是4000A的电解槽,电解槽有一个方形阳极,阳极电流密度为6.4A/cm2,槽电压为10V,电耗为42000kW.h/t铝。但1933年时电解槽的电流强度就已经达到55000A,有预焙阳极22块,阳极电流密度降至1.01A/cm2,电耗降至20000 kW.h/t铝。 ②第二阶段(旁插槽) 早在1923年挪威就开始采用8000A的旁插槽。美国在1927年开始用直径为2.lm、高1.5-1.6m的圆形旁插阳极,其电流强度为25000-30000A。以后旁插槽逐渐发展,直到取代初期预焙槽。当时的旁插槽具有如下特点: a.阳极数目少,操作简易,能适应大一些的电流强度; b.阳极不需预制,省去了成型和焙烧过程,无残极,阳极成本下降; c.电解槽安装了密闭装置,环保和劳动条件有所改善。 图2是旁插槽的示意图。
[next]
③第三阶段(上插槽) 上插槽在20世纪40年代开始试用,60年代初期扩展到一些产铝国家。与旁插槽相比它的优点是: a.导电系统进一步有所简化; b.电解槽和阳极的操作便于机械化、自动化; c.集气罩密闭性好,抽出气体量小,有利于净化处理; d.能适应大一些的电流强度。 上插槽也有严重不足之处: a.电解槽上部结构,阳极提升机等机械设备复杂; b.二次阳极烧结质量不好,影响生产效率,电耗较大,阳极事故相对较多; c.在集气罩里的阳极侧部易氧化,易产生裂纹和裂缝。 图3是上插槽的示意图。 ④第四阶段(现代预焙槽) 预焙槽有两种类型,一是边部加料式(如图5-7所示),一是中间加料式(如图5-8所示)。初期预焙槽经过很多改进,并用现代科学技术进行装备,出现了现代预焙槽,目前世界上新建铝厂几乎全部采用现代预焙电解槽。它的优点是,能适应更大的电流强度,电耗更低,上部结构简单,机械化自动化程度高,环保条件好。缺点是有15%-20%的残极需处理,阳极要事先预制好,这就使阳极的成本大为提高。图4和图5分别为边部加料预焙槽和中间加料预焙槽的示意图。[next] (2)铝电解槽的构造简介目前世界上有四种类型电解槽,除连续预焙阳极电解槽外(目前只有法国一家电解铝厂),现分别就其余三种类型四种结构的电解槽作简要介绍。 ①阳极结构 旁插自焙阳极电解槽的阳极外有用于阳极成型和保护阳极的铝。铝壳通常用厚度约为1mm的铝板制成,沿阳极四周围成高1m左右的无底方箱状。在生产过程中铝壳和阳极碳素一起消耗,定时用铝铆钉接合新铝壳予以补充,阳极糊就加在铝壳箱内。阳极借助自身的电阻热和电解质熔液传给的热量一边工作,一边焙烧成型。阳极侧下部钉有钢制阳极棒,同时起导和承载阳极质量的作用,阳极棒随阳极消耗而下降,因此,需进行周期性地拔、钉棒工作。最下一排阳极棒的头部卡入一个特制的U形吊环内,通过用槽钢焊成的阳极框架及滑轮组吊在阳极提升机的升降装置上,并通过四个金属支柱支撑包括阳极在内的整个上部结构的质量。
氯化法钛白粉的生产工艺过程
2019-02-13 10:12:33
氯化法关于硫酸法而言是一个技能进步,它能够高效率的接连化、自动化操作,产品质量好,直接排放的“三废”比硫酸法少得多,这是它能够取而代之硫酸法的根本原因。可是氯化法“三废”少首要取决于它的质料,大部分氯化法工厂运用的质料是TiO2含量95%以上的天然金红石或TiO2含量90%左右的人工金红石和钛渣,只要美国杜邦公司的氯化法工艺运用TiO2含量60%~84%的混合矿,当然这种工艺的“三废”排放量要比运用天然金红石和人工金红石或钛渣工艺的高,氯化法一般只能出产金红石型。
氯化法的工艺流程比硫酸法短得多,首要包含制备、的氧化和二氧化钛的表面处理三大部分。
1、的制备与精制
氯化法对质料的要求比硫酸法严苛得多,它要求运用TiO2含量在90%以上的钛矿,现在常用的有天然金红石矿、人工金红石和高钛渣。氯化法对矿粉的细度和湿度要求比硫酸法严,由于在欢腾氯化时要使质量较重的钛矿和质量较轻的石油焦或焦碳都能顺畅的流态化,矿粉细度的均匀是很重要的,此外湿度大水分含量高,在氯化进程中会发作氯化氢和氯化氧钛,前者会腐蚀设备,后者会阻塞管道、阀门。
二氧化钛的氯化反响是一个可逆的吸热反响,并且有必要有还原剂的存鄙人才干进行,不然温度高达1800℃也无法氯化,反响式如下:
TiO2+C+Cl2→TiCl4+CO(CO2)
从上式能够看出反响的副产物不只要CO,也可能有CO2,一般反响温度在700℃以上,以生成CO为主,反响温度在700℃以下,以生成CO2为主,因而测定炉气中的CO/CO2比值,能够把握炉内的氯化情况。
曩昔那种旧式的固定床氯化法,现在已被欢腾化炉替代,固定床需求事先把金红石矿与石油焦按必定份额(钛渣:石油焦:沥青=7:2:1)混捏制团焦化,不利于接连化、自动化操作。大型欢腾氯化炉直径2~6m,内衬耐火砖,枯燥的金红石矿(或钛渣)在氯化炉内先用空气使其流态化,并加热至650℃左右,然后参加枯燥的焦碳或石油焦(金红石:石油焦=78:22),待温度升至900℃时用气化氯替代空气进入欢腾炉内,接着金红石矿(或钛渣)与焦碳(或石油焦)按必定的份额在坚持欢腾床必定高度的情况下连续参加,让氯化反响按必定的速率进行(的气速一般为0.1~0.15m/s)。氯化反响一般维持在950~1000℃,正常出产时运用收回氯,缺乏部分用新鲜氯弥补,假如反响温度超越1000℃,有可能使矿粉与反响的杂质氯化物烧结而形成死床,在这种情况下能够通入枯燥的氮气来降温。
在二氧化钛氯化的一起,矿中的杂质也参加氯化反响生成FeCl3、SiCl4、AlCl3、VOCl3、MnCl2、NbCl5、SnCl2、MgCl2等,在反响气体出来冷却到200℃左右后,大部他杂质的氯化物冷凝在炉灰上而沉降下来,气体经过滤进一步冷凝到-12℃左右以尽可能的收回(通常用冷喷淋),不凝性气体首要是CO、CO2、H2、余氯和微量的,经气体处理设备用碱液吸收后排放。这种粗是一种红棕色的污浊液体,在氯化前要经过蒸馏来精制。
由于卤化物比较简单分级提纯,所以氯化法钛的纯度比硫酸法高,这是它的首要长处之一。TiCl4的沸点是136℃,大都氯化物的沸点都与它有必定的间隔,高于此沸点的首要有FeCl3、AlCl3等,低于此沸点的有SiCl4等,唯有钒的氯化物的沸点与它附近,工业出产中能够用传统的铜丝塔精馏除钒,或用不饱和矿物油处理成不挥发物后,再精馏后取得钒含量(以V2O5计)<×10-6级高纯液体,该液体无色通明、沸点136℃、凝固点-24℃、相对密度(20℃)1.726.
遇水会当即发作激烈的放热反响,发作很多的白色HCl烟雾而污染环境、灼伤皮肤、影响粘膜、损害呼吸道安排、腐蚀设备,因而一切设备都要求严厉密封、禁止走漏。遇水的反响式如下:
TiCl4+H2O→TiOCl2+2HCl+Cl
2、的氧化
氧化是氯化法工艺中心,的氧化是气相反响,反响温度高达1400~1500℃左右,TiCl4生成TiO2的反响时间只要几毫秒,不像硫酸法从H2TiO3生成TiO2那样需求煅烧10余小时,其化学反响式如下:
TiCl4(气)+O2(气)→TiO2[金红石(固)]+2Cl2(气)
氧化前先将精TiCl4液体在150~200℃下加热气化,分步或一步预热到900~1000℃,氧气相同也要预热到此温度,两者按必定份额一起喷入氧化器内。氧化时的另一个技能要害问题是怎么添加AlCl3,AlCl3是金红石型二氧化钛的成核剂(又能够称为晶种),也是促进剂,不加AlCl3反响生成TiO2粒子较粗(0.6~0.8μm),参加必定量AlCl3(0.9%~1.5%)后所生成的TiO2粒子较细(0.15~0.35μm).参加的方法有:一种是事先把AlCl3溶解在TiCl4内,随TiCl4一起蒸腾气化;另一种方法是在高温下向熔融的金属铝箔或铝粉中通入,所发作的AlCl3蒸气与TiCl4蒸气一起混合进入氧化器内。
由于反响生成的TiO2是在几毫秒(0.05~0.1s)内发作的,所以为了避免TiO2晶体的高温下迅速增长和彼此粘结而结疤,初生的TiO2晶体有必要争剧降温,以极高的流速经过冷却套管用低温循环氯在数秒钟内从1400~1500℃冷却至600℃左右,这一进程也很难把握然后二氧化钛等反响物经旋风分离器进一步冷却后进入高温袋滤器把二氧化钛搜集下来,含氯量在70%~80%左右,可回来氯化工序运用。
为了避免二氧化钛在冷却套管中堆积附着于管壁而下降传热作用,可在管内导入煅烧TiO2或石英砂来清洗,可是煅烧TiO2颗粒粗硬,混入产品中较难除掉,美国专利USP5266108中主张选用压力机或压力辊,把二氧化钛粉末压成细密的二氧化钛颗粒,用这种二氧化钛(用量0.5%~15%)来清洗,很简单从头破碎成普通颜料级二氧化钛的粒度,不影响后加工进程。[next]
由于在氧气中焚烧所放出的热量缺乏以使炉内的物料上升到氧化所需求的温度,因而需求供给辅佐热源协助升温,焚烧的、(或二)及等离子火炬、激光都能够运用,但等离子法能耗太高,所以一般运用或,焚烧时会有部分水分子生成,正好能够成为重生的TiO2晶核,取到一箭双雕的作用。辅佐加热的方法有内加和外加热2种:内加热因要在反庆物的气流中吲入焚烧气体,会使浓度下降而添加循环收回时的难度;外加热由于会形成炉壁过热而结疤的疫病更趋严峻,下表为氧化时的能量转化数据。
氧化时的能量转化温度/℃ΔH/kJ/molΔG/kJ/mollgKp827
1027
1327-174.7
-174.7
-170.9-116.0
-105.4
-90.05.51
注:Kp=P[Cl2]2/P[TiCl4]P[O2]
氧化反响器是氯化法的要害设备,有立式和卧式两种,技能杂乱难度高。首先在高温下腐蚀性很强,在1000℃以上的温度下对一切材料的强度、耐温、耐腐蚀功能要求很严厉,(国外通常用一种报价昂贵的Inconcl 600型镍基合金);其次TiCl4、O2、AlCl3不只混合要均匀,并且混合喷入的速度很快,国外材料介绍为150~200m/s,这样高速混合的工艺和设备难度很大;而要在几毫秒内使用操控反响物的停留时间来调整TiO2的晶粒大小是十分困难的;别的氧化体系有必要紧密正压操作,整个氯化-氧化出产进程闭路联动循环,出产环节紧紧相扣又互相制约,有一处出问题就会影响大局。一条15kt/a的氯化法出产线,以每年300个工作日,2t/h二氧化钛核算,氧化反响器每小时要耗费5t、60m3氧气、0.1t三和3.5t尾氯(浓度80%以上)。
为了避免氧化器的喷嘴和反响器内壁结疤,各供应商研讨了许多方法,首要有喷砂(盐)法、多孔反响器壁法、机械刮刀法、惰性气体保护法等,实践出产中好像喷砂法较多,下图为一种氧化器的示意图。 3、二氧化钛的表面处理
氯化法金红石型二氧化钛也需求进行表面处理,尽管有气相干法表面处理的报导,但实践出产中没有选用,工业上仍以湿法表面处理为主,其处理方法、处理剂和处理进程与硫酸法相同,所不同的是氯化法二氧化钛颜料的表面吸附有少数的余氯,有必要除掉后才干进行表面处理操作。脱氯能够用热空气或含有0.1%的蒸汽处理,接着再用含有空气的蒸汽处理即可到达脱氯的意图,也能够选用水洗的方法除氯。
氧化铝生产工艺技术(三)
2019-01-25 13:38:15
主要生产过程简述如下。 ①原料准备系统 为熟料烧成准备原料——生料浆,要满足水分、配比及细度的要求。 由矿山来的铝矿石先经破碎、均化及贮存达到粒度小于15mm及化学成分稳定的要求,然后送入管磨机中进行生料浆磨制,同时加入磨机中的物料还有5种:工业碱粉(补充生产过程中碱的损耗)、脱硫用煤(在烧成窑中脱硫)、石灰(与SiO2反应用)、蒸发母液(循环碱液)及硅渣(生产过程中间产物)。本工序控制的主要技术指标是:料浆水分38%;细度120#筛残留
90%,Na2O>93%。 ④调整液配制 虽然熟料中的有用成分能溶解于热水中,但为了溶出泥浆的稳定性避免二次反应损失,要保持溶出液有一定的Na2O浓度及苛性比值,这就要靠调整液来完成。配制调整液就是把四种溶液按比例掺配,以满足对调整液的要求。这四种溶液是氢氧化铝洗液、种子分解母液、赤泥洗液及碳酸分解母液。配制所用的设备是贮槽及泵。 ⑤赤泥分离及洗涤 将固(熟料溶出后的残渣——赤泥)液(溶出后的溶液——铝酸钠溶液)混合物进行分离并将赤泥进行洗涤的过程称赤泥分离及洗涤。分离得到的溶液称粗液,送中压脱硅工序处理;洗涤后的残渣——赤泥送堆场或水泥厂,赤泥可做水泥制造的一种原料。对这一过程的要求是“快速”,尽力缩短固液接触的时间,以防固液之间发生二次反应,使溶液中的氧化铝再返回固相中。这一过程通常用的设备是沉降槽、真空过滤机。本工序控制的主要技术指标是:分离沉降槽底流固体含量百分数30%-40%;过程温度95℃;弃赤泥附液中碱含量Na2O≤5kg/t干泥。[next] ⑥溶液脱硅 这是对溶液进行净化的一种手段。根据对净化后溶液的质量要求不同,可采取一段脱硅(中压脱硅)及二段脱硅两种方法。中压脱硅即将粗液(加入硅渣种子及部分种分母液)加热到170℃并保持1.5-2h,使溶液中的组分发生化学反应产生固相硅渣,进而将硅渣分离出去返回配料,将溶液进行控制过滤分离出细小的固体悬浮物后即得精制液,送往分解工序处理。中压脱硅使用的主要设备是脱硅机、分离沉降槽及叶滤机。 二段脱硅系将中压脱硅所得的分离沉降槽溢流,加入石灰乳在常压下再搅拌反应2h,使溶液中的SiO2进一步以固相析出,得到更纯净的溶液,此时溶液中A12O3/SiO2(质量比)可达1500,然后再分离固相及液相。一般情况下都使用一段中压脱硅,当对氧化铝产品有特殊要求时才采用二段脱硅。 ⑦种子分解 烧结法中采用种子分解的目的是获取苛性溶液(种分母液),以返回使用保证溶液的安定性,同时获得固态氢氧化铝是其副产品。种子分解的分解率低(小于50%)、分解时间长(55h以上)、占用设备多是其不足。种子分解所用设备及工艺流程与拜耳法的相同。 ⑧碳酸分解 与种子分解相比,碳酸分解的分解率高(大于90%)、分解时间短(2-3h)、所用设备少。但是,分解后所得的溶液(碳分母液)是Na2CO3水溶液,只能经过蒸发浓缩后,再经原料磨配料后在烧成窑中与矿石中的成分起反应。碳酸分解所使用的主要设备是碳分槽,可间断分解也可连续分解。分解所使用的CO2气体来自经净化后的石灰炉烟气,其浓度为CO2>38%(体积百分数)。 当前在运行的处理铝土矿的烧结法厂有3个,联合法厂有7个,处理霞石矿的有3个厂。 烧结法存在的问题主要是能耗高,工艺综合能耗为46.05MJ/t氧化铝。主要技术经济指标为:氧化铝总回收率87%;铝土矿单耗2t/t;石灰石单耗1.8t/t;苏打单耗108kg/t;焦炭单耗95kg/t;烧成煤单耗770kg/t;生料加煤量100kg/t;焙烧耗油量78kg/t;电力消耗450kW.h/t;蒸汽单耗4.2t/t;压缩空气消耗980m3/t;新水消耗18t/t。[next] (3)联合法联合法是将拜耳法与烧结法联合使用生产氧化铝的方法,方法的最大特点是可用烧结法系统所得的铝酸钠溶液,来补充拜耳法系统中的碱损失。方法适于大规模生产和用于处理A12O3/SiO2=5-7的原料。 联合法有三种形式,即并联法、串联法及混联法。世界上只有美国、前苏联和中国采用联合法,美国曾用过串联法,中国开发了混联法。 ①并联法 并联法是指拜耳法与烧结法平行地进行,各自处理高品位及低品位的矿石,各自排出自己的废渣——赤泥。拜耳法与烧结法互为利用的方面是:拜耳法析出的碱不设苛化来处理,而是送烧结法配料;拜耳法的碱耗用烧结法的铝酸钠精液来补充;拜耳法与烧结法生产出来的氢氧化铝合并洗涤而焙烧。 使用并联法时,工厂必须要有高品位矿及低品位矿的供应,高品位矿供拜耳法处理,低品位矿供烧结法处理。 ②串联法串联法是指拜耳法与烧结法的串联,矿石先经拜耳法处理,产出的残渣—赤泥再经烧结法处理,最终的残渣由烧结法排出。 该生产方法与纯拜耳法及纯烧结法的不同点是: a.拜耳法的赤泥不外排而是送烧结法配料,再经烧结法处理,配料时不加矿石; b.拜耳法生产过程中循环积累起来的碱(Na2CO3)析出后,不设苛化处理而是送烧结法配料,简化了拜耳法工艺流程; c.烧结法产出的铝酸钠精液不设碳酸化分解处理,而是送往拜耳法种子分解工序,简化了烧结法工艺流程又补充了拜耳法的碱耗。 串联法的优点是:矿石经二道处理,矿石中氧化铝的回收率高;拜耳法部分的能力大,烧结法部分的能力小,故使工厂投资较小、产品成本较低。 目前,在世界上只有惟一的一个串联法生产厂—哈萨克斯坦的巴夫洛达尔氧化铝厂。该厂也是经过了多年研究、改进,终获成功。该厂的工艺流程如图3。[next]
钛白粉生产工艺技术——氯化法生产技术
2019-02-15 16:44:47
氯化法技能的首要过程如下: ①氯化,用在复原气氛下氯化钛质料; ②精馏,冷凝、精馏提纯; ③氧化,氧化生成Ti02。 一起,还有各种经过水解TiCl4的工艺计划,但这些工艺都无商业经济价值。氧化工艺其优势地点是可循环运用,即此阶段发生的可收回返回到氯化工序中。 1.氯化 在氯化法出产钛工艺中首先要出产(TiC14)。其出产是用钛质料与烧结的石油焦饼和经预热的混合,并在800-1 000摄氏度的温度条件下反反响。其一般的氯化反响器是选用流化床反响器,也有其他的一些反响器。 氯化反响器选用钢衬耐火材料,其内部选用夹套冷却,和在高温条件腐蚀性极强,所以,乃至是选用高质量的耐火材料,其运用寿命也有限。 石油焦中的碳在氯化反响中的首要意图是移走钛矿中的氯,所以尽可能削减与金属反响的氯含量,复原剂存在Ti02的氯总是满足的。 起先的反响热是由电能供给的,运用石墨电极,开端反响时需求很多的热量,在进人氯化反响器时,焦饼与Ti02的份额需求细心操控。温度太低,TiO2变成TiCl4转化率低。其未反响的穿过反响器,而利用率低;温度太高反响器材料将熔融,阻塞气孔。 现在有部分公司具有运用钛精矿和高钛渣或金红石或板钛矿混合进料技能与商业出产能力。其进料的矿可达Ti02 60%含量,其意图是下降质料的出产成本。其他的氯化公司选用掺和质料量不能低于Ti02 85%。并且要求具有低MgO, CaO的天然金红石、人工金红石、钛渣。若Ca, Mg太高,在氯化时,构成液体氯化物如MgCl2、CaCl2会阻塞流化床排渣,形成出产不正常及停产。 从氯化反响出来的气体,不只有TiCl,和二氧化碳,并且有焦饼灰和从质猜中杂质发生的不同氯化衍生物,FeCl3、SiCl4、ZrC13、MnCl2和VOCl3等。从反响器出来,气体经过袋滤气别离尘埃,再经过冷凝器坚持200℃温度别离掉首要的FeC13。倘若选用钛精矿与板钛矿掺和进料,此间别离的FeCl3量显着增多,带来废副处理量大的问题。 2.精馏提纯 此段是冷凝并提纯Ti02气体。该气体从氯化反响器出来后,经过可调喷雾冷却和冷凝;其意图是使气体温度降到13摄氏度,刚好是TiCl4的沸点,在此条件下FeCl2、MnCl2、CaCl2、MgCl2以固体办法别离掉,并得以移出。 冷凝别离出大部分固体杂质后的TiCl4气体依旧含有许多与其沸点相似的杂质如SnCl4、Sicl4、FeCl3、MnCl2和VOC13等,削减这些杂质的量是氯化钛操作之要害因素之一。 别离VOC13是经过用亚铁或矿物油的络合办法进行。用H2S在90℃处理含杂质TiCl4,复原VOCl3成VOCl2,这以后以硫化物的铁、钒沉积别离,将AIC13转化成络合盐而别离掉。 过滤出杂质沉积的TiCl4经过进一步的细心操控蒸馏进行精制,以取得纯的TiCl4,在此处可作为商等第出售,或作为钛厂的中间产品,其质量为98. 5%,首要的微量杂质是CoCl2、SiCl4、VOC13。 3.氧化 此工段是将TiCl4与空气或氧气进行氧化反响,生成纯的TiO2和。氧化温度低于600℃时,其反响速度微乎其微;超越此反响温度反响敏捷添加,终究反响温度范围在1300-1800℃。氧化反响对产品的细度及质量是操控的要害。[next] 与在所运用的氧化温度条件下腐蚀性极强。一般的反响器选用不锈钢衬耐火材料做成。氧化反响热不能坚持满足的反响温度,有必要供给辅佐热量,一般的做法有:①TiC14和氧气/空气与少数蒸汽混合,别离预热到所需的温度,并别离进人反响器;②经过焚烧CO成CO2供给辅佐热;③氧气经过电火花加热。 在氧化时,为添加TiO2的产率,一般加晶种以促进TiO2的生成,AICI3是一个常见的辅佐材料被加到TiC14进猜中,氧化时以固体颗粒的办法生成Al203以供给所需的晶种,也可在氧化时的空气或氧气中喷人液滴,作为晶种以促进TiO2颗粒的生成。 氧化易形成Ti02结疤于反响器器壁、气体进口喷嘴及其他一些表面上,因而,有必要进行防备。在氧化工艺是非常棘手的。生成的TiO2敏捷稳定地黏附在氧化反响器器壁上、进口喷嘴外壁上,并不彻底被气体带走。 一些工厂选用接连的氮气维护其反响器气体进口部分、坚持其冷却以避免Ti02结疤沉积。也有用砂和砂烁防结疤的办法。氧化炉结疤的困难尤其是在小设备上最难战胜。锦州铁合金厂年1.5万吨氯化法钛白设备是现在全球最小的出产设备;经过该厂多年的尽力,已根本战胜氧化炉结疤之困难;由本来几小时运转周期进步到现在的接连运转11天。其除疤办法是氧化炉气膜维护和加盐除疤。 在将反响物料敏捷冷却之后,钛与气体选用旋风、布袋、电除尘等过滤进行别离。排出气体经冷凝收回,以办法贮存,并循环回氯化工段再用。 从滤器中别离出的TiO2含有很多的吸附氯,需经过加热移去,最常用的为蒸汽处理,氯被洗出并转化成,再进一步处理是用含0.1%的蒸汽除去微量的氯和得到TiO2。 TiO2终究从过滤器取出,在水中浆化,进行湿磨,进行解聚,再送人后处理进行加工,其工艺与硫酸法相同。 4.物料平衡 其首要化学反响如下:
钨铁生产工艺
2019-01-18 13:27:13
结块法
结块法采用可在轨道上移动、炉体上段可拆的敞口电炉,用碳作还原剂。精钨矿、沥青焦(或石油焦)和造渣剂(铝矾土)组成的混合炉料分批陆续加入炉中,炉内炼得的金属一般呈粘稠状,随着厚度增高,下部逐渐凝固。炉子积满后停炉,把炉体拉出,拆除上段炉体使结块冷凝。然后取出凝块,进行破碎和精整;挑出边缘、带渣和不合格的部分回炉重熔。产品含钨80%左右,含碳不大于1%。
取铁法
取铁法适用于冶炼熔点较低的含钨70%的钨铁。采用硅和碳作还原剂;分还原(又称炉渣贫化)、精炼、取铁三个阶段操作。还原阶段炉中存有上一炉取铁后留下的含WO3大于10%的炉渣,再陆续加进多批钨精矿炉料,然后加入含硅75%的硅铁和少量沥青焦(或石油焦)进行还原冶炼,待炉渣含WO3降到0.3%以下时放渣。随后转入精炼阶段,在此期内分批加入钨精矿、沥青焦混合料,用较高电压操作,在较高温度下脱除硅、锰等杂质。取样检验,确定成分合格后,开始取铁。过去用钢勺人工挖取铁块投入水池,60年代初吉林铁合金厂改用机械取铁装置,改善了劳动条件。取铁期内仍根据炉况,适当地加进钨精矿、沥青焦料。冶炼电耗约3000千瓦•时/吨,钨回收率约99%。
铝热法
近年来,为了利用废硬质合金粉末钨钴分离提钴后的再生碳化钨,研制出了铝热法钨铁工艺,用再生碳化钨与铁为原料,以铝作还原剂,利用碳化钨中自身的碳和铝燃烧的热能,使原料中的钨和铁转化为钨铁,可节约大量的电能,并降低成本。同时由于原料碳化钨中的杂质远远低于钨精矿的杂质,产品质量均高于以钨精矿为原料的钨铁。钨的回收率也高于以钨精矿为原料的工艺。
钨价昂贵,在生产过程中必须重视提高回收率,不合格产品、渣铁要收集回炉,电炉应有高效率炉气除尘设施,回收含钨粉尘。
钢铁生产工艺
2018-12-11 14:37:54
现代钢铁生产流程是将铁矿石在高炉中冶炼成生铁,将铁水注入转炉或电炉冶炼成钢,再将钢水铸成连铸坯或钢锭,经轧制等塑性变形方法加工成各种用途的钢材。 一个钢铁联合企业一般包括原料处理、炼铁、炼钢、轧钢、能源供应、交通运输等生产环节,是一个复杂而庞大的生产体系。我国的钢铁企业一般都是这样的全流程联合企业。
1、冶炼原料 原料是高炉冶炼的物质基础,精料是高炉操作稳定顺行,获得高产、优质、低耗及长寿的基本保证。 高炉冶炼用的原料主要有铁矿石(天然富矿和人造富矿)、燃料(焦炭与喷吹燃料)、熔剂(石灰石和白云石等)。冶炼一吨生铁大概需要品位为63%的铁矿石1.60~1.65吨,0.3~0.6吨焦炭,0.2~0.4吨熔剂。2、炼铁工艺 高炉炼铁是以焦炭为能源基础的传统炼铁方法。它与转炉炼钢相配合,是目前生产钢铁的主要方法。高炉炼铁的这种主导地位预计在相当长时期之内不会改变。高炉炼铁的本质是铁的还原过程,即焦炭做燃料和还原剂,在高温下将铁矿石或含铁原料的铁,从氧化物或矿物状态(如Fe2O3、Fe3O4、Fe2SiO4、Fe3O4·TiO2等)还原为液态生铁。 冶炼过程中,炉料(矿石、熔剂、焦炭)按照确定的比例通过装料设备分批地从炉顶装入炉内。从下部风口鼓入的高温热风与焦炭发生反应,产生的高温还原性煤气上升,并使炉料加热、还原、熔化、造渣,产生一系列的物理化学变化,最后生成液态渣、铁聚集于炉缸,周期地从高炉排出。上升过程中,煤气流温度不断降低,成分逐渐变化,最后形成高炉煤气从炉顶排出。3、炼钢
钢与生铁都是以铁元素为主,并含有少量碳、硅、锰、磷、硫等元素的铁碳合金,二者差别就是C元素的含量。 炼钢的主要任务包括以下几项:
1)脱碳;2)脱磷;3)脱硫;4)脱氧;5)脱氮、氢等;6)去除非金属夹杂物;7)合金化;8)升温;9)凝固成型。
炼钢工艺主要包括 1) 铁水预处理;2)转炉或电弧炉炼钢;3)炉外精炼(二次精炼);4)连铸。 炼钢过程是个氧化过程,其去除杂质的主要手段是向熔池吹入氧气并加入造渣剂形成熔渣出来。脱碳反应是炼钢过程的主要手段,硅、锰、磷、硫等元素也通过氧化反应去除。炼钢的原料有生铁、废钢、熔剂(石灰石等)、脱氧剂(硅铁、锰铁、铝等)、合金料等。4、连铸 连续铸钢是通过连铸机将钢液连续地铸成钢坯的工序。与模铸相比,连铸具有以下优越性: 1)简化工序、节能;2)铸坯切头率降低、金属收得率比模铸高7~12%;3)高效凝固;4)优化成型。
连铸工艺的流程为:钢液通过中间包注入结晶器内,迅速冷却成具有一定厚度的凝固壳而内部仍为液态的铸坯。铸坯下部与伸入结晶器底部的引锭杆衔接,浇注开始后,拉坯机通过引锭杆把结晶器内的铸坯以一定速度拉出。铸坯通过连铸二次冷却区时,进一步是受到喷水冷却直到完全凝固。完全凝固后的铸坯通过拉矫机矫直后,切割成规定长度,由输送辊道运出。5、轧钢 轧制过程是轧件与轧辊之间的摩擦力将轧件拉进不同旋转方向的轧辊之间使之产生塑性变形的过程。一般的轧钢工序可分为: 加热炉 粗轧 中轧 精轧 精整
冰铜生产工艺
2017-06-06 17:50:13
冰铜生产工艺技术,是衡量一个企业是否具有先进性,是否具备
市场
竞争力,是否能不断领先于竞争者的重要指标依据。随着我国冰铜
市场
的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外冰铜生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高
市场
竞争力十分关键。采用湿法冶金工艺从铅火法冶炼系统中产出的铅冰铜中回收铜,属
有色金属
湿法冶金领域。将铅冰铜块料磨至粒度小于40目以下;研磨后的铅冰铜用废电积液或稀酸溶液调浆后送入高压釜,液固比10∶1,并通入氧气,在氧分压0.2~1.0MPa,总压0.5~1.5MPa,浸出温度100~150℃,硫酸浓度50~150g/L,浸出时间2~6h的浸出条件下氧化浸出铜,而铅则以硫酸铅的形式留在渣中;浸出过程完成后,矿浆排出高压釜,进行液固分离,实现
金属
的初步分离;含铜的浸出液采用电沉积方法回收溶液中的铜,获得符合国标的阴极铜产品;浸出渣返回火法炼铅系统回收利用铅、银、单质硫有价元素。更多有关冰铜生产工艺的内容请查阅上海
有色
网
钼生产工艺
2018-12-10 09:44:08
3月21日消息:由于大部分钼矿石品位相对较低,因此需要采用高效率的采矿工艺,一般包括: 采 矿
大规模的露天开采;
地下矿块崩落开采,用这种方法可使大块巨石破碎,重量减小。 世界上许多钼矿的产能都很高,矿石的日运输能力最高可达50000吨。
选 矿 矿石经过一系列的破碎和研磨(球磨或棒磨)后粒径可减小至1微米(1/1000mm),这样就把辉钼矿从基质岩石中分离出来。用一些药剂(包括一些燃料和柴油)进行调浆,这些药剂附着在钼粒子表面,用作疏水剂。 浮选分离在通风槽中进行,钼粒子和悬浮在空气中的泡沫接触,精矿浮在泡沫表面进入流槽中。接着经再磨和再选环节除去其它杂质,钼精矿品位得以提高。最终的精矿含辉钼矿70 %~90%,如果需要的话,用酸浸法除去铜和铅等杂质。
焙 烧 钼精矿经过焙烧可转化为工业氧化钼,其化学反应式为: 2MoS2 + 7O2==>2MoO3+4SO2 MoS2+6MoO3==>7MoO2+2SO2 2MoO2+ O3==>2MoO3 钼精矿是在大型多膛炉或叫焙烧炉中进行焙烧,焙烧温度为600~700°C。钼精矿由搅拌耙搅动,使物料从炉床的中央向四周移动,从这里再落入下一层,然后再返回到炉床的中央,这样均匀的气流10小时内在12层或更多的炉层中不停地循环,最终产品-工业氧化钼一般含钼不小于57%,含硫小于0 .1%。 一些副产钼的铜矿中含有少量的铼(<0.10%),铼是一种金属元素,在催化剂领域铼用于生产无铅汽油,在高级超合金领域用于制造喷气式发动机的涡轮叶片。铼是在焙烧钼精矿过程中回收的一种重要的稀有金属资源。 (miki)
硅粉生产工艺
2017-06-06 17:50:01
硅粉生产工艺是投资者想知道的信息,因为了解它可以帮助操作。硅粉生产工艺是由纯净石英粉经先进的超细研磨工艺加工而成 是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。 硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。 据调查,目前国内生产硅微粉的能力约25万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2005年我国对超细硅微粉的需求量将达6万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。 硅微粉是由纯净石英粉经先进的超细研磨工艺加工而成,是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。 硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。 据调查,目前国内生产硅微粉的能力约50万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2008年我国对超细硅微粉的需求量将达10万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。 超细硅微粉具有粒度小、比表面积大、化学纯度高、分散性能好等特点。以其优越的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、造纸、日化等诸多领域得到广泛应用,并为其相关工业领域的发展提供了新材料的基础和技术保证,享有"工业味精""材料科学的原点"之美誉。自问世以来,已成为当今时间材料科学中最能适应时代要求和发展最快的品种之一,发达国家已经把高性能、高附加植的精细无机材料作为本世纪新材料的重点加以发展。 近年来,计算机市场、网络信息技术市场发展迅猛,CPU集程度愈来愈大,运算速度越来越快,家庭电脑和上网用户越来越多,对计算机技术和网络技术的要求也越来越高,作为技术依托的微电子工业也获得了飞速的发展,PⅢ 、PⅣ 处理器,宽带大容量传输网络,都离不开大规模、超大规模集成电路的硬件支持。 随着微电子工业的迅猛发展,大规模、超大规模集成电路对封装材料的要求也越来越高,不仅要求对其超细,而且要求其有高纯度、低放射性元素含量,特别是对于颗粒形状提出了球形化要求。高纯超细熔融球形石英粉(简称球形硅微粉)由于其有高介电、高耐热、高耐湿、高填充量、低膨胀、低应力、低杂质、低摩擦系数等优越性能,在大规模、超大规模集成电路的基板和封装料中,成了不可缺少的优质材料。 为什么要球形化?首先,球的表面流动性好,与树脂搅拌成膜均匀,树脂添加量小,并且流动性最好,粉的填充量可达到最高,重量比可达90.5%,因此,球形化意味着硅微粉填充率的增加,硅微粉的填充率越高,其热膨胀系数就越小,导热系数也越低,就越接近单晶硅的热膨胀系数,由此生产的电子元器件的使用性能也越好。其次,球形化制成的塑封料应力集中最小,强度最高,当角形粉的塑封料应力集中为1时,球形粉的应力仅为0.6,因此,球形粉塑封料封装集成电路芯片时,成品率高,并且运输、安装、使用过程中不易产生机械损伤。其三,球形粉摩擦系数小,对模具的磨损小,使模具的使用寿命长,与角形粉的相比,可以提高模具的使用寿命达一倍,塑封料的封装模具价格很高,有的还需要进口,这一点对封装厂降低成本,提高经济效益也很重要。 球形硅微粉,主要用于大规模和超大规模集成电路的封装上,根据集程度(每块集成电路标准元件的数量)确定是否球形硅微粉,当集程度为1M到4M时,已经部分使用球形粉,8M到16M集程度时,已经全部使用球形粉。250M集程度时,集成电路的线宽为0.25μm,当1G集程度时,集成电路的线宽已经小到0.18μm,目前计算机PⅣ 处理器的CPU芯片,就达到了这样的水平。这时所用的球形粉为更高档的,主要使用多晶硅的下脚料制成正硅酸乙脂与四氯化硅水解得到SiO2,也制成球形其颗粒度为 -(10~20)μm可调。这种用化学法合成的球形硅微粉比用天然的石英原料制成的球形粉要贵10倍,其原因是这种粉基本没有放射性α射线污染,可做到0.02PPb以下的铀含量。当集程度大时,由于超大规模集成电路间的导线间距非常小,封装料放射性大时集成电路工作时会产生源误差,会使超大规模集成电路工作时可靠性受到影响,因而必须对放射性提出严格要求。而天然石英原料达到(0.2~0.4) PPb就为好的原料。现在国内使用的球形粉主要是天然原料制成的球形粉,并且也是进口粉。 一般集成电路都是用光刻的方法将电路集中刻制在单晶硅片上,然后接好连接引线和管角,再用环氧塑封料封装而成。塑封料的热膨胀率与单晶硅的越接近,集成电路的工作热稳定性就越好。单晶硅的熔点为1415℃,膨胀系数为3.5PPM,熔融石英粉的为(0.3~0.5)PPM,环氧树脂的为(30~50)PPM,当熔融球形石英粉以高比例加入环氧树脂中制成塑封料时,其热膨胀系数可调到8PPM左右,加得越多就越接近单晶硅片的,也就越好。而结晶粉俗称生粉的热膨胀系数为60PPM,结晶石英的熔点为1996℃,不能取代熔融石英粉(即熔融硅微粉),所以中高档集成电路中不用球形粉时,也要用熔融的角形硅微粉。这也是高档球形粉想用结晶粉整形为近球形不能成功的原因所在。80年代日本也走过这条路,效果不行,走不通;10年前,包括现在我国还有人走这条路,从以上理论证明此种方法是不行的。即高档塑封料粉不能用结晶粉取代。 是用熔融石英(即高纯石英玻璃),还是用结晶石英,哪一种为原料生产高纯球形石英粉为好?根据试验,专家认为:这个题已经十分清楚,用天然石英SiO2,高温熔融喷射制球,可以制得完全熔融的球形石英粉。用天然结晶石英制成粉,然后分散后用等离子火焰制成的球就是熔融的球,用火焰烧粉制得的球,表面光华,体积也有收缩,更好用,日本提供的这种粉,用X射线光谱分析谱线完全是平的,也是全熔融球形石英粉,而国内电熔融的石英,如连云港的熔融石英光谱分析不定型含量为95%,谱线仍能看出有尖峰,仍有5%未熔融。由此可见,生产球形石英粉,只要纯度能达到要求,以天然结晶石英为原料最好,其生产成本最低,工艺路线更简捷 一) 硅微粉在橡胶制品中的应用 活性硅微粉(经偶联剂处理)填充于天然橡胶、顺丁橡胶等胶料中,粉体易于分散,混炼工艺性能好,压延和压出性良,并能提高硫化胶的硫化速度,对橡胶还有增进粘性的功效,尤其是超细级硅微粉,取代部分白炭黑填于胶料中,对于提高制品的物性指标和降低生产成本均有很好作用。-2um达60-70%的硅微粉用于出口级药用氯化丁基橡胶瓶塞和用于电工绝缘胶鞋中效果甚佳。 硅微粉在仿皮革制作中作为填充料,其制品的强度、伸长率、柔性等各项技术指标均优于轻质碳酸钙、活性碳酸钙、活性叶蜡石等无机材料作填充剂制作的产品。 硅微粉代替精制陶土、轻质碳酸征等粉体材料应用于蓄电池胶壳,填充我量可达65%左右,且工艺性能良好。所获胶壳制品,具有外表平整光滑,硬度大,耐酸蚀,耐电压,热变形和抗冲击等物理机械性能均达到或超过JB3076-82技术指标。 (二) 硅微粉在塑料制品中的应用 活性硅微粉是聚丙烯、聚氯乙烯、聚乙烯等制品理想的增强剂,不仅有较大的填充量,而且抗张强度好。制成母粒,用于聚氯乙烯地板砖中,可提高产品耐磨性。 硅微粉应用于烯烃树脂薄膜其粉体分散均匀,成膜性好,力学性能强,较用PCC做填充料生产的塑膜,阻隔红外线透过率降低10%以上,对农用