您所在的位置: 上海有色 > 有色金属产品库 > 苏州钼合金

苏州钼合金

抱歉!您想要的信息未找到。

苏州钼合金专区

更多
抱歉!您想要的信息未找到。

苏州钼合金百科

更多

钼合金的加工

2019-01-25 13:36:45

钼和钼合金可采用真空熔炼和粉末冶金方法制成进一步加工的坯料,其加工方法除与纯钼一样可经旋锻和拉拔成棒和丝材之外,也可用锻造、热挤压和轧制等方法进行深加工。采用粉末冶金方法制取的坯料,由于晶粒结构细且均匀,可直接投入深加工。真空熔炼法制得的坯料必须首先进行热挤压,改变其组织结构后才能进行深加工。 钼合金的加工技术规范中,和纯钼相比,它的加热次数多,加工压力大。如钼合金锻造时为保证得到细晶粒组织,在1250~1400℃变形时,每道次变形量要大于15%。由于钼合金的再结晶温度比纯钼高300~500℃,因而合金的变形加工温度应当比纯钼的高一些。在轧制时,为了获得优质板材,在轧制开始时,每一道次的压下量要相当大,才能使金属沿整个截面的变形尽可能均匀。关于钼和钼合金的深加工技术的详细知识,需要者望参阅文献《钼合金》(冶金工业出版社,北京,1984年)。

铬钼合金钢管规格标准

2019-03-15 10:05:15

铬钼合金管  铬钼合金管是无缝钢管的一种,其性能要比一般的无缝钢管高很多,因为这种钢管里面含 Cr 比较多,其耐高温,耐低温,耐腐蚀的性能是其他无缝钢管比 不上的,所以合金管在石油,化工,电力,锅炉等行业的用途比较广泛.  铬钼合金管纯化氢的原理是,在 300—500℃下,把待纯化的氢通入 铬 钼合金管的一侧时,氢被吸附在铬钼合金管壁上,由于钯的 4d 电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为 1.5×10m,而钯的晶格常数为 3.88×10-10 m(20时),故可通过铬钼合金管,在钯的作用下质子又与电子结合并重新形成氢分子,从铬钼合金管的另一侧逸出.在铬钼合金管表面,未被离解 的气体是不能透过的,故可利用铬钼合金管获得高纯氢.    铬钼合金钢管标准:GB5310-1995、GB17396-1998、DIN17175-79、GB6479-2000、GB9948-88 铬钼合金钢管主要用途:石油、化工、电力、锅炉行业的耐高温、耐低温、耐腐蚀用无缝钢管   铬钼合金钢管规格 ф 14x2 ф 219.1x18   ф 323.9x10  ф 16x3   ф 219.1x22   ф323.9x12  ф 18x2x7.1M ф 219.1x25   ф 323.9x13  ф 25.4x3x5   ф 219.1x28x6   ф 323.9x13.5  ф 28x4   ф 219.1x26   ф 323.9x16  ф 31.8x4x12M ф 219.1x30   ф 323.9x17.5  ф 38x4x7   ф 219.1x36   ф 323.9x20  ф 38x4.5   ф 273x7   ф 323.9x25x12Mф 38x6   ф 273 ф 323.9x26  ф 42x3.5   ф 273x12   ф 323.9x30  ф 42x4   ф 273x16   ф 323.9x32  ф 42x5   ф 273x20   ф 323.9x42  ф 42x5.5   ф 273x22.2   ф 355.6x11  ф 45x4   ф 273x26   ф 355.6x38  ф 48x4   ф 273x28 ф 355.6x36x3Mф 48x5x6M ф 273x32   ф 335.6x40  ф 48x5.5   ф 273x36   ф 355.6x40x1.6M铬钼合金钢管规格ф 51x4   ф 159x14   ф 323.9x10  ф 57x3   ф 159x18   ф323.9x12  ф 57x4   ф 159x18x8-12 ф 323.9x13  ф57x5   ф 159x20   ф 323.9x13.5  ф57x6   ф 159x25   ф 323.9x16  ф60.3x5   ф 168x5   ф 323.9x17.5  ф60.3x6 ф 168.3x7.11   ф 323.9x20  ф60.3x6.5 ф 168.3x8   ф 323.9x25x12Mф 60.3x8 ф 168.3x10   ф 323.9x26  ф 60.3x8.5 ф 168.3x12   ф 323.9x30  ф 60.3x10 ф 168.3x16x12M ф 323.9x32  ф 73x5.2x6 ф 168.3x18   ф 323.9x42  ф76x4   ф 168.3x22x12M ф 355.6x11  ф76.2x6   ф 194x6   ф 355.6x38  ф76.3x8 ф 193.7x8   ф 355.6x36x3Mф76.3x10   ф 193.7x10   ф 335.6x40

氧化钼烧结块替代钼铁炼钢制钼合金钢

2019-01-24 17:45:50

利用氧化钼代替钼铁直接进行钢的合金化,在国外应用已经比较广泛,1974年美国在工业钢方面氧化钼与钼铁的消耗中氧化钼占73.3%,钼铁占25.2%,其它1.5%。日本用氧化钼直接投入电炉炼钢,氧化钼用量占83%,用钼铁占很小的比例。美国1984年氧化钼和钼铁产量比为6.3∶1。我国用氧化钼炼钢也在不断提升,现今已有大连钢厂、重庆特钢等主要大型特钢企业在广泛利用氧化钼直接炼钢。使用氧化钼炼钢与使用钼铁炼钢相比优越性明显。 氧化钼由钼精矿(MoS2)焙烧生成三氧化钼,被炼钢做添加剂使用。由于三氧化钼做炼钢的添加剂,钼的回收率较低,透气性比较差,脱氧剂消耗较高等缺陷。某集团公司科研所研究人员,试验研究一种在结构和成份上与三氧化钼不同的氧化钼炼钢添加剂,叫做氧化钼烧结块,氧化钼烧结块强度比三氧化钼压块的强度大,并且含有二氧化钼成份。因此,使用氧化钼烧结块克服了用三氧化钼压块时某些缺陷。 氧化钼烧结块试验方法与条件 一、试验过程 1、所用原料:钼精矿  44.49% 2、试验主要设备:反射炉、热电偶、毫伏表、吸收塔、风机等。 3、操做规程,将钼精矿加入反射炉后,随温度不断升高,钼精矿被氧化,当氧化层达到15mm~20mm厚时,再将氧化层移到炉前700~800℃的部位的温区堆集一块进行烧结,烧结成块后出炉。 尾气中的SO2气体使用石灰乳吸收除去。 4、反应原理: 反应方程式 MoS2+3 O2=MoO3+2SO2↑ MoS2+6MoO3=7MoO2+2SO2↑ 在焙烧过程中由于焙烧料是在没有搅拌静态的状况下焙烧的,所以从上面的反应方程式可以得知烧结块的成份主要是由MoO3和MoO2两种钼的氧化物组成。由于烧结时也是在静态状况下进行,当温度达到氧化钼熔化温度时,堆积面上的烧结料有部分三氧化钼挥发,但由于过热,表面又形成一层粘结物,所以,堆积料内部是不会有三氧化钼挥发的。 二、工艺条件选择焙烧时间(t)400℃氧化层厚度(mm)600℃氧化层厚度(mm)0.5-0.52.0154.04186.05207.0620     从上述试验条件分析:焙烧条件应控制在600℃左右,焙烧时间应为4小时,氧化速度较快。 焙烧时间、温度、回收率之间关系试验结果 焙烧时间          焙烧温度         钼回收率 2小时          790℃~900℃         >87% 3小时          790℃~900℃           85% 结果分析:焙烧温度应在790~900℃。烧结时间应控制2小时之内,钼回收率较高,钼的回收率还有一些具体操作方面的影响因素。 烧结块化学成分批号烧结前Mo%烧结后分析结果Mo%S%MoO3%MoO2%443.6548.261.262.7611.12743.6550.86<0.0166.369.15843.6550.67<0.0152.3922.0011-48.12<0.011343.9849.460.0651744.4949.510.089烧结钼回收率批号烧结前烧结后回收率%重量kgMo%H2O重量kgMo%1395.543.9837149.4685.91797.544.49383.549.5198.2累计91.62 试料的累计回收率是91.62%,操作严格控制温度与烧结时间,焙烧料不能在炉内停留时间过长,减少机械损失,以及增加尾气中三氧化钼回收设施,回收率可以达到95%以上。 氧化钼烧结块符合炼钢厂对氧化钼添加剂的技术要求。重庆钢厂对氧化钼添加剂技术指标要求为:Mo48%以上,S<0.15%、Cu<1%、P<0.04%、Sn<0.07%、Sb<0.06%,Pb<0.05%。试验用料Mo44.49%,焙烧出的氧化钼烧结块成分为Mo49.51%,S<0.089%、Cu 0.16%、Sn 0.0054%、Pb 0.092%。(Pb烧结前后没有变化)。 经测试氧化钼烧结块中二氧化钼含量占20%左右。通过配料调整、炉内气氛的严格控制,二氧化钼含量可以再提高。 氧化钼烧结块的销路前景广阔,经济效益十分可观。据重度钢厂试用结果表明,用氧化钼烧结块做炼钢添加剂可减少钼铁用量30%。重庆钢厂钼总用量的80%都用在炼合金钢的添加剂方面。 研究氧化钼烧结块还应该继续做的工作是:进一步解决提高氧化钼烧结块的生产效率以及增加氧化钼烧结块中二氧化钼的含量。

钼及钼合金粉末冶金技术研究现状与发展

2019-03-04 11:11:26

体系总结了钼及钼合金粉末冶金技能的研讨进展和工业运用现状。别离论说了钼粉末冶金理论、超细(纳米)钼粉、大粒度(和高活动性)钼粉、高纯钼粉、新式钼成型技能、新式钼烧结技能、钼粉末冶金进程数值模仿技能等7个研讨方向的技能原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 钼及钼合金具有高的高温强度和高温硬度,杰出的导热性和导电性,低的热膨胀系数,优异的耐磨性和抗腐蚀性,被广泛运用于航天航空、动力电力、微电子、生物医药、机械加工、医疗器械、照明、玻纤、国防建设等范畴。本文体系总结钼及钼合金粉末冶金技能的原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 一、钼粉末制备技能展开 跟着轿车、电子、航空、航天等职业的日益展开,对钼粉末冶金制品的质量要求越来越高,因而要求钼粉质料在化学成分、物理描摹、均匀粒度、粒度散布、松装密度、活动性等许多方面具有愈加优异的功能目标,钼粉朝着高纯、超细、成分可调的方向展开,然后对其制备理论和制备技能提出了更高的要求。 (一)钼粉复原理论研讨 钼粉的制取进程是一个包含钼酸铵到MoO3、MoO到MoO2、MoO2到钼粉等3个独立化学反响,阅历一系列杂乱的相变进程,触及钼酸铵质料以及MoO3、MoO2、钼蓝等中间钼氧化产品的描摹、尺度、结构、功能等许多要素的极端杂乱的物理化学进程。 现在,已根本清晰MoO3到Mo的复原进程动力学机制,即:MoO3到MoO2阶段反响进程契合核决裂模型,MoO2到Mo阶段反响契合核减缩模型;MoO2到Mo阶段反响有两种办法,低露点气氛时通过假晶改变,高露点气氛时通过化学气相搬迁。但对MoO3到MoO2阶段的反响办法没有构成共同观点,Sloczynski以为MoO3到MoO2的复原是以Mo4O11为中间产品的接连反响,Ressler等以为在复原进程中,MoO3首要吸附氢原子[H]生成HxMoO3,然后HxMoO3开释所吸附的[H]改变为MoO3和MoO22种产品,跟着温度上升MoO2不断长大,而改变成的中间态MoO3进一步复原为Mo4O11,进而复原成MoO2。国内尹周澜等、刘心宇等、潘叶金等在这一范畴也进行了必定作业,但未见到较完善的物理模型和数学模型的报道。 (二)超细(纳米)钼粉制备技能研讨 现在,制备超细钼粉的办法首要有:蒸腾态三氧化钼复原法、活化复原法和十二钼酸铵复原法。纳米钼粉的制备办法首要有:微波等离子法、电脉冲放电等。 1、蒸腾态三氧化钼复原法 蒸腾态三氧化钼复原法,是将MoO3粉末(纯度达99.9%)装在钼舟上,置于1300~1500℃的预热炉中蒸腾成气态,在流量为150mL/min的H2-N2气体和流量为400mL/min的H2的混合气流的夹载下,MoO3蒸气进入反响区,通过复原成为超细钼粉。该办法可取得粒径为40~70nm的均匀球形颗粒钼粉,但其工艺参数操控比较困难,其间,MoO3-N2和H2-N2气流的混合温度以及MoO3成分都对粉末粒度的影响很大。 2、活化复原法 活化复原法以七钼酸铵(APM)为质料,在NH4Cl的催化效果下,通过复原进程制备超细钼粉,复原进程中NH4Cl彻底蒸发。其复原进程大致分为氯化铵加热分化、APM分化成氧化钼、MoO3和HCl反响生成7MoO2Cl2、MoO2Cl2被复原为超细钼粉等4个阶段。总反响式为:NH4Cl+(NH4)6Mo7O24+4H2O=HCl+7NH3+28H2O+7Mo。该办法比传统办法的复原温度下降约200~300℃,而且只运用一次复原进程,工艺较简略。此办法制备的钼粉均匀粒度为0.1μm,且粉末具有杰出的烧结功能。韩国岭南大学提出了类似办法,仅仅所用质料为高纯MoO3。 3、十二钼酸铵复原法 十二钼酸铵复原法 是将十二钼酸铵在镍合金舟中,并置于管式炉中,在530℃下用复原,然后再在900℃下用复原,可制出比表面积为3.0m2/g以上的钼粉,这种钼粉的粒度为900nm左右。该办法仅有工艺进程描绘,未见到进程机制的分析,其可行性没有可知。 4、羰基热分化法 羟基法是以羟基钼为质料,在常压和350~1000℃的温度及N2气氛下,对羟基钼料进行蒸气热分化处理。因为羟基化合物分化后,在气相中情况下完结形核、结晶、晶核长大,所以制备的钼粉颗粒较细,均匀粒度为1~2μm。运用羟基法制得的钼粉具有很高的化学纯度和杰出的烧结性。 5、微波等离子法 微波等离子法运用羟基热解的原理制取钼粉。微波等离子设备运用高频电磁振荡微波击穿N2等反响气体,构成高温微波等离子体,进而使Mo(CO)6在N2等离子体气氛下热解发生粒度均匀共同的纳米级钼粉,该设备能够将生成的CO当即排走,且使发生的Mo敏捷冷凝进入搜集设备,所以能制备出比羟基热解法粒度更小的纳米钼粉(均匀粒径在50nm以下),单颗粒近似球形,常温下在空气中的稳定性好,因而此种纳米钼粉可广泛运用。 6、等离子氢复原法 等离子复原法的原理是:选用混合等离子反响设备将高压直流电弧喷射在高频等离子气流上,然后构成一种混合等离子气流,运用等离子蒸气复原,开端得到超细钼粉。取得的初始超细钼粉打针在直流弧喷射器上,当即被冷却水冷却成超细粉粒。所得到粉末均匀粒径约为30~50nm,适用于热喷涂用的球形粉末。该办法也可用于制备其他难熔金属的超细粉末,如W、Ta和Nb。微波等离子法和等离子氢复原法制备的纳米钼粉纯度较高,描摹较好,但其出产本钱大大提高。 7、机械合金化法 日本的桑野寿选用碳素钢、SUS304不锈钢、硬质合金钢nm左右的钼粉。这种办引起Fe、Fe-Cr-Ni和W在钼中固溶,其固溶量到达百分数级。此外,电脉冲法和电子束辐照法、冷气流破坏、金属丝电爆破法、高强度超声波法、电脉冲放电、关闭循环氢复原法、电子束辐射法等大多只具有实验研讨的价值,尚不具有工业化制备的条件。 (三)大粒度(和高活动性)钼粉制备技能研讨--钼粉的增大改形技能研讨大粒度(和高活动性)钼粉首要用于精细器材的焊接和喷涂,其物性目标首要有:大粒度(≥10μm)、大松装密度(3.0~5.0g/cm3)、杰出的活动性(10~30s/50g)。相对费氏粒度一般为5μm以下,粒度散布根本呈正态散布,松装密度在0.9~1.3g/cm3之间,钼粉描摹为不规矩颗粒团,活动性较差(霍尔流速计无法测出)的惯例钼粉而言,这类钼粉的制备难点首要有3点:粒度大、密度大、活动性好。满意这3点要求的抱负钼粉描摹是大直径的实心球体,这与惯例钼粉非规格松懈颗粒团的描摹天壤之别。一般地,钼粉增大改形技能首要有化学法和物理法两大类。 1、化学法 制备出大粒度钼酸铵单晶块状颗粒,依照遗传性原理,通过后续焙烧、复原,制备出大粒度的钼粉真颗粒(惯例钼粉颗粒实践上是许多小颗粒的聚会体),随后进行必定的机械处理,取得描摹圆整、密度大、尺度大的钼粉颗粒。这种办法理论上可行,可是制备大单晶钼酸铵颗粒的难度较大,而且后续钼粉尺度和描摹的遗传性量化规矩不清晰,工艺流程较长。 2、机械造粒技能 将加有粘结剂的混合钼粉在模具或造粒设备中,通过机械约束得到必定尺度,然后脱除粘结剂,烧结成必定强度的规矩颗粒团。这种办法原理简略,但实验标明,这种办法增大钼粉粒度较为简略,但对活动性改善不大。 3、等离子造粒技能 等离子造粒技能在粉末改形方面运用由来已久,其原理是,在维护气氛下,通过必定途径将粉末送入等离子火焰心部,运用高达几千摄氏度的高温使粉末颗粒熔化,然后在自在下落进程中运用液滴的表面张力自行球化,球形液滴通过冷却介质激冷呈大粒度、高密度球形粉末。这种办法取得的粉末具有很好的物性目标,商场远景宽广,但其技能难度较大,特别在粉末运送和维护气氛的坚持、制品的冷却搜集等方面较为困难,设备出资大,保养比较困难。 4、流化床复原法 钼粉的流化床复原法由美国Carpenter等提出,通过2阶段流化床复原直接把粒状或粉末状的MoO3复原成金属钼粉。第1阶段选用作流态化复原气体,在400~650℃下把MoO3复原为MoO2;第2阶段选用作流态化复原气体,在700~1400℃下将MoO2复原成金属Mo。因为在流化床内,气-固之间能够取得最充沛的触摸,床内温度最均匀,因而反响速度快,能够有效地完结对钼粉粒度和形状的操控,所以该办法出产出的钼粉颗粒呈等轴状,粉末活动性好,后续烧结细密度高。这种办法没有见到详细出产运用的信息。 (四)高纯钼粉制备技能研讨 高纯钼粉用于耐高压大电流半导体器材的钼引线、声像设备、照相机零件和高密度集成电路中的门电极靶材等。要制备高纯钼粉,有必要首要取得高纯三氧化钼或高纯卤化物。取得高纯三氧化钼的工艺首要有: 1、等离子物理气相堆积法 以空气等离子处理普通的三氧化钼,运用三氧化钼沸点比大大都杂质低的特色,令其在空气等离子焰中敏捷蒸发,然后在等离子焰外引进很多冷空气使气态三氧化钼激冷,取得超纯三氧化钼粉末。 2、离子交换法 将质料粉末溶于聚四氟乙烯容器中加水拌和,然后以1L/h的速度向容器中参加浓度为30%的H2O2。所得溶液通过H型阳离子交换剂,将容器中的溶液加热至95℃,抽气压力在25Pa左右坚持5h,浓缩后构成沉积,即为高纯三氧化钼。 3、化学净化法 通过屡次重结晶,取得高纯钼酸铵,然后煅烧得到高纯三氧化钼。 取得高纯三氧化钼后,选用传统氢复原法和等离子氢复原法均可取得高纯度钼粉。这几种制备技能均有运用的报道,但详细技能思路和细节均未揭露。 取得高纯卤化物的工艺原理是:将工业三氧化钼或钼金属废料(如垂熔条的夹头、钼材边角料、废钼丝等)卤化得到卤化物(一般为),然后在550℃左右的高温条件下对卤化钼进行分馏处理,使里边的杂质蒸发,得到深度提纯的卤化钼(据称纯度可到达5N),终究通过氢氯焰或氢等离子焰复原,得到高纯钼粉。日本学者佐伯雄造报道了800~1000℃下氢复原高纯的研讨,得到的超纯钼粉中金属杂质含量比其时商场上高纯钼粉低2个数量级。氢复原法是一种产品纯度高,简略易行的办法。可是的制备、提纯和氢复原进程均运用了,对操作人员和环境危害较大。 二、新式钼成型技能展开 现在,粉末的成型技能朝着"成型件的高细密化、结构杂乱化、(近)净成型、成型快速化"的方向展开。以下几种约束成型技能具有很大的技能创新性,一旦取得打破,将对钼固结技能(包含约束和烧结)发生性的影响,但这些技能的详细技能细节没有发表。 1、动磁约束(DMC)技能 1995年美国开端研讨“动磁约束”并于2000年取得成功。动磁约束的作业原理是:将粉末装于一个导电的护套内,置于高强磁场线圈的中心腔内。电容器放电在数微秒内对线圈通入高脉冲电流,线圈腔内构成磁场,护套内发生感应电流。感应电流与施加磁场彼此效果,发生由外向内紧缩护套的磁力,因而粉末得到二维约束。整个约束进程缺乏1ms。相对传统的模压技能,动磁约束技能具有工件约束密度高(生坯密度可到达理论密度的95%以上),作业条件愈加灵敏,不运用润滑剂与粘结剂,有利于环保等长处。现在动磁约束的运用已挨近工业化阶段,第1台动磁约束体系已在试运行。 2、温压技能 温压技能由美国Hoeganaes公司于1994年提出,其工艺进程是,在140℃左右,将由质料粉末和高温聚合物润滑剂组成的粉末喂入模具型腔,然后约束取得高细密度的压坯。这种专利聚合物在约150℃具有杰出的润滑性,而在室温则成为杰出的粘结剂。温压技能是一项运用单次约束/烧结制备高细密度零件的低本钱技能,只通过一次约束便可到达复压/复烧或熔渗工艺方能到达的密度,而出产本钱却低得多,乃至可与粉末铸造相竞赛。但现在适合于钼合金的喂料配方需求实验断定。 3、活动温压(WFC)技能 活动温压技能由德国Fraunhofer研讨所提出。其根本原理是:通过在惯例粒度粉末中,参加适量的微细粉末和润滑剂,然后大大提高了混合粉末的活动性、填充才能和成形性,进而能够在80~130℃温度下,在传统压机上精细成形具有杂乱几许外形的零件,如带有与约束方向笔直的凹槽、孔和螺纹孔等零件,而不需求这以后的二次机加工。作为一种簇新的粉末冶金零部件近终构成形技能,活动温压技能既克服了传统粉末冶金技能在成形方面的缺乏,又防止了打针成形技能的高本钱,具有非常宽广的运用潜力。现在,该技能尚处于研讨的初始阶段,混合粉末的制备办法、适用性、成形规矩、受力情况、流变特性、烧结操控、细密化机制等方面的研讨均未见报道。 4、高速约束(HVC)技能 粉末冶金用高速约束技能是瑞典Hoganas公司与Hydrapulsor公司合作开发的,选用液压机,在比传统快500~1000倍的约束速度(压头速度高达2~30m/s)下,一起运用液压驱动发生的多重冲击波,间隔约0.3s的附加冲击波将密度不断提高。高速约束压坯的径向弹性后效很小,压坯的尺度误差小,可用于粉末的近净构成型,且出产功率极高;但其设备吨位较大,尚不具有制备大尺度工件的才能,且工艺进程环境噪音污染严峻。 三、新式钼烧结技能展开 近年来,粉末烧结技能层出不穷。电场活化烧结技能(FAST)是通过在烧结进程中施加低电压(~30V)和高电流(>600A)的电场,完结脉冲放电与直流电一起进行,到达电场活化烧结,取得显微结构显着细化、烧结温度显着下降、烧结时刻显着缩短的意图。挑选性激光烧结(SLS)运用分层制作办法,首要在核算机上完结契合需求的三维CAD模型,再用分层软件对模型进行分层,得到每层的截面,然后选用自动操控技能,使激光有挑选地烧结出与核算机内零件截面相对应部分的粉末,完结分层烧结。 从理论上讲,这些烧结技能都具有很高的学术价值,但大多尚处于实验室研讨阶段,只能用于小尺度钼制品的小批量烧结,间隔工业运用研讨尚有很大间隔。具有必定工业化运用远景的钼烧结技能首要有以下几种: 1、微波烧结技能 微波烧结运用材料吸收微波能转化为内部分子的动能和热能,使材料全体均匀加热至必定温度而完结细密化烧结的意图。微波烧结是快速制备高质量的新材料和制备具有新功能的传统材料的重要技能手段之一。 相对电阻烧结、火焰烧结、感应烧结等传统烧结办法而言,微波烧结法不只具有节能显着,出产功率高,加热均匀(其温度梯度为传统办法的1/10),烧结制品少(无)内应力、大幅变形和烧结裂纹等缺点,烧结进程准确可控等长处。别的,微波加热技能可用于钼精矿提高除杂、钼精矿焙烧、钼酸铵焙解、钼粉复原等多种工艺环节。但因为微波穿透深度的约束,被烧结材料的直径一般不大于60mm,别的微波烧结气氛很难确保处于2,因而很难防止钼的烧结进程氧化污染。 2、热等静压技能 气压烧结(热压烧结)技能是一种约束机械能与烧结热能耦合效果下的钼固结技能,热等静压是其间运用最成功的工艺。对烧结密度、安排均匀性和空地率等烧结目标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多选用热等静压技能,其产品质量远高于传统的冷等静压-无压烧结工艺,国内尚无类似出产工艺的报道。 3、放电等离子烧结技能 放电等离子烧结技能(SPS)是一种运用通-断直流脉冲电流直接通电烧结的加压烧结法。其工艺原理是,电极通入通-断式直流脉冲电流时瞬间发生的放电等离子体、放电冲击压力、焦耳热和电场分散效果,使烧结体内部各个颗粒均匀地本身发生焦耳热并使颗粒表面活化,然后运用粉末内部的本身发热效果完结烧结细密化,取得均质、细密、细晶的烧结安排。这种比传统烧结工艺低180~500℃,且高温等离子的溅射和放电冲击可铲除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。德国FCT公司现已选用这种技能制备出直径为300mm的钼靶材,国内尚无类似出产工艺的报道。 4、铝热法复原-烧结一体化技能 铝热法选用铝粉末作为复原剂,在200~300℃下,对钼酸钙、硫化钼或三氧化钼进行低温复原,可用大大低于惯例氢复原工艺的本钱和较高出产功率制得低密度粗制钼产品或钼合金涂层。一起,在必定的气体压力效果下,跟着复原进程的进行,钼粉可发生开端烧结,取得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精粹法制备高纯钼制品的质料。 四、钼粉的粉末冶金特性规矩性研讨 HCStark、Plansee等国外首要钼厂商对钼粉有严厉的分类,构成了较为完好的钼粉系列,不同加工制品选用不同目标的钼粉,不同的钼粉在约束成型前选用不同的前处理办法,不同的钼粉选用不同的约束、烧结工艺,而且不同物性目标钼粉能够彼此调配,取得最优质料组成和最佳的密度、均匀性等压坯质量,然后确保烧结件和终究产品的质量。而国内只要少量组织进行了开端探究,国内厂商没有构成体系的钼粉分级,不管哪种质料、哪种工艺、哪种设备取得的钼粉,均选用类似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提及。较为体系地展开钼粉的粉末冶金特性研讨,理清质料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应联系,关于取得产品的多元化、系列化、最优化具有很大的出产辅导意义。 五、钼粉末冶金进程数值模仿技能展开 长期以来,钼粉复原、成型、烧结工艺多依赖于出产经历堆集。近年来跟着钼制备加工技能的精整化,数值模仿逐步用于钼的这3个粉末冶金工艺段,为研讨微观演化进程,提醒钼制备加工进程的准确机制,进而为完结钼成型工艺的可控性供给理论支撑。就这3段工艺的本质而言,钼粉复原阶段归于典型的分散场现象,可学习流体介质模仿技能;成型、烧结进程归于典型的非接连介质体,且质料粉末组成反常杂乱,无法树立一致的几许形式、物理模型和数学模型,现在尚无完善的模仿技能和模仿软件。 1、钼粉成型进程数值模仿 钼粉约束成型时,粉末的应力变形比固态金属杂乱,可概括为2个首要阶段:约束前期为松懈粉末颗粒的聚合,约束后期为含孔隙的实体。粉末约束时因为很多不同尺度粉末颗粒间的彼此效果以及粉末与模壁间的机械效果和冲突效果,再加上制品密度、弹性功能、塑性功能间的彼此影响,粉末的力学行为是非常杂乱的,还没有一个一致的材料模型。 现在因为非接连介质力学的根本理论还不完善,国内外的研讨大多是将粉末体作为接连体假定而进行的。粉末约束模型可简化为弹性应力-应变方程。 2、钼粉烧结进程数值模仿 烧结从本质上来说也是一种热加工工艺。烧结进程中的粉末固结和热量搬迁是一起进行的,固结中的物理机制包含塑性屈从、蠕变和分散。而粉末凝结进程中的部分压力和温度决议着这些物理机制对粉末固结所起的效果。一起,粉末凝结中的热量搬迁(首要是热量传递)又深受部分相对密度的影响。因而,对烧结的分析有必要结合热力学。 因为钼粉烧结进程的基础理论展开缺乏,无法树立满足的偏微分方程组,所以烧结进程的数值模仿,只能进行单元素体系、简略尺度和描摹的钼粉情况下的简略模仿。这种模仿成果有助于分析其间的机制,但尚无法有效地辅导出产工艺。 六、结束语 通过近一个世纪的展开,"粉末多样化、制品准确化"逐步成为现代钼粉末冶金技能的展开方向,并开宣布一系列钼粉末冶金新技能、新工艺及其进程理论,这些研讨的重点是粉末和制品的结构、描摹、成分操控技能。总的趋势是钼粉向超细、超纯、粉末特性可控方向展开,钼制品的约束烧结向以彻底细密化、(近)净成型为首要目标的新式固结技能展开。 展开钼粉末复原进程动力学问题研讨和粉末冶金进程的数值模仿研讨,有助于从理论上分析质料、钼粉功能、钼制品功能、复原工艺、约束工艺、烧结工艺之间的影响规矩,为处理实践工艺问题供给理论支撑和技能思路。

苏州高岭土尾矿的资源化利用及其应用研究

2019-03-07 09:03:45

现在在高岭土尾矿的资源化运用的研讨并不少,均存在以下几个方面缺陷:1、提取的成分较为单一;2、剩于残渣没有进一步处理,简单构成二次污染;3、高岭土尾矿资源化运用的工业化还不多。假如依据高岭土尾矿的来历不同,结合高岭土尾矿的化学组成,以下降出产本钱,进步经济效益,统筹社会职责,才干完成高岭土尾矿的资源化运用。 1、国内外高岭土尾矿的运用研讨 1.1 高岭土尾矿用于建筑材料方面 在土建工程中,首要以水泥、沙子、石块三种质料,加水拌和构成混凝土,为了下降本钱,常常运用某些尾矿、粉煤灰等固体废弃物替代砂石等骨料。 衮矿集团分公司的冯宝侠发现水洗后的高岭土尾矿,可替代建筑用砂,用于制备混凝土空心砌砖,经过重复试验,屡次优化,最终断定了高岭土尾矿增加的适宜份额。依照m(中砂):m(高岭土尾矿):m(水泥):m(粉煤灰):m(水)=11.2:67.1:16:3.6:2.1时,制得契合国家标准的混凝土空心砌块。 昆明冶金高专的兰琼对高岭土尾矿的物理化学功用进行分析,将矿渣经过分选,得到模数为 3.5的高岭土尾矿,归于粗砂规模,可做硂细骨料出产一种外观为灰白色的硂小型空心砌砖,为了使强度到达国家标准,又参入骨料总重量的30%瓜子石作为粗骨料,其强度标准到达国标。 兖矿集团北海分公司的杨华明等人申请了“高岭土尾矿复合粉及在预拌混凝土中的运用”一项专利。专利中记载高岭土尾矿、氧化钙、水玻璃等物质经过机械研磨得到高岭土尾矿复合粉体,该粉体彻底可用于混凝土中,混凝土的力学功用、耐久性彻底不受到影响。 1.2 高岭土尾矿中收回有价值的组分 龙岩高岭土公司的陆文瑞、郭啊明等人经过X-射线衍射和显微镜对高岭土尾矿进行化学成分及粒径分析,选用配矿、水力选矿的办法收回200目、325目粒径的高岭土精矿。 我国高岭土公司(姑苏)的张忠飞、陈丽坤等经过崩解、涣散、深加工筛析等处理手法,将高岭土尾矿成功制得硫化矿、石英砂及高岭土三种产品。其间,硫化矿石可用于硫酸的出产及宝贵金属的提炼,而石英砂首要用于建筑材料方面,高岭土可做为陶瓷及耐火材料制备的原材料,实践证明该技能易于操作,出产的产品质量过硬,值得在高岭土厂商推行。 翟栋等人从高岭土尾矿中提取铅锌等金属,进步了高岭土尾矿的运用价值。姑苏高岭土尾矿经过摇床分选、混合浮选等手法得到了铅矿及锌矿,它们的档次别离到达31.67%、31.27%,收回率也别离到达了83.11%、68.17%,完成了有色金属的高效收回运用。 王炜在运用摇床,别离完成了高岭土尾矿中的铅、锌、铜的收回。尤国平运用重浮联合工艺流程,收回黄铁矿。 1. 3 高岭土尾矿在陶瓷、玻璃方面的运用研讨 高岭土尾矿含 SiO2、Al2O3、K2O、Na2O、CaO、MgO等其他有用组分,在制备陶瓷玻璃过程中,增加其他必要的组成部分,经过熔融、水淬、装模、热处理、脱模、抛光等深加工工艺制备取得。 广东宝丰陶瓷科技的郭福琼等人创造一种综合运用多种尾矿出产的日用陶瓷及其制作办法。将澄坑土尾矿、郭栋瓷土尾矿、土地窠高岭土尾矿、长石、依照恰当份额的粘土,混合,在选用球磨、筛分、除铁、压滤、炼制等工序,最终烧制成日用陶瓷品。出产本钱低价,质量好,不只有用防止资源的糟蹋,而且环境污染小,合适普遍推行。 桂林电子工业学院陈国华等人运用高岭土尾矿为首要质料,再增加适量的氧化镁、、磷酸二氢铵等物质选用焙烧法制备出低温烧结功用的微晶玻璃,其具介电常数及膨胀系数低和电阻率高的特色,满意微电子封装的要求。高岭土尾矿量的引入量到达55%,拓宽了高岭土尾矿的运用领域,带来了杰出的经济效益和社会效益。 桂林工学院的王海运用高岭土尾矿和白云石制备出膨胀系数为6.5-7.1×10-6/℃(30-380)玻璃陶瓷,该陶瓷具有硬度高,耐酸碱的特色。 景德镇陶瓷学院欧克英等人在高岭土尾矿进行物相分析后,对尾矿进一步加工,取得了石英精矿、长石精矿,云母精矿,瓷泥精矿等多种工业质料,完成了高岭土开发无尾矿新工艺,尾矿制备出来的产品不只到达各个职业的标准,更运用于高级陶瓷、普通电焊条、特种焊条、玻璃马赛克等职业。陆小波运用高岭土尾矿为首要质料,经科学试验开宣布一种高温陶瓷釉。其工艺流程如下:J.Y.P.Leite等以高岭土尾矿为研讨目标,运用现代科学技能手法,发现尾矿首要以长石、高岭石、白云母等矿藏构成,其间尾矿中的三氧化二铝含量到达商场的需求的矿品含量,进行加工,能够做陶瓷的质料。 衮矿北海的高岭土公司的赵日浩经过对砂质高岭土尾矿的筛分、洗刷,取得与国家标准理化功用相符的建筑用砂,再运用水洗后的高岭土尾矿、粉煤灰及水依照必定的配比出产混凝土空心砌砖,假如再进一步对尾矿进行处理即可得到纯洁的二氧化硅,可用于制备微晶玻璃,相关产品现已上市。 1. 4 高岭土综合运用工艺的研讨 针对含有石英、白长母、长石及其他矿藏的高岭土矿产资源,运用重选、脱泥、筛分、浮选、机碓等技能手法,经过恰当的工艺,能够取得高岭土精矿及云母、长石、石英等精矿藏,乃至能够做到无尾矿选矿。 由蔡有兴、孙学强创造,选用捣碎、筛分、旋流器三级别离工艺流程可取得石英精矿、高岭土精泥、陶瓷等三种合格产品,为该类矿产的综合运用供给一条新的途径,图1-2 便是高岭土深加工产品的流程图。肖国琪针对云南临沧高岭土具有高铝、钾、钠、铁、鈦等有害金属含量低、矿藏组成杂乱的特色,规划一套新式高岭土综合运用与无尾矿工程。工艺流程如图1-3所示。该工艺流程将原矿经过选矿得到 60%的精矿和 40%的尾矿,进一步加工成各种产品,完成了高岭土资源的清洁、高效运用(运用率到达100%),为高岭土工业换代,资源的合理运用及可持续开展供给了演示效应。 1. 5 高岭土尾矿用于研发絮凝剂的研讨 聚合铁(PAFC)是在的基础上,引入三价铁离子,在溶液水解的过程中经过羟基架桥、共聚构成的一种新式高分子絮凝剂。自 1980今后,西欧公开了关于聚合铁的制备专利之后,PAFC的制备,运用专利与报导逐步增多。聚合铁的成功研发,极大规模的拓宽了无机絮凝剂的运用规模,对印染废水、炼油废水、含菌废水、造纸废水的处理作用,显着优于同类其他聚合及铁,且药剂自身相对安稳,反响时间短,絮体构成之大,沉降快,溶于过滤,铝残留少等长处,特别在处理高浓度废水,低温废水时,更具有显著作用,因此在水处理界引起巨大颤动,掀起学术界研发聚合铁新的狂潮。 现在制备聚合铁首要有三类办法:1、碱中和共聚法,此法制备的聚合铁较为纯洁,首要用于研讨 PAFC的晶型结构与性质;2、高温煅烧法,用于大规模的工业出产;3、工业酸浸法,运用固体废弃物来组成 PAFC,这种办法本钱低,具有巨大的商场远景。 近年来,跟着人民群众环保认识不断增强,怎么开宣布有用、高效、低毒且没有二次污染的絮凝剂成为热门和难点的研讨。在前人基础上,能够从以下几个方面进行拓宽: (1)持续深化理论研讨的基础上,要点研讨絮凝剂的微观结构与晶型特征 (2)进一步优化絮凝剂中各组分的最佳配等到工艺 (3)加强复合絮凝剂的研讨开发 (4)引入新的工艺条件与设备,使絮凝剂制备的质料来历愈加广泛,出产愈加经济适用的絮凝剂。 以高岭土尾矿为质料制备的絮凝剂与传统的高分子絮凝剂比较,具有以下特色①水解速度快,絮体构成快且密实,沉降时间短,进步了净化功率。②处理很高浊度的含泥沙的水和受污染的水,而且水质的浊度越高,除浊的作用越显着。③受温改变小。④具有广大的运用规模,适用于日子饮用水,工业用水,日子用水以及各类污水的处理,对原水的铝离子及混凝发生的铝都能够有用的除掉,投加后易坚持水质pH 值的安稳。⑤药剂量低,作用好,比其它混凝剂节省本钱。 邱侃运用α-Al2O3在酸中杰出的活性,运用高岭土尾矿不只成功制备了契合国家标准的碱式聚合铁,还将残渣中的二氧化硅进行富集处理,用于制备水玻璃及建筑涂料的填料。 胡俊虎等人选用一步酸溶法,运用煤系高岭土尾矿,制成聚合铁絮凝剂(PAFC),处理黄河水,去浊率到达99%以上,作用很好。 赵莉莉运用廉价的铁屑及高岭土制备 PAFC,并运用于环城河中蓝藻的去除,到达杰出的作用,此工艺本钱较低,具有杰出的推行远景。 李传常运用残次高岭土制备聚合,用于处理实践废水,试验结果表明:废水的浊度、色度和 COD 别离下降了96%,96%,76%,去污作用十分显着。 此外,高岭土尾矿运用朝着功用化、智能化、环保和谐化开展。 2、高岭土尾矿资源化运用存在的问题 综上所述,现在在高岭土尾矿的资源化运用的研讨并不少,均存在以下几个方面缺陷:1、提取的成分较为单一;2、剩于残渣没有进一步处理,简单构成二次污染;3、高岭土尾矿资源化运用的工业化还不多。假如依据高岭土尾矿的来历不同,结合高岭土尾矿的化学组成,以下降出产本钱,进步经济效益,统筹社会职责,才干完成高岭土尾矿的资源化运用。

苏州非矿院蔡建高工谈造纸高岭土生产技术

2019-02-28 11:46:07

高岭土是一种非常重要、用处非常广泛的非金属矿产,因为它具有可塑性、粘结性、涣散性、耐火性、绝缘性和化学安稳性等多种工艺性能,因而它广泛应用于造纸、陶瓷、塑料、橡胶、化工、电子、涂料、油漆、耐火材料、军工、医药、化妆品、农药等几十个职业中。 1高岭土加工工业的构成 我国高岭土加工工业技能开展阅历了几个时期,从在景德镇高岭村发现高岭土直到70年代,均以挖掘原矿为首要工艺,只需少数的机选加工厂,产品只能用于陶瓷工业,并且因为化学成份不安稳,影响瓷器的质量;含铁高,使陶瓷产品发生斑驳;质料级配不合理影响泥料的枯燥强度和可塑性。 针对上述问题,70年代初到90年代初期,我国高岭土工业进入了一个技能前进年代,先后有轻工部、国家建材局的“七五”、“八五”攻关等一批科技攻关项目,以及茂名高岭土、龙岩高岭土的发现及选矿研讨。 2造纸用高岭土加工技能水平 跟着我国造纸工业在“八五”、“九五”期间的迅猛开展,先后引进了多条刮刀涂布机,刀速前进到600m/min、800m/min,乃至1200m/min。相应对高岭土提出了较高的质量要求,包含细度、白度、粘浓度、磨耗值等。经过造纸和高岭土两大职业的共同努力、技能攻关,茂名高岭土已被确以为国内现在高级造纸用高岭土的重要出产基地,一起也推动了高岭土出产技能的全面开展。九十年代初至今,茂名先后有五家大型高岭土选矿厂建成投产。其间:茂名石化矿业公司,6万t/a;茂名高岭土工业有限公司,6万t/a;山阁瓷土公司,5万t/a。当时,茂名区域高岭土总产值约25万t/a,除少数用于塑料、涂料外,根本用于造纸工业。本年又有兖矿集团北海高岭土厂投产,为我国造纸工业又供给了一个质料基地。我国现在造纸用高岭土的加工工艺各地虽有差异,但整体工艺道路附近,下图为其间具有代表性的工艺流程。高岭土原矿在水的高压冲击下碎散,或高岭土原矿经捣浆机制浆,矿浆用泵送入螺旋分级机除砂,再用水力旋流器分选。选矿段数依据原矿性质而定,一般为2~4段。分选后的粗精矿经卧螺离心分级机,分出涂料级和填料级产品。涂料级产品,经漂白、磁选、压滤、枯燥、包装后出厂;填料级产品,经压滤、包装后出厂。 首要出产设备包含:捣浆机、螺旋分级机、水力旋流器、卧螺离心分级机、高梯度磁选机、压滤机、枯燥机。 我国现在造纸用高岭土产品质量如下: Al2O3:37.5%,SiO2:47%,Fe2O3:0.6%,烧失量:15%, 87%,涣散沉降物:0.02%,磨耗值:3mg,粘浓度(500mPa.s固含量):67%,PH值:4~7,水份 3高岭土加工技能 3.1水采或捣浆 茂名高岭土为砂性土,矿石较疏松,加上南边旱季时间长,降雨量大,故选用水采。矿石在水高压水冲击下,根本解离,只需操控恰当的浓度和涣散条件,即直接进入选矿作业,这样就缩短了制浆等工艺环节,节省了出资和本钱。而北海高岭土因为原矿块度大,硬度大,水力挖掘不易捣碎,影响分选作用,故选用接连捣浆机进行制浆。 3.2螺旋分级机 除砂高岭土原矿中石英、长石粒度较粗,一般大于325目,而高岭土粒度较细,首要富集在-2μm中。别的,从原矿粒度分析可知:+40μm含量高,占80.01%;细粒级含量次之,-2μm占12.97%;而中粒级规划宽,含量却很少,40~2μm占7.02%。所以,咱们藉助大处理量的分级设备(螺旋分级机)进行粗选,甩掉很多粗尾,而用水力旋流器进行终究粒级把关。而选用螺旋分级机除砂,突破了原有高岭土出产工艺的形式,把我国高岭土选矿粗选规划从单机产值1~2万t,前进到单机20万t。 3.3卧螺离心机 精选工艺选用了卧螺离心分级技能,使产品细度到达-2μm90%以上,分级功率80%以上。特别是装备了变频调速,可依据不同的物料调整工艺参数(如别离要素),坚持产品质量的安稳。现在,国内高岭土选厂也有选用水力旋流器精选分级,在自控没有完结的情况下,受流量、压力改变的影响,产品质量难于安稳在-2μm90%以上,分级功率不如卧螺离心分级机。 3.4漂白-除铁工艺 依据铁、钛物相分析,高岭土中铁的赋存状况,为矿藏铁和晶格铁两种,其间矿藏铁占60%,有一部分为地表铁质淋滤污染,所以选用化学漂白最经济、有用,也被广泛选用。运用复原漂白剂(如钠)将Fe3+复原成可溶性的Fe2+,再经过洗刷作业将其除掉。漂白工艺首要技能体现在:(1)依据不同矿点物料探究不同药剂准则,使其愈加合理有用;(2)漂白药剂除惯例漂白剂外,还需增加络合物等其它药剂,以发生归纳作用;(3)漂白产品须进行洗刷,及时脱除可溶性二价铁,避免发生“返黄”问题。单个高岭土选厂选用磁选与化学漂白相结合的工艺,使产品白度进一步前进,且下降药剂耗费。经过磁选Fe2O3可从0.66%下降到0.52%,白度从70%前进到80%。 3.5压滤工艺 国内一般高岭土厂商都选用低压过滤。但在茂名和北海两区域,经过我院、厂商、设备供应商三方技能攻关,选用高压进浆,压力到达2~2.5MPa,前进了出产率,保证产品水份低于32~35%,节省了能耗,也改进了工作环境。 3.6枯燥工艺 现在国内造纸用高岭土加工厂喷雾和闪蒸两种枯燥方法均有选用,各有特色。改进后的强力枯燥,在出产流程上适应性强,在不同浓度、物料、给料量的情况下均可进行枯燥。喷雾产品更适于造纸厂运用,曩昔因为国内离心盘雾化器的材料和加工均未过关,所以大型离心式喷雾枯燥塔均为进口。现在,国内一些供应商已能加工喷雾塔,经运用作用较好。 4造纸用高岭土加工技能研讨开展方向 尽管我国高岭土加工技能获得了较大效果,但距造纸工业的要求还有必定间隔,特别是产品与巴西土比较距离较大,我院与各高岭土加工厂正在不断进行技能创新。 4.1煤系高岭土煅烧技能 煅烧高岭土是一种非常重要的高岭土深加工产品,首要用于造纸、塑料、油漆、橡胶、石油化工业和新式技能材料等方面。它作为造纸涂布料可使纸张的光泽度、滑润度、不透明度和原纸覆盖率比水洗高岭土大为改进,尤其是煅烧高岭土具有优秀的光散射才能和特殊的油墨吸收性,是它可以代替贵重的钛的根底和前进纸张涂层质量的原因。 煤系高岭土煅烧技能是我国独有的加工技能,北方煤系高岭土经过几年的探究,现已构成一整套完好的加工工艺,包含湿法超细,煅烧增白、打散解聚。这批效果作为国家“九五“攻关,经过了效果鉴定,并广泛应用于一批煤系高岭土厂商。 4.2增白、降粘技能的前进 近20年来,增白、降粘技能一直是咱们高岭土职业研讨的课题之一,并获得了较大的前进,现在白度到达88%,粘浓度到达68%。但造纸工业开展迅猛,对高岭土提出了更高的要求,特别是美国高岭土、巴西高岭土进入中国市场,加重了技能的竞赛,促进了我国高岭土技能前进。近期将完结多项科技效果,获得多项专利技能。“十五”期间科技部立项的攻关课题完结后,高岭土产品将到达白度90%、粘浓度72%。已获专利同意。

高性能铝合金———铝钪合金

2018-12-27 16:26:15

铝合金是国民经济建设和国家安全重要的工程材料。但是迄今为止,我国一些高性能铝合金制备的关键技术还没有突破,很多重点型号所需的高性能铝合金材料仍然依赖于进口,高性能铝合金研制与开发还有许多工作等待国人去做。    铝合金的高性能化有几种途径,其中微合金化强韧化是近20年来高性能铝合金研究的前沿领域。所谓微合金化强韧化通常是指将质量百分数小于0.5%的微量元素添加或者复合添加到铝合金中借以大幅度提高合金强度和韧性的一种技术。其中,钪的添加特别引人注目。   钪作为一种过渡族元素以及稀土元素加到铝及铝合金中,不仅能够显著细化铸态合金晶粒、提高再结晶温度从而提高铝合金的强度和韧性,而且能显著改善铝合金的可焊性、耐热性、抗蚀性、热稳定性和抗中子辐照损伤的作用。因此,铝钪合金被认为是新一代航天航空、舰船、兵器用高性能铝合金结构材料。近20年来,国际材料界尤其是前苏联,由于军工战略方面的需要,对铝钪合金进行了大量的研究与开发。国内铝钪合金起步较晚,90年代中期还只有少数几篇评述性的文章。然而,这种新合金在航天航空方面的优异性能引起了国防工业部门的浓厚兴趣,有关应用部门希望国内立即开展这方面的研究。   “国家需要就是我们的研究目标!”学科带头人尹志民教授敏锐地感觉到这一信息的重大价值。这位1987年从加拿大多伦多大学留学回国并长期从事高性能铝合金研究的学者,立即带领科研室一批青年学子在这一领域开始了艰苦的探索与实践。   研究工作从哪里入手?科研组的同志一致认为“研究工作应当首先从基础做起,基础牢才能做大事。”微量钪添加到铝合金中能大幅度提高合金的性能,这种神奇作用的原因是什么?课题组在国家自然科学基金的支持下,开展了微量钪在铝镁系合金中的存在形式及作用机制研究。他们设计了一系列对比合金,研究了微量钪对目标合金晶粒度、再结晶行为以及对合金强度和韧性的影响。发现了一系列有重大意义的研究结果:   第一,微量钪和锆复合添加效果比单独添加好,钪、锆复合微合金化是Al-Mg系合金强韧化的有效途径;   第二,微量钪和锆主要以Al3(Sc,Zr)I和Al3(Sc,Zr)II两种铝化物形式存在,铝化物的晶体结构为面心立方,点阵常数为0.410nm,前者是α(Al)基体最有效的晶粒细化剂,后者与基体共格,强烈钉扎位错和亚晶界,它能强烈抑制合金热变形过程和冷轧板材退火过程的再结晶;第三,微量钪和锆在铝合金中的强化机制为细晶强化、亚结构强化和铝钪锆化合物粒子引起的析出强化。论文《微量Sc和Zr对Al-Mg合金组织性能的影响》和《微量Sc和Zr对Al-Zn-Mg合金组织性能影响》分别在材料领域英国著名刊物《材料科学与工程》和俄罗斯著名刊物《有色金属》上发表,SCI他引数十次。多名来自韩国、法国、德国、日本等国的研究者来信或通过E-mail索取资料。尹志民教授访俄期间,还多次与铝钪合金研究权威扎哈罗夫教授和费拉多夫教授进行了学术交流。   铝钪合金基础研究有了重大突破以后,紧接着的一个问题就是研制开发铝钪中间合金。因为微量钪只能通过铝钪中间合金的形式加入到铝合金中,否则“巧妇难为无米之炊”。调研发现,我国钪资源丰富。90年代初,我国还是世界市场上氧化钪初级产品的主要供应商,关键问题是如何把氧化钪转化为铝钪中间合金。在"氧化钪热还原制备铝钪中间合金新工艺基础研究"国家自然科学基金支持下,课题组在不同反应物体系热还原热力学计算的基础上,筛选了两条工艺路线进行实验。最终以工业氧化钪为原料,采用氧化钪热还原方法成功地制备出了铝钪中间合金,随后研制的铝钪合金板材制备和性能研究表明:制备的铝钪中间合金完全能够满足工业铝钪合金研制的需要。在此基础上,科研组申报了国家发明专利,2002年发明专利获得授权。   随着我国国力的增强,铝镁钪系合金的研究列入了国家重点研究计划,科研室紧紧抓住了这个机遇。在科技部973项目“提高铝材质量的基础研究”和“十五”攻关项目的支持下,在微量钪、锆在铝镁系及铝锌镁系合金中的微合金化研究成果的指导下,课题组在国内率先研制成功了Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr两个合金原型,与不添加钪和锆的同类合金相比,合金抗拉强度和屈服强度提高了25%,而塑性仍分别保持在13%和10%的高水平。与此同时,钪、锆等复合微合金化强韧化研究成果已延伸到2个863项目和1个“十五”重点项目。   经过8年的艰苦奋斗,依托中南大学材料物理与化学国家重点学科,形成了一支从加拿大、日本、俄罗斯等留学回国的青年学者组成的学术队伍。他们先后承担了多项与铝钪合金有关的国家自然科学基金、973项目、863项目、“十五”攻关和军工配套等国家级重大科研项目,举办了铝钪合金国际研讨会,发表高水平论文近百篇,在国内外产生了积极的影响。   为了适应新形势的发展,尹志民教授为首的创新团队加大了铝钪合金的研究开发力度,一方面,他们利用科研沉淀资金,在校内新材料工程中心投资20余万元建立了一条铝钪中间合金中试生产线,正式为国内用户供应“中工牌”铝钪中间合金;另一方面,与国内铝合金骨干企业合作,共同承担国家科研试制任务,努力把钪、锆复合微合金化强韧化理论应用到工程实际中,争取在未来10年内,和国内铝合金骨干企业一道建立起我国自己的高性能铝钪合金新体系。   目前,中南大学与东北加工轻合金有限责任公司和西南铝业有限公司合作承担的铝钪合金“十五”国家重点项目开始了工业化试验。他们已经攻克了板材及其配用焊丝复合微合金化成分设计及控制技术、钪中间合金制备和添加技术、铝镁钪锆合金板材轧制技术,铝镁钪锆合金型材挤压工艺技术和锻造工艺技术,研制成功了中强高韧可焊Al-Mg-Mn-Sc-Zr合金板材、挤压材、锻件和配用焊丝。   可以预见在不久的将来,具有我国自主知识产权的大规格铝钪合金板材、挤压材、锻件将会在航天、航空、兵器、舰船领域投入应用。课题组成员的辛勤劳动和聪明才智将在国防现代化建设中开出更加艳丽的花朵。

铅合金

2017-07-04 15:04:24

铅合金 (lead alloys)是以铅为基材加入其他元素组成的合金。铅合金广泛应用于电解锌、电解铜和蓄电池等行业,作为 湿法冶金 工艺中的应用 阳极 ,具有硬度高、力学性能好、铸造性能优、使用寿命长、生产工艺简单等优点。物质概况铅合金 lead alloys ,以铅为基材加入其他元素组成的合金。铅合金广泛应用于电解锌、电解铜和蓄电池等行业,作为湿法冶金工艺中的应用阳极,具有硬度高、力学性能好、铸造性能优、使用寿命长、生产工艺简单等优点。铅合金分类按照性能和用途,铅合金可分为耐蚀合金、电池合金、 焊料 合金、印刷合金、轴承合金和模具合金等。铅合金主要用于化工防蚀、 射线 防护,制作电池板和电缆套。铅合金特点铅合金表面在腐蚀过程中产生氧化物、硫化物或其他复盐化合物覆膜,有阻止氧化、硫化、溶解或挥发等作用,所以在空气、硫酸、淡水和海水中都有很好的耐蚀性。铅合金如含有不固溶于铅或形成第二相的 铋 、镁、锌等杂质,则耐蚀性会降低;加入 碲 、硒可消除杂质铋对耐蚀性的有害影响。在含铋的铅合金中加入锑和碲,可细化晶粒组织,增加强度,抑制铋的有害作用,改善耐蚀性。铅合金熔点低(在327 ℃以下)、流动性好,凝固收缩率小,熔损少,重熔时成分变化小,可铸造形状复杂、轮廓清晰的器件,广泛应用于铸造 铅字 和制作模型等。铅锡锑合金用于印刷工业上已有五百多年的历史。制作模型和 铸字 用的铅合金,所含的锑起提高硬度和强度、降低凝固收缩率的作用;所含的锡起提高流动性和轮廓清晰度的作用。利用熔点低的铅合金作模型材料,制作工艺简便,且有一定的使用寿命,对产品更改及模型翻新非常便利,国内该方面相关人才主要集中在 钢铁英才网 。铅合金的变形抗力小,铸锭不需加热即可用轧制、挤压等工艺制成板材、带材、管材、棒材和线材,且不需中间退火处理。铅合金的抗拉强度为3~7 kgf/mm2,比大多数其他金属合金低得多。锑是用于强化基体的重要元素之一,仅部分固溶于铅,既可用于固溶强化,又能用于时效强化;但如果含量过高,会使铅合金的韧性和耐蚀性变坏。从综合性能考虑,铅合金用于制作化工设备、管道等耐蚀构件时,以含锑6%左右为宜;用于制作连接构件时,以含锑8%~10%为好。 铅锑合金 加入少量的铜、 砷 、银、钙、碲等,可增加强度,称为硬铅。由于铅合金的剪切、蠕变强度低,在一定的载荷和滚动切变作用下,铅合金易于变形并减薄成为箔状;且铅合金的自润性、磨合性和减震性好,噪声小,因而是良好的轴承合金。铅基轴承合金和锡基轴承合金统称为巴氏合金,可制作高 载荷 的机车轴承。含砷高达2.5%~3%的铅合金,适于制作高载荷、高转速、抗温升的重型机器轴承。物质应用铅合金由于具有密度大、熔点低、耐腐蚀和防护放射性能好等特点,应用领域广阔,其他金属无法替代。1. 应用于电解锌、电解铜和蓄电池等行业,作为湿法冶金工艺中的应用阳极,具有硬度高、力学性能好、铸造性能优、使用寿命长、生产工艺简单等优点。2. 铅合金具有不易被X和γ射线穿透的特性,可作放射性工作的防护材料。铅合金注意事项铅合金的烟尘有毒,熔铸时要有良好的防护措施。

合金铜线

2017-06-06 17:50:07

  合晶铜线,是由铜和其他元素合成的铜线。  合晶铜线适用于控制屏蔽电缆、电子计算机屏蔽电缆的屏蔽层编织用,做电缆的编织防护层、屏蔽层和电子信号及接地释放。合晶铜线是替代铜线的最佳产品,它具有圆铜线的特性,抗拉强度比圆铜线大,延伸率比圆铜线小,同时比重比圆铜线轻,既具有高强度,亦具有铜线低电阻的性能。合金铜线有很多分类,近年来,金价显著提升,而半导体工业对低成本材料的需求更加强烈。作为连接导线,铜线是金线的理想替代品。这主要得益于铜线更高的热导性,更低的电阻率、更高的拉伸力、和更慢的 金属 间的渗透,以及最主要的因素——更低的 价格 ,而合金铜线更是金线的最佳理想替代品。    相信在今后,合金铜线将越来越广泛的应用于工业上。如果你想更多的了解合金铜线的相关内容,请继续浏览上海 有色 网。

铅铋合金

2017-06-06 17:49:59

铅铋合金,熔点在150到200度之间。铅铋合金只有被苏联使用在核潜艇上,对反应堆管路要求极高,它的腐蚀性极强稍有不慎就会发生事故。    在铋的冶炼过程中,即可得到铅铋合金。方法是:先将铅的火法冶金精炼过程中产生的钙镁铋浮渣加热,使其中所含的铅下沉取出。继续加热熔渣,熔化后,加入氯化铅或通入氯气,以除去钙和镁,得到富含铋的铅铋合金。    铅铋合金中铋和铅的连续配位滴定:    实验过程中,不使用已标定好的EDTA标准溶液,改用金属锌作基准物质重新标定一次.其原因是:EDTA常因吸附有0.3%的水分,所以在使用前都要进行标定,最好是每次使用前都重新标定。    滴定bi3+要控制溶液酸度pH~1,酸度过低或过高对测定结果的影响:酸度过高,EDTA的酸效应增大,副反应系数增大;酸度过低,甚至会使Pb2+发生水解。酸度过低和过高搜不能准确滴定,影响实验结果。实验中使用二甲酚橙作为指示剂,先将PH调到1,使用EDTA标准溶液滴定Bi3+,滴定至终点后,记录体积V1,再使用六次甲基四胺调节PH为5-6,继续滴定Pb2+ 。    标定EDTA溶液常用的基准物有Zn,ZnO,CaCo3,Bi,Cu,MgSO4.7H2O 等,在这两个实验中我们用的基准物金属Zn和CaCo3各自的反应条件和操作的特点是:.pH范围不同,使用CaCO3做基准物时,PH值控制在10,用氨缓冲液调节,而用锌,在这个PH值时,则不行,有Zn(OH)2生成 。操作方面:都要使用酸将固体溶解,转化成Ca2+和Zn2+ 。    铅是一种金属元素,可用作耐硫酸腐蚀、防丙种射线、蓄电池等的材料。其合金可作铅字、轴承、电缆包皮等之用,还可做体育运动器材铅球。 铅也可指用石墨等制成的书写工具:铅笔。铅椠(铅粉笔和木板,古人用以书写的工具,借指著作校勘)。    更多关于铅铋合金的资讯,请登录上海有色网查询。