您所在的位置: 上海有色 > 有色金属产品库 > 特钢连铸工艺

特钢连铸工艺

抱歉!您想要的信息未找到。

特钢连铸工艺百科

更多

含硫高铝齿轮钢连铸工艺须知

2018-12-19 11:14:20

近年来,很多齿轮钢用户提出了硫含量≥0.015%、[Al]含量≥0.020%的下限要求,这是为了改善钢的切削加工性能以及保证钢的晶粒度要求。  这给连铸生产出了个难题,尤其是小方坯极易发生结瘤事故。为此,在精炼操作中要做好脱氧工作,注意钙处理的量,并注意好喂线的顺序和时机,做到既满足Al2O3充分变性,又不致有过多的Ca与S反应生成CaS。此类钢种在连铸过程中要特别做好防止二次氧化的工作:大包-中间包长水口+氩封,浸入式水口+黑渣面操作。

铝带坯连铸连轧工艺

2019-01-15 09:51:37

铝带坯连铸连轧工艺是八十年代从国外引进的一种先进的生产工艺,其基本流程为:铝锭→熔炼炉→静置炉→除气→过滤→铸嘴→轧机→中间机组→卷取机。   其特点是将熔融的铝液铸轧成6-10mm厚,650-1400mm宽的板坯并收卷,然后直接送冷轧机精轧,这样在铝板带材的生产过程中,省略了铸锭、加热、热轧、开坯等工艺,不但缩短了铝板带材生产的工艺流程,大大减少了工程建设资金,还减少了生产过程中的金属烧损,节约能源,同时又能方便地实现铝板带材的连续生产。   其用于将铝及铝合金的冷轧带卷,通过该机组的开卷切头,切边,接头缝合,表面清洁,烘干,拉伸旁曲矫直,板面检查,卷取纠编工序,获得平整,干净,色泽均匀,外形整齐的卷状产品,适用于要求板石平整,无油脂,表面积水,涂漆涂层,装饰及复合等高质量产品的生产.   用于将热轧或冷轧后的铝及铝合金带板横向剪切或不同长度要求的板片关产品,机列由开卷,送料,切头展平,切边废边处理,辊式矫平,测量剪切,垛板等设备组成.   主要产品指标材料,铝及铝合金.   厚度:0.3-12mm(按厚度不同分档设计)   宽度:600-1560mm   剪切长度:500-4500mm   机列速度:90m/min

淮钢特殊钢大型圆坯连铸工艺装备特点及实践

2019-01-04 15:16:46

摘要:淮钢生产碳素、合金结构钢、锚链钢、轴承钢、齿轮钢及低合金高强度钢生产流程为80 t转炉-90 t LF-100 t RH-喂线-Φ380~Φ600mm圆坯CC工艺。中间包容量40 t,自动控制弧形管式结晶器液面,喷水+气雾2次冷却,M-EMS+F-EMS电磁搅拌,连铸机拉速0.3~0.8m/min,年生产能力120万t圆铸坯。文中介绍中间包、结晶器、电磁搅拌、二次冷却的设备特点和相关工艺的优化和圆坯冶金质量的改善。 关键词 特殊钢 大型圆坯 连铸 装备 特点 工艺实践 江苏沙钢集团淮钢特钢股份有限公司转炉特殊钢大圆坯连铸机是从达涅利公司引进,于2006年12月投产,主要生产钢种为优质碳素结构钢、合金结构钢、锚链钢、轴承钢、齿轮钢及低合金高强度钢等,生产初期存在的主要缺陷为铸坯芯部裂纹和外部纵裂。为提高和改进大圆坯的质量,对连铸设备、生产工艺进行研究,并采取针对性的改进措施,使大圆坯的内部、外部质量缺陷得到有效控制和改善。 1 工艺流程和设备参数 炼钢厂生产特钢的工艺流程为80 t转炉冶炼→90 t LF精炼→100 tRH真空处理→喂线进行夹杂变性→大圆坯连铸。大圆坯连铸机主要技术参数见表1。 表1 大圆坯连铸机主要技术参数 Table 1 Main technical parameters of large round bloom项目参数机型DANIELI-2BLC1406连铸机流数/流6弧半径R/m14矫直半径/mm19/34铸坯断面直径/mm380、450、500、600流间距/mm1 700中间包容量/t40液位高度/mm800结晶器型式弧型管式铜管长度/mm780锥度双锥度结晶器液面控制自动(Cs 137)保护渣加渣方式自动振动装置液压振动行程/mm0~20振动频率/opm25~250二次冷却喷水+气雾冷却电磁搅拌M-EMS+F-EMS拉速范围/(m·min-1)0.3~0.8年设计能力/万t1202 主要工艺装备与技术特点 连铸机由DANIELI公司负责工艺设计和关键设备的详细设计,关键设备和技术从DANIELI公司引进。中冶京城公司负责工厂设计和部分设备的详细转化设计。主要设备有:钢包回转台旋转驱动装置、电动机械塞棒自动控制系统、结晶器、结晶器液位检测系统、结晶器电磁搅拌器、二次喷淋与气-水控制调节系统、末端电磁搅拌器、液压振动装置、拉矫机驱动装置与液压缸、火焰切割系统等。 2.1 钢包回转台 钢包回转台形状为H蝶形,在两个相互独立的钢包回转台臂上有钢包提升、下降装置,钢包提升行程为600mm。安装可提升臂的优点是便于钢包与中间包之间的长水口保护浇注操作;控制、调节长水口的插入中间包钢水液面的深度;钢包水口不能自动打开时,便于钢包工烧氧引流。 2.2 中间包 中间包整体结构形状为三角形,该形状在中间包本体受热膨胀后可防止耐火材料附着在中间包本体上。内部设置挡渣坝、挡渣墙及水口稳流装置,确保中间包内合理的钢水流场(温度场、夹杂物上浮与分布场)。在中间包钢水注入点的两侧设置两个溢流口,其高度为850mm,便于放渣、换渣操作,稳定和控制中间包覆盖剂的冶金效果;控制中间包的渣层厚,减少中间包钢水被污染的程度,提高连铸坯的洁净度。 2.3 电动机械塞棒系统 电动机械塞棒系统用于调节和控制中间包水口钢流,实现钢水自动浇注。开浇操作既可以由操作工手动完成,也可在操作工控制下由自动化系统完成。自动开浇通过顺序开启和关闭中间包水口完成,结晶器液位控制系统同时控制塞棒和拉矫机同步,一段时间后拉矫机按预定加速度运转、浇速达到预定值。自动浇注状态下,从液位控制系统接收到的信号经PLC处理后反馈到塞棒组件的控制电机上,浇注时浇速保持不变,通过塞棒控制结晶器钢水液面。 2.4 结晶器和足辊 管式结晶器在设计上考虑避免铜管因高温作用而产生永久性变形。否则,结晶器管变形后会造成其寿命明显缩短,并对铸坯产生较深的振痕和形状缺陷。为防止变形,高温度作用下的铜管严格被限制在只能沿其纵轴上自由膨胀。 铜管与水套间隙保持在3.25mm,保证水缝内的高速水流以降低铜管温度,避免产生水沸腾。同时,在足够水压作用下,可防止铜管壁温度过高会造成严重结垢,影响铜管的传热效果。 结晶器底部设有两排足辊,调节范围±2.5mm,足辊的作用是引导引锭杆进出结晶器,可以避免引锭杆划伤铜管,减少铜管磨损和降低浇注条件变化对铸坯质量造成的影响。同时,可提高铜管拉钢量,提高铸机作业率。 2.5 液压振动台 振动台安装在冷却室外的铸机弧形半径的外侧,便于维修人员日常点检、维修和检修。振动通过液压缸完成,液压缸配有位置传感器,用以控制振动行程,其形成和波形在浇注期间可根据所浇钢种的技术参数而自动地改变。其位置传感器分辨率为0.005mm,响应时间为0.45ms。DANIELI液压振动技术可以在浇注过程中修改振动频率、振动行程和振动模式以获得最佳的表面质量。实际振动曲线与理想曲线重叠,误差很小,高频、小振幅的振动参数,以保证凝固壳的充分润滑,减少振痕深度和裂纹的产生,获得稳定、良好的铸坯表面质量。 2.6 结晶器电磁搅拌系统 由DANLIELIROTELEC公司设计制造的M-EMS为外置式,搅拌器线圈为3相、2极、低频旋转式,其供电电源为低频、逆变式变频器,提供了极好的搅拌器无功功率补偿,控制电流大小、电流频率和输出电流正弧波形。最大电流每相550A,低频。输入功率LV,3相,50 Hz,最大,135 kVA(130 kW)。 使用结晶器M-EMS改善铸坯表面质量的作用主要在于: (1)钢水旋转产生的向心力可以除去凝固前沿的夹杂物。夹杂物上浮到弯月面中心可以防止进入凝固壳内,减少表面和次表面的夹杂物数量并且其沿钢坯中心断面分布更加均匀。 (2)由于结晶器壁上的钢渣漂到弯月面中心并被收集起来,因此可防止钢渣粘接。 (3)由于钢水运动除去凝固前沿的气泡,使次表面区域的气泡、针孔、气孔显著减少。 2.7 末端电磁搅拌系统 在固定扇形段距结晶器液面8.5~9.0m位置处安装了F-EMS,搅拌线圈3相、2极、旋转连续/交替式,供电电源为逆变式变频器,提供了极好的搅拌器无功功率补偿,最大电流每相1 100A,低频。 2.8 二冷气雾冷却 二冷区域分为4个独立的冷却区域,每个区域由二极自动化系统单独控制。根据所浇注的圆坯的规格、拉速和钢种的不同,使用不同的冷却区域。表2为大圆坯连铸机二冷区域参数。 表2 大圆坯连铸机二冷区域工艺参数 Table 2 Process parameters of large round bloom caster at secondary coolingzone项目冷却段长度/mm喷嘴形式喷嘴只数最大水压/MPa气压/MPa1区300水2×80.6-2区1 400气-水6×40.60.203区2 000气-水6×40.60.204区2 000气-水6×40.60.203 生产、质量情况与改进 3.1 生产钢种 目前生产钢种主要有优质碳素结构钢,代表钢号S48C、50Mn、45、20、20G、STPG370、B、JS20、IS35、JS45、CL60;合金结构钢,代表钢号为40Cr、20CrMnTi、42CrMo、42CrMo4V、4130X、12Cr1MoVG、15CrMoG、25MnG、20MnG、St52.0、37Mn5、20Mn2、28Mn2、CM690、ASTMA350 LF-2、ASTMA105、S355K2H;轴承钢,代表钢号为GCr15、CCr15SiMn;低合金高强度结构钢,代表钢号为16Mn、Q345D、Q345E、S355NL等。连铸圆坯主要用于生产无缝钢管、环锻件和锻造齿轮坯、轴类件、法兰件、锚链扣件附件及其它机械零件等。 3.2 铸坯质量 按YB/T4149-2006和外方的保证值对Φ380、Φ450、Φ500、Φ600 mm四个规格的圆坯进行检验,结果分别如下: (1)铸坯尺寸公差 生产的3种规格铸坯实物尺寸按外方的保证值要求进行控制,具体见表3。铸坯尺寸公差控制较好,达到保证值要求。 表3 大圆坯规格控制范围和实测值 Table 3 Control range and measured value of size of large round bloom圆坯直径/mm直径公差/%不圆度/%弯曲度长度公差/mm单位弯曲度/(mm·m-1)6 m长最大弯曲值/mm保证值±1.25≤1.5≤5250~+50Φ380-0.16~0.570.30~0.601.3~3.023+(6~50)Φ450-0.13~0.510.30~0.551.2~2.822+(1~50)Φ500-0.10~0.420.25~0.451.2~2.622+(7~50)Φ600-0.15~0.410.22~0.431.0~2.921+(9~50)(2)铸坯表面质量 按外方的保证值要求批判铸坯实物表面质量情况见表4。 表4 大圆坯实物表面质量 Table 4 Surface quality of large round bloom规格/mm表面无缺陷区比例/%主要缺陷特征保证值≥98%-Φ38098.3表面纵裂与渣沟、渣坑Φ45099.1渣沟、渣坑Φ50099.5渣坑Φ60099.2振痕深铸坯表面质量总体情况比较好,主要存在与保护渣和冷却相关的渣沟、渣坑和开裂问题。 (3)铸坯低倍组织 按YB/T4149-2006中附录A连铸圆管坯低倍组织缺陷评级图检查铸坯低倍组织,见表5。 表5 大圆坯低倍组织/级 Table 5 Macrostructure of large round bloom/rating圆坯规格/mm中心疏松缩孔裂纹皮下气泡中心中间皮下Φ3800.5~1.50~4.00~3.00~1.50~1.00~1.0Φ4501.0~2.50~3.00~2.00~1.500Φ5001.0~2.50~2.50000Φ6001.0~3.00~2.50000铸坯低倍质量总体情况较好,98%以上铸坯低倍无缺陷。但发现少量钢种的铸坯低倍存在皮下裂纹和芯部裂纹缺陷。 3.3 存在问题分析与改进 3.3.1 保护渣改进 出现的渣沟存在两种情况: (1)直条渣沟,沿拉坯方向延伸,时断时续; (2)螺旋渣沟,与拉坯方向成一定夹角。 铸坯存在的渣沟综合反应出铸坯在结晶器中存在冷却不均匀性问题,保护渣的熔化、润滑、结晶等性能需要进一步优化。为此,会同保护渣生产厂家,对保护渣性能开展相关研究、改进、调整工作,按钢种、断面确定了8种系列保护渣,以适用该厂大圆坯连铸生产的需要。 3.3.2 二冷喷嘴与布置的改进 根据铸坯表面开裂和皮下裂纹特征分析,主要是二冷冷却不均问题造成的。对外方提供的喷嘴和国产转化的喷嘴测试,确认外方提供的喷嘴和国产转化的喷嘴存在: (1)使用喷嘴实际喷射角小于设计要求,两个喷嘴之间的铸坯部位存在无水覆盖死区,该区域铸坯坯壳薄、强度低,在热应力作用下容易出现开裂; (2)喷嘴流量选型大,水压低,雾化效果变差; (3)水流密度分布不对称,见表6. 表6 喷嘴气雾测试结果 Table 6 Measured results of fine spraying of nozzle喷嘴型号喷射角/°流量/(L·min-1)水流密度分布测试值偏差测试值偏差1PM.021.30.21(国产转化)49-111.87+4%基本对称1PM.021.30.40(国产转化)51-92.87+20%不对称1PM.021.30.21(外方提供)55-51.83+2%基本对称1PM.021.30.40(外方提供)56-42.72+14%基本对称在现有喷嘴布置不改变的情况下,对喷嘴型号重新选型,改进前后的喷嘴参数见表7。喷嘴改进后,喷嘴雾化效果良好,冷却均匀性明显得到改善,铸坯外裂与皮下裂纹问题得到消除。 表7 改进前后喷嘴参数对比 Table 7 Comparison of parameters of fine spraying nozzle before and afterimprovement喷嘴布置改进前改进后型号流量/(L·min-1)喷射角/°型号流量/(L·min-1)喷射角/°二区1PM.021.30.402.460D40206-04900-70510-BR2.0070三区1PM.021.30.211.560D40206-04900-70440-BR1.2570四区1PM.021.30.211.560D40206-04900-70400-BR1.0070外方设计喷嘴布置为内外弧和两侧交叉垂直的4个方向喷水冷却,在客观上也造成了铸坯冷却不均问题。为了改善冷却问题,有必要将原4个方向冷却增加到6个方向冷却,对喷嘴布置方式重新调整。 3.3.3 连铸钢水温度的控制 对存在芯部裂纹的CM690、Q345E等高Mn、高Al钢种炉号进行统计分析,主要为中间包前两炉,其过热度控制比较高。产生芯部裂纹的主要原因有: (1)该类钢种铝含量比较高,钢水流动性比较差,生产班组为避免出现中间包水口絮瘤问题,人为高控开浇炉和中间包第二炉钢水过热度; (2)在高过热度情况下,采取降低拉速操作,连铸二冷比水量相对较大,铸坯表面温度低,而凝固末端的芯部钢水仍然是高温区域,内外温差梯度较大,中心部位处于高温脆性区域,在热应力的作用下产生了芯部裂纹。 3.3.4 末端电磁搅拌参数的优化 在外方调试设备期间,按其提供的末端电磁搅拌参数生产45、25Mn钢,铸坯低倍存在白亮带问题。为了消除白亮带缺陷,针对不同钢种对连铸的配水、过热度、拉速和末端电磁搅拌等工艺参数进行综合、系统地优化,最终消除了较宽、较重的白亮带缺陷。 4 缺陷 (1)淮钢引进DANIELI公司的特殊钢大圆坯连铸机工艺装备性能优良,产品质量满足保证值要求。 (2)保护渣造成的圆坯渣沟问题,通过改进保护渣性能完全得到消除。根据不同钢种和断面建立相应保护渣采购标准体系,以满足特殊钢大圆坯连铸生产和保证产品质量的要求。 (3)大圆坯存在的外部开裂和皮下裂纹与使用的喷嘴参数变化与布置方式有关,通过对喷嘴重新选型、改进,铸坯冷却均匀性得到改善,消除了铸坯外裂缺陷。 (4)为消除白亮带问题,所开展的相关连铸工艺参数优化工作是有效可行的,此项工作还需要进一步细化。

铝带坯连铸连轧工艺用途

2019-01-15 09:51:27

铝带坯连铸连轧工艺是八十年代从国外引进的一种先进的生产工艺,其基本流程为:铝锭→熔炼炉→静置炉→除气→过滤→铸嘴→轧机→中间机组→卷取机。     其特点是将熔融的铝液铸轧成6-10mm厚,650-1400mm宽的板坯并收卷,然后直接送冷轧机精轧,这样在铝板带材的生产过程中,省略了铸锭、加热、热轧、开坯等工艺,不但缩短了铝板带材生产的工艺流程,大大减少了工程建设资金,还减少了生产过程中的金属烧损,节约能源,同时又能方便地实现铝板带材的连续生产。 其用于将铝及铝合金的冷轧带卷,通过该机组的开卷切头,切边,接头缝合,表面清洁,烘干,拉伸旁曲矫直,板面检查,卷取纠编工序,获得平整,干净,色泽均匀,外形整齐的卷状产品,适用于要求板石平整,无油脂,表面积水,涂漆涂层,装饰及复合等高质量产品的生产. 用于将热轧或冷轧后的铝及铝合金带板横向剪切或不同长度要求的板片关产品,机列由开卷,送料,切头展平,切边废边处理,辊式矫平,测量剪切,垛板等设备组成. 主要产品指标材料,铝及铝合金. 厚度:0.3-12mm(按厚度不同分档设计) 宽度:600-1560mm 剪切长度:500-4500mm 机列速度:90m/min。

镁合金压铸工艺介绍

2019-03-06 10:10:51

我国是全球最大的镁生产国和出口国,国内的镁产值占到全世界的80%以上。像日本、欧洲、美国等国家的镁及镁合都出自于我国,近年来跟着国家经济及科技实力的不断发展,镁合金在一些深加工技术范畴也有了重大突破。镁合金被誉为21世纪绿色金属材料,现已被越来越多的业内人士所认可。因为上一年国际市场低迷以及国内经济增加放缓等要素影响,镁合金报价随镁锭、镁粉等一路走跌。 镁合金的用处十分广泛,其能够用于航空航天、医疗、电子产品等许多范畴,可谓是许多工业不可或缺的“万精油”。而镁合金压铸能够说是其最重要的应用技术之一,镁合金压铸工艺同其他压铸工艺类似,可是因为镁合金的不同特性,在压力、速度、温度以及涂料的应用上又有着不同的当地。 镁合金压铸分热室和冷室两种,压铸时压力也各不同。热室机的压射比压在40MPa左右,而冷室机的比压通常在40-70MPa。镁合金因为密度小,因而惯性小。一起因为镁合金凝结快,需要在金属凝结前填充整个型腔,因而镁合金的压射速度要快。此外温度是镁合金压铸过程中的热要素,为了供给杰出的填充条件,确保压铸件的成型质量,操控和坚持热稳定性,有必要选用相应的温度规范,主要是指镁合金的浇注温度的模具温度。涂料的作用是为压铸合金和模具之间供给有用的阻隔保护层,防止金属液直接冲刷型腔

铝型材熔铸工艺规程

2019-03-01 09:02:05

1主题与规模    本规程规则了熔铸出产工艺技术要求及操作规范.    本规程适用于揉捏用铝的熔炼,铸造,均质出产.    2出产前的准备工作    2.1查看贮油罐的油位是否到达较低值,焚烧器,油是否正常,炉门敞开是否灵敏,炉门的密封是否杰出。    2.2查看铸造渠道,供水系统是否正常。    A)查看铸造渠道保温材料,结晶器,引锭头,流槽等是否无缺,安装好陶瓷过滤板或过滤布。    B)每次铸造前有必要试水,通入铸造机正常铸造水量,查看结晶器出水环喷水视点是否杰出,水帘的成形状况及溢水孔有否漏水,溢水孔有漏绝不能铸造。若有阻塞,应立即拆洗,铲除杂物。    C)铸造前引锭座有必要上升至正常起动方位并调好水平。    D)若铸造机长时刻不必或因为气候湿润形成引锭头生锈,在铸造前悉数引锭头有必要涂一次猪油。    E)铸造用水有必要通过小于1MM过滤,铸造用水的水温应低于40摄氏度。    2.3熔炼炉停炉达一个月以上或许新制的炉子,有必要烘炉后才干运用。    2.3.1烘炉    首要翻开炉门与放水口用木柴焚烧烘炉,避免大明火,依据炉内温度与火的巨细随时调整炉门敞开的巨细,操控在150摄氏度以下,升温的速度不大于10摄氏度/H;两天后将炉温按10摄氏度升到250摄氏度,无水汽蒸腾后,用一台小焚烧器加热烘,四天后用两台小焚烧器热烘,温升按15摄氏度/H升至500摄氏度,五天后升至600摄氏度,六天后将温度按16℃/h的速度升至800℃,恒温10小时以上,烘炉停止。    2.4备料    2.4.1合金的配比按HD/QB-2004《内部质量操控标准》履行。    2.4.2熔炼工依据配料员填写的《配料、熔炼、铸造及化学分析成果记载表》,作为配料指令,将铝锭、镁锭、铝硅合金(或金属硅)、金属添加剂、型材废料、揉捏压余、熔铸锯切头、接料斗中的大块铝块、复熔铝锭等计量后分批运上炉前操作渠道,并做好相应记载。    2.4.3掩盖剂、精粹剂、打渣剂烘干备用。    2.4.4各种炉料禁绝淋雨受潮或与其它料混放,禁绝稠浊其它金属。    3熔炼    3.1装炉    3.1.1炉温升到800摄氏度时,堵好出铝水口,敞开炉门开端投料。    3.1.2投料时,先用同牌号矮小型材废料铺底,将短型材(较好打成捆)废料从炉门投入炉中,以便保护好炉底。然后再投进铝锭至炉门口。    3.1.3炉内没有废料垫底时,不得投进铝锭等大块金属料,避免将炉底碰坏。投料时应尽量将金属投在炉膛的中间,避免将焚烧口堵死或炉壁碰坏。

高强度变形铝合金毛坯的连铸连锻生产工艺

2019-01-09 09:34:20

由于普通硬铝合金的抗拉强度在380-450Mpa之间,几乎高于普通铸造铝合金抗拉强度的一倍,而超硬铝合金的强度更可达600Mpa。尽管变形铝合金的单价比铸造铝合金高,其成形成本也比铸造工艺高一些,但由于能显著减少产品结构尺寸,再加上能进行进一步热处理强化、焊接和表面阳极氧化处理,后者的性价比却明显高于前者,所以,越来越多的场合,都希望使用或改用变形铝合金生产零件。而对于运动类部件的使用场合,如飞机、轮船、汽车摩托车、运动自行车等,减轻重量带来的节能效益和速度效益,变形铝合金更具有无可替代的优势。   由于连铸连锻技术的显著进步,与压铸件结构一样复杂的变形铝合金毛坯,也能以相近的车间成本,十分轻松顺利地生产出来,因此,使用变形铝合金替代传统的铸造铝合金生产毛坯,不但具有经济优势,并已成为一种潮流与趋势了。   1铸造铝合金与变形铝合金的基本情况与性能对比   1.1工业用铝锭分为两大类:铸造铝合金和变形铝合金。一般地说,铸造铝合金适用于以铸造方法生产铝铸件,而变形铝合金适用于以压力加工(挤压与锻造)方法生产铝产品。   1.2变形铝合金包括:防锈铝(LF)、硬铝(LY)、超硬铝(LC)、锻铝(LD)和特殊铝(LT)。由于变形铝合金平均综合机械性能总比铸造铝合金高(铸造铝合金的锻态性能,平均也比其铸态性能高几成以上),很多牌号的变形铝合金,它还可以通过淬火和时效等热处理手段来提高机械性能,所以,工业设计上希望更多地应用变形铝合金,以满足使用上的要求。   1.3两方面的因素限制了锻造铝合金的应用范围或削弱了其工业经济性:   一是变形铝合金的铸造性能很差,其液态流动性一般只及铸造铝合金的三分之一,用传统的铸造方法很难生产出结构很复杂的毛坯。   二是即使以铸造方法生产变形铝合金毛坯,如果不能解决铸造工艺普通存在的缩孔缩松及气孔针孔缺陷,那么,之后的热处理和表面阳极氧化工序也不能继续。   而较根本的原因在于,铸态的变形铝合金毛坯,即使其内部缺陷消除,但由于金相晶粒粗大并总呈枝晶状,热处理后的性能也大打折扣,或只与普通铸造铝合金性能相近,使用这种相对较贵的材料品种,就失去了其应有的经济意义了。但连铸连锻技术的出现,却有效地改变了这种状况。   2连铸连锻技术简介   连铸连锻技术,它是指在同一台设备用同一套模具,连续完成毛坯的充型与锻造生产,它的本质,是一种依靠装备的功能实现的工艺技术。所以,不同的连铸连锻装备,有不尽相同的连铸连锻细分工艺。   2.1连铸连锻设备,按设备的摆放方式,可分为卧式和立式,按铸造给汤方式,则分为冷室式和热室式。连铸连锻工艺,按设备安装的锻压动力缸数,可分为单向连铸连锻和多向连铸连锻两大类。   2.2两种典型的连铸连锻工艺与装备:一种是由苏联人发明的,用液压机完成的“液态金属模锻”(或称“熔汤锻造”),而另一种则是运用我国发明专利技术实现的“压力铸造模锻”(或称“挤压压铸模锻”——简称“压铸模锻”)。

沪铜连三

2017-06-06 17:50:02

沪铜连三,连续就是不考虑换月的因为每个合约到交割之后就没有了,比如0611合约到年11月份的某日交割之后就没有了,换成0711的合约,这样的换月往往会造成 价格 的变动,图表上看出来比较跳跃。而连续就是在0611没有之后接上0612的合约,从而组成一个新 价格走势 图,这样合约 价格 就不会发生显著变化。作用就是看起来比较方便,具有连续性。商品连续比如 大豆连3 连9基本就等于3月指数,或者8月指数,是不能 交易 的。指数包含了所有的历史资料。沪铜连三上周五国内收盘为最高点,但是接近重要角度线压制,而外盘周五形成小幅下跌,加上原油也出现一定的下跌 走势 ,这一点需要 交易 者留意。 

连轧管机

2019-03-18 11:00:17

连轧管机,英文缩写MPM(即Multi-Stand Pipe Mill的缩写)。连轧管机是无缝钢管生产中的重要设备。中国第一套限动芯棒连轧管机组,引进自意大利,于1992年在天津钢管集团股份有限公司投产。经技术改造,天津钢管集团的Φ250mm限动芯棒连轧管机组已经由设计年产能力50万吨,扩大到现在的年产能力100万吨。   连轧管机是在在浮动芯棒连轧管机的基础上发展起来的。限动芯棒连轧管机于20世纪60年代中期进行了工艺试验并获得了可喜的成果。1978年世界上第一套限动芯棒连轧管机在意大利达尔明钢管厂建成投产,将连轧管工艺发展到了一个新的水准;限动芯棒连轧管机在整个轧制过程中对芯棒的运行加以控制,使其以设定的恒定速度前进,轧制过程结束时,由脱管机将荒管与芯棒分离后,荒管被移送到下道工序进一步加工;芯棒则返回,拨出轧制线后,冷却、润滑后循环使用。MPM使得钢管壁厚偏差得到改善,工具、能耗有所降低,将连轧管机轧制钢管的最大外径由194mm扩大到426mm。   MPM一经问世,因其在技术、产量、质量、自动化和劳动生产率等诸方面的突出优势,引起了无缝钢管界的广泛关注并得到认同和推崇,目前已使其在除大洋州以外的五大洲得以迅速的推广应用;特别是1978年到1992年间的前15年,受当时石油产业对油井管需求旺盛的影响,促使了MPM技术的飞速发展,相继建成投产了10套限动芯棒连轧管机组,从第二套到第十套仅用了10年的时间。各机组情况见下表   序号 机组名称 厂名 国家 投产年份 设计年产量(/万吨) 成品管规格D X S(mm) 机架数    1 365mm 达尔明厂 意大利 1978 50 159~365X3.5~25 8    2 245mm 京滨厂 日本 1983 60 114~245X4.5~40 8    3 273mm 坦姆萨厂 墨西哥 1983 60 114~273X4.5~40 7    4 245mm 费尔菲尔 美国 1983 60 89~245X5.4~32 7    5 245mm 北方星钢厂 美国 1987 30 114~245 7    6 245mm 阿尔戈马厂 加拿大 1986 30 48~178X3.6~32 7    7 245mm 希德尔卡厂 阿根廷 1988 35 140~273X4.5~35 6    8 245mm 西多厂 委内瑞拉 1990 - 114~245X4.5~35 -    9 426mm 伏尔加钢管厂 俄罗斯 1990 72 114~245X4.5~35   159~426X6.0~35.0 7    10 250mm 天津钢管集团 中国 1992 50 114~273X4.5~35 7   1978~1992年, MPM的推广期   这一时期所建机组的共同点为:   一是连轧管机设有7~8个机架(阿根廷希德尔卡厂为6机架),因为机组中的穿孔机为推轧式(加斜轧延伸机)或二辊桶形辊斜轧式,其延伸系数比较小,(延伸系数一般小于3),轧件的主要延伸靠连轧管机完成,轧管机的最大延伸系数为6~7,所以连轧管机的机架数相对较多,机架数由开始的8架减少到7架甚至6架,意义在于尽量缩短芯棒工作段的长度,因为在所轧制的荒管长度和芯棒限动速度不变的前提下、减少轧机第一架至最末一架轧辊中心线的距离,就可以缩短芯棒工作段的长度,从而达到降低芯棒的制造、加工难度和生产成本的目的;二是各机组均设有2~3个孔型,主要成品管的外径范围大都在114~273mm之间,用以生产中型规格的油井管品种为主的无缝钢管,因为油田打井所需的套管规格绝大部分都在该组距范围内。   另一个特点是:前10套限动芯棒连轧管机组的分布地域比较广、国家较多,欧洲、中北美洲、南美洲和亚洲都有;这些机组既有为满足本国所需而建设,也有为向产油国提供高质量的无缝钢管而建的。   1993~2003年, MINI-MPM的应用期       MINI-MPM为少机架限动芯棒连轧机的意思,原是意大利的因西公司上世纪90年代中期为完成对南非托萨(tosa)厂cps(两步生产无缝钢管法,即只有斜轧锥形辊穿孔和张力减径两个变形工序,而没有轧管工序的生产方法,后因在生产壁厚8mm以下的钢管时因螺旋印难以消除进行增加轧管机的改造)的改造,在锥形辊穿孔机与张减机之间安装的限动芯棒连轧管机而推出的机型。由于锥形辊穿孔机的变形能力较大,就可将原由MPM承担的部分变形前移至穿孔机来完成,连轧工序的延伸可适当减小,轧管机没必要选用过多架数了,轧机的机架数由原来的7~8架减少至4~5架;与MPM相比它的最大特点是实现了用更短的芯棒轧制较长的钢管,芯棒的工作段长度比MPM短了2~3米;芯棒总长度可缩短5米左右。后来随着锥形辊穿孔机的广泛应用,连轧管机的架数大多为5架;或5+1架,1为在连轧管机前增设一架空减机。当时,因西公司为了尽快推广MINI-MPM轧机,罗列了MINI-MPM一些与MPM区别和特点;现转述如下:   MINI-MPM机组工艺特点为:   1)一般采用锥形辊穿孔机,充分发挥锥形辊穿孔大变形、大延伸的作用,才有可能将连轧机的一部分变形量前移至穿孔机,使连轧机机架数减至4~5架,将两变形机组的变形量均衡、合理地分配;   2)由于轧机总延伸系数减少,连轧前段单机架的变形量也可减少,同时在孔型设计上由于降低了辊缝值和开口度,使金属横向流动和辊缝处凸出部分的面积减小,减缓轧制过程中的不均匀变形;   3)在同孔型尺寸的情况下,轧机前段孔型直径变小,减小了辊速差;   4)轧出荒管的鱼翅尾不规则部分减短,切头尾减短,提高了成材率。   与MPM相比,MINI-MPM轧机优势与不足是:   1)占地面积减小,厂房投资减少,由于机架减少2~3架,芯棒长度变短,使热轧线设备占地面积大大缩小;   2)设备投资减少,包括轧机、电机、减速机等;   3)轧制工具的数量减少,包括轧辊、更换机架等;   4)芯棒制造难度降低,由于芯棒工作段长度变短相对制造难度和费用大幅度降低。   5)由于减少了机架数量及轧机出口速度,机组产量相应有所降低。   在这个期间,相继建成的MINI-MPM代表性机组除南非托萨(tosa)厂的φ168mm机组为4个机架外,其余如1997年日本住友和歌山φ426 mm机组、1994年我国包钢的φ180 mm机组(不带空减机)与2001年鞍钢的φ159 mm机组以及衡阳2002年φ273 mm机组和2003年攀成钢的φ340 mm机组(都有1架空减机)等均为5个机架。随后2006年建成的无锡西姆莱丝φ250mm机组也是1架空减机加5个机架   从近几年已建成投产的几套MINI-MPM机组运行效果来看,原则上说,MINI-MPM与MPM相比,不论是变形原理、变形规律、轧制速度制度、限动速度大小还是产品质量等诸方面都没有什么本质上的区别,仅是少了2~3个机架而已;由于绝大多数MINI-MPM机组都增设了一架空减机,与7机架MPM相比,实际只减少了1个机架;因此,现在已经很少有人再用MINI-MPM这一名称了,对两辊的限动芯棒连轧管机不论几个机架均称为MPM。   限动芯棒连轧管机(MPM机组)是二十世纪末期世界上最先进的轧管工艺。   自从2003年,天津钢管集团股份有限公司投产了世界上第一套PQF(三辊限动芯棒连轧管机)机组后,PQF已经取代了MPM的位置,成为了世界上对先进轧管工艺的代名词。

我国光亮铜杆连铸连轧设备浅析

2019-01-25 10:19:13

20世纪80年代,随着世界有色金属冶炼铸造技术的发展,国内相继引进了多条光亮铜杆连铸连轧生产线。    目前,除少数生产线因管理和经营不善停产外,大部分都还在正常运转。连铸连轧生产技术的引进推动了我国铜线杆生产的发展和技术革新。但由于历史局限性,这些生产线产能普遍偏低,另外,在引进这些设备的同时,没有配套引进过程检测技术,致使生产的铜杆在性能、质量上波动较大。总的来说,这些生产线铸坯规格普遍偏小,总变形率小,致使产能上不去,能耗降不下来,产品质量也欠佳。    近年来,借着资产重组和异地搬迁的机会,这些生产线都得到了不同程度的改进和完善。从20世纪90年代开始,我国电线电缆行业迅速发展,铜线杆的需求急剧增长。据中国有色金属工业信息中心统计,1999年,我国圆铜杆的实际产量仅为40万吨,而消费量为65万吨左右,缺口大部分从国外进口。另外随着电磁线、通讯电缆及其他特种用途电线电缆的迅速发展,多线多模高速拉丝机的出现,对铜杆的要求越来越高。小规格铸坯生产的铜杆越来越不能满足要求。于是在20世纪末,我国又先后引进或搬迁改造了多条连铸连轧生产线。    这些生产线装备水平高,生产规模大,具有能耗低、工艺过程连续、计算机监控程度高、产品质量优良稳定等特点,代表着当今世界先进的“SCR”和“Contirod”光亮铜杆生产技术。同步引进的SpectroLabS大型多通道光谱分析仪、在线涡流探伤仪等设备,为保证生产优质低氧光亮铜杆提供了更加迅速、准确的检测手段。它们依赖先进的工艺装备、较高的生产效率、低能耗和优良的产品质量赢得了市场,取得了显著的经济效益,其产品不但满足了国内市场,而且还出口世界各地。    目前,我国铜杆的总加工能力已有280万~300万吨,是需求量的3倍左右。对现有生产线来讲,提高设备的使用率,提高产品质量,降低生产成本是在竞争中取得有利地位的根本保证。    国产连铸连轧生产装备自20世纪80年代我国建成自行设计、制造的第一条铜线杆连铸连轧生产线以来,至今已有10余条年产几万吨级的国产铜连铸连轧生产线投放市场。这些生产线设备投资较低,生产成本也大大降低。但由于行业的开发能力、技术设计力量还很薄弱,应用高新技术、在线检测手段也比较缺乏,设备制造的内在精度和外部质量与先进国家的技术水平还有相当差距。具体体现在以下几个方面:[next]    1、竖炉的制造和控制还不成熟,生产线多配套反射炉,各炉次成本和氧含量不均匀,即使是同一炉次,也很难保证成分和氧含量始终均一,连铸连轧工艺的质量稳定、性能均一和节能等特点很难得到充分体现。    2、缺乏在线质量检测与控制的装备和手段。     3、计算机过程监控技术还不完善。     4、缺少完备的辅助设备,再加上设备制造精度低,可靠性差。     5、单机产能偏低,规格效益得不到体现。     与引进生产线相比,目前国产生产线产品质量普遍偏低,主要面向低端市场。面对铜线杆后续加工对铜杆质量要求的不断提高,国外技术的不断进步,国内同行只有抓紧研制,迎头赶上,才能在未来的竞争中取得优势。     连铸连轧光亮铜杆的发展随着电气方面的不断发展,对铜导线的质量要求越来越高,为了获得优质的光亮铜杆,国内外设备制造厂家和铜线杆生产厂家均在生产工艺、装机水平、质量检测和管理方面作了大量工作,如增设自动化装置,提高对工艺过程的监控,改进设备并采用电脑管理,以提高质量,降低成本。    另外,SCR生产线还采用了以下新技术:采用双叉加料系统,不冲击炉壁,布料均匀,进一步提高炉子热效率(使炉子能耗降低10%);铸机钢带采用双向张紧装置,提高钢带使用寿命。Contirod生产线液位自动控制采用更先进的EMLI电磁传感器,比传统的光学传感器更精确可靠;轧机分粗、中、精三组,中轧与精轧间设光电控制活套,实现无张力轧制,中轧与精轧间设冷却管,降低精轧温度,改善拉丝加工性能。    市场在发展,随着市场需求的增大,对铜杆质量要求的提高,以及全球电线电缆行业规模化、经济化生产的发展趋势,连铸连轧法在我国铜杆生产中的应用将会越来越广。