钼酸铵的介绍
2019-02-12 10:08:00
钼酸铵易于纯化、易于溶解、易于热解离,并且,热解离出的NH3气随加热可充沛逸出,不再污染钼产品。因此,钼酸铵广泛用作出产高纯度钼制品的根本质料。比方,热解离钼酸铵出产高纯三氧化钼、用硫化钼酸铵溶液出产高纯二硫化钼,经过钼酸铵出产各种含钼的化学试剂等。钼酸铵也常用作出产钼催化剂、钼颜料等钼的化工产品的根本质料。
在钼的初级产品中,钼酸铵仅次于钼焙砂和钼铁,占有着重要的位置。
工业钼酸铵并非单一化合物,它是一系列钼同多酸铵的混合物,随(NH3)2/MoO3比率的不同而异。但它们都可概括进一个通式,常见几种钼酸铵和通式见表1。Dnval Rode等从实验成果提出了仲钼酸铵新的转化道路:
(NH4)6Mo7O24·4H2O△(NH4)4Mo5O16△(NH4)4Mo8O26△MoO3→→→
这儿又证明a=5或8,b=2或2,c=0或0两种钼杂多酸铵的存在。但不管有几种杂多酸,工业钼酸铵中首要成份一般仍是仲钼酸铵。
表1 常见几种钼酸铵特性
名 称分 子 式参 数(NH3)2/MoO3%Mo转 化abc钼酸铵(NH4)2MoO41101:148.94 仲钼酸铵(NH4)6Mo7O24·4H2O7343:754.34130℃脱结晶水,230℃转化为四钼酸铵(放出NH3↑)四钼酸铵(NH4)2Mo4O134101:461.12315℃转化为三氧化钼(放出NH3↑)通 式(NH4)2bMoaO3a+bCH2O b:a
从钼精矿动身,制取工业钼酸铵的工艺繁复。从钼精矿中辉钼矿分化方法,可将这些工艺概括为两大类,即(1)火法:经过氧化焙烧,将钼精矿转化为钼焙砂,再经湿法处理。(2)湿法:钼精矿直接浸出,辉钼矿转化为可溶钼盐。
火法或湿法差异仅在于MoS2氧化方法不同,前者选用焙烧,后者选用氧化剂溶液分化。终究,都使Mo4+→Mo6+,S2-→S0或S4+。
钼酸铵因为各杂多酸份额不同,钼含量也不同,但杂质含量往往很少,要求也很严厉。工业钼酸铵的技能要求见表2。
表2 钼酸铵质量标准
标准
含量(%)
成份我国国标GB3460-82克莱麦克斯1971年标准MSA-1MSA-2MSA-3标准产品典型分析Mo Si
︵
杂
质
︶
≯0.00060.00100.0020.00250.0013Al0.00060.00060.0020.00100.0005Fe0.00060.00080.0050.00200.0007Cu0.00030.0005 0.00100.0006Mg0.00060.00060.0020.00050.0005Ni0.00030.00050.0010.00050.0005Mn0.00030.0006 P0.00050.00050.001 K0.010.080 Na0.0010.003 Ca0.00080.0010 0.00150.0007Pb0.00050.00050.00060.00050.0005Bi 0.0006 Sn0.00050.00050.00060.00350.0010Sb 0.0006 Cd 0.0006 Cr 0.00100.0005Ti 0.00100.0005粒度<40网目
钼酸铵的火法工艺
2019-02-12 10:08:00
所谓火法,特点是工艺前半部钼精矿经氧化焙烧成钼焙砂。从钼焙砂出产钼酸铵仍是湿法,根本工艺道路见下图。整个工艺分以下几步。
图 钼酸铵(火法)出产流程
1、浸
钼焙砂里里除了主成份的三氧化钼外还含有:没焙烧透的二氧化钼和二硫化钼、金属的硫酸盐、金属的钼酸盐、硅类杂质。这些不同物质在浸工艺中的反响也各不相同。
三氧化钼是酸酐,它极易溶于液中,发作如下反响而进入液相:
MoO3+2NH4OH =(NH4)2MoO4+H2O
二氧化钼和二硫化钼不溶于液,残留在固相中。铜、锌、镍的硫酸盐、钼酸盐能溶于,生成铁的络合物,发作如下反进而应入液相:
MeSO4+6NH4OH=Me[(NH3)4](OH)2+(NH4)2SO4+4H2O
MeMoO4+4NH4OH=Me[(NH3)4]2MoO4+4H2O
硫酸钙可与MoO2-4反响:
CaSO4+ MoO2-4=CaMoO4↓+SO2-4
反响新生成的钼酸钙和本来焙砂中的钼酸钙都不溶于,进入固相。
钼酸铁虽能被分化,但反响缓慢。由于,在钼酸铁表面上会生成一层实际上不溶于的氢氧化铁的薄膜,阻止了钼酸铁进一步被液溶解的进程。钼酸铁也大部分残留在固相。[next]
亚铁的硫酸盐或钼酸盐在液中生成氢氧化亚铁,它可溶于液构成铵的络合物:
Fe(OH)2+6NH4OH=[Fe(NH3)6](OH)2+6H2O
硅类杂质为石英(SiO2)或硅酸盐,是钼焙砂中首要杂质,不溶于而残留在固相。
对浸液进行液固别离,取得的钼酸铵溶液含杂量大为削减。
用8%~10%液,在常温或50~60℃,液固比为(3~4):1的条件下浸出钼焙砂。增加量为反响理论耗费值的1.2~1.4倍。这儿留有防止生成聚钼酸盐和确保在终究浸液中有必要坚持的剩下浓度(25~30g/L)。
钼焙砂中杂质含量不同,钼浸出率也不同。当氧化焙烧不充分时,会呈现二氧化钼或二硫化钼;当钙、铁含量较多时,都会使钼的浸出率下降。一般,钼焙砂的浸出率在80%~95%之间。
浸渣分量约为所加焙砂分量的10%~25%,含钼量在5%~25%之间。还需进一步收回其间的钼。
为处理钙、铁等杂质金属离子对浸的搅扰,除了进步钼精矿质量外,还有以下方法:
(1)向浸液中参加碳酸铵,它与硫酸钙反响生成更难溶的碳酸钙(CaCO3),便可防止硫酸钙生成钼酸钙,而进步钼的浸出率。碳酸铵还能与硫酸铁、钼酸铁发作反响,生成碱式碳酸铁的沉积,它的吸附才干比氢氧化铁小,可下降浸渣中钼含量。
(2)浸前,用酸“预浸”钼焙砂是一个卓有成效的方法。此刻会发作如下反响:
MeSO4+2HCl=MeCl2+H2SO4
MeMoO4+2HCl=MeCl2+H2MoO4↓
钙、铁、铜、锌……等以可溶盐方式进入液相,三氧化钼以被酸分化出呈钼酸不溶于酸(应调好PH值)而进入固相。尔后,经过固液别离,可使焙砂中大部分杂质金属被别离出。对净化后的焙砂再浸,浸渣中钼含量可降至3%以下。“预浸”时,二氧化钼可溶于酸进入液相:
MoO2+4HC1=MoCl4+2H2O
所以,钼焙砂含二氧化钼较高时,“预浸”废液应增加收回钼的工艺。
浸工艺一般在珐琅反响釜或钢制浸槽中进行。这些设备带有机械拌和器和蒸汽加热套。浸出进程往往须重复2~4次。后几回稀浸液可循环运用。
2、净化除杂
浸、过滤后所获钼酸铵溶液还含有不少金属的络离子。特别铁和铜的络离子含量较多。为脱除它们,往往要向溶液参加硫氢化铵(或硫化铵、)。
这些金属的络离子中除[Fe(NH3)6]2+移定性较差,其他[Cu(NH3)4]2+、[Zn[Ni(NH3)4]2+结合得都很安稳,它们PK不稳分别为13.32、9.46。因此,溶液中铜、锌、镍的正二价离子浓度很低。
虽然[Cu(NH3)4]2+很安稳,但CuS与FeS溶度积更低。(LFeS=3.7×10-19,LCuS=8.5×10-45)所以,溶液中会发作如下反响,直至铜、铁沉积完:
[Cu(NH3)4](OH)2+NH4HS+3H2O→CuS↓+5NH4OH
[Fe(NH3)6](OH)2+NH4HS+5H2O→FeS↓+7NH4OH
关于锌和镍,虽然它们的硫化物溶度积也不高(LZnS=1.2×10-19,LCuS=1.4×10-24),但它们的络离子相对就安稳得多。此刻,溶液中很低的[Zn2+]、〔Ni2+〕与〔S2-〕不可能到达按此溶度积生成硫化锌、硫化镍的必需浓度。因此,锌、镍的杂质大部分仍留在溶液中。[next]
经过液固别离,就可以脱除钼酸铵溶液中的铜、铁杂质。
出产中,有必要当心操控铵的加人量,假设溶液中铵过量,将生成硫代钼酸盐使终究产品被硫污染。所以,铵需一点一点缓慢参加溶液并不断拌和。每次加往后要取样查验沉降是否已彻底,如发现溶液中铵过量,需参加新鲜的浸液冲销。
铵亦可用硫化铵或替代,但易形成终究产品含Na2O过量而较少选用。
净化是在珐琅反响釜或衬有橡胶的钢制浸出槽中进行。相同,需带拌和器和加热蒸汽套。
3、结晶
经净化的钼酸铵母液往往含有MoO3120~140g/L,母液密度约1.09~1.12g/mL。一般先经预先蒸腾浓缩至含MoO3为280~300g/L,或母液密度1.20~1.23g/mL。此刻,母液中为数不多的CuS、FeS、Fe(OH)3易沉降,可滤除。往后,将有两种加工计划:
(1)计划I—浓缩-结晶法:将经预浓缩后的母液在带机械拌和器、蒸汽加热套的不锈钢或珐琅反响釜中加热、蒸腾、浓缩。使溶液密度到达1.38~1.4g/mL(适当含MoO3为400g/L),过滤热溶液并搜集在冷却、结晶器内。
结晶是在带拌和器、冷却系统的不锈钢或珐琅结晶器中进行的。当母液温度冷却至40~45℃后,约50%~60%的仲钼酸铵从溶液结晶分出。经离心过滤、洗滤、枯燥获终究产品。剩下母液再经“浓缩-结晶”重复屡次,终究再将尾液蒸干,在350~400℃下煅烧,所得三氧化钼含杂太高,须回来浸。
操作须留意:蒸腾进程应保存4~6g/L自在;而且为防部分过热,应不断拌和,这样才干防止生成酸性较强、晶粒较细的钼酸铵沉积,从溶液中分出。
“浓缩-结晶”需重复屡次,进程持续时间较长,第2次后各批结晶含杂较高往往超越标准,而需重复结晶以净化。
(2)计划Ⅱ—中和法:对预浓缩的母液参加中和,依据溶液终究pH和温度不同,可分出不同成份聚钼酸盐。
当心翼翼地用中和加热到55~65℃的钼酸铵母液,直到pH=2.3,强烈拌和,可将96%~97%的钼以二水四钼酸盐方式沉积出来:
4(NH4)2MoO4+5H2OPH=2~2.5(NH4)2Mo4O13·2H2O+6NH4OH→
分出的结晶有必要立刻过滤,不然,在与母液长期触摸后易脱水,生成细晶粒无水四钼酸铵而难过滤。
四钼酸铵沉积物纯度很高,Ni、Zn、Cu……及AS、P、S……等杂质都残留在弱酸性母液中。但它却含有较多氯离子(0.2%~0.4%)不易被水洗掉,而需重结晶,以脱除氯离子。
首要,将四钼酸铵在70~80℃下,用含3%~5%的溶液溶解,直到饱满(溶液密度1.41~1.42g/mL)。然后将饱满溶液冷却到15~20℃,50%~60%的钼会以纯洁的仲钼酸铵((NH4)6Mo7O24·4H2O)方式从中分出。母液再重复溶解四钼酸铵,再冷却结晶,重复可达十次左右。四钼酸铵逐步转变成纯洁仲钼酸铵,杂质在母液中堆集到必定程度后,送去净化处理。
别离四钼酸铵后的酸性母液中,还残留有3%~4%的钼(适当6~10g/L),将其再酸化至pH=2送沉积池,可从中分出各种成份聚钼酸盐非晶形沉积。沉积送净化处理除杂,尾液还含约1g/L的钼,可用离子交换法加以收回。
4、浸渣收回
依据钼焙砂的不同成份,钼的浸出率在80%~95%之间,其余部分残留在产率10%~25%的浸渣中,渣的含钼量还高达5%~25%之间。[next]
浸渣中钼的物相生要为:难溶或不溶于的钼酸钙、钼酸铁;不溶于的二氧化钼、二硫化钼;极少量吸附在氢氧化铁表面的钼酸根离子。笔者在对栾川县钼酸铵厂浸渣所作物相分析发现:吸附MoO2-4很少,而CaMoO4、MoS2含量占渣中钼量的80%以上。见下表。
表 浸渣中钼的散布
钼的物相MoO2-4Fe2(MoO4)3CaMoO4MoO2MoS2算计钼分配率(%)4.199.3335.754.6746.06100.00
从浸渣中收回钼的工艺繁复,不少工艺与钼精矿分化工艺相同,此仅作简略介绍。这些工艺也有火法、湿法之分。
火法常见工艺有:(1)二次焙烧-浸;(2)碳酸钠焙烧-水浸;(3)硫酸焙烧-浸。后两种适用于含各种钼化合物的浸渣。其间碳酸钠焙烧法用得最多。
二次焙烧法:Richard将浸渣在富氧(或纯氧)中焙烧600~650℃,15~30min后总浸率达99%以上。
碳酸钠焙烧-水溶法:将湿渣拌上碳酸钠粉,放焙烧炉内,经700~750℃焙烧6~8h。此刻,浸渣中的各种钼化合物都会转化成可溶的钼酸钠。用水加热溶解此焙渣,钼酸钠溶入液相经过滤后别离出。在pH=3.5~5微酸性介质中,用从浸液中沉积出钼酸铁。沉积物中的FeO3/MoO3份额不定,一般不与Fe2(MoO4)3共同,可用溶解得钼酸铵溶液。
硫酸焙烧-水浸法:将浸渣拌入硫酸在600℃下焙烧,各种钼化合物转化为钼酸。用浸出焙渣,钼酸转化为钼酸铵进入溶液再收回。
湿法常见工艺有:(1)碱液压煮;(2)酸分化;(3)次分化。
碱液压煮:当浸渣中钼首要以钼酸盐方式存在,而MoO2或MoS2含量很低时,在高压反响釜内用碳酸钠溶液浸出浸渣。在180~200℃,1.2~1.5MPa浸出,可将其他钼酸盐转化为可溶钼酸钠别离收回。
酸分化法:当浸渣的钨档次较高(3%~5%W)时,用其他方法难将W-Mo别脱离。此刻用20~30%加温到100℃左右浸出浸渣,可将其间钼酸盐彻底分化,生成易溶于的钼酸,而钨酸盐大部分不会分化而与杂质一块残留在固相,别离出钼酸溶液收回钼。残渣可再收回钨和MoS2、MoO2。
用15%浓度硝酸、10%浓度硫酸,在液固比为3:1,加温到70~80℃时,浸出浸渣2h,可将浸渣中各种钼化合物转化为钼酸,残渣含钼量仅0.44%。
钼中矿处理——钼酸铵生产
2019-02-15 14:21:24
钼矿选矿过程中,有的流程产出一个难以用浮选收回的低档次钼中矿;有的因杂质含量太高得不到合格钼精矿〈或称低档次钼精矿〉。使用这些不合格的钼精矿和钼中矿来出产钼酸铵是收回这部分钼的一个方法。 1.钼中矿的化学选矿 杨家杖子钼矿在选矿过程中产出一个含钼0.6~0.8%的钼中矿,以此为质料出产钼酸铵的工艺流程如下: 首先把钼中矿浓缩到60%固体浓度,参加次溶液浸出,反响式如下:
MoS2+9NaClO+6H2O→Na2MoO4+2Na2SO4+9NaCl+3H2O
次溶液含NaClO130~140克/升、含NaOH50~60克/升。浸出温度45~55℃,钼中矿细度为0.074毫米以下。 浸出生成的钼酸钠溶液参加使pH=5~6,然后加氯化钙,用蒸汽煮沸生成钼酸钙沉积。反响式如下:
Na2MoO4+CaCl2→CaMoO4↓+2NaCl
把钼酸钙沉积过滤后,加碳酸钠溶液分化钼酸钙以除掉其中平杂的重金属离子,反响式如下:
CaMoO4+Na2O3←→Na2MoO4+CaCO3↓
然后加使溶液的pH=0.5,在95℃下反响生成钼酸沉积,反响式如下:
Na2MoO4+2HCl→H2MoO4↓+2NaCl[next]
把钼酸别离出来后,直接溶解于中,生成钼酸铵。参加活性产脱色,然后加使pH=2.5,得到白色结晶的二水四钼酸铵[(NH4)2O•4MoO4•2H2O]。过滤、枯燥、破坏得到钼酸铵制品。整个出产流程如下图所示。
[next]
2.低档次钼精矿出产钼酸铵 有的选厂如金口岭和宝穴选矿厂,因含炭质矿藏的影响,浮选得到的钼精矿含钼仅20~35%。该厂选用化学选矿制成钼酸铵。出产流程如下:首先将低档次钼精矿烘干后焙烧成三氧化钼,反响式如下:
2MoS2+7O2 4.5小时 → 2MoO3+4SO2↑600~650℃
然后将三氧化钼用浸出、生成正钼酸铵,反响式如下:
MoO3+2NH4OH 3小时 → (NH4)2MoO4+H2O
过滤除掉氢氧化铁等不溶物。滤液加(或硫化铵),将浸出液中铜络合物转化为硫化铜沉积、与正钼酸铵别离。除掉重金属离子的溶液,参加硝酸,使pH=2.5,正钼酸铵转化为四钼酸铵晶体,反响式如下:
4(NH4)2MoO4+6HNO3→(NH4)2O·4MoO3↓+6NH4NO3+3H2O
把晶体过滤、在120℃枯燥3小时得到白色结晶的四钼酸铵。出产流程如下图所示。[next]
钼酸铵的湿法生产工艺
2019-02-12 10:08:00
传统的氧化焙烧钼精矿出产钼酸铵的火法工艺,存在SO2烟气严峻污染环境,钼和铼收回率低一级缺点。温法分化钼精矿就可防止这些缺点。
湿法工艺品种繁复,从钼精矿分化手法区分,常见工艺有以下几种(见表1)。
表1 常见湿法工艺
工 艺氧化剂压力(MPa)温度(℃)浸 液硝酸氧压煮O2△0.8~1.5①
※2.0~2.5②180~22020~40g/LHNO3
(HNO3:Mo=0.2~0.3:1)烧碱氧压煮O2同上200 硝酸分化HNO319027~30%浓度硝酸次分化NaOCl120~4030g/L NaOCl,
20~30g/L NaOH
①氯分压;②釜内总压。
1、(硝酸)氧压煮
钼精矿在水介质里,经硝酸催化的氧化煮是一个三相(液-固-气)反响的放热进程,反响为:
MoS29O2+3H2O→H2MoO4+2H2SO4+△Q2
硝酸起作催化剂作用,在反响中循环:
MoS2+9HNO3+3H2O→H2MoO4+9HNO2+2H2SO4+△Q
2HNO2→NO+NO2+H2O
2NO+O2→2NO2+1233kJ
3NO2+H2O→2HNO3+NO+484.5kJ
从亚硝酸→NO+NO2→NO2→HNO3反响很快到达平衡。增大氧分压、下降气相温度,都有利反响进行。
压煮进程中,钼除少数在强酸介质中呈阴离子进入压煮液外,94%左右钼以钼酸方式留在固相。钼精矿里伴生的铼绝大部分转化为可溶的高铼酸或其盐进入压煮液中。钼精矿中铁、铜、铝、镁等呈硫酸盐,部分磷、砷、硅以阴离子方式进入了压煮液。
硝酸氧压煮工艺流程如图1,工艺条件见表2。
表2 氧压煮出产钼酸铵工艺条件
工 艺工 艺 条 件压煮钼精矿(kg):水(L)1:1.5~2.5①釜内加压(MPa)2(反响中上升至3)加热温度(℃)14~15(反响上升至20)②硝酸用量(kg HNO3/kg Mo)0.20~0.30反响时刻(h)2(滤饼)
浸滤饼(kg):水(L):(L)1:0.7~0.8:1.2~1.23PH8.5~90加热温度(℃)70~75拌和时刻(min)15~20溶液比重(g/mL)1.16~1.18净化加热温度(℃)80~PH8.5~9参加过量时溶液呈淡黄色浓缩溶液比重(g/mL)1.2~1.21冷却温度(℃)40~45酸沉反响温度(℃)≯60PH2~2.5溶
再结晶粗晶(kg):蒸馏水(L):(L)100:(40~50):(45~50)溶液比重(g/mL)1.40~1.50溶解加热温度(℃)70~80
① 现在蒸煮加压已可降至0.8~1.2Mpa;
② 反响中,压力还会上升,温度自行再升高[next]
图2 (酸)氧压蒸煮出产钼酸铵工艺流程
钼精矿、硝酸和水(或回来的洗液)参加钛材高压反响釜,向反响釜送入蒸汽开端加热并通入氧气。当釜内温度上升到140~150℃、压力达1.5~2.5MPa后中止蒸汽加热。持续送入氧气,随反响开释热量,釜内的温度、压力得到上升,可到达180~220℃、3~3.5MPa。在不就义载时保持反响2h。反响完毕,中止送氧,温度会随之下降到150℃以下。冷却浸液使温度降至l00℃以下,排气降压,再经液固别离:可获钼酸滤饼和压煮液。对钼酸滤饼的进一步加工与钼焙砂浸工艺类似。
氧压煮工艺里钼和锌的转化率都可达98%~99%以上,加工费不高、三废较少但氧压煮能否施行于出产的关键是设备能否耐压、耐温、耐酸腐蚀。高压反响釜用钛材、密封材料可用四氟乙烯材料制备,对高压、高温、高酸度、高氧化气氛下的阀门等尤须留意。
氧压煮液的处理可选用萃取或离子交流提取钼和铼。几个典型氧压煮条件、作用比照见表3。
表3 氧压煮条件、作用比照
项 目单 位株洲硬质合金厂前苏联美国专利3988418美国专利3739057日本专利昭-37-1520氧分压MPa1.5~2.01.01.05~1.41.0~1.52.0硝酸用量Kg/kg(Mo)0.20~0.30/0.45~0.90.34/液固比/1.5~2.5:110:110:15:110:1温度℃180~220200~225120~160155~160200精矿粒度目75%-200/-325-200-200浸出时刻h2~33~43~426钼转化率%99.1393~993599.5>9998.4进压煮液钼量%~75~720~2510~15/
2、硝酸氧压煮液收回铼的工艺
铼广泛散布在地壳中,但还没有发现有天然形状铼的存在,它也很少呈首要矿藏组分呈现。存在于其他矿藏中的铼仅为痕迹量,辉钼矿却是铼仅有重要的宿主矿藏。至今,世界上所出产铼的99%来源于热液型斑岩铜-钼矿。
从钼精矿出产铼的办法也依靠钼精矿分化的工艺。当氧化焙烧钼精矿时,在500℃以下的焙烧温度,铼就以Re2O7提高进入烟气。用高压力差的高洗刷塔,从烟尘中搜集率约65%。再从溶解有高铼酸或高铼酸铵的洗刷液里萃取或离子交流收回铼。氧压煮时钼精矿中铼的98%转化成高铼酸进入压煮液,压煮液里还含有总钼量5%~6%的钼。
从压煮液可用萃取法或离子交流法收回钼与铼。萃取工艺见图1,萃取铼的工艺条件见表4。
表4 压煮液中收回钼、铼的工艺条件
工 序工 艺 条 件沉 硅聚醚用量50g/m3压煮液萃取与反萃取条 件铼钼有机相组成N2352.520仲辛醇4010火油57.570反萃取剂(mol)NH4OH5~69~10洗刷剂(mol)NH4OH 1.8流比萃取萃铼1.3g/L萃钼20g/L洗刷 1/0.5反萃取铼液10g/L钼液150 g/L铼一次结晶用量(g/L)50 用量(ml/L)20 结晶温度(℃)≤0 铼二次结晶溶解液组成(:水)1:1 一次结晶溶解温度(℃)95 固液比1/10 结晶温度(℃)≤0
[next]
3、烧碱氧压煮
在130℃和氧分压为0.2MPa、釜内总压1MPa时,用NaOH溶液浸出钼精矿。经浸出7~8h后,98%~99%的钼与铼转化进液相。当温度提高到200℃,氧分压可达1~1.5MPa,反响如下:
MoS29O2+6OH-→MoO2-4+2SO2-4+3H2O2
溶液中除含有MoO2-4、ReO4-外,还含有Cu、Fe、Si、As、Sb、P的化合物,这些杂质使溶液处理复杂化。
从含硫酸盐离子高的溶液中别离钼,不适宜选用沉积钼酸钙的办法,由于这会一起生成硫酸钙的沉积而污染钼酸钙。因而,可选用在高压釜中200℃的弱酸溶液中(pH=2)用钼粉复原MoO2-4:
MoO2-4+Mo+4H+→3MoO2↓+2OH-
再用H2复原MoO2即可得工业钼粉。复原后的残液再用以萃铼。该工艺可提取96%钼和85%~90%的铼。
在弱酸性介质中,在加压下通入H2也可复原MoO2-4
MoO2-4+H2→MoO2↓+2OH-
MoO2最佳沉积条件为200℃,氢分压6MPa,pH=2~3,参加晶种反响1~4h后,98%以上相钼会以粗粒MoO3晶体分出。
从苛性碱压煮液中提取钼的另一有效途径是用强碱性阴离子交流树脂作离子交流。
惯例处理钼溶液的萃取、活性炭吸附、离子交流工艺都适用于酸性介质。株洲钨钼材料研究所选用OH-型717#或D296阴离子树脂,从苛性碱氧压煮的钼液中吸附钼,吸附率可达99.5%。而且除掉90%以上磷、砷、硅和80%以上SO42-等杂质。实验中,湿树脂的吸附量较大,pH=8时717#树脂穿透简单(交流柱流出与流入液相含量之比为0.01时简单)为25~29g/L;饱满容量(当流入,流出液的含量到达持平后的树脂含量)为38~40g/L;D296-10在pH=10时的穿透容量为29.06g/L,饱满容量为37g/L。在对树脂用NH4Cl解吸,解吸液酸沉等工序中,可进一步脱除SO42-及铜铁等杂质,取得合格的高质量仲钼酸铵。
4、次氧化法
这往往用作低档次钼精矿和钼中矿的湿法分化工艺。
在碱性介质中,加氧化剂次简直能氧化一切的硫化物:
但在20~40℃时,铁、铜的硫化物氧化速度远比辉钼矿的低。此刻,可充沛将MoS2转化为MoO42-,而铜、铁的硫化物很少溶解。一起,氢氧化铁,特别氢氧化铜在碱性介质能催化次的分化,加速辉钼矿的氧化:
NaClO→NaCl+[O]
浸液成份一般为:NaCIO30g/L,NaOH20~30g/L。一般用此法浸取含钼5%~23%的钼中矿时,钼的收回率可高达96%~98%。这个办法可在常温,常压下作业,比氧压煮易操控。不足之处是药剂耗量太大,理论上核算,每浸取lkg钼,需耗费7kg次,而实践出产耗费还为理论值的1.5~2倍。
为此,呈现通以再生次的工艺:
2NaOH+Cl2→2NaClO+H2↑
亦呈现电氧化法:用通电的氯化钠溶液浸出:
NaCl+H2O电解NaClO+H2↑→
[next]
这些工艺都只是次法的分支,见图2。
图2 次法流程
钼酸铵、钼酸钠实行分等级报价的具体方法
2018-12-14 09:31:07
中国有色金属工业协会钼业分会于2006年4月26-27日在杭州召开了“钼业分 会全国钼化工企业第三次峰会”。与会代表围绕会议讨论议题进行了认真讨论,大 家各抒己见,畅所欲言,最后达成了多项有利于全国钼化工行业及钼行业发展的共 识。其中提出了对钼酸铵、钼酸钠的报价问题,大家一致认为,钼酸铵、钼酸钠应 实行分等级报价,这种报价较为科学,有利于钼行业的发展,现将具体事宜通知如 下: 一、四钼酸铵 1、精品级 Mo≥56% 化学物理性能达标,满足钼拉丝条及深加工; 2、一级品 Mo≥56% 各项化学性能达标,满足钼粉制备及钼制品棒、杆、板 等; 3、二级品 Mo≥56% 主含量满足炼钢钼条、块、坯及其普通应用。 二、七钼铵酸 1、一级品 Mo≥54% 化工原料及其主应用; 2、二级品 Mo≥52% 钼肥生产原料; 三 、二钼酸铵 参照七钼酸铵一级品价格执行mo≥56% 四、钼酸钠 1、精品级 Mo≥39.2% 含量≥99% 无钨、钒杂质; 2、一级品 Mo≥38.5% 含量≥98.5%; 3、二级品 Mo≤38% 含量≤98%。.
用非晶态钼矿石制备钼酸铵的研究
2019-01-25 13:36:45
摘 要:以中国某地含钼矿石为原料,通过研究发现钼以非晶态硫化物形式存在,一般选矿及文献记载的湿法提取方法均无法使之达到工业应用要求。研究了用原矿直接通过氧化焙烧、碳酸钠溶液高温高压浸取,将其中的钼转化为含钼溶液,再加入一定量固体氯化铵,加热析出钼酸铵,从而制备钼酸铵产品,并通过条件试验选取最佳工艺技术参数。钼酸铵中钼含量大于55%(质量分数),钼的回收率大于90%。关键词:非晶态钼矿石;钼酸铵;氯化铵。 1 物质组分 原矿分析结果:ω/(SiO2)=21.77%,ω/(K2O)=1.04%,ω/(Fe2O3)=15.96%,ω(Na2O)=0.22%,ω(Al2O3)=8.28%,ω/(TiO2)=0.33%,ω/(CaO)=7.28%,ω/(MgO)=2.10%,ω(S)=19.48%,ω(P)=0.16%,ω/(Mo)=4.32%,ω(Ni)=3.14%,ω/(Mn)=O 0.045%,ω/(C) =13.00%。 原矿经X射线衍射图谱分析,未见钼(镍)矿物的谱线和峰值,含硫矿物只有黄铁矿(二硫化铁),质量分数在14%左右,换算其中的硫含量占总质量的7.5%,而原矿化学分析结果表明硫含量高达19.48%,显然无法 平衡。据此判断,钼(镍)以非晶态硫化物形式存在。原矿其它主要矿物组成为:石英、碳、白云石、云母、菱铁矿、高岭石等。 2 原则工艺流程的制定 原矿钼品位较低,硫、碳含量较高,曾尝试浮选或重浮联选进行富集,由于其未结晶形成独立矿物,与碳等共生紧密,且嵌布粒度极细,无法与其它矿物进行有效分离,使得精矿晶位和回收率均极不理想。因此,本研究采用湿法冶金工艺提取其中的钼。原矿直接经氧化焙烧后,用碳酸钠溶液高温高压浸取,再用氯化铵析出浸取液中的钼,制备钼酸铵产品。原则工艺流程为:原矿→破碎→磨矿→氧化焙烧→碳酸钠溶液浸取→氯化铵析出→过滤洗涤→干燥→钼酸铵产品。 文献介绍了用低品位钼精矿制备钼酸铵的工艺路线,制备工艺在常压下进行且为结晶完好的辉钼矿原料。在文献的基础上,研究碳酸钠用量、浸取反应时间、浸取温度(压力)对浸出率的影响,并据此确定最佳浸取工艺条件,以及研究了用氯化铵制备钼酸铵的工艺技术指标。[next] 3 试验结果及分析 3.1 碳酸钠溶液浸取试验 试验仪器:l 000 W可调电炉;调速电动搅拌机;200 mL不锈钢反应釜,自制;调温烘箱。 试剂:碳酸钠,化学纯。 主要反应: 2MoS2+7O2=2MoO3+4SO2 ↑ MoO3+Na2CO2=Na2MoO4+CO2 ↑ 3.1.1 碳酸钠用量试验 试验条件为:液固质量比2:1,温度100℃,时间1 h。取100g焙烧后的样品,磨至52 µm,加入不同量的碳酸钠,加人量为与固体原矿的质量比,两级浸取,第一次与第二次加入的量相同,加200 mL水,加热到100℃,搅拌反应l h,冷却后过滤洗涤,渣烘干后分析钼含量。浸取焙烧后的样品钼含量为4.07%(质量分数),试验结果见表1。从表l看出,当每次碳酸钠用量为50%时,浸出率相对较突出,但用量过高,不经济。总的来看,常压下浸取效果并不理想,但为高温高压浸取试验提供了一定的参考依据。表l 碳酸钠用量试验结果(质量分数) %碳酸钠用量一次浸出渣钼含量二次浸出渣钼含量总浸出率103.793.0226.8203.521.7656.8301.471.2669401.41.0973.2501.481.5187.5[next]
3.1.2 浸取时间试验 试验条件:液固质量比2:l,碳酸钠用量40%,温度100℃。浸取时间分别为1 h、2 h、3 h、4h时,一次浸出渣钼含量(质量分数)分别为1.40%、1.6l%、1.54%、1.68%。结果表明,浸取时间对浸取效果无显著影响,以1 h为宜。 3.1.3 浸取温度(压力)试验 试验条件:液固质量比2:l,浸取时间l h,碳酸钠用量30%,结果见表2。结果显示,在碳酸钠用量相同的情况下,160℃时的密闭静态浸出率远高于常压下动态浸出率,超过了90%的预期指标。考虑到温度过高,反应时状态的平衡压力也随之增高,对设备的要求更加严格,反应温度以160℃较为适宜,此时状态的压力约606 kPa。表2 浸取温度(压力)试验结果浸取温度/℃一次浸出渣钼质量分数/%二次浸出渣钼质量分数/%总浸出率/%室温3.262.6933.91001.471.26691601.380.2691.2
钼酸铵热解生产三氧化钼
2019-01-29 10:09:51
工业仲钼酸铵是一系列钼的同多酸铵盐的混合物,它主要包括有:钼酸铵,四钼酸铵与仲钼酸铵。
下表列出了常见几种钼酸铵盐。
表 常见几种钼酸铵盐
名称分子式脱水温度(℃)转化温度(℃)转化产品仲钼酸铵(NH4)6Mo7O24·4H2O90°脱一个结晶水230四钼酸铵四钼酸铵(NH4)2MoO13130°脱其余结晶水315三氧化钼钼酸铵(NH4)2MoO4·2H2O120 三氧化钼
仲钼酸铵热离解反应及条件如下:
(NH4)6Mo7O24·4H2O90~130℃(NH4)6Mo7O24·4H2O+4H2O↑→
(NH4)6Mo7O24150~250℃(NH4)2Mo4O13+NH3↑+2H2O↑→
(NH4)2Mo4O13280~380℃4MoO3+2NH3↑+H2O↑→
工业生产中,这一系列反应在同1台回转炉内进行。炉温保持在450~500℃。炉温偏低,仲钼酸铵等热解离不彻底;炉温偏高,解离后的三氧化钼蒸汽压上升,会因升华而损失。回转炉的加热通常由炉外缠绕的电阻丝来实现。
由仲钼酸铵热解离生产的三氧化钼呈极淡的黄绿色,基本可满足高纯三氧化钼的要求。此工艺对原料——仲钼酸铵的质量要求较高,原料中的杂质往往进入焙烧后钼砂——高纯三氧化钼的产品中。所以,当原料含杂质较高时,必须先经除杂纯化,直至达到要求之后,再进入热解离段工艺。
用离子交换法分离钼酸铵溶液中的钒
2019-02-21 11:21:37
跟着现代工业的飞速发展,钼的用量不断添加,其报价也继续上涨,但优质钼矿资源越来越少。在各种类型的钼矿藏和钼系废催化剂中都含有一定量的钒酸根,钒酸根是钼产品的有害杂质,因此,需求经过除钒酸根来制备纯钼化合物。
钼酸根、钒酸根在水溶液中的性质十分类似,别离很困难。已有的一些钼酸根、钒酸根别离办法有铵盐沉淀法、溶剂萃取法、电化学离子交流法、电化学复原反萃取法、螯合树脂吸附法等。铵盐沉淀法和溶剂萃取法对钼酸根、钒酸根别离不完全,后3种办法可使钼酸铵产品中钒酸根质量分数小于0. 0015%,可是电化学离子交流法和电化学复原反萃取法操作工艺杂乱,而螯合树脂吸附容量低,工业运用不抱负。实验研讨了用强碱性阴离子交流树脂从钼酸铵溶液中去除钒酸根。
一、实验部分
(一)实验仪器、试剂和分析办法
强碱性阴离子交流树脂D231-Ⅱ,浙江争气实业股份有限公司产品。
实验料液由钼酸铵、和去离子水制造而成,钼质量浓度62.36gL,钒质量浓度0.52gL,pH为6.5~7.5。
、、钼酸铵、均为分析纯。
溶液中钼质量浓度用铜离子催化硫酸盐法在722S型分光光度计上测定,钒酸根质量浓度用硫酸亚铁铵滴定测定,氯离子质量浓度用滴定测定,溶液pH值用pHS-25数显pH计测定。
离子交流柱:Ф2.5 cm×200 cm。
(二)实验办法
树脂先用去离子水浸泡24 h,充沛溶胀后再用去离子水洗至无杂质;用40gL溶液和40 gL溶液替换处理2次,每次用2倍树脂体积的用量浸泡8h并用去离子水洗至中性;最后用4倍树脂体积的40 gL溶液转为氯型,再用去离子水洗至中性,备用。
取200 mL处理好的D231-Ⅱ树脂装填在交流柱中,室温下,将制造好的料液从上向下经过树脂层,操控流速为200 mL/h,每2h取交流柱流出液一次,检测钼和钒的质量浓度。
交流柱流出液中钒酸根质量浓度达0.02 g/L时中止吸附。当树脂吸附饱满后,用4倍树脂体积的50 g/L溶液(或50gL溶液)解吸,用去离子水洗至pH=8,再用4倍树脂体积的50g/L溶液转为氯型,用去离子水洗至pH值为中性后,进行下一个周期的吸附。
二、实验成果与评论
(一)吸附
3个周期的吸附实验曲线如图1~3所示。图1 第1周期树脂对钒酸根的吸附曲线图2 第2周期树脂对钒酸根的吸附曲线图3 第3周期树脂对钒酸根的吸附曲线
从图1~3看出:D231-Ⅱ树脂对料液中的钼酸根和钒酸根都有吸附作用,当流出液体积为1倍树脂体积时,钼酸根开端穿透,随后流出液中钼酸根质量浓度敏捷升高;当流出液体积为8倍树脂体积时,流出液中钼酸根质量浓度与进料液中的根本共同,而钒酸根根本检测不出;当流出液体积为20倍树脂体积时,流出液中检测出有微量的钒酸根。若以钒酸根质量浓度0.02g/L为失效结尾,则树脂对钒酸根的吸附容量约为16.0g/L,处理料液量为26倍树脂体积。
(二)解吸
选用强碱性阴离子交流树脂D231-Ⅱ去除钼酸铵溶液中的钒酸根作用很好。流出液中钒酸根质量浓度达0.02g/L为吸附结尾,此刻对树脂进行解吸处理。负载树脂先用清水淋洗,去除残留的吸附原液,然后用4倍树脂体积的50 g/L溶液进行解吸,再用去离子水洗至pH=8。3个周期的解析实验曲线如图4~6所示。树脂吸附容量、洗脱量和洗脱率见表1。图4 第1周期树脂对钼酸根和钒酸根的解析曲线图5 第2周期树脂对钼酸根和钒酸根的解析曲线图6 第3周期树脂对钼酸根和钒酸根的解析曲线
表1 D231-Ⅱ树脂3个周期的吸附参数从表1看出:3个周期的解析成果根本共同,钒酸根洗脱率均在99%以上,阐明D231-Ⅱ树脂吸附钒酸根的重复性好、洗脱率高。D231-Ⅱ树脂作为一种大孔强碱性阴离子交流树脂,具有特殊的孔结构和比表面积,在pH为6.5~7.5范围内,对钒酸根的吸附选择性大于对钼酸根的吸附选择性。一起,树脂的抗污染才能强,具有很高的吸附才能、耐温性、稳定性和机械强度,十分合适从实践溶液中吸附别离钒酸根。
三、定论
实验成果表明:D231-Ⅱ树脂可用于从钼酸铵溶液中别离钒酸根;溶液pH为6.5~7.5时,D231-Ⅱ树脂对钒酸根的吸附选择性很高,吸附率大于99%;负载树脂用稀(稀碱液)脱附,钒酸根洗脱率在99%以上。D231-Ⅱ树脂有较高的耐氧化、耐酸碱、耐有机溶剂的功能,机械强度大,正常情况下,年损耗率小于5%。选用D231-Ⅱ树脂从钼酸铵溶液中吸附钒酸根,工艺简略,别离作用好,不需求特殊设备,技能简单把握,可完成自动化。
钼酸钙
2019-02-12 10:08:00
同钼铁、氧化钼相同,钼酸钙也常作为钢铁的钼合金添加剂。其运用远没钼铁、氧化钼广泛。纯钼酸钙含钼48.0%。下表列出了前苏联钼酸钙标准,供参阅。
表 钼酸钙(前苏联)标准UMTY-4523-65ROC
类型Mo
≥Ca
≤P
≤S
≤MДK-144220.10.2MДK-240240.20.3
钼酸钙的出产可由钼焙砂加石灰(CaO)混匀焙烧,钼精矿加石灰(CaO)后混匀焙烧。但更多的是在处理低档次钼精矿时,用氯化钙(CaCl2)沉积MoO42-而制成,惯例工艺见下图。
图 低档次钼精矿制钼酸钙流程
当用苏打液浸出钼焙砂时,不只能与三氧化钼反响,也能与钼酸钼,钼酸铁反响而溶解(但就不能使它们溶解、反响):
MoO3+Na2CO3←→Na2MoO4+CO2↑
CaMoO4+ Na2CO3←→Na2MoO4+CaCO2↓
FeMoO4+ Na2CO3+H2O←→Na2MoO4+Fe(OH)2↓CO2↑
为了溶解充沛并节约苏打,一般选用四到五段逆流浸出。对过泸后的浸液经蒸汽加热浓缩,钼酸钠溶液的钼浓度超越50~70g/L后,就可在80~90℃下参加氯化钙(CaCl2)生成钼酸钙沉积。沉积需在中性或碱性溶液中进行,所加CaCl2量应比理论反响量多10~15%。对所生成的沉积用清水清洗去硫酸盐后,经过滤、锻烧(600~700℃)即可获炼钢工业钼酸钙。
由低档次钼精矿,乃至出产钼酸铵的浸渣,都可与苏打拌合后焙烧,发生如下反响:
MoS2+Na2CO3+O2△Na2MoO4+CO2↑+SO2↑←→
SiO2+ Na2CO3→Na2SiO3+CO2↑
生成的可溶性钼酸钠与硅酸(或偏硅酸)钠可在必定的pH范围下进行别离。别离出硅酸后的母液参加氯化钙,将生成钼酸钙的沉积。对沉积先经清洗、烘干后即成工业级钼酸钙。
钼酸的出产工艺与钼酸钙的出产工艺类似。所不同的仅仅不必氯化钙而用氯化去沉积钼酸钠溶液中的钼:
Na2MoO4+BaCl2→2NaC1+BaMoO4↓
钼酸使用于珐琅工业中。出产时,国内用浸渣加苏打焙烧的工艺使用较多,它的出产要害,是溶液中偏硅酸与钼酸钠的充沛别离。
a级电解铜
2017-06-06 17:49:55
a级电解铜是高纯阴极铜,高纯阴极铜符合国标GB/T467-1997规定,纯度可达99.9935%。。 按照上海期货交易所交割制度的规定,注册铜分为标准品和替代品两种不同的交割等级。前者为标准阴极铜,后者包括高纯阴极铜和LME注册阴极铜。其中达到高纯阴极铜标准并经交易所认定的注册铜实行升水交割,升水幅度为110元,俗称“升水铜”;其他国产品牌和进口LME注册铜则按标准级交割,不享受升水,习惯称作“平水铜”。目前,在所有注册品牌中,仅有下列五个品牌享有升水:江西铜业的“贵冶”牌、铜陵有色的“铜冠”牌、云南铜业的“铁峰”牌、金隆铜业的“金豚”牌,以及张家港联合铜业的“铜鼎”牌,其中前四个品牌已在LME注册。升水铜尽管牌号不多,但都属于国内大型铜厂所有,且占国内总产量的一半以上。 国内铜厂因所采用的工艺设备和技术不同,所产铜的品级和质量也存在差异。一些国营大厂的产品能达到较高品级,即符合国标GB/T467-1997高级阴极铜规定,纯度可达99.9935%;而一些中小厂家的产品仅能达到国标GB/T467-1997标准阴极铜规定,铜加银含量不小于99.95%。 电解铜即铜的电解提纯:将粗铜(含铜99%)预先制成厚板作为阳极,纯铜制成薄片作阴极,以硫酸(H2SO4)和硫酸铜(CuSO4)的混和液作为电解液。通电后,铜从阳极溶解成铜离子(Cu)向阴极移动,到达阴极后获得电子而在阴极析出纯铜(亦称电解铜)。粗铜中杂质如比铜活泼的铁和锌等会随铜一起溶解为离子(Zn和Fe)。由于这些离子与铜离子相比不易析出,所以电解时只要适当调节电位差即可避免这些离子在阳极上析出。比铜不活泼的杂质如金和银等沉积在电解槽的底部。 这样生产出来的铜板,称为“电解铜”,质量极高,可以用来制作电气产品。沉淀在电解槽底部的称为“阳极泥”,里面富含金银,是十分贵重的,取出再加工有极高的经济价值。 更多关于a级电解铜的资讯,请登录上海有色网查询。
四氯化锡 价格
2017-06-06 17:49:51
四氯化锡 价格是消费者会关注的话题,下面我们就来看一下这个问题。性状一四氯化锡工业品为无色或淡黄色的液体,b.p.142℃,相对密度2.3021,暴露于空气中与空气中水分反应生成白烟,有强烈的刺激性,遇水分解,生成盐酸及正锡酸。性状二无色液体或无色立方结晶。熔点-33℃。沸点114.1℃。液体相对密度2.226。溶于冷水并放出大量的热,溶于乙醇、乙醚、苯、甲苯、四氯化碳。遇热水则分解。在湿空气中吸水生成为三水物。进一步加水,生成5、8、9等不同数量的结晶水的化合物。无水氯化锡在低温下能吸收大量的氯气,同时体积形成膨胀和冰点下降;能与氨反应生成复盐;与碱金属作用生成锡酸盐。有强腐蚀性。所属类别一农药中间体: 杀螨剂中间体所属类别二无机化工产品: 无机盐: Ce液化物及氯酸盐用途与作用一四氯化锡是合成杀螨剂三环锡、苯丁锡和三唑锡的中间体。用途与作用二用于合成有机锡化合物的原料,染色的媒染剂,制造蓝晒纸和感光纸、润滑油添加剂,玻璃表面处理以形成导电涂层和提高抗磨性。用作异丁烯、α-甲基苯乙烯等的阳离子聚合催化剂。合成工艺与制法一金属锡氯化法 将金属锡熔融,然后泼入冷水,激成锡花,加入反应器中,通入干燥氯气进行反应,生成四氯化锡。由于产物中有过量的游离氯而呈黄色。可加入几片锡薄片,加热蒸馏,用干燥容器接收105~120℃的馏分,制得无水氯化锡成品。其反应式如下:Sn+2C12→SnCl4合成工艺与制法二四氯化锡是由锡和氯气为原料制成。参考质量标准参考标准指标名称 指标四氯化锡(SnCl4)/%> 99游离氯/%< 0.005锑(Sb)/%< 0.006铅(Pb)/%< 0.002铁(Fe)/%< 0.005铜(Cu)/%< 0.001砷(As)/%< 0.10如果你对四氯化锡 价格感兴趣,你可以登陆上海有色网进行查询,寻找更详细的信息。
四氯化钛中杂质及其性质(二)
2019-02-15 14:21:16
粗TiC14的沸点随溶解杂质的特性和含量而异。一般说来,高沸点杂质的溶解可使其沸点升高。相反,低沸点杂质的溶解可使其沸点下降。 在0.1MPa压力下测得粗TiC14中杂质与TiC14的别离系数a见表6。 SiC14-TiC14相图和VOC13-TiC14相图别离如图1,图2所示。 (二)杂质在四氛化钛中的溶解度[next] 1.气体杂质的溶解度 大部分气体杂质的TiCl4中的溶解度都不大,而且随温度的升高而下降,在欢腾时易于从中逸出,因而简单除掉这些杂质。其间在TiCl4冷凝过程中吸收适当数量的,在受热后放出,易对设备发生腐蚀。 在TiCl4中的溶解度见表7。表7 在0.1MP 压力下在TiCl4中的溶解度温度/℃020406080100136溶解度/%11.57.64.12.41.81.10.03
2.液体杂质的溶解度 TiC14中液体杂质SiC14, CC14. VOC13. CS2, SOC12,CH2CICOC1, S2C12,可按恣意份额与TiC14互溶,因而这些杂质是较难别离的。其间SiC14、VOC13在氯化法钛白出产时,因为影响晶型转化率和产品白度而有必要除掉。 3.固体杂质的溶解度 TiC14中的悬浮物杂质几乎不溶于TiCl4,大多数固体杂质的溶解度尽管随温度升高而升高,但其值比较小。因而,经蒸馏比较简单除掉,都留在蒸馏釜中。 一些固体杂质在TiCl4中的溶解度见表8.
硫酸镍铵
2017-06-06 17:49:58
硫酸镍铵又称硫酸镍(II)铵,分子式为 (NH4)2Ni(SO4)2.6H2O,是一种浅绿色的晶体,可溶于水。硫酸镍铵加热时失去结晶水,变为黄色结晶粉末,而它可用于镀镍。【密度】1.923 【性状】 浅绿色单斜晶体。 【溶解情况】 溶于水,不溶于乙醇。 【用途】 用于镀镍和作分析试剂等。 【制备或来源】 将硫酸铵的饱和溶液与硫酸镍的浓溶液混合结晶而得。 【其他】 加热时失去结晶水,变为黄色结晶粉末。 与碱反应会放出氨气,和氢氧化镍。硫酸镍铵IUPAC
名ammonium nickelous sulfate别名硫酸镍(II)铵识别CAS
号15699-18-0<div style="margin: 12pt 0cm" align="cente
硫酸镍铵
2017-06-06 17:49:57
硫酸镍铵又称硫酸镍(II)铵,分子式为 (NH4)2Ni(SO4)2.6H2O,是一种浅绿色的晶体,可溶于水。硫酸镍铵加热时失去结晶水,变为黄色结晶粉末,而它可用于镀镍。CAS号:15699-18-0 化学式:(NH4)2Ni(SO4)2.6H2O摩尔质量:395.00 g·mol−1外观:浅绿色单斜晶体密度:1.92溶解度(水):10.4g/100cc 晶体结构:单斜晶系其他:加热时失去结晶水,变为黄色结晶粉末。 与碱反应会放出氨气,和氢氧化镍。健康危害:皮肤接触过敏,症状为发痒、发红,而后出现皮疹,高度暴露或重复暴露会伤肺,引起咳嗽、气短,肺积水、气喘,对心脏、肝、肾有损害 急救皮肤接触:脱下被污染的衣物,用水清洗皮肤患处眼睛接触:立即用水清洗至少15分钟 食入:将患者立即送到医院观察2天,同时检查尿样中镍含量 呼吸系统防护:选用带护目镜的呼吸器,定期检查肺功能、血浆及尿液中镍含量 防护服:穿戴清洁完好的防护用具(防护服、手套、足靴、头盔),以保护皮肤 泄漏处置:须穿戴防护用具进入现场,将粉状泄漏物收集于密闭容器中。
钢管的钢级
2019-03-15 09:13:19
什么是钢管的钢级 钢的化学成份不同,化学成份不同,也就造成的了钢管的力学指标不同。 一、二、三级钢是国家根据社会生产需要而制订出的材料标准,它的屈服强度、极限强度、延伸率、冷弯、及可焊性均有很大的不同,不同级别的钢使用位置也有很大的一同。 一级钢屈服强度235MPa ,极限强度310MPa。 二级钢屈服强度335MPa ,极限强度510MPa。 三级钢屈服强度400MPa,极限强度600MPa 另外Q235是一级钢.HRB335是二级钢.HRB400是三级钢 按照化水成分分类,分为非合金钢、低合金钢、合金钢。 油套管钢级共有H40,J55,K55,M65,N80,L80,C90,T95,C95,P110,Q125 二十个不同钢级,类型的油套管,为区分不同的钢级强度,螺纹类型,分别用不同色标和符号代表油,套管的钢级和螺纹。色标和英文字母后面的二为或三位数字表示油,套管的钢级的最低屈服强度,如J55表示其最低屈服强度为55000磅/英寸2(379Mpa)最高为80000磅/英寸2 (552Mpa),P110最低屈服强度为110000磅/英寸2(758Mpa)最高为140000磅/英寸2(965Mpa)。H,J,K,N代表一般强度油套管,C,L,M,T代表限定屈服强度油套管,具有一定的抗硫腐蚀性能。
钢管的钢级 油套管的钢级指材料的屈服强度,如H40表示强度为40*1000/145MPa=275.86MPa
本地一般表层套管用J55,油层套管用N80,有高压层用P110,或者井比较深,上部用P110。油套管钢级共有H40,J55,K55,M65,N80,L80,C90,T95,C95,P110,Q125 二十个不同钢级,类型的油套管,为区分不同的钢级强度,螺纹类型,分别用不同色标和符号代表油,套管的钢级和螺纹。色标和英文字母后面的二为或三位数字表示油,套管的钢级的最低屈服强度,如J55表示其最低屈服强度为55000磅/英寸2(379Mpa)最高为80000磅/英寸2 (552Mpa),P110最低屈服强度为110000磅/英寸2(758Mpa)最高为140000磅/英寸2(965Mpa)。H,J,K,N代表一般强度油套管,C,L,M,T代表限定屈服强度油套管,具有一定的抗硫腐蚀性能。
钢管的钢级 管道介质的输送压力有逐渐增高的趋势,在输气管线上尤为明显。这是因为在一定范围内提高输送压力会增加经济效益,以输气管线为例,在输量不变的条件下,随着输送压力的提高气体的密度增加而流速减小,从而使摩阻下降。 在一条输气管线的站间距内由进站到出战压力逐渐下降,而流速逐渐增加,随之摩阻也逐渐增加,故离进站口 3 / 4 长度消耗生出站压差△ p 的一半,而后 1 / 4 长度消耗另一半。输气管线与输油管线最大的差别是由进站到出站流速是逐渐增加的,这是介质的可压缩性造成的。而油基本上是不可压缩的,虽然输送压力沿管程逐步下降,但流速是不变的,摩阻也是前后相同的。由此看出对于输气管线压力的提高可使摩阻下降,而输送能耗下降。 还应指出,输气管线的能耗远比输油为大,仅以西气东输管线为例,该管线输送压力 p : 10MPa ,输量为 120 亿 m3 /年,管线长度为 4000KM ,粗略按经验估计能耗大致为 12 亿 m3 /年,而输量的。 1/10 作为沿途的能源消耗掉了。 由于对降低能耗的关切,输送压力有逐步增加的趋势。早期我国四川省的天然气管线输送压力为 2.5MPa ,以后增加到 4MPa ,陕京线提升为 6MPa ,西气东输增至 10MPa ,国 外经济发达国家近十气输气管线多选取 12MPa 。 在输气管线上压比亦有逐渐下降的趋势。所谓压比指进站压力与出站压力之比,压比减少意味着全线均在较高的压力下运行,这样也可使能耗减小。早期压力多为 1.6 ,后来降至 1.4 ,近年国外有些输气管线取压比为 1.25 。当然,压比减小,压缩机站数要增加,从而投资会增加。对于管径、压力、压比均需进行优化计算和比选。
当输量确定,通过优化确定管径、压力、压比以后,如选取较高压力而钢材强度等级太低,则会造成壁厚过大,这给制管、现场焊接以及运输等诸多环节带来困难,甚至难以实现。生产的需求促进了钢材等级的提高。 API 于 1926 年发布 APl5L 标准,最初只包括 A25 、 A 、 B 三种钢级,最小屈服值分别为 172 、 207 、 251MPa 。 API 于 1947 年发布 APl5LX 标准,该标准中增加了 X42 , X46 , X52 三种钢级,其最小屈服值分别为 289 、 317 、 358MPa 。 1966 年开始,先后发布了 X56 、 X60 、 X65 、 X70 四种钢级,其最小屈服值分别为 386 、 413 、 448 、 482MPa 。 1972 年 API 发布 U80 、 U100 标准,其最小屈服值分别为 551 、 691Mpa ,以后 API 又将 U80 、 U100 改为 X80 、 X100 。 粗略统计,全世界 2000 年以前 X70 用量在 40 %左右, X65 、 X60 均在 30 %左右徘徊,小口径成品油管线也有相当数量选用 X52 钢级,且多为 ERW 钢管。
关于 X80 钢级,国内、外议论很多,国际上曾对 X80 研制已耗巨额投资的钢铁巨头更是积极宣传 X80 ,甚至 X100 ,但时至今日 X80 只处于 " 试验段阶段,总长仅 400KM 左右。目前正在建设中的管线尚无采用 X80 钢级的,计划中或正在准备中兴建的管线尚无下定决心采用 X80 者,对此笔者曾与国外多家管道工程公司 ( 负责管道设计 ) 的技术人员交换过意见,大家看法基本相同,钢管的钢级 大致可归纳如下: 1 、 X80 钢级随着操作压力的提高及准备工作的完善将来必定会得到发展; 2 、当前大石油业主不愿意首先选用 X80 大致出于以下原因: (1) 某一种新钢级 ( 包括炼钢、轧制、制管 ) 由开始生产至熟练的生产要有一个不合格率由高至低的过程,用同样的检验手段其出厂的不合格率也会有一个由低至高的过程,首先采用者要承担此风险; (2) 在现场焊接过程中,包括预热温度、层间温度、热入量等对新钢级要有一个探索过程,在此期间不合格率也有一个由高至低的过程,首先采用者更多地承担此风险;
(3) 采用 X80 后,现场使用的冷弯机、焊丝、环缝自动焊机、热弯头工艺等可能需要改变,重新购置或研制,从而增加了工程费用; (4) 采用 X80 后,同样直径,当操作压 力不够高的情况下,钢材强度等级的提高意味着厚度的减薄,亦即厚度直径比 (t / D) 的减小,这也就意味着管线刚性的降低。从事故分析及风险分析看,管线的第三方破坏通常占破坏原因的 40 %以上,而管线抵抗第三方破坏能力仅与 t / D 比有关而与强度等级无关。
从我国国情看,我国虽然经济近十多年迅速发展,但仍属发展中国家,笔者建议在采用 X80 问题上我们不做 " 第一个吃螃蟹 " 的人,采取 " 韬光养晦 " 的策略,这对业主单位有利对我国冶金行业也有利。
我国冶金行业在近十余年来为发展管道钢付出了极大的辛劳,取得可喜的业绩,目前正在全力攻关 X70 宽板 ( 做直缝埋弧焊焊管用 ) 并积极为能稳定 X70 热轧卷板的质量做努力,如当前决定大量采用 X80 钢级,因我国冶金业对此既无经验又无业绩而难与国外冶金行业竞争,笔者对我国冶金业不仅有深厚的感情,也深信我国冶金业的能力,但不宜操之过急,当然目前抽出少量的力量对 X80 进行探索还是必要的,但必须抓住主要矛盾。
二氧化钛后处理及设备(四)
2019-02-15 14:21:16
包膜罐一般比较大,直径5500-6000mm,高5400-6000mm,体积在120m3左右。罐体留意防腐,材料选用Cr18Ni9Ti。拌和多为螺旋桨式,功率≥11kW,转速60-75r/min。选用国产立式摆线型动力设备较高,当料浆浓度高、涣散欠好、黏度高时拌和阻力大,摆线减速机晃动。而从美国进口莱宁减速机设备小、速比大、效率高、工作平稳,很值得引荐。 液相均匀悬浮相中螺旋桨式(近似美国莱宁公司)拌和的规划参数如下: D/Do=1/3 H/Do =1 CID=1 式中,D为拌和桨直径;H为包膜罐高度;Do为包膜罐直径;C为包膜罐底与第一层拌和桨的高度。 临界浮游速度Ne(颗粒悉数脱离罐底时的速度)的计算公式如下:式中 Ne—拌和转速,r/min; dp—颗粒均匀粒径,mm; ρs—固体密度,g/cm3; ρl—液体密度,g/cm3; μ—主液体黏度,mPa·s; VP-固体颗粒假密度,g/cm3; VP—固体颗粒真密度,g/cm3; K -常数,选取无挡板,K=189;壁挡板,K=199;底挡板,K=142。 包膜时多选用蒸汽直接加温,留意避免停蒸汽后的虹吸现象,形成蒸汽管线阻塞倒灌。 为确保包膜的质量,进步出产能力,包膜进程中的进料和液位操控;各种包膜助剂的加料量和速度操控;特别是pH值的调控等参数宜选用功能杰出的外表和DCS操控作用更好。 包硅膜时操控温度与包铝膜时相差大一些,特别包硅膜时,温度更高一些。因而包膜罐保温材料及保温方法规划要习惯出产需求。 (三)过滤、洗刷工艺及设备 1.后处理过滤、洗刷的作用 通过表面处理后的二氧化钛又从头变成絮凝状况,并且其间含有许多水溶性盐类。这些水溶性盐类首要来自表面处理时所发作的盐(例如Na2S04)、硫酸法锻烧前所加人的盐处理剂、研磨时加人的研磨助剂、氯化法出产氧化除疤时加人的岩盐、湿法脱氯时发作的可溶性盐等。这些盐类特别是氯化物盐类的氯根不除掉将会影响产品涂料的运用功能,如研磨涣散性、漆料储存稳定性和漆膜的耐水性、耐候性。SO42-离子在电泳涂漆进程中显示出很大的危害性,氯根易使产品变黄,白度下降。一般采纳多级过滤、水洗的工艺除掉。[next] 2.过滤、洗刷设备 表面处理后二氧化钛的洗刷设备能够选用真空叶滤机(也称莫尔过滤机)、转鼓过滤机。近两年一些钛厂引入德国连恩舍(Lenser)公司隔阂压滤机,运用作用很好。 (1)叶滤机真空叶滤机在钛白后处理中运用较少,多用于硫酸法偏钛酸洗刷进程,很有用。常呈现的问题是密封欠好,真空缓冲罐走漏严峻;滤片上滤饼易裂缝;洗刷短路,下降洗刷作用;脱真空后易脱片,影响产能,糟蹋动力。 常见国产叶片结构有三种方式,即星点式、沟槽式、矩形孔式。洗刷作用有差异,但各有特色。星点式叶片,在叶片周围有压条函,用橡胶压条将滤布牢固地压在压条函内,运用可靠,拆开便利;沟槽式叶片,比较扎实,经久耐用,习惯性强;矩形孔式叶片,选用ABS原料制作,耐腐蚀性、耐老化性强,因而习惯规模广,自身质量小,开孔率高,过滤速度快,洗刷作用好,省时、节能。 (2)转鼓过滤机后处理最常常选用的设备是转鼓过滤机,一般为两台联用。第一台专用于洗刷,转鼓上部按分区喷淋去离子水屡次洗刷。第一台的滤饼落人打浆槽加水制浆,后流入第二台过滤机,通过转鼓滤干落人枯燥机。第二台转鼓过滤机带有揉捏脱水设备,意图是在滤料脱离转鼓前揉捏脱水,下降滤饼中含水量,使在烘干、枯燥时进步产能。转鼓过滤洗刷流程如图8所示。
国产转鼓过滤机有20m2、40m2、50m2三种规格的产品,20m2功能较好。德国(KRASS MAFFEL)的50m2和美国(EM-CO)的40m2转鼓过滤机运用作用很好。现在习惯进口设备的过滤介质国内现已能够出产,例如,抚顺天成工业用布厂产品在进口40m2转鼓过滤机上运用作用很好,能够替代进口聚原料的滤布。 (3)隔阂压滤机隔阂压滤机最近两年用于钛白职业后处理浆料的洗刷过滤工艺,反响杰出。杜邦公司也有选用。 隔阂压滤的长处如下:①滤饼含固量高;②过滤周期短,出产能力大;③水洗时间短,洗刷用液量少,洗刷作用好;④滤饼强度高,带式枯燥机易压条,节能;⑤简化工艺流程。据资料介绍,选用KMZ1200KD40滤板总过滤面积242. 4m2,每天能够处理40吨制品的后处理浆料。每吨钛用洗刷水量为2. 5m3。滤板的首要参数见表7。表7 滤板的首要参数项目参数滤板材料PP、PVDF、EP、PE、EPDM、FMP最大过滤压力/MPa2.5最大压榨压力/MPa3最高过滤温度/℃135 3.过滤、洗刷的操控[next] 为确保把表面处理后的钛浆液中的可溶性盐洗洁净,滤饼含水量低,一般要求以下几点。 ①要求洗刷水质电阻率到达200000Ω·cm,水温70-80℃。 ②洗刷溶结尾操控,可用10%的BaC12溶液检定滤液中不含SO42-;用10%的AgN03溶液检定滤液中不含C1-。 ③滤液的电阻率不低于7000Ω·cm ④真空度要求≥0.02-0.04MPa。 ⑤滤布不穿滤。如果穿滤,在增稠器中加人絮凝剂收回穿滤的钛白颗粒。滤液含固量要求≤5mg/L。 滤饼含水量45%-50%,滤饼电阻率≥30000Ω·cm。 (四)枯燥工艺及设备 1.枯燥使命及流程 洗刷滤干的钛滤饼含水量在50%左右,需求脱水枯燥到含水量<1.0%才干进行破坏。在枯燥时温度不能超过200℃,一般操控在120-150℃,只能脱去表面水,不能脱去结晶水或结合水,这样能够坚持包膜物中的水合氧化物的结构。温度过高不只会使有机包膜剂炭化,分化,还会使水合三氧化二铝晶化,形成二氧化钛颗粒凝聚难以破坏,下降涣散性。 枯燥的工艺比较简单,一般是包硅膜不太高,可滤性强的物料,一般选用带式枯燥机烘干。有天然气或发作煤气的条件时可选用喷雾枯燥器(见图9)。最近又引人旋转闪蒸技能,扩展了枯燥流程及设备挑选时机(见图10)。
电子级多晶硅
2017-06-06 17:50:03
电子级多晶硅是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品
产业
链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息
产业
和新能源
产业
最基础的原材料。 电子级多晶硅的提纯度要求:电子级硅(EG):一般要求含Si > 99.9999 %以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。其导电性介于 10-4 – 1010 欧厘米。电子级高纯多晶硅以9N以上为宜。 电子级多晶硅的生产工艺:就建设1000t电子级多晶硅厂的技术进行了探讨。对三氯氢硅法、四氯化硅法、二氯二氢硅法和硅烷法生产的多晶硅质量、安全性、运输和存贮的可行性、有用沉积比、沉积速率、一次转换率、生长温度、电耗和
价格
进行了对比;对还原或热分解使用的反应器即钟罩式反应器、流床反应器和自由空间反应器也进行了比较。介绍了用三氯氢硅钟罩式反应器法生产多晶硅三代流程。第三代多晶硅流程适于1000t/a级的电子级多晶硅生产。 电子级多晶硅的发展经历了将近50 年的历程。各国都在十分保密的情况下发展各自的技术。国外有人说参观一个多晶硅工厂甚至比参观一个核工厂还要难, 可见其保密性之严。电子级多晶硅的特点是高纯和量大, 其纯度已达很高级别: 受主杂质的原子分数仅为5 ×10 - 11 , 施主杂质的原子分数为15 ×10 - 11 (国外的习惯表示法分别为50 ppt 和150 ppt) 。其生产能力于1965 年达30 t/ a , 1988 年上升到5 500 t/ a , 2000 年已达到26 000 t/ a , 这在凝聚态物质中是首屈一指的。生产如此大量的超纯材料是经过了几代的改进, 淘汰了许多工厂。只有那些掌握了大规模生产技术和亚ppb 级纯度多晶工艺的12 家工厂在竞争中生存下来并且发展壮大。
电子级多晶硅
2017-06-06 17:50:04
什么是电子级多晶硅?多晶硅按纯度分类可以分为太阳能级和电子级。太阳能级硅是生产太阳能光伏电池的主要原料。电子级多晶硅主要用于半导体工业及电子信息
产业
,是制做单晶硅的主要原料,可作各种晶体管、整流二极管、可控硅、集成电路、电子计算机芯片以及红外探测器等。 多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品
产业
链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息
产业
和新能源
产业
最基础的原材料。 电子级多晶硅的特点是高纯和量大,其纯度已达很高级别:受主杂质的原子分数仅为 5 ×10 - 11,施主杂质的原子分数为15 ×10 - 11 ( 国外的习惯表示法分别为 50 ppt 和 150 ppt )。 电子级多晶硅的提纯度要求,一般要求含Si > 99.9999 %以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。其导电性介于 10-4 – 1010 欧厘米。电子级高纯多晶硅以9N以上为宜。 电子级多晶硅的生产工艺,就建设1000t电子级多晶硅厂的技术进行了探讨。对三氯氢硅法、四氯化硅法、二氯二氢硅法和硅烷法生产的多晶硅质量、安全性、运输和存贮的可行性、有用沉积比、沉积速率、一次转换率、生长温度、电耗和
价格
进行了对比;对还原或热分解使用的反应器即钟罩式反应器、流床反应器和自由空间反应器也进行了比较。介绍了用三氯氢硅钟罩式反应器法生产多晶硅三代流程。第三代多晶硅流程适于1000t/a级的电子级多晶硅生产。
电子级氧化铜
2017-06-06 17:50:01
电子级氧化铜,其主要成分为氧化铜。分子式 CuO分子量 79.54电子级氧化铜的性质氧化铜为黑色至棕黑色无定型粉末或结晶、颗料(为单斜结晶)。相对密度6.315,熔点1446℃,溶化热11.80KJ/mol,莫氏硬度3-4,介电常数18.10,不溶于水,溶于酸、氨水、氯化铵,溶于氢氧化钠,生成蓝色溶液。在高温下通入氢气或一氧化碳可还原为金属铜粉。电子级规格 氧化铜(CuO)≥98 盐酸不溶物≤0.2 水可溶物≤0.1 氯化物(Clˉ)≤0.2 硫硫盐(So4)≤0.2 镉(Cd)<5ppm 铅(Pb)<100ppm 汞(Hg)<2ppm 六价铬(CrVI)<2ppm 细度(325目残余物)≤0.3作用 主要用于铁氧体磁性材料等电子行业,符合ROSH要求,提供SGS报告。包装25KG内衬聚乙烯塑料袋外复合编织袋,或50KG铁桶、纸板桶。储运注重事项贮存于干燥的库房内。应防止受潮,与强酸及食用原料隔离存放。失火时,可用水、沙土、各种灭火器扑救。
四氯化钛气相氧化工艺设备(二)
2019-02-15 14:21:16
经预热的氧气夹藏石英砂,以15.24m/s(最好为30. 48m/s)的速度从给料导管轴向喷入。高速冲刷O2和TiC14成夹角穿插射流混合喷口处及反响区扩展管壁的疤料,Kerr-McGee公司运用这种技能。石英砂的粒度为10-40目(0.4-1.7mm),在氧气悬浮气流中浓度为0.1-v2.16g/ft3②(Ift3=0.0283168m3)。 (4)高速气流再配以加盐除疤式的氧化炉。这种氧化炉的结构更为简略(见图8)。TiC14与Oz成90度穿插混合,因为推动力压力很大,在氧化炉高温区停留时间很短(≥0. l0s),形成很高的流速(10-15m/s)。反响新生态的TiO2粒子还来不及在器壁上结疤,就进人骤冷段;与此同时,以N2作载体加人岩盐冲刷器壁上结疤,完结长周期安稳运转,现在国外大公司产能高的设备简直都选用这种办法。[next] (5) TIC14双喷口节能型氧化反响器,其结构如图9所示。
[next]
作业原理:通过预热并按份额混有AIC13的TiC14气体,份额占TiCl4加人总量的约50%-60%,喷人与总量的热氧反响放出很多的热量;混合气流极快地流到TiC14喷口Ⅱ,与TiC14气流第2次穿插混合。第二孔喷人的TiCl4吸收部分反响热,升温很快,又开端同热氧反响。反响热并同上游混合流一并进人反响段完结悉数反响。 特色:喷口n喷出的TiC14吸收喷口Ⅰ下流的反响热,首要,可适当下降氧气的预热温度,节省了动力并有利于氧气预热量安全运转;其次,可使反响温度控制在1450℃,不至于过高;第三,因喷口Ⅱ的TiC14升温耗费了部分热焓,能够削减急剧骤冷通人的冷却气体量。这是现在最为先进的技能。此款设备的生产才能可到达年产10万吨钛。 国内20世纪开发的刮刀式氧化炉是比较落后的设备。现在氧化反响器朝着结构简略、高速(150m/s)、高压(0.4MPa)、气膜和加盐相结合除疤方法为主的方向开展。 (五)悬浮气流冷却、气固别离和制浆设备 从氧化炉移出的悬浮气流Ti02固相的浓度约为33%(质量),浓度达≥68%(体积)需求突然冷却到700℃以下,一般工艺上采纳的办法如下:①喷入冷却枯燥的循环尾气或,氮气直接冷却降温;②把冷却导筒浸人水中强化移热;③为加温传热,导游管内加人固体颗粒多为岩盐烧结的Ti02颗粒,冲刷管壁上的结垢,进步传热才能。 冷却导管的长度应满意在进人脉冲袋滤器前的悬浮气流的温度要低于275℃,以利于延伸滤袋的运用寿命。 气固别离设备可分为两级:榜首级旋风收尘器;第二级为脉冲布袋收尘器;也有一级脉冲布袋进行别离的,但粉尘浓度高所需求的布袋面积较大。布袋一般选用美国GORE-TEX、BH的公司全四氟乙烯、覆膜滤袋,也能够用覆四氟乙烯膜的玻璃纤维布袋,造价廉价一些。GORE-TEX公司的覆膜滤袋具有一种强韧而柔软的纤维结构,有满足的力学强度、杰出的清灰性,在低而稳的压力丢失下能长期运用,比普通的滤袋寿命长并能完结零排放。 制浆设备,布袋设备搜集下来的热Ti02粉料,经旋转阀加到制浆罐中,用去离子水稀释制浆并下降物料温度,发生的水蒸气和释放出的HC1、C12排到稀碱液脱氯罐中去脱氯后外排。 对设备的技能要求见表1。
电镀级氧化铜
2017-06-06 17:50:01
电镀级氧化铜,就是我们俗称的氧化铜。英文名称 Copper(II) oxide中文别名 C.I.颜料黑15;氧化铜;丝状氧化铜;线状氧化铜;纳米氧化铜;氧化铜(II)CAS RN 1317-38-0EINECS号 215-269-1分 子 式 CuO分 子 量 79.54物化性质 性状 黑色单斜晶系结晶或黑到棕黑色无定形结晶性粉末。 熔点 1326℃ 。相对密度 6.3~6.49 。溶解性 不溶于水和醇,溶于稀酸、氯化铵、碳酸铵和氰化钾。用 途 用作玻璃、瓷器的颜料、脱硫剂、催化剂,还用于人造丝工业。用作玻璃、搪瓷、陶瓷工业的着色剂,油漆的防邹剂,光学玻璃的磨光剂。用于制造染料、有机催化剂载体以及铜化合物。还用于人造丝制造工业及作为油脂的脱硫剂。用作其他铜盐的制造原料,也是制人造宝石的原料。
四川废锌价格市场行情,废锌价格,四川废锌价格
2017-08-03 18:42:46
8月2日四川废锌价格市场行情,废锌价格,四川废锌价格8月2日四川废锌价格市场行情: 杂锌价格8600-8800元/吨,对比前一交易日价格持平
高级陶瓷级氧化锌
2017-07-07 14:58:31
高级陶瓷专用氧化锌
是一种重要的陶瓷化工溶剂原料,在建筑陶瓷墙地面砖釉料与低温瓷釉料用量较多。在艺术釉料中也广泛使用,在陶瓷业中,氧化锌被普遍用于砖瓦釉及粗陶的半透明釉和工艺餐具皿的透明粗釉或者熟釉。
湿法冶金(四)
2019-03-05 09:04:34
当料液中的交流离子分散到树脂表面后,还需求以下进程才干完结交流的完好进程:①膜分散即溶液中的交流离子抵达离子交流树脂和溶液构成的表面膜后,在向这层膜内进行分散;②粒子分散即交流离子抵达离子交流树脂相后,持续在离子交流树脂颗粒内部进行分散;③发作交流反响;④交流下来的离子在离子交流树脂内分散,分散到离子交流树脂颗粒表面;⑤交流下来的离子持续分散穿过颗粒表面膜。 影响离子交流反响速度的要素有交流树脂的品种、交流离子、离子浓度、搅搅拌作业温度等,真实影响交流速度的是分散。 (六)电渗析 是一种以电.位差为推动力,使用离子交流膜的挑选透过性,从溶液中脱除或富集电解质的膜别离技能。电渗析的功用首要取决于离子交流膜,它以高分子材料为基体,接上可电离的功用基团而成。按功用基团的性质,能够把交流膜分为阳膜和阴膜两类。从膜结构上分析阳膜含有酸性功用基团,能离解出阳离子,只允许透过阳离子。阴膜含有碱性功用基团,能离解出阴离子,只允许透过阴离子。离子交流膜的挑选透过性是根据膜上固定离子的电性效果,由于它的电荷和活动离子的电荷电性相反,故能招引溶液中的异性电荷离子进人膜内,随后又透过膜转人另一侧溶液中;与此一起排挤同性电荷离子,不能进人膜内,留在溶液中。 进行电渗析的设备为电渗析器,它由离子交流膜、隔板和电极组成。片状的阳膜和阴膜替换摆放,隔板放置在其间,隔板仅1-2mm厚,内有隔网起坚持膜的距离和扰动液流,这样构成一系列相间的小水室,设有进出水管。渗水器的两头设电极室,端侧有电极,阳极用石墨或涂钉的钦制造,阴极则用不锈钢制造。 当含盐溶液通人渗析器的每个水室时,在直流电场的效果下,溶液中的离子作定向的搬迁。由于阳膜只允许阳离子经过而截留阴离子,反之也相同,其结果是相邻的水室,一个室变成无离子的无盐溶液,另一室则聚集了离子,到达浓缩和别离的意图。在湿法冶金中电渗析作为技能别离杂质或富集金属的单元技能得到广泛使用。 (七)膜别离技能 是在外加推动力下,使溶液中的溶剂或溶质挑选性地经过隔阂的别离办法。根据外加推动力和别离膜的不同,膜别离包含反浸透、超滤、微孔过滤、分散渗析和液膜别离等。反浸透、超滤和微孔过滤以不同的压力差作外加推动力,到达溶剂与溶质、巨细溶质粒子和悬浮物与溶液别离的意图。分散渗析以离子浓度差作为推动力。液膜别离则使用物质在液膜中的溶解度和浸透速度不同完成物质的别离。 膜别离在湿法冶金使用中的开展趋势是:①开展新式膜材料和别离技能,以习惯湿法冶金中高温高酸碱介质的要求,进步材料的稳定性和使用寿命;②开展别离技能的归纳工艺,扩展使用规模,进步别离功率;③结合膜别离和惯例别离技能,以下降能耗、节约出资、进步经济效益;④开展新式膜别离设备。[next] 四、从溶液中提取金属 把水溶液中所含的金属物料经过金属状况的转化从溶液中分出收回单元的操作进程,是湿法冶金的重要进程之一。从溶液中提取金属的办法分电解法和化学法两种。而化冶金则是兼具二者的一种特殊冶金办法。 电解提取又称电解堆积,是向含金属盐的水溶液或悬浮液中经过直流电而使其间的某些金属堆积在阴极的进程。 化学提取是用一种复原剂把水溶液中的金属离子复原成金属的进程。 电解提取和化学提取各有其优缺陷。电解提取不需很多试剂,对环境污染小,特别适合于大规模出产,是工业上从水溶液中提取铜、镍、锌的首要办法。但该法耗费很多电能,不适用于电力缺少的区域。此外,一次性设备出资大,占地面积大,操作周期长。而化学提取规律具有不需求耗费很多的电能、设备出资少、占地面积小、操作周期短等长处;缺陷是需求耗费复原剂,发作的废液经处理才干排放。 精粹冶金是使用浸取固体物猜中的金属,然后用歧化沉积从含液中提取金属的进程。化冶金只适用于提取铜、银等少量几种金属,除电解提取则详见第三节电冶金部分。现别离叙说化学提取和腈法冶金。 (一)电解提取 内容详见第三节电冶金部分。 (二)化学提取 用复原剂把水溶液中的金属离子复原为金属态分出的提取金属的办法。工业常用的复原剂有、SO2气体、亚铁离子、铁、锌、铝、铜等金属以及草酸和联胺等。 1.加压氢复原法 在压煮器(高压釜)内用使水溶液中的金属水溶物复原成金属、化合物或贱价离子的化学提取办法。 氢从水溶液中分出金属的反响为:
[next] 当金属的电极电位大于氢的电极电位(ФMe>ФH)时,能够用氢复原分出金属,直至ФMe=ФH停止。 经过上式可知,增大金属复原程度,其一是经过增大氢分压和进步溶液的pH值来下降氢电位;其二是靠添加溶液中金属离子浓度来进步金属电位。跟着复原进程的进行,溶液中的金属浓度不断下降,ФMen+/Me也不断下降,而H+浓度不断添加,Ф2H+/H2不断上升,当ФMen+/Me=Ф2H+/H2时复原反响到达平衡。当然,随之压力、温度升高对复原金属是有利的。为了处理分出金属的新相生成问题,需预先往水溶液中加人晶种。现在该办法用于别离金属和出产金属粉末与金属氧化物。 2.二氧化硫复原法 以二氧化硫为复原气体将溶液中的金属离子复原成贱价离子或金属的化学提取办法。 SO2溶于水生成H2SO3 ,是杰出的复原剂。因而,二氧化硫的复原效果实质上是经过进行的。电极SO42-/SO32-的标准电极电位Ф0=+0.20V,因而,二氧化硫能将溶液中电位较正的一些金属离子复原成贱价离子或金属。 二氧化硫复原法在湿法冶金中广泛用于铜、金和锌等出产中。 3.亚铁复原法 以亚铁离子为复原剂将溶液中金属离子直接复原沉积出金属的化学提取办法。由于亚铁具有较正的标准电极电位,因而许多常见杂质难以分出而可得到高纯度金属粉末,且亚铁复原剂制备简单和报价便宜。 4.置换 用电极电位较负的金属将金属盐水溶液或某些不溶盐悬浮液中电极电位较正的金属离子复原成金属的进程。具有电极电位较渗(的金属称为置换剂。在湿法冶金出产进程,置换既可作为溶液中金属提取的一种手法,也可作为溶液净化的办法。 按金属在水溶液中标准电极电位排序,任何一种金属都可将其后边的金属置换出来。任何一种金属都能够作为置换剂。常见金属的标准电极电位列入表1中。[next]表3-1 常见金属的标准电极电位(298K,1mol/L溶液)金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/VK+/K-2.925Fe2+/Fe-0.44Sb2+/Sb0.1Ca2+/Ca-2.87Cd2+/Cd-0.402Bi3+/Bi0.2Na+/Na-2.713Co2+/Co-0.3As3+/As0.3Mg2+/Mg-2.37Ni2+/Ni-0.25Ca2+/Ca0.337Al3+/Al-1.66Sn2+/Sn-0.14Ag+/Ag0.8Mn2+/Mn-1.19Pb2+/Pb-0.126Mg2+/Mg0.854Zn2+/Zn-0.7632H+/H2±0.000Au3+/Au1.5 在挑选置换剂时,首要考虑的是电极电位的巨细,一起还有必要考虑溶液特性、金属收回的难易程度和经济要素以及是否污染溶液对提取金属发作影响等。常用的置换剂有铁、锌、铅、镍、钻等,其形状有板、粒和粉,粉状的表面积大,效果最好。置换广泛用于浸出液提取金属,并用于溶液净化。 5.联胺复原法 联胺即用N2H4·H2O与适量合作将水溶液中的金属盐复原成金属粉末的化学提取办法。又称肼或复原法,是制取金属粉末的重要办法之一。 联胺是一种无色油状液体,但有毒和有气味,具有很强的复原效果。联胺将金属离子复原成金属,无论是不溶性盐(AgCl)或可溶性盐(AgNO3),都是先与效果转变成金属配离子,然后将金属配离子复原成金属,如:[next] AgCl+2NH3·H2O====Ag(NH3)2·Cl+2H2O 4Ag(NH3)2Cl+N2H4+4H2O====4Ag+N2+4NH4Cl+4NH3·H2O 该法出产的银粉粒度细、纯度高,是制造银触头的抱负材料。 6.歧化沉积法 操控必定条件使溶液或溶盐中具有多种价态的金属离子,发作本身的氧化复原生成高价态的离子和金属的化学办法。 一些具有多种价态的金属如铜、镓、铟、铝、钛、锆、铪、铌和钽等,都可用歧化沉积法提纯,其特点是金属有必要具有多价态的特性。如铟的歧化沉积提纯,是先用氯化氢使铟生成InCl: 2In(I)+2HCl(g)→2InCl(s)+H2(g) 制得的InCI(s)在水中发作歧化反响得到高纯海绵铟。 3InC1(s)→InCl3(t)+2In(海绵) (三)腈法冶金(nitrile metallurgy) 是用腈的水溶液提取金属的一种湿法冶金办法。又叫甲基腈,是出产腈的一种副产品。对Cu+和Ag+有很强的合作力。此法是由澳大利亚人帕克(A.J.Parker)在20世纪70年代提出的。 在的存在情况下常温反响: Cu0+Cu2+====2Cu+ 向右进行平衡常数K=10-6,但当有时,以上反响的K=108-1022,并随浓度的添加,K值持续增大,阐明Cu0简单氧化成Cu+而进人溶液。这是帕克提出该法的根据。 该法首要用于从含铜的固体物料(粗铜粉、置换铜、废杂铜屑以及氧化铜离析产品),氧化铜矿和硫化铜中提取铜。应该说,该法仍是一种很有出路的办法,由于该法出资少,总处理费用低,产品质量高。但现在还处在实验阶段,真实用于工业出产,还需做很多的作业。
四氯化钛气相氧化的热力学(二)
2019-02-15 14:21:16
式中,OST为反响温度为T时嫡的改变。 常压不同反响温度时自由能、平衡常数、平衡转化率见上表3。 使用上边的计算结果绘成标明TiC14转化率X与热力学温度T的联系图1。氧化反响热力学计算结果通知咱们在氧化反响器及流场规划中,不但要考虑产能、质量、热平衡等问题,还要统筹TiCl4平衡的转化率问题,这样才干辅导咱们正确地设定氧化的操作参数。 实践中TiC14气相氧化反响是在高温下进行的(≥1300℃),Ti02的粒子受反响温度、反响区的逗留时刻和加人的成核剂影响很大,欲制得均匀粒度为0. 2μm的高档颜料用Ti02是很不简单的事。下面临影响反响和产品功能的首要因素反响温度、反响时刻、成核剂、晶型转化剂及从反响区移出的时刻进行评论。 (一)反响温度 TIC14和氧在500-600℃就能够缓慢进行,700℃时就可显着察觉到TiO2气溶胶存在。跟着反响温度的进步,反响速率呈幂次函数添加。在600-1100℃温度范围内反响从受化学反响操控变为受动力学操控。在高于1100℃时,已到达很高的反响速率,反响时刻小于0.01s,反响的活化能为138kJ/ mol。 NB安基波夫等在电阻丝加热的石英管反响器中测定了TiC14氧化反响的动力学数据(见图2)。 从图2中能够看出,当反响温度>900℃时,反响速率进步是十分快的。依此看,氧化操作中TiCl4和O2混合后的温度>900℃是十分必要的。 研讨标明,该反响产品的晶型结构首要取决于反响物的开始温度(即反响的引发温度)和化学反响时刻。当反响温度为500-1100℃时,反响产品首要是锐钛型Ti02;当引发温度进步到1200-1300℃时,反响产品的金红石率可达65%-70%。因为由锐钛型Ti02转化为金红石型Ti02的活化能较高(460 kJ/mol),特别是在反响区高温下逗留时刻极短的情况下,反响的开始温度就更显得更重要一些。实践证明,即便温度进步到1300℃,假如不加晶型转化促进剂也无法完成金红石型Ti02的转化率≥98%的目标。 (二)反响时刻 TiC14气相氧化反响需求在高温下进行,反响温度的进步尽管有利于生成粒子长大,可是生成粒子在高温区逗留时刻过长会使其过火长大,难以获得颜料用的Ti02产品。为了避免其过火长大,有必要操控生成粒子在高温区的逗留时刻。 从反响进程看,反响逗留时刻应包含TiC14与02混合成核时刻、化学反响时刻、晶粒长大和晶型转化时刻。一些研讨者经过对试验数据的数理统计处理,得出了Ti02均匀粒度与微观逗留时刻的联系,经历公式如下:[next] 结合温度操控有人曾绘出一条曲线来标明反响物和产品的温度改变(见图3)。 (三)晶型转化剂的效果 锐钛型Ti02在高温条件下能够向金红石型Ti02转化,在转化过程中自由能下降,晶体表面缩短,体积缩小,结构细密,稳定性好。应提出,因为晶型转化所需求的活化能高,晶型转化的动力学速度是缓慢的。即便在很高的温度>1300℃下,逗留数秒钟其转化率也不够大。在较低的温度≥850℃,要经20-30min才干使转化率到达抱负的程度。
8月3日四川废锌价格市场行情,废锌价格,四川废锌价格
2017-08-03 18:32:21
8月3日四川废锌价格市场行情,废锌价格,四川废锌价格8月3日四川废锌价格市场行情: 杂锌价格8600-8800元/吨,对比前一交易日价格持平
纳米级氧化铝
2018-12-28 15:58:46
该产品呈白色蓬松粉末状,根据晶型主要分为HTAl-01,α-nmAl2O3;粒径≤80nm,比表面积<10m2/g;HTAl-02,γ-nm Al2O3;粒径≤20nm,比表面积≤200 m2/g,粒度分布均匀,纯度高。03~09型号表示采用不同的表面处理形式。
产品特点
纳米氧化铝由于粒径细小,可用来造人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可大大提高其发光强度,对陶瓷、橡胶增韧、要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。纳米氧化铝主要用于YGA激光晶的主要配件和集成电路基板,并用在涂料中来提高耐磨性。
技术特性
型号 外观 含量(%) 平均粒径(nm) 比表面积(M2/g) 晶型/表面处理 特点说明
HTAL-01 白色粉末 99.9 〈100 ≥12 α相-- 亲水型
HTAL-02 白色粉末 99 20 ≥160 γ相-- 亲水型
HTAL-03 白色粉末 -- 〈160 -- 硬脂酸处理 亲油型、α相
HTAL-04 白色粉末 -- 80 -- 铝酸酯处理 亲油型、α相
HTAL-05 白色粉末 -- 80 -- 钛酸酯处理 亲油型、α相
HTAL-06 白色粉末 -- 10 -- 氢氧化铝 亲油型、α相
建议用量
一般推荐用量为1~5%,使用者应根据不同体系经过试验决定最佳添加量。
应用范围
1、 透明陶瓷:高压钠灯灯管、EP-ROM窗口。
2、 化妆品填料。
3、 单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。
4、 高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管。
5、 精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带。
6、 涂料、橡胶、塑料耐磨增强材料、高级耐水材料。
7、 气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。
8、 催化剂、催化载体、分析试剂。
9、 宇航飞机机翼前缘。
硫酸亚铁铵、莫尔盐
2019-02-21 13:56:29
【英文名称】ammonium ferrous sulfate;Mohr` salt【结构或分子式】
FeSO4·〔NH4〕2SO4·6H2O
【密度】1.864【性状】通明浅蓝色单斜晶体。【溶解状况】溶于水,不溶于乙醇。【用处】在定量分析中常用作标定重、等溶液的标准物质,并用于医药、电镀等方面。【制备或来历】由硫酸亚铁溶液与硫酸铵溶液混合后,浓缩、结晶而制得。【其他】
约在100℃失掉结晶水。在空气中安稳。
二氧化锡价格
2017-06-06 17:49:52
二氧化锡价格是很多人都会关心的问题,因为其和锡的价格有着紧密的关系,下文中就会有这方面的知识。化学式 SnO2性质 式量150.7,白色,四方、六方或正交晶体,密度为6.95克/厘米3,熔点1630℃,于1800~1900℃升华。难溶于水、醇、稀酸和碱液。缓溶于热浓强碱溶液并分解,与强碱共熔可生成锡酸盐。能溶于浓硫酸或浓盐酸。.用途 用于制造不透明玻璃,瓷铀和玻璃擦光剂;用于制锡盐、催化剂、媒染剂,配制涂料,玻璃、搪瓷工业用作抛光剂。本产品用作电子元器件生产、搪瓷色料、锡盐制造、大理石及玻璃的磨光剂;制造不透明玻璃、防冻玻璃和高强度玻璃等, 还可用于对有害气体的监测。(SnO2为敏感材料制成的“气——电”转换器。)制备 天然产的是锡石.可由锡在空气中灼烧而制得.锡在空气中灼烧或将Sn(OH)4加热分解可制得。例如:2010.3.8品名:二氧化锡规格:SnO2>=98%参考价:120000-128000涨跌:0单位:元、吨产地:太湖云锡 如果你想了解二氧化锡价格等更多关于锡的信息,你可以登陆上海有色网中锡专区进行查询和访问。
多硫化铵浸出含砷金矿和贫矿
2019-02-18 10:47:01
好久以来,金的提取和收回一向引起人们的爱好。今日,处理工艺适当杂乱,而且趋向于更为经济和处理矿石档次更低的工艺方面开展。
现在,遍及公认的处理金矿的工艺是化法。可是,因为构成难溶的砷化物,而大量地耗费。因而,用这种办法处理含砷金矿是不经济的。
含砷金矿中的砷能够用挥发法,使砷以或许的方式除掉。但在焙烧过程中,、氯化砷以及二氧化硫的毒性,引起了简直无法操控的污染问题。 南非矿藏处理研讨实验室研发的新的多硫化物浸出法,其长处是: ① 挑选浸出效率高;
② 无污染。
这个新的办法是:含砷金矿在25℃常压下,用含40%多硫化铵水溶液进行浸出。金(如有锑存在的话,与锑在一起)被挑选浸出,砷留于残渣中。在实验室,用特定矿石做的实验标明:用这种办法,能够提取在精矿中80%以上的金。
能够用活性炭从溶液中吸附金,或用加热和蒸汽加热的办法从溶液中沉积金的办法来收回金。这与矿石中其它能够浸出的成分有关。此刻所得到的铵和能够从头生成多硫化铵,回来浸出。
这个办法已由J.C.I实验室作了充沛的点评,而且南非穆尔奇森格拉夫洛特厂建设了日处理五吨的实验车间。从含砷的尾渣中收回锑和金,证明了实验室的数据。
实验作业:只能在实验室中进行实验,而且测定了各种成分的溶解度今后,才干确解出特定矿石的具体流程图。为此,需求二十公斤矿石或许二公斤精矿试样。
在做出上述作业今后,即能够划出处理特定矿石的流程图。也能够同时算出出资与经费。
定论:因为工业性出产的工厂中要操控污染,这个处理含砷金矿的新的多硫化铵浸出法,将在未来的黄金出产中占着重要的方位。