您所在的位置: 上海有色 > 有色金属产品库 > 镍钼合金制备 > 镍钼合金制备百科

镍钼合金制备百科

钼合金的加工

2019-01-25 13:36:45

钼和钼合金可采用真空熔炼和粉末冶金方法制成进一步加工的坯料,其加工方法除与纯钼一样可经旋锻和拉拔成棒和丝材之外,也可用锻造、热挤压和轧制等方法进行深加工。采用粉末冶金方法制取的坯料,由于晶粒结构细且均匀,可直接投入深加工。真空熔炼法制得的坯料必须首先进行热挤压,改变其组织结构后才能进行深加工。 钼合金的加工技术规范中,和纯钼相比,它的加热次数多,加工压力大。如钼合金锻造时为保证得到细晶粒组织,在1250~1400℃变形时,每道次变形量要大于15%。由于钼合金的再结晶温度比纯钼高300~500℃,因而合金的变形加工温度应当比纯钼的高一些。在轧制时,为了获得优质板材,在轧制开始时,每一道次的压下量要相当大,才能使金属沿整个截面的变形尽可能均匀。关于钼和钼合金的深加工技术的详细知识,需要者望参阅文献《钼合金》(冶金工业出版社,北京,1984年)。

铬钼合金钢管规格标准

2019-03-15 10:05:15

铬钼合金管  铬钼合金管是无缝钢管的一种,其性能要比一般的无缝钢管高很多,因为这种钢管里面含 Cr 比较多,其耐高温,耐低温,耐腐蚀的性能是其他无缝钢管比 不上的,所以合金管在石油,化工,电力,锅炉等行业的用途比较广泛.  铬钼合金管纯化氢的原理是,在 300—500℃下,把待纯化的氢通入 铬 钼合金管的一侧时,氢被吸附在铬钼合金管壁上,由于钯的 4d 电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为 1.5×10m,而钯的晶格常数为 3.88×10-10 m(20时),故可通过铬钼合金管,在钯的作用下质子又与电子结合并重新形成氢分子,从铬钼合金管的另一侧逸出.在铬钼合金管表面,未被离解 的气体是不能透过的,故可利用铬钼合金管获得高纯氢.    铬钼合金钢管标准:GB5310-1995、GB17396-1998、DIN17175-79、GB6479-2000、GB9948-88 铬钼合金钢管主要用途:石油、化工、电力、锅炉行业的耐高温、耐低温、耐腐蚀用无缝钢管   铬钼合金钢管规格 ф 14x2 ф 219.1x18   ф 323.9x10  ф 16x3   ф 219.1x22   ф323.9x12  ф 18x2x7.1M ф 219.1x25   ф 323.9x13  ф 25.4x3x5   ф 219.1x28x6   ф 323.9x13.5  ф 28x4   ф 219.1x26   ф 323.9x16  ф 31.8x4x12M ф 219.1x30   ф 323.9x17.5  ф 38x4x7   ф 219.1x36   ф 323.9x20  ф 38x4.5   ф 273x7   ф 323.9x25x12Mф 38x6   ф 273 ф 323.9x26  ф 42x3.5   ф 273x12   ф 323.9x30  ф 42x4   ф 273x16   ф 323.9x32  ф 42x5   ф 273x20   ф 323.9x42  ф 42x5.5   ф 273x22.2   ф 355.6x11  ф 45x4   ф 273x26   ф 355.6x38  ф 48x4   ф 273x28 ф 355.6x36x3Mф 48x5x6M ф 273x32   ф 335.6x40  ф 48x5.5   ф 273x36   ф 355.6x40x1.6M铬钼合金钢管规格ф 51x4   ф 159x14   ф 323.9x10  ф 57x3   ф 159x18   ф323.9x12  ф 57x4   ф 159x18x8-12 ф 323.9x13  ф57x5   ф 159x20   ф 323.9x13.5  ф57x6   ф 159x25   ф 323.9x16  ф60.3x5   ф 168x5   ф 323.9x17.5  ф60.3x6 ф 168.3x7.11   ф 323.9x20  ф60.3x6.5 ф 168.3x8   ф 323.9x25x12Mф 60.3x8 ф 168.3x10   ф 323.9x26  ф 60.3x8.5 ф 168.3x12   ф 323.9x30  ф 60.3x10 ф 168.3x16x12M ф 323.9x32  ф 73x5.2x6 ф 168.3x18   ф 323.9x42  ф76x4   ф 168.3x22x12M ф 355.6x11  ф76.2x6   ф 194x6   ф 355.6x38  ф76.3x8 ф 193.7x8   ф 355.6x36x3Mф76.3x10   ф 193.7x10   ф 335.6x40

氧化钼烧结块替代钼铁炼钢制钼合金钢

2019-01-24 17:45:50

利用氧化钼代替钼铁直接进行钢的合金化,在国外应用已经比较广泛,1974年美国在工业钢方面氧化钼与钼铁的消耗中氧化钼占73.3%,钼铁占25.2%,其它1.5%。日本用氧化钼直接投入电炉炼钢,氧化钼用量占83%,用钼铁占很小的比例。美国1984年氧化钼和钼铁产量比为6.3∶1。我国用氧化钼炼钢也在不断提升,现今已有大连钢厂、重庆特钢等主要大型特钢企业在广泛利用氧化钼直接炼钢。使用氧化钼炼钢与使用钼铁炼钢相比优越性明显。 氧化钼由钼精矿(MoS2)焙烧生成三氧化钼,被炼钢做添加剂使用。由于三氧化钼做炼钢的添加剂,钼的回收率较低,透气性比较差,脱氧剂消耗较高等缺陷。某集团公司科研所研究人员,试验研究一种在结构和成份上与三氧化钼不同的氧化钼炼钢添加剂,叫做氧化钼烧结块,氧化钼烧结块强度比三氧化钼压块的强度大,并且含有二氧化钼成份。因此,使用氧化钼烧结块克服了用三氧化钼压块时某些缺陷。 氧化钼烧结块试验方法与条件 一、试验过程 1、所用原料:钼精矿  44.49% 2、试验主要设备:反射炉、热电偶、毫伏表、吸收塔、风机等。 3、操做规程,将钼精矿加入反射炉后,随温度不断升高,钼精矿被氧化,当氧化层达到15mm~20mm厚时,再将氧化层移到炉前700~800℃的部位的温区堆集一块进行烧结,烧结成块后出炉。 尾气中的SO2气体使用石灰乳吸收除去。 4、反应原理: 反应方程式 MoS2+3 O2=MoO3+2SO2↑ MoS2+6MoO3=7MoO2+2SO2↑ 在焙烧过程中由于焙烧料是在没有搅拌静态的状况下焙烧的,所以从上面的反应方程式可以得知烧结块的成份主要是由MoO3和MoO2两种钼的氧化物组成。由于烧结时也是在静态状况下进行,当温度达到氧化钼熔化温度时,堆积面上的烧结料有部分三氧化钼挥发,但由于过热,表面又形成一层粘结物,所以,堆积料内部是不会有三氧化钼挥发的。 二、工艺条件选择焙烧时间(t)400℃氧化层厚度(mm)600℃氧化层厚度(mm)0.5-0.52.0154.04186.05207.0620     从上述试验条件分析:焙烧条件应控制在600℃左右,焙烧时间应为4小时,氧化速度较快。 焙烧时间、温度、回收率之间关系试验结果 焙烧时间          焙烧温度         钼回收率 2小时          790℃~900℃         >87% 3小时          790℃~900℃           85% 结果分析:焙烧温度应在790~900℃。烧结时间应控制2小时之内,钼回收率较高,钼的回收率还有一些具体操作方面的影响因素。 烧结块化学成分批号烧结前Mo%烧结后分析结果Mo%S%MoO3%MoO2%443.6548.261.262.7611.12743.6550.86<0.0166.369.15843.6550.67<0.0152.3922.0011-48.12<0.011343.9849.460.0651744.4949.510.089烧结钼回收率批号烧结前烧结后回收率%重量kgMo%H2O重量kgMo%1395.543.9837149.4685.91797.544.49383.549.5198.2累计91.62 试料的累计回收率是91.62%,操作严格控制温度与烧结时间,焙烧料不能在炉内停留时间过长,减少机械损失,以及增加尾气中三氧化钼回收设施,回收率可以达到95%以上。 氧化钼烧结块符合炼钢厂对氧化钼添加剂的技术要求。重庆钢厂对氧化钼添加剂技术指标要求为:Mo48%以上,S<0.15%、Cu<1%、P<0.04%、Sn<0.07%、Sb<0.06%,Pb<0.05%。试验用料Mo44.49%,焙烧出的氧化钼烧结块成分为Mo49.51%,S<0.089%、Cu 0.16%、Sn 0.0054%、Pb 0.092%。(Pb烧结前后没有变化)。 经测试氧化钼烧结块中二氧化钼含量占20%左右。通过配料调整、炉内气氛的严格控制,二氧化钼含量可以再提高。 氧化钼烧结块的销路前景广阔,经济效益十分可观。据重度钢厂试用结果表明,用氧化钼烧结块做炼钢添加剂可减少钼铁用量30%。重庆钢厂钼总用量的80%都用在炼合金钢的添加剂方面。 研究氧化钼烧结块还应该继续做的工作是:进一步解决提高氧化钼烧结块的生产效率以及增加氧化钼烧结块中二氧化钼的含量。

钨铜合金的制备方法--粉末冶金

2019-05-27 10:11:36

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为质料,通过成形和烧结,制作金属材料、复合材料以及各种类型制品的技术技能。粉末冶金法与加工陶瓷有类似的当地,因而,一系列粉末冶金新技能也可用于陶瓷材料的制备。因为粉末冶金技能的优势,它已成为处理新材料问题的钥匙,在新材料的发展中起着无足轻重的效果。粉末冶金具有共同的化学组成和机械、物理功用,而这些功用是用传统的熔铸办法无法取得的。运用粉末冶金技能能够直接制成多孔、半细密或全细密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削技术。(1)粉末冶金技能能够最大极限地削减合金成分偏聚,消除粗大、不均匀的铸造安排。在制备高功用稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新式金属材料(如AlLi合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的效果。(2)能够制备非晶、微晶、准晶、纳米晶和超饱满固溶体等一系列高功用非平衡材料,这些材料具有优异的电学、磁学、光学和力学功用。(3)能够容易地完成多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本加工高功用金属基和陶瓷复合材料的技术技能。(4)能够加工普通冶炼法无法加工的具有特殊结构和功用的材料和制品,如新式多孔生物材料,多孔别离膜材料、高功用结构陶瓷磨具和功用陶瓷材料等。(5)能够完成近净形成形和自动化批量加工,然后,能够有用地下降加工的资源和能源消耗。(6)能够充分利用矿物、尾矿、炼钢污泥、轧钢铁鳞、收回废旧金属作质料,是一种可有用进行材料再生和综合利用的新技能。咱们常见的机制作刀具,五金磨具,许多便是粉末冶金技能制作的。

钛铝合金制备加工技术

2018-12-29 11:29:12

钛铝合金的制备加工技术主要有如下几种:   (1)铸锭冶金技术;   (2)粉末冶金技术;   (3)快速冷凝技术;   (4)复合材料技术。   钛铝合金铸锭冶金技术存在铸锭成分偏析和组织不均匀等问题;快速冷凝技术制备的钛铝合金粉末,化学成分稳定,工艺性能良好,但随着热处理温度的变化,粉末的显微结构和显微硬度会发生相应变化复合材料技术制备的钛铝合金显示出良好的强化性能,但横向性能、环境抗力等问题仍有待解决;粉末冶金法可制备组织均匀、细小的制件,且可实现制件的近净成形,可有效解决T-i Al金属间化合物合金难于加工成形问题。目前主要制粉方法有两种:元素粉末法和钛铝预合金粉法。目前国内学者多采用元素粉末法制备钛铝合金。

在镁合金表面制备铝基涂层

2019-01-10 09:44:09

镁是较轻的金属结构材料,具有良好的导热性、电磁屏蔽性、抗冲击减震性及比强度高、比刚度高、无毒、可回收和易加工等特点,具有广阔的应用前景。但是,镁合金的电极电位远低于零,是工业合金中较低的,且镁的氧化膜疏松多孔,使其具有极高的化学和电化学活性,因此抗腐蚀性能差。另外,镁合金的硬度低,耐磨性能较差。这些缺点极大地制约了镁合金在工程领域中的应用。如何有效地提高镁合金的耐磨抗蚀性能,成为当今镁合金材料工业应用中亟待解决的关键技术难题,而镁合金表面处理是较有希望的研发方向。    在镁合金表面制备Al涂层,可以提高镁合金的耐蚀性能,这是因为:(1)Al涂层表面容易形成一层致密坚硬的Al2O3膜,其在大气中具有自修复性,可起到对基体材料的保护作用;提高铝铝镁合金中的Al含量,可以成倍甚至几十倍地增加镁合金的耐蚀性能;同时,在镁合金表面的铝涂层的形成过程中,涂层中Al元素会向基体镁合金方向扩散,提高镁合金中的Al含量,使镁合金自身耐蚀性能得到提高;(2)Al是镁合金中常见的合金元素,其加入不会影响镁合金的回收利用,且Al是环境友好型材料,无污染,有利于回收;(3)Al与Mg可形成金属间化合物,具有较好的耐蚀和耐磨性;(4)在众多元素中,Al与Mg的化学位较接近,二者形成腐蚀原电池的破坏性较小。    有学者利用铝、镁热膨胀系数相近(Al的热膨胀系数为23μm/℃;Mg的热膨胀系数为26μm/℃)的特点,采用高速电弧喷涂技术在AZ91镁合金表面制备铝基非晶纳米晶复合涂层以实现对其表面防护的作用。结果表明,采用高速电弧喷涂技术制备的Al-Ni-Y-Co涂层中存在非晶、纳米晶和晶化相,涂层组织致密,与镁合金基体的结合强度大于25MPa,孔隙率小于2.0%,平均显微维氏硬度值大于300HV0.1,且在质量分数为5%的NaCl水溶液中表现出优于纯Al涂层的耐蚀性能。    但是,多项报道指出,在镁合金表面获得的Al涂层,往往存在孔隙率较大、结合强度不高的问题,需要采用封闭处理、热压处理或阳极氧化等技术来提高涂层的耐蚀性能,才可实现对镁合金基材的表面防护。例如,采用电弧喷涂技术在AZ91镁合金表面形成Al防护层,结果表明,未封孔的涂层试样腐蚀比原始镁合金还严重,而封孔处理后Al涂层的耐蚀性有很大提高。实验表明,经过热压和阳极氧化后处理后,涂层的耐蚀性可明显提高,其腐蚀电流密度可下降4个数量级。分析发现,处理的涂层表面形成了致密的Al2O3保护膜。

钼及钼合金粉末冶金技术研究现状与发展

2019-03-04 11:11:26

体系总结了钼及钼合金粉末冶金技能的研讨进展和工业运用现状。别离论说了钼粉末冶金理论、超细(纳米)钼粉、大粒度(和高活动性)钼粉、高纯钼粉、新式钼成型技能、新式钼烧结技能、钼粉末冶金进程数值模仿技能等7个研讨方向的技能原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 钼及钼合金具有高的高温强度和高温硬度,杰出的导热性和导电性,低的热膨胀系数,优异的耐磨性和抗腐蚀性,被广泛运用于航天航空、动力电力、微电子、生物医药、机械加工、医疗器械、照明、玻纤、国防建设等范畴。本文体系总结钼及钼合金粉末冶金技能的原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 一、钼粉末制备技能展开 跟着轿车、电子、航空、航天等职业的日益展开,对钼粉末冶金制品的质量要求越来越高,因而要求钼粉质料在化学成分、物理描摹、均匀粒度、粒度散布、松装密度、活动性等许多方面具有愈加优异的功能目标,钼粉朝着高纯、超细、成分可调的方向展开,然后对其制备理论和制备技能提出了更高的要求。 (一)钼粉复原理论研讨 钼粉的制取进程是一个包含钼酸铵到MoO3、MoO到MoO2、MoO2到钼粉等3个独立化学反响,阅历一系列杂乱的相变进程,触及钼酸铵质料以及MoO3、MoO2、钼蓝等中间钼氧化产品的描摹、尺度、结构、功能等许多要素的极端杂乱的物理化学进程。 现在,已根本清晰MoO3到Mo的复原进程动力学机制,即:MoO3到MoO2阶段反响进程契合核决裂模型,MoO2到Mo阶段反响契合核减缩模型;MoO2到Mo阶段反响有两种办法,低露点气氛时通过假晶改变,高露点气氛时通过化学气相搬迁。但对MoO3到MoO2阶段的反响办法没有构成共同观点,Sloczynski以为MoO3到MoO2的复原是以Mo4O11为中间产品的接连反响,Ressler等以为在复原进程中,MoO3首要吸附氢原子[H]生成HxMoO3,然后HxMoO3开释所吸附的[H]改变为MoO3和MoO22种产品,跟着温度上升MoO2不断长大,而改变成的中间态MoO3进一步复原为Mo4O11,进而复原成MoO2。国内尹周澜等、刘心宇等、潘叶金等在这一范畴也进行了必定作业,但未见到较完善的物理模型和数学模型的报道。 (二)超细(纳米)钼粉制备技能研讨 现在,制备超细钼粉的办法首要有:蒸腾态三氧化钼复原法、活化复原法和十二钼酸铵复原法。纳米钼粉的制备办法首要有:微波等离子法、电脉冲放电等。 1、蒸腾态三氧化钼复原法 蒸腾态三氧化钼复原法,是将MoO3粉末(纯度达99.9%)装在钼舟上,置于1300~1500℃的预热炉中蒸腾成气态,在流量为150mL/min的H2-N2气体和流量为400mL/min的H2的混合气流的夹载下,MoO3蒸气进入反响区,通过复原成为超细钼粉。该办法可取得粒径为40~70nm的均匀球形颗粒钼粉,但其工艺参数操控比较困难,其间,MoO3-N2和H2-N2气流的混合温度以及MoO3成分都对粉末粒度的影响很大。 2、活化复原法 活化复原法以七钼酸铵(APM)为质料,在NH4Cl的催化效果下,通过复原进程制备超细钼粉,复原进程中NH4Cl彻底蒸发。其复原进程大致分为氯化铵加热分化、APM分化成氧化钼、MoO3和HCl反响生成7MoO2Cl2、MoO2Cl2被复原为超细钼粉等4个阶段。总反响式为:NH4Cl+(NH4)6Mo7O24+4H2O=HCl+7NH3+28H2O+7Mo。该办法比传统办法的复原温度下降约200~300℃,而且只运用一次复原进程,工艺较简略。此办法制备的钼粉均匀粒度为0.1μm,且粉末具有杰出的烧结功能。韩国岭南大学提出了类似办法,仅仅所用质料为高纯MoO3。 3、十二钼酸铵复原法 十二钼酸铵复原法 是将十二钼酸铵在镍合金舟中,并置于管式炉中,在530℃下用复原,然后再在900℃下用复原,可制出比表面积为3.0m2/g以上的钼粉,这种钼粉的粒度为900nm左右。该办法仅有工艺进程描绘,未见到进程机制的分析,其可行性没有可知。 4、羰基热分化法 羟基法是以羟基钼为质料,在常压和350~1000℃的温度及N2气氛下,对羟基钼料进行蒸气热分化处理。因为羟基化合物分化后,在气相中情况下完结形核、结晶、晶核长大,所以制备的钼粉颗粒较细,均匀粒度为1~2μm。运用羟基法制得的钼粉具有很高的化学纯度和杰出的烧结性。 5、微波等离子法 微波等离子法运用羟基热解的原理制取钼粉。微波等离子设备运用高频电磁振荡微波击穿N2等反响气体,构成高温微波等离子体,进而使Mo(CO)6在N2等离子体气氛下热解发生粒度均匀共同的纳米级钼粉,该设备能够将生成的CO当即排走,且使发生的Mo敏捷冷凝进入搜集设备,所以能制备出比羟基热解法粒度更小的纳米钼粉(均匀粒径在50nm以下),单颗粒近似球形,常温下在空气中的稳定性好,因而此种纳米钼粉可广泛运用。 6、等离子氢复原法 等离子复原法的原理是:选用混合等离子反响设备将高压直流电弧喷射在高频等离子气流上,然后构成一种混合等离子气流,运用等离子蒸气复原,开端得到超细钼粉。取得的初始超细钼粉打针在直流弧喷射器上,当即被冷却水冷却成超细粉粒。所得到粉末均匀粒径约为30~50nm,适用于热喷涂用的球形粉末。该办法也可用于制备其他难熔金属的超细粉末,如W、Ta和Nb。微波等离子法和等离子氢复原法制备的纳米钼粉纯度较高,描摹较好,但其出产本钱大大提高。 7、机械合金化法 日本的桑野寿选用碳素钢、SUS304不锈钢、硬质合金钢nm左右的钼粉。这种办引起Fe、Fe-Cr-Ni和W在钼中固溶,其固溶量到达百分数级。此外,电脉冲法和电子束辐照法、冷气流破坏、金属丝电爆破法、高强度超声波法、电脉冲放电、关闭循环氢复原法、电子束辐射法等大多只具有实验研讨的价值,尚不具有工业化制备的条件。 (三)大粒度(和高活动性)钼粉制备技能研讨--钼粉的增大改形技能研讨大粒度(和高活动性)钼粉首要用于精细器材的焊接和喷涂,其物性目标首要有:大粒度(≥10μm)、大松装密度(3.0~5.0g/cm3)、杰出的活动性(10~30s/50g)。相对费氏粒度一般为5μm以下,粒度散布根本呈正态散布,松装密度在0.9~1.3g/cm3之间,钼粉描摹为不规矩颗粒团,活动性较差(霍尔流速计无法测出)的惯例钼粉而言,这类钼粉的制备难点首要有3点:粒度大、密度大、活动性好。满意这3点要求的抱负钼粉描摹是大直径的实心球体,这与惯例钼粉非规格松懈颗粒团的描摹天壤之别。一般地,钼粉增大改形技能首要有化学法和物理法两大类。 1、化学法 制备出大粒度钼酸铵单晶块状颗粒,依照遗传性原理,通过后续焙烧、复原,制备出大粒度的钼粉真颗粒(惯例钼粉颗粒实践上是许多小颗粒的聚会体),随后进行必定的机械处理,取得描摹圆整、密度大、尺度大的钼粉颗粒。这种办法理论上可行,可是制备大单晶钼酸铵颗粒的难度较大,而且后续钼粉尺度和描摹的遗传性量化规矩不清晰,工艺流程较长。 2、机械造粒技能 将加有粘结剂的混合钼粉在模具或造粒设备中,通过机械约束得到必定尺度,然后脱除粘结剂,烧结成必定强度的规矩颗粒团。这种办法原理简略,但实验标明,这种办法增大钼粉粒度较为简略,但对活动性改善不大。 3、等离子造粒技能 等离子造粒技能在粉末改形方面运用由来已久,其原理是,在维护气氛下,通过必定途径将粉末送入等离子火焰心部,运用高达几千摄氏度的高温使粉末颗粒熔化,然后在自在下落进程中运用液滴的表面张力自行球化,球形液滴通过冷却介质激冷呈大粒度、高密度球形粉末。这种办法取得的粉末具有很好的物性目标,商场远景宽广,但其技能难度较大,特别在粉末运送和维护气氛的坚持、制品的冷却搜集等方面较为困难,设备出资大,保养比较困难。 4、流化床复原法 钼粉的流化床复原法由美国Carpenter等提出,通过2阶段流化床复原直接把粒状或粉末状的MoO3复原成金属钼粉。第1阶段选用作流态化复原气体,在400~650℃下把MoO3复原为MoO2;第2阶段选用作流态化复原气体,在700~1400℃下将MoO2复原成金属Mo。因为在流化床内,气-固之间能够取得最充沛的触摸,床内温度最均匀,因而反响速度快,能够有效地完结对钼粉粒度和形状的操控,所以该办法出产出的钼粉颗粒呈等轴状,粉末活动性好,后续烧结细密度高。这种办法没有见到详细出产运用的信息。 (四)高纯钼粉制备技能研讨 高纯钼粉用于耐高压大电流半导体器材的钼引线、声像设备、照相机零件和高密度集成电路中的门电极靶材等。要制备高纯钼粉,有必要首要取得高纯三氧化钼或高纯卤化物。取得高纯三氧化钼的工艺首要有: 1、等离子物理气相堆积法 以空气等离子处理普通的三氧化钼,运用三氧化钼沸点比大大都杂质低的特色,令其在空气等离子焰中敏捷蒸发,然后在等离子焰外引进很多冷空气使气态三氧化钼激冷,取得超纯三氧化钼粉末。 2、离子交换法 将质料粉末溶于聚四氟乙烯容器中加水拌和,然后以1L/h的速度向容器中参加浓度为30%的H2O2。所得溶液通过H型阳离子交换剂,将容器中的溶液加热至95℃,抽气压力在25Pa左右坚持5h,浓缩后构成沉积,即为高纯三氧化钼。 3、化学净化法 通过屡次重结晶,取得高纯钼酸铵,然后煅烧得到高纯三氧化钼。 取得高纯三氧化钼后,选用传统氢复原法和等离子氢复原法均可取得高纯度钼粉。这几种制备技能均有运用的报道,但详细技能思路和细节均未揭露。 取得高纯卤化物的工艺原理是:将工业三氧化钼或钼金属废料(如垂熔条的夹头、钼材边角料、废钼丝等)卤化得到卤化物(一般为),然后在550℃左右的高温条件下对卤化钼进行分馏处理,使里边的杂质蒸发,得到深度提纯的卤化钼(据称纯度可到达5N),终究通过氢氯焰或氢等离子焰复原,得到高纯钼粉。日本学者佐伯雄造报道了800~1000℃下氢复原高纯的研讨,得到的超纯钼粉中金属杂质含量比其时商场上高纯钼粉低2个数量级。氢复原法是一种产品纯度高,简略易行的办法。可是的制备、提纯和氢复原进程均运用了,对操作人员和环境危害较大。 二、新式钼成型技能展开 现在,粉末的成型技能朝着"成型件的高细密化、结构杂乱化、(近)净成型、成型快速化"的方向展开。以下几种约束成型技能具有很大的技能创新性,一旦取得打破,将对钼固结技能(包含约束和烧结)发生性的影响,但这些技能的详细技能细节没有发表。 1、动磁约束(DMC)技能 1995年美国开端研讨“动磁约束”并于2000年取得成功。动磁约束的作业原理是:将粉末装于一个导电的护套内,置于高强磁场线圈的中心腔内。电容器放电在数微秒内对线圈通入高脉冲电流,线圈腔内构成磁场,护套内发生感应电流。感应电流与施加磁场彼此效果,发生由外向内紧缩护套的磁力,因而粉末得到二维约束。整个约束进程缺乏1ms。相对传统的模压技能,动磁约束技能具有工件约束密度高(生坯密度可到达理论密度的95%以上),作业条件愈加灵敏,不运用润滑剂与粘结剂,有利于环保等长处。现在动磁约束的运用已挨近工业化阶段,第1台动磁约束体系已在试运行。 2、温压技能 温压技能由美国Hoeganaes公司于1994年提出,其工艺进程是,在140℃左右,将由质料粉末和高温聚合物润滑剂组成的粉末喂入模具型腔,然后约束取得高细密度的压坯。这种专利聚合物在约150℃具有杰出的润滑性,而在室温则成为杰出的粘结剂。温压技能是一项运用单次约束/烧结制备高细密度零件的低本钱技能,只通过一次约束便可到达复压/复烧或熔渗工艺方能到达的密度,而出产本钱却低得多,乃至可与粉末铸造相竞赛。但现在适合于钼合金的喂料配方需求实验断定。 3、活动温压(WFC)技能 活动温压技能由德国Fraunhofer研讨所提出。其根本原理是:通过在惯例粒度粉末中,参加适量的微细粉末和润滑剂,然后大大提高了混合粉末的活动性、填充才能和成形性,进而能够在80~130℃温度下,在传统压机上精细成形具有杂乱几许外形的零件,如带有与约束方向笔直的凹槽、孔和螺纹孔等零件,而不需求这以后的二次机加工。作为一种簇新的粉末冶金零部件近终构成形技能,活动温压技能既克服了传统粉末冶金技能在成形方面的缺乏,又防止了打针成形技能的高本钱,具有非常宽广的运用潜力。现在,该技能尚处于研讨的初始阶段,混合粉末的制备办法、适用性、成形规矩、受力情况、流变特性、烧结操控、细密化机制等方面的研讨均未见报道。 4、高速约束(HVC)技能 粉末冶金用高速约束技能是瑞典Hoganas公司与Hydrapulsor公司合作开发的,选用液压机,在比传统快500~1000倍的约束速度(压头速度高达2~30m/s)下,一起运用液压驱动发生的多重冲击波,间隔约0.3s的附加冲击波将密度不断提高。高速约束压坯的径向弹性后效很小,压坯的尺度误差小,可用于粉末的近净构成型,且出产功率极高;但其设备吨位较大,尚不具有制备大尺度工件的才能,且工艺进程环境噪音污染严峻。 三、新式钼烧结技能展开 近年来,粉末烧结技能层出不穷。电场活化烧结技能(FAST)是通过在烧结进程中施加低电压(~30V)和高电流(>600A)的电场,完结脉冲放电与直流电一起进行,到达电场活化烧结,取得显微结构显着细化、烧结温度显着下降、烧结时刻显着缩短的意图。挑选性激光烧结(SLS)运用分层制作办法,首要在核算机上完结契合需求的三维CAD模型,再用分层软件对模型进行分层,得到每层的截面,然后选用自动操控技能,使激光有挑选地烧结出与核算机内零件截面相对应部分的粉末,完结分层烧结。 从理论上讲,这些烧结技能都具有很高的学术价值,但大多尚处于实验室研讨阶段,只能用于小尺度钼制品的小批量烧结,间隔工业运用研讨尚有很大间隔。具有必定工业化运用远景的钼烧结技能首要有以下几种: 1、微波烧结技能 微波烧结运用材料吸收微波能转化为内部分子的动能和热能,使材料全体均匀加热至必定温度而完结细密化烧结的意图。微波烧结是快速制备高质量的新材料和制备具有新功能的传统材料的重要技能手段之一。 相对电阻烧结、火焰烧结、感应烧结等传统烧结办法而言,微波烧结法不只具有节能显着,出产功率高,加热均匀(其温度梯度为传统办法的1/10),烧结制品少(无)内应力、大幅变形和烧结裂纹等缺点,烧结进程准确可控等长处。别的,微波加热技能可用于钼精矿提高除杂、钼精矿焙烧、钼酸铵焙解、钼粉复原等多种工艺环节。但因为微波穿透深度的约束,被烧结材料的直径一般不大于60mm,别的微波烧结气氛很难确保处于2,因而很难防止钼的烧结进程氧化污染。 2、热等静压技能 气压烧结(热压烧结)技能是一种约束机械能与烧结热能耦合效果下的钼固结技能,热等静压是其间运用最成功的工艺。对烧结密度、安排均匀性和空地率等烧结目标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多选用热等静压技能,其产品质量远高于传统的冷等静压-无压烧结工艺,国内尚无类似出产工艺的报道。 3、放电等离子烧结技能 放电等离子烧结技能(SPS)是一种运用通-断直流脉冲电流直接通电烧结的加压烧结法。其工艺原理是,电极通入通-断式直流脉冲电流时瞬间发生的放电等离子体、放电冲击压力、焦耳热和电场分散效果,使烧结体内部各个颗粒均匀地本身发生焦耳热并使颗粒表面活化,然后运用粉末内部的本身发热效果完结烧结细密化,取得均质、细密、细晶的烧结安排。这种比传统烧结工艺低180~500℃,且高温等离子的溅射和放电冲击可铲除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。德国FCT公司现已选用这种技能制备出直径为300mm的钼靶材,国内尚无类似出产工艺的报道。 4、铝热法复原-烧结一体化技能 铝热法选用铝粉末作为复原剂,在200~300℃下,对钼酸钙、硫化钼或三氧化钼进行低温复原,可用大大低于惯例氢复原工艺的本钱和较高出产功率制得低密度粗制钼产品或钼合金涂层。一起,在必定的气体压力效果下,跟着复原进程的进行,钼粉可发生开端烧结,取得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精粹法制备高纯钼制品的质料。 四、钼粉的粉末冶金特性规矩性研讨 HCStark、Plansee等国外首要钼厂商对钼粉有严厉的分类,构成了较为完好的钼粉系列,不同加工制品选用不同目标的钼粉,不同的钼粉在约束成型前选用不同的前处理办法,不同的钼粉选用不同的约束、烧结工艺,而且不同物性目标钼粉能够彼此调配,取得最优质料组成和最佳的密度、均匀性等压坯质量,然后确保烧结件和终究产品的质量。而国内只要少量组织进行了开端探究,国内厂商没有构成体系的钼粉分级,不管哪种质料、哪种工艺、哪种设备取得的钼粉,均选用类似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提及。较为体系地展开钼粉的粉末冶金特性研讨,理清质料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应联系,关于取得产品的多元化、系列化、最优化具有很大的出产辅导意义。 五、钼粉末冶金进程数值模仿技能展开 长期以来,钼粉复原、成型、烧结工艺多依赖于出产经历堆集。近年来跟着钼制备加工技能的精整化,数值模仿逐步用于钼的这3个粉末冶金工艺段,为研讨微观演化进程,提醒钼制备加工进程的准确机制,进而为完结钼成型工艺的可控性供给理论支撑。就这3段工艺的本质而言,钼粉复原阶段归于典型的分散场现象,可学习流体介质模仿技能;成型、烧结进程归于典型的非接连介质体,且质料粉末组成反常杂乱,无法树立一致的几许形式、物理模型和数学模型,现在尚无完善的模仿技能和模仿软件。 1、钼粉成型进程数值模仿 钼粉约束成型时,粉末的应力变形比固态金属杂乱,可概括为2个首要阶段:约束前期为松懈粉末颗粒的聚合,约束后期为含孔隙的实体。粉末约束时因为很多不同尺度粉末颗粒间的彼此效果以及粉末与模壁间的机械效果和冲突效果,再加上制品密度、弹性功能、塑性功能间的彼此影响,粉末的力学行为是非常杂乱的,还没有一个一致的材料模型。 现在因为非接连介质力学的根本理论还不完善,国内外的研讨大多是将粉末体作为接连体假定而进行的。粉末约束模型可简化为弹性应力-应变方程。 2、钼粉烧结进程数值模仿 烧结从本质上来说也是一种热加工工艺。烧结进程中的粉末固结和热量搬迁是一起进行的,固结中的物理机制包含塑性屈从、蠕变和分散。而粉末凝结进程中的部分压力和温度决议着这些物理机制对粉末固结所起的效果。一起,粉末凝结中的热量搬迁(首要是热量传递)又深受部分相对密度的影响。因而,对烧结的分析有必要结合热力学。 因为钼粉烧结进程的基础理论展开缺乏,无法树立满足的偏微分方程组,所以烧结进程的数值模仿,只能进行单元素体系、简略尺度和描摹的钼粉情况下的简略模仿。这种模仿成果有助于分析其间的机制,但尚无法有效地辅导出产工艺。 六、结束语 通过近一个世纪的展开,"粉末多样化、制品准确化"逐步成为现代钼粉末冶金技能的展开方向,并开宣布一系列钼粉末冶金新技能、新工艺及其进程理论,这些研讨的重点是粉末和制品的结构、描摹、成分操控技能。总的趋势是钼粉向超细、超纯、粉末特性可控方向展开,钼制品的约束烧结向以彻底细密化、(近)净成型为首要目标的新式固结技能展开。 展开钼粉末复原进程动力学问题研讨和粉末冶金进程的数值模仿研讨,有助于从理论上分析质料、钼粉功能、钼制品功能、复原工艺、约束工艺、烧结工艺之间的影响规矩,为处理实践工艺问题供给理论支撑和技能思路。

高纯钴的制备技术

2019-01-31 11:06:04

一、前语纯度为 99.9%~99.99%的钴 现已广泛运用于磁性材料、超级合金的制作,99.999%乃至更高纯度的钴则用来做为先进电子元件的靶材。钴靶材中的杂质会影响电子器件的运用功用:碱金属(如 Na,K)、非金属(S,C,P)等杂质能够在半导体之间搬迁,然后影响其功用;Fe会导致电子器件磁功用的不一致;Ti,Cr,Cu元素会影响半导体元件的导电功用;气体杂质(如 O)能够添加半导体元件中的Co和 CoSi2的电阻;Ni会影响半导体的界面功用;放射性元素如U,Th能够辐射出α射线,使半导体失效。因而,研讨高纯钴的制备办法对进步钴靶材的质量有着重要的含义。 在国际上,1956年美国矿业局(Bureau of Mines)初次制备出纯度为 99.99%高纯钴。K.K.Kershner等人通过阳离子交流法和沉淀法除掉四合钴(Ⅲ)盐溶液中的铁、铜、镍等杂质,终究选用阴极电解法制备出高纯钴。跟着离子交流法的开展和高效萃取剂 P507,Cynex272,Cynex301等的呈现,钴溶液提纯技能得到长足开展。美国、加拿大、日本、韩国等国在钴提纯技能上进行了很多研讨工作 ,其间以日本最为杰出。日本 JMc公司于 1997年开端出产高纯钴 ,现有 99.998%高纯钴产品。日矿(Nikko)公司和 日本株式会社化学研讨现已出产出99.999%的高纯钴 ;日本 Furuchi公司出产的高纯钴能够到达 99.999 5%(分析 70种杂质元素),是现在报导中纯度最高的。 在国内,1961年上海有色金属的研讨所以粗钴为质料 ,用次溶液除镍,以离子交流除铝和锌 ,中和水解法除铁,制备高度纯洁的氯化钴溶液进行电解精粹,获得 99.99%高纯钴。金川镍钻研讨设计院的申勇峰等以l#电解钴为质料选用电溶 、离子交流法除掉溶液中的杂质离子电解提纯后的溶液,得到 99.994%的高纯钴。此外北京有色金属研讨总院和北京矿冶研讨总院也正在进行高纯金属的研讨工作。金川有色金属公司是我国镍钴首要出产基地,钴产值居全国之首,并且出产技能也代表了我国最高水平。其选用粗钴阳极隔板膜电解法出产出纯度大于 99.98%的电解钴 ,到达 1#电解钴的标准。 国外首要选用离子交流法除掉溶液中大部分杂质离子,然后通过电解得到金属钴,再选用区域熔炼、电子束熔炼等手法进一步提纯得到高纯钴。国内研讨工作首要会集在离子交流和电解精粹上,现在还没有扩大化出产的报导。 二、高纯钴的制备制备高纯钴的质料是工业电解钴、钴盐等,运用的冶金办法首要有湿法冶金、火法冶金、电化学冶金等。制备进程分为钴盐溶液净化和钴金属精粹 2个阶段:第 1阶段首要选用湿法冶金办法,如溶剂萃取、离子交流、膜别离、电解等,用以除掉粗钴溶液中的大多数金属杂质,首要是镍、铜、锌、铁等杂质,并经电解得到金属钴;第 2阶段首要选用火法冶金办法,如区域熔炼、真空脱气等,用以进一步脱除金属钴中的碱金属、碱土金属、非金属气体杂质,终究得到高纯金属钴。 (一)钴盐溶液的净化 1、溶剂萃取法溶剂萃取法是运用杂质离子在有机相和水相之间的分配比不同到达别离杂质的意图。Ritcey等在20世纪 70年代研讨了运用 D2EHPA进行钴、镍别离的工艺。N.B Devi研讨了硫酸盐系统中选用D2EHPA,PC88A,Cyanex272萃取 Co的行为,并评论了比较、皂化率对萃取因子的影响。M.V.Rane选用 LIX84从废旧的催化剂中萃取钴,然后用沉淀法除铁和铝 ,得到了纯度大于 99.9%的钴 。N.V.Thakur等选用 P204和 P507完成了钴与镍、铜等杂质的别离。 Wang Guangxin等选用溶剂萃取法和离子交流法净化钴溶液,然后经电解得到金属钴,其成果见表 1。能够看出,溶剂萃取法对大多数金属离子有很好的除杂作用,但对铜、锌、钛、铅等金属离子反而起了富集作用。溶剂萃取法适用于大规模提纯钴溶液,但在制备高纯钴方面作用却不显着。 表1  离子交流和溶剂萃取后的杂质含量(×10-4%)注:①溶剂萃取-电积工艺;② 离子交流-电积工艺;③ 溶剂萃取-4次离子交流-电积工艺。 2、离子交流法离子交流法是运用离子交流树脂的功用基团和溶液中杂质离子的交流、解析才能的差异到达别离的意图。K.Mimura等选用阴离子交流法净化钴溶液,再经电解、电弧熔炼、电子束熔炼得到纯度为99.999 7%的高纯钴。Nagao等选用阴离子交流法除掉 Fe,Zn,Sn,Ni,Ca,Mg,Na等,然后选用有机胺萃取别离其它杂质,得到的高纯钴盐溶液经结晶、枯燥后复原得到高纯钴粉,其间的Fe,Zn,Sn,Ni,Ca,Na,Mg含量都低于 0.000 l%。 钴盐溶液中的铜在酸性条件下始终能弱吸附在树脂上,难以与钴别离。为处理铜的共吸附问题,Masahito等将钴溶液 中的 Cu2+复原为 Cu+,再选用阴离子交流树脂除掉Cu+(Co2+不被吸附),净化后的高纯 CoCl2溶液结晶、枯燥后经复原得到纯度为 99.999 7%的金属钴(RRR=207),成果见表2。由表 2可见,铜杂质含量低于 0.000 005%。 表2  阴离子交流法制备的高纯钴中的杂质含量(×10-4% )离子交流法对 Zn,Mo,W,Cu的别离作用并不显着,对铅有显着的富集作用。 3、萃取色层法萃取色层法是运用吸附在大孔树脂上的萃取剂对溶液中离子的挑选性萃取到达别离意图。刘扬中等研讨了添加配位剂基乙酸 ,以替代传统的树脂转型办法进行萃取色层法净化钴溶液。他们调查了淋洗液 pH值、进样量及料液中Co、Ni比等要素对别离的影响,在 pH值为 3.40的条件下用5 g萃淋树脂完成将钴、镍质量比在 1~100范围内溶液中的钴、镍(总量为 1.6 mg)彻底别离,并研讨了基乙酸的配位、缓冲作用对别离进程的影响。 周移等将 P507萃淋树脂转型为 Mg型 ,进步了对 Co2+的萃取才能 ,完成了钴与镍的彻底别离 ,并进步了柱子运用寿数。周春山等选用转型后的 P204萃淋树脂以 pH值为 2.5的一钠为淋洗液,完成了钴与铜、锌、锰、铬等金属离子的彻底别离。刘展良等具体研讨了 HCl系统中 Zn、Ca、Mg、Fe、Co、Ni和稀土离子在 P507萃淋树脂上的淋洗行为,并探讨了 Fe3+在柱床上或许存在的反响 机理。萃取色层法既具有液一液萃取中萃取剂的高度挑选性 ,又具有离子交流色层别离的多级性,在别离性质附近的元素上有着优 良的功用,因而在湿法冶金中遭到越来越多的注重。一起萃取色层也存在一些 本身的缺陷 ,如柱子萃取容量比较低 ,萃取剂简单丢失 ,寿数相对较短等。进步柱子的萃取容量,战胜萃取剂丢失,开发挑选性更好的萃取剂是往后萃取色层法获得重大突破的要害。4、膜别离法膜别离法是运用液膜能够挑选性地透过离子并在水相富集而到达别离的意图。Jerzy等选用支撑液膜和大块液膜做载体 ,D2EHPA做萃取剂别离钴和镍 ,探讨了溶液酸度 、膜离子载体浓度、金属离子浓度对别离成果的影响。 Li Longquan等研讨了乳化液在硫酸系统中别离钴、镍的进程。他们选用 EDTA作为掩蔽剂掩蔽料液中的镍离子,以P204的乳化液膜作为载体从硫酸盐系统中收回钴。通过调查 pH值、别离时刻等要素,断定了最佳的别离条件。 虽然膜别离法具有高的挑选性和传质快等长处,但因膜的稳定性差、本钱较高级原因,现在还处于实验室中试阶段。5、电解法钴电解是在酸性钴盐溶液中进行的。电解液的组成、浓度、酸度、温度、电流密度等条件应该严格控制。因为溶液中的Cu2+,Cu+,Sn2+,Ni2+,Pb2+,As3+等杂质离子的电势比钴高(正)或许和钴挨近,在电解时会与Co2+一起分出;电势比钴更低(负)的金属离子如 Fe,Mn,Zn,Na等杂质离子的存在对钴的质量影响不大,但含量较高也会带来必定的损害。因而要严格控制溶液中的杂质离子含量。 净化后的钴溶液中溶解的少数萃取剂会添加金属钴的杂质含量经活性炭处理得到的电积钴中的 C,O,N,H含量大大下降,见表3所示。 表3  活性炭处理后电积钴的杂质含量(×10-4%)注:① 溶解的有机相用经6 mol/L的HCl处理过的活性炭除掉,经电解、EBM后得到的数据;② 进程相似Example 2经电积得到数据,运用的活性炭未经酸处理;③ 进程相似 Example 2,经电积得到数据,溶液未经活性炭处理。 Isshiki等选用聚乙烯电解槽,用直径为1 mm的高纯钴丝(99.998%)做 阴极,用铂板做阳极,电解高纯 COC12溶液得到直径 5 rain的钴棒。 Shindo等选用离子交流法除掉溶液中的杂质,然后经屡次电解和电子束熔炼得到金属钴 。屡次电解和电子束熔炼后的杂质含量见表4。 由表4能够看出,电解能够别离 Ni,Fe,K,U,Th等杂质,屡次电解精粹能够进一步下降杂质含量;电解精粹后的电子束熔炼能够有用去除Na杂质。 表4  钴电解精粹和电子束熔炼后的杂质含量(二)钻金属精粹为脱除金属钴中剩余的碱金属杂质和部分气 体杂质 ,电解得到的金属钴还需要通过火法精粹。常用的办法有电子束熔炼 、区域熔炼等。区域熔 炼是依据杂质元素在液态和固态平分配系数的差 别,使金属得到提纯。可是 ,对分配系数挨近 1 的元素,如 Fe,Ni,Co,Cr,Mn,A1,Cu,Si很难用区域熔炼法相互提纯。电子束悬浮区熔是制 备高纯金属常用的办法,它能够成长完好的单晶,显着进步金属的 RRR值,如表 5所示。通过区域 熔炼后 ,金属钴的 RRR值分别由236和 116进步到 334和 245。 表5  不同工艺下杂质含量及RRR值的改变(×10-4%)注:A,CoCl2质料;B,氢复原钻;C,电解+6次电子束悬浮区域熔炼;D,氢复原+4次电子束悬浮区域熔炼;E,氢复原+8次电子束悬浮区域熔炼 ;F,氢复原-处理+4次电子束悬浮区域熔炼。 Miller等运用真空脱气烧结法使金属钴中的Zn,Cd,S,O,C等杂质元素含量显着下降,成果如表6所示。 由表6能够看出,真空脱气烧结法能够有用地脱除金属中的 C,O,N等非金属杂质 ,但关于金属杂质作用并不显着。 表6  真空烧结脱气作用(×10-4%)三、结语 单一的提纯办法无法满意制备 5N以上高纯钴的要求。溶剂萃取法对大多数金属离子有很好的作用的,但对 Ni,Cu,Zn等金属离子的别离作用相对较差;膜别离法存在稳定性差 、本钱高的缺陷。离子交流和萃取色层法对别离性质附近的元素上作用杰出 ,但存在容量低一级问题。火法精粹进程中,区域熔炼可去除金属钴中的碱金属、碱土金属和气体杂质,并有利于生成纯度高、值大的完好钴单晶。因而,制备 5N以上的高纯钴合理的工艺流程为:首要选用离子交流或萃取色层法除掉钴盐溶液中的镍、铜、铁、锌等杂质,然后选用电解进一步除掉 Ni,Fe,K,U,Th等杂质得到高纯金属钴,终究选用区域熔炼除掉其间的碱金属和蒸气压较大的杂质,得到晶型完好的高纯钴产品。

制备氧化铜

2017-06-06 17:50:02

氧化铜是初中化学课本中一种普遍的化学药品,氧化铜的性质稳定,用途广泛,在化学试验中利用率高。那当我们在使用氧化铜药品时,除了购买后直接使用之外,有什么办法可以直接制备氧化铜呢?制备氧化铜需要的实验用品: 金属 铜粉、氧气、酒精灯灼热的 金属 铜和氧气反应,就会生成氧化铜。2Cu+O2 =灼热= 2CuO  这个就是实验室制备氧化铜的方法。

钛液的制备

2019-02-13 10:12:38

在硫酸法钛出产中,第一步就是先把固体的钛铁矿经过酸分化制备成可溶性钛的硫酸盐溶液,一起钛铁矿中的铁和大部分金属杂质也变成可溶性的硫酸盐,以便今后将各种杂质别离。因为偏铁酸亚铁(钛铁矿)是一种弱酸弱碱盐,用强酸(H2SO4)与它反响基本上是不可逆的,反响能够进行得比较彻底。     钛铁矿的酸分化(简称酸解)有干法和湿法。干法是把磨细后的钛铁矿与硫酸混合进行加热、焙炒,待分化完结后加水稀释浸取,取得钛的硫酸盐溶液。该法不能进行大规模的工业化出产,现在在实验室中制备钛的硫酸盐溶液有时还用这种办法。     湿法就是现在遍及选用的硫酸法。湿法从开展的前史来看,曾有过5种不同办法:即液相法、固相法、两相法、加压法和接连法。     液相法:反响一直在液相状态下进行。在这里,硫酸(有用酸)浓度与钛总含量之比值非常重要叫做酸比值,一般以F来表明。选用55%~65%的硫酸酸比值较高(F值3~3.2),所以得到的钛液绝大部分以正硫酸钛—Ti(SO4)2的方式存在。该办法因为反响时间太长,耗酸、耗蒸汽多,加上F值太高形成今后水解困难,水解率低,工业出产一般不选用此法。实验证明液相法的硫酸浓度即便只要10%,也能取得硫酸钛溶液,但反响时间更长,因为10%硫酸的沸点只要10℃,在98℃下反响8h,酸解率只要30%。     两相法:两相法选用的硫酸浓度为65%~80%,F值操控在1.8~2.2之间,操作时先把硫酸加热至120℃左右,然后参加矿粉持续拌和加热到150~200℃,主反响3h,反响物为糊状物,接着冷却、加水浸取坚持必定的悬浮液浓度,至酸解率到达85%~90%时停止。两相法虽比液相法耗用硫酸少,但反响时间长,酸解率低仍不经济。     固相法:该法是现在硫酸法钛工厂遍及选用的办法,因为它与前两种办法比较具有反响温度高、反响进程短、耗用硫酸少的长处。用这种办法出产的硫酸浓度一般在85%~95%,反响剧烈、敏捷,因为浓硫酸的沸点高,最高反响温度可高达200~250℃,反响一般在5~15min内即可完结,反响放出很多的热,因而动力较省,耗酸也较少,F值一般操控1.7~2.1,所得产品为多孔的固相物,简单加水浸取,酸解率一般能够到达95%以上。     加压法:选用20%~50%浓度的稀硫酸,在一耐腐蚀的受压设备中进行,一般出产人工金红石或电焊条用的金红石有时选用此种办法。     接连法:该法运用和20%硫酸的混合酸,先制得半流体状的反响物,然后再高温固化。加压法、接连法对反响设备的原料要求很高,操作杂乱,在工业化钛出产中没有采用。

高纯钴的制备

2018-12-10 14:19:22

高纯钴的制备.pdf

钨铜复合材料知识

2019-05-27 10:11:36

钨铜复合材料是由钨和铜两种互不固溶的金属组成的假合金,它分离了钨的高熔点、高硬度、低的缩短系数和铜的高导电。导热功用,是一种功用十分优异的复合材料。钨铜材料不只具有精巧的导热性和较低的热缩短系数,而且还可以通过改动其钨铜的含量来方案其热导率和缩短系数,这些特征使得钨铜复合材料在耐低温材料、高压开关用电工合金、电制作电极、微电子材料,做为零部件和元器件遍及运用于航天、航空、电子、电力、冶金、机器、体育东西等职业。等领域失掉了遍及的运用,钨铜(银)合金归纳了金属钨和铜(银)的长处,此中钨熔点高(钨熔点为3410℃,铁的熔点1534℃),密度大(钨密度为19.34g/cm3,铁的密度为7.8g/cm3) ;铜(银)导电导热功用杰出,钨铜(银)合金(身分普通领域为CUW90~CUW50)微观结构均匀、耐低温、强度高、耐电弧烧蚀、密度大;导电、导热功用适中,遍及运用于钨铜化学身分产品称谓符号铜%银杂质钨密度g/cm3电导IACS%硬度HB≥抗弯强度铜钨50CuW5050±2 0.5余量11.8554115 铜钨55CuW5545±2 0.5余量12.349125 铜钨60CuW6040±2 0.5余量12.7547140 铜钨65CuW6535±2 0.5余量13.344155 铜钨70CuW7030±2 0.5余量13.842175790铜钨75CuW7525±2 0.5余量14.538195885铜钨80CuW8020±2 0.5余量15.1534220980铜钨85CuW8515±2 0.5余量15.9302401080铜钨90CuW9010±2 0.5余量16.75272601160 、钨铜规范板料规格表(现货库存)100*100 (其他尺度需预定)(单元mm)厚度 3 4 5 6 8 10 15 20 25 30 35 40 45 50钨铜规范圆棒规格表长度100200mm(其他尺度需预定)(单元mm)外径Φ 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 55 60钨铜合金运用 钨铜是使用高纯钨粉优秀的金属特征和高纯紫铜粉的可塑性、高导电性等长处,经静压成型、低温烧结、溶渗铜的技术精制而成的复合材料。断弧功用好,导电导热好,热缩短小,低温不硬化,高强度,高密度,高硬度。钨铜合金用处1.电阻焊电极 归纳了钨和铜的长处,耐低温、耐电弧烧蚀、强度高、比严峻、导电、导热性好,易于切削制作,并具有发汗泠却等特征,由于具有钨的高硬度、高熔点、抗粘附的特性,常常用来做有必定耐磨性、抗低温的凸焊、对焊电极。2.高压放电管电极 高压真空放电管在工作时,触头材料会在零点几秒的时间内温度下降几千摄氏度,而钨铜的抗烧蚀功用、高韧性,精巧的导电、导热功用给放电管安定的工作直销需求的条件。3、航天用高功用材料 钨铜材料具有高密度、发汗冷却功用、低温强度高及耐冲刷烧蚀等功用,在航天工业顶用作、的喷管喉衬,燃气舵的组件、气氛舵、头罩及配重等。4、真空触头材料触头材料必需有十分好的机器制作功用和抗热震性,由于交兵和开断时打弧,触头材料会在零点几秒的时间内温度下降几千摄氏度。我公司出产的WCu触头材料由于其优秀的物感功用而被遍及的运用。钨铜合金长处高的抗烧蚀功用、高韧性,精巧的导电、导热功用。机制作功用好。交货形状与铜、钢等支撑件联合好的种种外形的WCu触头半废品未制作的种种熔渗、铸造材料;未制作的种种触头,焊接或铜焊在铜或钢等支撑件上;焊接或铜焊制作。我公司也出产种种焊接或铜焊的触头联接件。5、电火花制作用电极在用电火花制作硬质合金产品时,由于WC的特别功用使铜或石墨电极的耗费相称快,关于这种材料的电火花制作,我公司广毅荣专业署理的进口日本WCu电极是最合适的。

熔盐电解直接制备钛铬合金的研究

2019-02-12 10:07:54

金属间化合物作为颇有开发潜力的高温结构材料已广泛引起了人们的爱好。而Laves相是金属间化合物中最大的一族,Laves相TiCr2是一种易在过共析成分钛铬合金中构成的金属间化合物,在1100℃仍表现出优秀的抗蠕变功能,并具有很好的抗氧化才能,TiCr基合金不只具有优秀的力学功能,也具有潜在的优胜储氢功能。TiCr基储氢合金最早是在80年代初期由美国haven试验室研发发现的,这类合金从发现以来就因为其杂乱的氢化物组成而一向遭到极大的重视。TiCr基储氢合金具有很高的储氢密度,其最大储氢质量比超越2.4%(质量分数),日本在对储氢合金的分类和发展趋势研讨中将TiCr合金与Mg基储氢合金并列为第三代储氢合金。       现在TiCr合金的制备首要是以纯金属为质料,然后用粉末冶金法或高温真空熔炼法制得细密合金。因为质料海绵钛出产工艺杂乱,能耗高,功率低,再加上合金化进程需求添加新的能耗,导致钛铬合金的出产本钱高,因而下降钛合金的冶炼与加工本钱是材料界和钛工业界一向尽力寻求的方针。金属氧化物的熔盐电解法是一种新的电解工艺,首要是由英国剑桥大学的Fray等在20世纪末提出的,这种办法最大的特色就是工艺简略,无污染,适用性强,能够从金属氧化物的混合物直接出产合金;该办法的设备出资少,本钱有望低于传统的出产办法。环绕此办法,国际上报导了从金属氧化物中电解提取钛、铌、铬、硅等金属的研讨工作。国内外对熔盐电解制备Nb3Sn合金、TiW合金、TiNi、TiFe等有报导,而对钛铬合金还鲜有研讨。本文探究用熔盐电解直接制取钛铬合金的可行性。       一、试验       (一)设备及质料       试验设备如图1所示,试验中选用电阻加热坩埚炉,并配有温度操控器,电解槽为石墨坩埚,内置于不锈钢反响器中,电解电源为WYK-3010直流稳压电源。    图1  电解试验设备简图       试验中所用的电解质料为分析纯TiO2和Cr2O3;熔盐为分析纯无水氧化钙,含量>96%,其间除含水外,其他杂质含量不超越0.5%。       电解进程在高纯氩气维护下进行,其间Ar含量>99.999%,O2含量<3×10-4%,H2O含量<3×10-4%。       首要分析设备为:选用荷兰PHILIPS公司X′Pert Pro Super X射线衍射仪分析产品的物相和组成(Cu Ka靶,管电压为40kV,电流为40mA);选用日本HITACHI S-4800场发射扫描电镜仪分析样品描摹,并配有X射线能谱仪(EDS)进行元素分析;选用美国LECO公司TC-436氮氧测定仪分析电解产品的氧含量。       (二)试验进程       二氧化钛、氧化铬粉末按摩尔比1∶1混合后参加一定量的胶粘剂,混合均匀后,压制成直径为10mm的电极,电极成型压力4~10MPa。在室温下放置2d,使其天然枯燥,然后在马弗炉中于900~1200℃温度下烧结数小时后即可用于电解试验。电解试验在如图1所示的设备中进行,以高密度石墨坩埚壁作阳极,烧结后的金属氧化物的混合物作阴极,在氩气(100ml·min-1)维护下的氯化钙熔盐中进行电解。首要以石墨棒为阴极,石墨坩埚为阳极,在1.5V电压下进行预电解,意图是脱除熔盐中残存的水分和杂质,然后在指定的电压下进行恒压电解,电解温度操控在900℃。电解完毕后,电解产品在氩气维护下炉内天然冷却至室温。       (三)样品检测       电解后的产品,用水冲刷表面后,在超声波辅佐下用蒸馏水清洗夹盐,枯燥后对所得样品进行SEM,EDS,XRD分析以及氧含量分析。       二、结果与评论       (一)钛铬合金的制备       以TiO2+Cr2O3(摩尔比1∶1)为质料的电极在1050℃烧结2h所得微观结构如图2(a)所示,XRD分析结果表明电极由TiO2和Cr2O3组成如图3(a),阐明在烧结进程中TiO2和Cr2O3并未发作化学反响。图2(b)给出了2.8V电解6h所得产品的微观结构,颗粒长大至初始电极的2倍左右,XRD分析电解产品首要为TiCr2和少数Cr,见图3(d)。对电解产品进行DES分析,结果表明电解产品中Cr和Ti的摩尔比为1.95,考虑到分析差错,电解产品中Cr和Ti挨近初始电解中质料的配比2,阐明熔盐电解钛铬混合氧化物能够直接制备组成可控的钛铬合金。    图2  电解前后电极的SEM图   (a)-初始电极;(b)-2.8V电解6h电解产品    图3  初始电极以及不一起刻电解产品的XRD谱       (二)恒压下钛铬合金的构成进程       为了更好地了解TiO2和Cr2O3混合氧化物的复原进程,操控槽电压为2.8V,别离电解10min、1h和6h,所得产品的XRD图谱示于图3。从图中能够看出,混合氧化物的电解复原阅历了从优先生成Cr到构成TiCr2的合金化进程,依据电解不同阶段的产品组成和热力学核算,估测TiO2和Cr2O3混合氧化物在复原进程中发作的首要反响如下:       1、电解10min的产品首要是Cr,CaTiO3以及少数的CaO,见图3(b)。因为从热力学上分析Cr2O3比TiO2更易复原,因而在反响初始阶段,Cr2O3首要被复原为Cr。在2.8V电压下进行电解,Cr2O3的复原机制与TiO2的复原机制相似,也是通过氧离子化和钙热复原反响进行的,发作的反响或许为(1)~(3)。       Cr2O3+6e=2Cr+3CO                        (1)       Ca2++2e=Ca                               (2)       Cr2O3+3Ca=2Cr+3CaO                      (3)       电解复原释放出很多的O2-向阳极分散,而熔融盐中的Ca2+向阴极分散,假如氧化物阴极复原生成O2-的速度大于O2-向熔融盐和阳极分散的速度,将会发作反响(4)生成CaTiO3,因而电解产品中有CaTiO3的存在。       Ca2++O2-+TiO2=CaTiO3                     (4)       2、电解1h所得电解产品中有新相TiCr2生成,一起含有Cr,如图3(c),其间含有几个不知道的杂峰。因为电解试验所用的电极比较薄,仅有1mm左右,有利于钙、氧从电极中快速脱除,在电解产品中并未发现CaTiO3。作为中间产品在复原进程中生成的CaTiO3其寿数十分短,在随后的电解进程中,CaTiO3在新生成的Cr微粒上反响生成TiCr2,因而在电解产品中并未检测到CaTiO3。跟着TiCr2合金的生成和CaTiO3相的复原,多孔液层中CaO浓度下降,原先分出的CaO随CaTiO3的复原逐步熔解并迁出电极。       在电解较大的TiO2压片时,常常发现CaTiO3生成,因为现场钙钛矿化的发作,使固态颗粒的体积胀大,然后缩小颗粒之间的离子传输通道,阻止了多孔层内的离子搬迁,在TiO2压片彻底电解曾经,即便施加高于3.0V的电压,常常能够看到部分复原的夹心结构,但在电解TiO2和Cr2O3混合氧化物电极时,因为Cr2O3很简单被复原为Cr,Cr的存在进步了电极的导电性,一起又添加了电极的孔隙率,因而并未发现电解TiO2时常常出现的夹心结构。       3、电解6h所得电解产品为钛铬合金,依然含有铬的峰。从图3能够看出当电解时刻从1h延长到6h后电解产品中TiCr2的峰增强,而Gr的峰削弱,杂峰消失。从TiCr二元系相图能够看出,室温下C15相的均匀组成为TiCr1.75(65.5%Cr)~TiCr1.95(68%Cr),因为质料是按TiCr2制造,所以或许含有少数未合金化的Cr。       综上所述,本试验条件下混合氧化物复原为钛铬合金阅历了如下进程:反响最早生成Cr,副产品CaO与TiO2反响生成CaTiO3,在随后的电解进程中生成的CaTiO3和/或TiO2在新生成的Cr微粒上反响生成TiCr2合金。       (三)电解时刻对电解产品氧含量的影响       为了研讨电解时刻对产品氧含量的影响,以TiO2和Cr2O3(摩尔比1∶1)混合物小片为电极在2.8V电压下别离电解1,2,4,6和8h,图4给出了电解产品中氧含量随时刻的改变。从图中能够看出,在2.8V槽电压下电解1h,电解产品中的氧含量现已从初始电极的38.81%下降到11.50%,阐明在开始的1h电化学反响速度快,前1h脱除的氧占总氧量的74.56%,在电解复原反响2h后,产品中氧含量下降至0.64%,前2h脱除的氧占总氧含量的98.98%。当电解时刻从2h延长到6h,电极反响速度变慢,氧含量从2h的0.64%下降到0.20%,前6h脱除的氧占总氧含量的99.68%。这或许是因为从2h后首要发作的反响是从合金的脱氧进程,因而反响变慢。在随后的电解进程中发作脱氧反响,氧含量进一步下降,但氧脱除的速度很慢。    图4  电解产品氧含量随时刻的改变(电解电压2.8V,电解温度900℃,Ar100ml·min-1)       本文仅对熔盐电解直接制备钛铬合金进行了开始研讨,所选用的电解条件并非最优条件,下一步研讨的重点是制备出纯洁的钛铬合金,对其进行储氢功能测验和元素代替然后改善其储氢功能,而且优化电解条件以进步产品纯度和电流功率。       三、定论       (一)在熔融CaCl2系统中,直接电解TiO2和Cr2O3的混合物,在槽电压2.8V下电解6h能够得到氧含量为0.20%的钛铬合金,阐明用直接电解复原法电解TiO2和Cr2O3的混合物制取钛铬合金是可行的。       (二)混合氧化物的复原阅历了优先生成Cr到逐步构成TiCr2的合金化进程,反响最早生成Cr,副产品CaO与TiO2反响生成CaTiO3,在随后的电解进程中生成的CaTiO3和/或TiO2在新生成的Cr微粒上反响生成TiCr2合金。

涂料专利:铝合金表面钝化涂料及其制备方法

2019-03-04 10:21:10

创造称号——铝合金表面钝化涂料及其制备办法   本创造触及一种金属表面涂层及其制备办法,详细为铝合金表面钝化涂料及其制备办法,由以下质料依照质量份数配比制成:酸‑2‑乙基己酯5~40份,磺化油0.5~1.2份,聚二甲基硅氧烷0.2~0.8份,聚乙二醇0.6~1.2份,丙二醇丁醚0.5~1份,膦羧酸0.05~1.2份,无水乙醇4~6份,去离子水47~89份,基酚聚氧乙烯醚0.01~1份,将其涂覆于铝合金表面,晒干,较终构成具有耐蚀性、附着力的钝化涂层,不含对环境污染的成分。

铋的加工和制备

2019-02-14 10:39:59

古代用木炭复原辉铋矿Bi2S3制得铋,1737年J.埃洛用火分化铋矿,得到一小块金属铋;1757年法国的C.J.日夫鲁瓦用木炭复原辉铋矿也制得金属铋。其称号来自德文矿藏名,意为白色物质,因铋的化合物可作白色涂料。铋在地壳中的含量为2×10-5%。铋在天然界既有游离状况的,亦有化合物方式的,化合态首要有铋赭石也称泡铋矿Bi2O3和辉铋矿。游离态铋具有显着菱形结构,是亮光的粉红色脆性金属,熔点为271.3℃,沸点为1560 ℃,相对密度为9.8。熔融的金属铋在凝结时胀大约3.3%,铋对磁力线成直角方位时,受磁场激烈排挤。室温下铋在空气中不氧化,强热时焚烧,生成三氧化二铋。铋不与和稀硫酸效果,但能溶于浓度不大的硝酸和热浓硫酸,铋也能与氢、卤素、氧、氮及硫构成化合物。铋的氢化物BiH3很不安稳,室温即分化。三氧化二铋具有碱性,溶于酸生成铋(Ⅲ)盐。将碱效果于铋(Ⅲ)的可溶盐可制得白色沉积氢氧化铋(Ⅲ): Bi+4HNO3=Bi(NO3)3+NO↑+2H2O 2Bi+6H2SO4=Bi2(SO4)3+3SO2↑+6H2O Bi(NO3)3+3NaOH=Bi(OH)3↓+3NaNO3 氢氧化铋(Ⅲ)是很弱的碱,所以铋(Ⅲ)盐简单水解,转变成难溶于水的碱式盐。从铋和硝酸相互效果的溶液中结晶出五水,可溶于硝酸酸化的少数水中。用水稀释溶液时发作水解,分出碱式盐,其组成取决于条件,常常生成组成为BiONO3的盐。BiO+称为铋酰,也叫铋氧离子: Bi(NO3)3+H2O=BiONO3+2HNO3(可逆) 三氯化铋是吸湿性晶体,水解为氯化铋酰(或氯化氧铋)BiOCl。将通入铋盐溶液可得黑褐色沉积三硫化二铋,与砷、锑不同,铋不生成硫代酸盐,所以三硫化二铋不溶于碱金属或铵的硫化物溶液中。铋(Ⅴ)的化合物中最重要是铋酸盐。如铋酸钠。这些化合物是强的氧化物,铋酸钠可将硫酸锰中Mn(Ⅱ)氧化成Mn(Ⅶ)的高锰酸盐。铋也存在于一些有机化合物,尤其为化学医治而制备的有机物(酒石酸盐)中。 铋的首要用途:①为防火设备、金属接点、导热介质用低熔(易熔)合金的组分;②用于制备医治胃病和梅毒的药;③用于电设备(热门合金和永久磁体);④用作催化剂,特别用在腈制备中;⑤制造高温陶瓷和颜料;⑥是有机组成中常用的氟化剂。 金属铋可由硫化物矿煅烧后成三氧化二铋,再与碳共热复本来制得 叶碲铋矿极为稀有,矿藏学材料匮乏。高庄金矿的叶碲铋矿为我国初次发现,它首要产于磁黄铁矿多金属阶段,与磁黄铁矿、黄铁矿、黄铜矿、碲银矿、天然金等共生。经电子探针分析,高庄金矿有多种铋碲化物,有三粒矿藏的成分与标准叶碲铋矿完全一致。对一较大颗粒的叶碲铋矿做了单晶X射线衍射分析。Au与Bi在矿石和围岩中的含量呈共消长联系,Te与Bi可能对Au、Ag的搬迁富集起了重要效果。

金电解液的制备

2019-03-06 09:01:40

制备金电解液的最好办法是电解法,俗称电解造液。别的,还可运用法。 电解造液均运用隔阂电解法。这种办法是在与金电解相同的槽中,选用与金电解根本相同的技能条件进行的。其最大不同点是纯金阴极很小且装于未上釉的耐酸素瓷隔阂坩埚中(图1)。此法广泛应用于工业出产中,当运用25%~30%的液,在面积电流1000~1500A∕m2和槽电压不大于3~4V条件下,可制备出含金380~450g∕L的浓溶液。图1  金的隔阂造液 1-阳极;2-阴极;3-隔阂坩埚 某厂电解造液是在电解槽中参加稀(化学纯或蒸馏),槽中装入粗金阳极板,在素瓷隔阂坩埚中装入105mm×43mm×厚1.5mm的纯金阴极板。素瓷坩埚内径为115mm×55mm×深250mm,壁厚5~10mm。坩埚内的阴极液为1∶1的稀。阴极液面比电解槽阳极液面高5~10mm,以避免阳极液进入阴极区。 电解造液的条件一般选用面积电流2200~2300A∕m2,槽电压2.5~4.5V,分量沟通电为直流电的2.2~2.5倍,沟通电压5~7V,液温40~60℃,同极距100~120mm。当接通电流时,阴极上开端放出,而阳极则开端溶解。造液44~48h,即取得密度1.38~1.42g/m3、含金300~400g∕L(延伸周期最高可达450g∕L)、含250~300g/L的溶液,通过滤除掉阳极泥后,贮存在耐酸瓷缸中备用。作业停止后,取出坩埚,阴极液会集进行置换处理,以收回或许穿透坩埚进入阴极液中的金。 鉴于金价贵重,为进步金的直收率,使金不致积压于出产过程中,某些厂曾运用含金95~120g∕L、120~150g∕L的电解液。 造液,是将复原的金粉加溶解而制得。一份金粉参加一份,经溶解后过滤除掉杂质。为了除掉溶液中的硝酸一般在金粉悉数溶解后,持续加热赶硝以使其分解成氧化氮而被除掉。在苏联曩昔多运用造液,南非和日本如今仍多选用之。此法的长处是速度快,但溶液中的硝酸不或许彻底被扫除,用此溶液进行电解时,因为硝酸根离子的存在,会使电解过程中呈现阴极金反溶解的不利因素。 近代金电解工艺中,还有选用离子交换膜造液的。

铝合金砂型低压铸造用涂料及其制备方法

2019-01-09 09:34:13

一种铝合金砂型低压铸造用涂料及其制备方法,采用于原料组分中加入包括促使热稳定性和骨料颗粒排列致密性得到提高的纳米氧化钛,促使涂料悬浮性提高,涂刷性改善,贮存期延长的稳定剂;其原料的质量百分比组成为,骨料:滑石粉37%~73%,纳米氧化钛10%~23%,铝矾土8%~17%;粘结剂:钠基膨润土1%~6%,硅溶胶8%~17%;稳定剂0.5%~1.0%;从而获得机械强度高,附着力好的铸件表面涂层的技术方案;克服了长期存在于该行业的:涂料热稳定性差,易出现涂层裂纹、剥落,涂层骨料颗粒排列不致密,涂料悬浮性低,骨料易聚集结块,涂料涂刷性、贮存性均差等缺陷;本发明适合用于有色金属铸造;特别适合铝合金树脂砂型低压铸造。

从锂云母制备铷和铯

2019-03-05 12:01:05

锂云母是提取和的首要矿藏,用硫酸分化锂云母精矿后,得到锂、和的旅酸盐。将这些硫酸盐分步结晶别离锂盐后,加人使、转化为氯化物,然后加人40%的三级化锑溶液,分出Cs3SbCl9沉积,和钾留在母液中。       江西宜春出产锂的工厂已有30年的前史,该厂用选铌钽矿后的锂云母提取锂盐,在出产氢氧化锂(或碳酸锂)后的废液中提和。碱金属碳酸盐的组成为70% K2CO3,23%Rb2CO3,2%Cs2CO3,l% Li2CO3,3% Na2CO3和1%其他盐,因为、、钾的离子半径极端近似,简单生成混晶或异质同晶的化合物,所以从中除钾,从中除都是十分困难。、的纯化别离大多选用复盐分步结晶和分级沉积法。碱金属生成复盐趋势的凹凸次序为:>>钾>钠>锂。       在氯化物溶液中,碱金属与镁的氯化物构成复盐,如光卤石。和与铁、锑、锡、铅、铂、铱、铋的卤素配阴离子(如Rb2PtCl6, 2CsCl·3SbCl3)以及硅钼酸、硅钨酸、亚硝基钴等生成盐。和阳离子与有机阴离子如、6-硝基二盐、四盐构成溶解度很小的化合物。       复盐沉积能够用于含量高的酸性溶液,而不能用于含量低的碱性溶液。上述这些办法,尽管能够完结首要的纯化进程,但进程杂乱、报价昂贵,对和的别离作用也不甚满足。

镁基复合材料的制备

2019-01-03 09:37:07

镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。 铸造法 铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。 搅拌铸造法(Stiring Casting) 此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。 液态浸渗法(Liquid infiltration process) 用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗法。可用挤压、铸造机进行浸渗,也可以用专用浸渗装备。增强相与镁熔体之间的浸润性对浸渗过程有重要影响,是关键的工艺参数。当浸润角θ 粉末冶金法 该法是将预制的镁粉或镁合金粉与陶瓷粒子均匀地混合为一体,经真空除气、固结成形后再进行压力加工制成所需形状、尺寸和性能的复合材料半成品。粉末固结工艺有热压和冷热、温等静压。此法主要优点:基体合金组织微细,可随意调控增强相的分数,甚至可高达50%左右,陶瓷颗粒尺寸可小于5μm,但不足之处是金属粉末在制备和贮存过程中易表面氧化,对材料塑性及韧性不利;制备大尺寸锭坯及需要大型设备和模具,投资较大;所采用的温度低,不会发生有害界面反应,有利于材料塑性及韧性提高。 粉末锭坯经挤压、锻造大变形加工后,粉末颗粒会结合在一起,材料密度可接近理论值。 喷射沉积法 喷射沉积工艺是制备高性能合金材料的有效方法之一,若在喷射沉积过程中将陶瓷颗粒导入雾化锥中,与雾化颗粒共沉积,可以制得陶瓷颗粒增强的复合材料。喷射共沉积法制备AZ91、QE22合金/Al2O3或SiC颗粒复合材料的弹性模量、耐磨性都大幅度提高,膨胀系数有较大下降。 由于喷射工艺流程短,材料制备比较简单、便利;增强颗粒在基体金属中分布均匀,界面反应很轻微,因而性能优异。QE22/SiCp复合材料锭坯孔隙体积分数高达20%,经挤压后,具有优异的强度和塑性,其伸长率达到12%,而传统铸造QE22合金的伸长率只不过2%。

硅热还原法制取稀土硅铁合金-原料制备

2019-01-24 11:10:25

原料制备是冶炼稀土硅铁合金的第一步工序。原料质量的优劣明显影响着冶炼的技术经济指标。冶炼稀土硅铁合金同样应遵循精料的方针,包头稀土铁合金厂实践表明,精料入炉可以使稀土硅铁合金的产量增加10%~30%,产品质量也得到明显的改善。随着稀土硅铁合金生产工艺的不断完善的和技术进步,高质量、多品种的稀土硅铁合金对原料提出了更高的要求。 原料概述     硅热还原法制取稀土硅铁合金的原料可以分为三类,即稀土原料、还原剂和熔剂。     (1)稀土原料  硅热还原法制取稀土硅铁合金的稀土原料有多种,我国较为常用的是白云鄂博富稀土中贫铁矿高炉除铁渣(简称“稀土富渣”,下同)、稀土精矿除铁渣(简称“稀土精矿渣”,下同)、稀土氧化物(混合稀土氧化物或单一稀土氧化物)、稀土氢氧化物和稀土碳酸盐等。后者由于成本较高,只有特殊需要时才采用。前苏联、美国等根据各自的资源情况使用稀土氧化物、稀土氢氧化物及稀土精矿球团和压块等作原料。     在高炉冶炼过程中,无论是原矿还是人造富矿入炉,稀土将全部转移到炉渣中,产出所谓的稀土富渣。稀土富渣在20世纪80年代前是冶炼稀土硅铁合金的主要原料。随着选矿技术的发展,中高品位的稀土精矿从原矿中分离,铁含量很低,不需要进入高炉进行处理,所以从80年代以后,稀土富渣不再生产。80年代又开拓了稀土精矿经电炉脱铁除磷制备含磷制备含稀土更高的稀土精矿渣,稀土精矿渣成为稀土硅铁合金生产的主要原料。近年来,生产中主要用包头稀土精矿、山东微山湖稀土精矿、四川冕宁氟碳铈矿经过简易的造块处理,直接入炉冶炼稀土硅铁合金[14]。     (2)还原剂  由于75硅铁具有较高的含硅量和较低的杂质,冶炼稀土硅铁铁合金采用75硅铁作还原剂,较经济合理。     (3)熔剂  冶炼稀土硅铁合金所用熔剂主要是石灰。石灰中CaO含量越高越好,SiO2及其他杂质越低越好。生产中一般要求石灰中含CaO>85%,SiO2<5%。    参 考 文 献    14、毕群等,钢铁,1983,18(12):8

超细均质铝粉制备方法

2019-01-02 14:54:46

超细均质铝粉的制备方法,包括铝锭熔融、制粉、物料输送、气固分离、收集成品、产品包装、其特征在于由下列步骤组成:    a) 先将铝锭熔融,在全封闭容器内的高速盘式雾化器,并在情性气体保护下进行雾化制粉;    b) 雾化的铝粉,通过容器底部鼓入的惰性气体和容器上部喷入的油浸润下,同时从容器上部通过惰性气体保护的管道输送至一次旋风分离器和二次带过滤网的喷淋塔进行气固分离;    c)一次旋风分离器分离的油浸润铝粉沉入底部即为产品进入包装桶封存,气体和微细铝粉通过管道进入二次喷淋塔,油浸润铝粉沉入底部返回容器内,气体经过滤返回风机循环,循环油也再返回循环;    d)容器累积的油浸润铝粉作为产品回收,包装封存。

从光卤石制备铷和铯

2019-03-05 12:01:05

天然光卤石( KCl·MgC12·6H2O)是一种复盐,的含量为0.05%~0.037%,的含量仅为的2%。光卤石参加水分化后,氯化镁进入溶液,而大部分留在沉积中。蒸腾溶液人工光卤石将结晶分出,和富集在人工光卤石中。通过数次重结晶后,可将富集到10%,调整溶液的酸度到pH值为2~3,向此溶液中参加适量的50%的钼磷酸铵粉末,在常温下充沛拌和,即以杂多酸盐RbH2[P(Mo3O10)4·xH2O]的方式沉积出来。用9MNH4NO3的溶液洗刷沉积,又从钼磷酸中转入溶液。将富集有RbNO3的溶液蒸腾至干,于300~500℃灼烧除掉铵盐,可获得纯度为80%的硝酸,还能够进一步收回。从盐卤中提取和的工艺流程如图1所示。用斜发沸石别离提取卤水中钾、、,能得到较好的化合物,可是的别离尚不抱负。  图1  从盐卤中提Rb和Cs的流程

高纯金属制备技术(二)

2019-01-25 13:38:01

式中,V为离子漂移速度;U为离子迁移率;F为作用于离子的外力,它由电场作用力和导电电子散射作用于离子的力组成。这些作用力和离子有效电荷数有关。依母体离子和杂质离子的电荷数不同和扩散、漂移速度不同而达到分离目的。如图4。    电迁移和区域熔炼方法结合使用效果更好(如图5),以镓为例,经过上述方法提纯后,镓的残余电阻率达到R残余=100000。这种方法已广泛用于铍、钨、钇、镧、铈等金属的提纯。 [next]     5.电磁场提纯    在电磁场作用下深度提纯高熔点金属的技术越来越多地被采用。电磁场不限于对熔融金属的搅拌作用,更主要的是电磁场下可使熔融金属在结晶过程中获得结构缺陷的均匀分布,并细化晶粒结构。在半导体材料拉制单晶时,在定向结晶时熔体中存在温度波动,这种温度波动会导致杂质的层状分布,而一个很小的恒定磁场就足以消除这种温度波动。在多相系统结晶时,利用电磁场可使第二相定向析出,生成类似磁性复合材料的各向异性的组织结构。电磁场还用于悬浮熔炼,这时电磁场起能源支撑作用和搅拌作用,利用杂质的蒸发和漂走第二相(氧化物、碳化物等)来纯化金属。由于不存在和容器接触对提纯金属造成的污染问题,被普遍用于几乎所有高熔点金属的提纯,如钨、钼、钽、铌、钒、铼、锇、钌、锆等。    6.提纯方法的综合应用    各个提纯方法都是利用金属的某个物理性质或化学性质和杂质元素间的差异而进行分离达到提纯目的的,如真空蒸馏是利用金属和杂质的饱和蒸气压和挥发速度的差异。区域熔炼是利用杂质在固相和液相间的溶解度差异而进行提纯分离的,因而各个方法都有一定的长处(对某些杂质分离效果好)和短处(对另一些杂质分离效果差)。即使是同一个提纯方法,也因金属性质的不同,提纯效果差别很大,如区域熔炼对高熔点金属的提纯效果好,但对某些稀土金属的提纯效果则不理想。欲获深度提纯金属的效果,一般需要综合应用多种提纯手段。在这方面,各个方法的合理结合应用和先后顺序使用十分重要,通常是将电子束熔炼或蒸馏和区域熔炼或电迁移法相结合,即先进行电子束熔炼或蒸馏提纯,再以区域熔炼或电迁移提纯作为终极提纯手段,以铍为例,为获超高纯铍,最好先多次蒸馏提纯,再真空熔炼,最后进行区域熔炼或电迁移提纯,经这样提纯后所得铍单晶纯度达99.999%,残余电阻率R残>1000。在制取超纯锗时,一般先用化学法除去磷、砷、铝、硅、硼等杂质,再用区熔法提纯得到电子级纯锗;最后多次拉晶和切割才能达到13N的纯度要求。表2为各种方法结合使用提纯金属铼的效果。表2  各种提纯方法提纯金属铼的效果提纯方法剩余电阻率RRR值铼粉末真空熔炼1000铼粉末真空熔炼+区域熔炼6000粉末在H2和O2气中退火+真空熔炼+区域熔炼8000氢还原提纯+真空熔炼15000氢还原提纯+真空熔炼+区域熔炼30000氢还原提纯+真空熔炼+电迁移区熔50000[next]     7.宇宙空间条件下提纯金属    宇宙空间的开发为提纯金属制造了新的机会。宇宙空间的超高真空(约10-10Pa),超低温和基本上的无重力(g=10-5g0),为金属提纯提供了优越条件。在这种条件下,液态金属中将不会有对流的问题,结晶时杂质的分布将只具有纯扩散性质,熔化金属毋需坩埚,超高真空尤其有利于杂质的挥发和脱气。这些对于采用熔炼、蒸发、区域熔炼等方法提纯化学活性大的金属和半导体材料来说更是非常理想的条件。以提纯锗为例,在地球上锗垂熔时杂质镓的分离系数为0.1/0.15,而在宇宙空间时则达0.23/0.17。在无重力条件拉制的晶体的完整性较在重力条件下的完整性好很多。以锑化锢为例,其位错密度比只是在重力条件下的位错密度的1/6。由于宇宙中液态金属表面张力系数值很大,故在宇宙间用无坩埚区域熔炼法必定能制备出极高纯度和完整性的单晶来。此外,超低“宇宙”温度也具有良好的应用前景。

红铜的硬度

2019-05-28 09:05:47

红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电性ir1u1et能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。    红铜成分很纯,除天然的微量(0.10.2%)杂质外,没有人工参加锡或铅使成合金。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带上海废铜收回、气垫,汇流排端子。电磁开关、笔筒、屋根板等。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电功能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。    红铜的密度8.96g/(cm)    红铜的比重8.89g/(mm)    Cu≥99.95% O<003    电导率≥57ms/m    硬度≥85.2HV

铝或铝合金三价铬化学转化膜的制备方法

2019-03-11 09:56:47

铝及铝合金的表面天然氧化膜为5mm左右,因为厚度较薄,简略磨损、擦伤,耐腐蚀性较差,假如暴露在室外、海边等腐蚀性严峻的环境中,表面会很快生成一层铝锈。为了进步铝及铝合金表面氧化膜的抗腐蚀性,需要对铝及铝合金表面进行人工处理,添加氧化膜的厚度。现在,使用较广的首要是化学转化膜及阳极氧化处理。化学转化膜与阳极氧化比较,具有操作简略,成本低,耗能少,成膜时间短,对基体质料要求低,对铝及铝合金疲惫功能影响较小,适用于杂乱零件如细长管、点焊件及铆接件等表面处理的多种长处。     传统上,选用六价铬为首要成份对铝及铝合金表面进行铬化学转化膜处理,但六价铬具有很强的毒性,因而遭到各国环保法规,如欧盟的RoHS法规等的制止或约束。为了替代六价铬转化膜,已有一些相关的研讨,如铈化学转化膜(铝合金上铈氧化膜构成的电化学研讨。材料维护,1995,28(3):1~3)、无铬化学转化膜(铝合金表面无铬化学转化膜的研讨,材料维护,2005,34(6):38~39)等,但铈化学转化膜不光耐腐蚀功能欠好,且这种膜无色通明不便于辨认,无铬化学转化膜的耐腐蚀功能依然较差,只本领35%的NaC1盐水浸泡3天,这依然达不到人们对铝合金表面耐腐蚀性的要求。     由中南大学余会成;陈白珍;徐徽;杨喜云;石西昌创造规划的一种铝或铝合价铬化学转化膜的制备办法:将铝或铝合金工件在50~100g/L水溶液中活化1~2分钟,活化反响温度为5~30℃;用去离子水清洗;将清洗后的工件放入可溶性三价铬盐及磷酸混合水溶液中铬化6~10分钟,三价铬离子浓度为1~20g/L,磷酸浓度为1~25g/L,用稀或稀硫酸调整反响系统pH值至1.6~4.0,铬化温度为10~60℃。本创造处理了现有技能中六价铬毒性大的缺陷,工艺进程和产品到达环保要求,所制得的三价铬化学转化膜与六价铬化学转化膜的质量相同。     与现在的技能比较,本创造具有如下的技能长处和作用:     1、本创造以低毒的三价铬化物为质料对铝及铝合金表面进行化学转化膜处理,处理了原以六价铬为首要成分的铝及铝合金表面转化膜工艺进程毒性大的缺陷,工艺进程及产品契合环保要求,如契合欧盟环保法规的RoHS要求;     2、本创造的三价铬化学转化膜的防腐功能与六价铬化学转化膜的根本相同,膜呈淡绿色或绿色,在3.5%的NaCl盐水中浸泡10天以上不生铝锈;     3、本创造工艺简略易行,成膜时间短,成本低,对铝及铝合金疲惫功能影响小,对基体质料要求低,不受基体质料的影响。

高纯金属制备技术(一)

2019-02-15 14:21:16

高纯金属是现代许多高、新技能的归纳产品,尽管20世纪30年代便已呈现“高纯物质”这一称号,但把高纯金属的研讨和出产进步到重要日程,是在二次世界大战后,首先是原子能研讨需求一系列高纯金属,然后跟着半导体技能、宇航、无线电电子学等的开展,对金属纯度要求越来越高,大大促进了高纯金属出产的开展。    纯度对金属有着三方面的意义。榜首,金属的一些性质和纯度关系密切。纯铁质软,含杂质的铸铁才是坚固的。另一方面,杂质又是十分有害的,大多数金属因含杂质而发脆,关于半导体,极微量的杂质就会引起材料功能十分显着的改变。锗、硅中含有微量的m、V族元素、重金属、碱金属等有害杂质,可使半导体器材的电功能遭到严重影响。第二,纯度研讨有助说明金属材料的结构铍理性、杂质对缺点的影响等要素,并由此为开发预先给定材料性质的新材料规划发明条件。第三,跟着金属纯度的不断进步,将进一步提醒出金属的潜在功能,如普通金属铍是一切金属中最脆的金属。而在高纯时铍便呈现低温塑性,超高纯时更具有高温超塑性。超高纯金属的潜在功能的发现,有或许开阔新的应用领域,在材料学方面翻开新的突破口,为高技能的延伸铺平道路。    金属的纯度是相关于杂质而言的,广义上杂质包含化学杂质(元素)和物理杂质(晶体缺点)。可是,只要当金属纯度极高时,物理杂质的概念才是有意义的,因而出产上一般仍以化学杂质的含量作为点评金属纯度的标准,即以主金属减去杂质总含量的百分数标明,常用N(nine的榜首字母)代表。如99.9999 %写为6N,99.99999%写为7N。此外,半导体材料还用载流子浓度(atom/cm3)和低温搬迁率(cm2V-1S-1)标明纯度。金属用剩下电阻率RRR和纯度级R(Rein heitgrad)标明纯度。国际上关于纯度的界说尚无统一标准。一般讲,理论的纯金属应是纯洁彻底不含杂质的,并有稳定的熔点和晶体结构。但技能上任何金属都达不到不含杂质的肯定纯度,故纯金属只要相对意义,它仅仅标明现在技能上能到达的标准。跟着提纯水平的进步,金属的纯度在不断进步。例如,曩昔高纯金属的杂质为10-6级(百万分之几),而超纯半导体材料的杂质达10-9级(十亿分之几),并逐步开展到10-12级(一万亿分之几)。一起各个金属的提纯难度不尽相同,如半导体材料中称9N以上为高纯,而难熔金属钨、钽等达6N已属超高纯。    高纯金属制取一般分两个进程进行,即纯化(开始提纯)和超纯化(终究提纯)。出产办法大致分为化学提纯和物理提纯两类。为获高纯金属,有用除掉难以别离的杂质,往往需求将化学提纯和物理提纯合作运用,即在物理提纯的一起,还进行化学提纯,如硅在无坩埚区熔融时可用氢作维护气,如果在中参加少数水蒸气,则水与硅中的硼起化学反响,可除掉物理提纯不能除掉的硼。又如选用真空烧结法提纯高熔点金属钽、铌等时,为了脱碳,有时需求配入比化学计量稍过量的氧,或为脱氧配入必定数量的碳,这种办法又称为化学物理提纯。[next]    一、化学提纯    化学提纯是制取高纯金属的根底。金属中的杂质首要靠化学办法铲除,除直接用化学办法取得高纯金属外,常常是把被提纯金属先制成中间化合物(氧化物、卤化物等),经过对中间化合物的蒸馏、精馏、吸附、络合、结晶、歧化、氧化、复原等办法将化合物提纯到很高纯度,然后再复原成金属,如锗、硅挑选、三氯氢硅、硅烷(SiH4)作为中间化合物,经提纯后再复原成锗和硅。化学提纯办法许多,常用的列于表1。表1  常用化学提纯办法办法内容沉积包含沉积、共沉积、均一沉积等金属置换包含依照金属活动性次序K、Ca、Na、Mg、Zn、Fe、Ni、Sn、Pb、H、Cu、Hg、Ag、Au,用前面金属把后边的金属从其盐溶液中置换出来萃取包含有机溶剂萃取、络合萃取、萃取精馏等离子交流包含用离子交流树脂、离子交流纤维、离子交流膜以及沸石的交流电化学办法包含电解、操控电位电解、电渗析以及电泳等化合物提纯包含化学搬运反响,先制成化合物并经过提纯,进一步热分化、氢复原、金属热复原、氧化、电解、色谱别离等各种不同办法进行提纯蒸馏包含常压蒸馏、减压蒸馏、蒸汽蒸馏、共沸蒸馏、亚沸蒸馏、精馏、常压进步、真空进步等重结晶包含在水及其他有机溶剂中的重结晶,分步结晶等色谱别离包含气相色谱、液相色谱、薄层色谱、干柱色谱(用活性炭、硅胶、氧化铝、分子筛、硅藻土等作吸附剂的吸附提纯)过滤包含微孔滤膜、超滤膜及其他介质过滤[next]     二、物理提纯    物理提纯首要运用蒸腾、凝结、结晶、分散、电搬迁等物理进程除掉杂质。物理提纯办法首要有真空蒸馏、真空脱气、区域熔炼、单晶法(拜见半导体材料章)、电磁场提纯等,此外还有空间无重力熔炼提纯办法。    物理提纯时,真空条件十分重要。高纯金属精粹提纯一般都要在高真空和超高真空(10-6~10-8Pa)中进行,真空对冶金进程的重要作用首要是:①为有气态生成物的冶金反响发明有利的化学热力学和动力学条件,从而使在常压下难以从主金属中别离出杂质的冶金进程在真空条件下得以完成;②下降气体杂质及易蒸腾性杂质在金属中的溶解度,相应下降其在主金属中的含量;③下降金属或杂质蒸腾所需温度,进步金属与杂质间的别离系数;④减轻或防止金属或其他反响剂与空气的作用,防止气相杂质对金属或合金的污染。因而许多提纯办法,如真空熔炼(真空感应熔炼、真空电弧熔炼、真空电子束熔炼)、真空蒸馏、真空脱气等有必要在真空条件下进行。    1.真空蒸馏    真空蒸馏是在真空条件下,运用主金属和杂质从同一温度下蒸气压和蒸腾速度的不同,操控恰当的温度,使某种物质挑选性地蒸腾和挑选性地冷凝来使金属纯化的办法,这种办法曾经首要用来提纯某些低沸点的金属(或化合物),如锌、钙、镁、镓、硅、锂、硒、碲等,跟着真空和超高真空技能的开展,特别是冶金高温高真空技能的开展,真空蒸馏也用于稀有金属和熔点较高的金属如铍、铬、钇、钒、铁、镍、钴等的提纯。    蒸馏的首要进程是蒸腾和冷凝,在必定温度下,物质都有必定的饱满蒸气压,当气压中物质分压低于它在该温度下的饱满蒸气压的蒸气压时,该物质便不断蒸腾。蒸腾的条件是不断供应被蒸腾物质热量,并排出发生的气体;冷凝是蒸腾的逆进程,气态物质的饱满蒸气压随温度下降而下降,当气态组分的分压大于它在冷凝温度下的饱满蒸气压时,这种物质便冷凝成液相(或固相),为使冷凝进程进行到底,有必要及时排出冷凝放出的热量。影响真空蒸馏提纯作用的首要要素是:①各组分的蒸气分压,分压差越大,别离作用越好;②蒸腾和冷凝的温度和动力学条件,一般温度下降可增大金属与杂质蒸气压的距离,进步别离作用;③待提纯金属的成分,原金属中杂质含量越低,别离作用越好;④金属和蒸腾和冷凝材料间的作用,要求蒸腾冷凝材料自身有最低的饱满蒸气压;⑤金属剩余气体的相互作用;⑥蒸馏设备的结构;⑦真空蒸馏有坩埚式和无坩埚式两种,无柑埚蒸馏一般经过电磁场作用将金属熔体悬浮起来(见图1),有关蒸馏工艺请拜见上述元素的精制进程。[next]    2.真空脱气    真空脱气是指在真空条件下脱除金属中气体杂质的进程。实际上是下降气体杂质在金属中的溶解度。依据西韦茨规律,恒温下双原子气体在金属中的溶解度和气体分压的平方根成正比。因而进步体系的真空度,便相当于下降气体的分压,亦即能下降气体在金属中的溶解度,而超越溶解度的部分气体杂质便会从金属中逸出而脱除。以钽粉真空热处理为例,在高真空(2.5-6μPa)条件下,钽的水分在100一200℃急剧蒸腾,600-700℃氢化物分化逸出,碱金属及其化合物在1100-1600℃温度下蒸腾,大部分铁、镍、铬等以低熔点氧化物形状蒸腾,2300℃时氮蒸腾逸出,比照氢、氮对金属亲和势大的氧,则以加碳脱氧([C]+[O]=CO↑)和以上杂质金属贱价氧化物MeOn,的办法除掉。真空脱气广泛用于高熔点金属钨、钼、钒、铌、钽、铼等的纯化。    3.区域熔炼    区域熔炼是一种深度提纯金属的办法,其实质是经过部分加热细长料锭构成一个狭隘的熔融区,并移动加热器使此狭隘熔融区按必定方向沿料锭缓慢移动,运用杂质在固相与液相间平衡浓度的差异,在重复熔化和凝结的进程中,杂质便偏析到固相或液相中而得以除掉或从头散布,熔区一般选用电阻加热,感应加热或电子束加热,图2为锗区域熔炼示意图。 [next]     图3为熔融区部分相图,当固液平衡共存时,杂质在固相中的浓度Cs和液相中的浓度C1是不相同的,两者之比称为平衡分配系数,即K0=Cs/C1。在图3中,当熔区自左向右缓慢移动时,分配系数K0<1的杂质就会富集在液相,并逐步随熔区向右搬迁并富集;K0>1的杂质则向右搬迁并富集。一般在一次区域熔炼不能到达所要求的纯度时,提纯进程需求重复屡次,或许用一系列加热器,在料锭上发生多个熔区,到达高度提纯的意图。    区域熔炼广泛用于半导体材料和高熔点金属钨、钼、钽、铌的提纯,更用于高纯铝、镓、锑、铜、铁、银等金属的提纯。对含杂质约l×10-3%的锗,在区域提纯6次后,高纯锗部分的杂质浓度可降到1×10-3%。钨单晶经5次区熔后,R298K/R4.2K可由40进步到2000.    4.电搬迁提纯    电搬迁是指金属和杂质离子在电场的作用下往必定方向搬迁或分散速度的差别来到达别离杂质的意图。是新近开展起来的用于深度提纯金属的办法,其特点是别离空隙杂质(特别是氧、氮、碳等)的作用好,但现在仅应用于小量金属的提纯。将其和其他提纯办法结合运用,可获超高纯度的金属。    将棒状样品经过流电,母体金属和杂质离子便向必定方向移动,这时离子的漂移速度为:                              V=UF

高纯钼精矿的制备

2019-02-12 10:08:06

优质钼精矿与非优质钼精矿的报价不同,1975年7月1日克莱麦克斯公司所供应钼精矿的报价,优质比非优质高出2.5%~17%。     美国克莱麦克斯公司拟定的优质钼精矿标准为MoS2≥95%、Cu<0.15%、Pb     铜-钼选厂产出的浮选钼精矿,一般含铜都超过了0.5%,铅和氧化钙含量也常超支。钼选厂产出的浮选钼精矿含杂,有时也难到达优质品标准。     为出产优质的高纯度钼精矿,常见的出产工艺有以下几种。     1、强化选矿     加拿大恩达科在精选进程取得两种产品:优质钼精矿含钼56.88%与普通钼精矿含钼51%。     北京银河化工厂选用浮选柱对钼精矿进行七段开路浮选,在获取优质钼精矿(含MoS 97%,钼回收率37%)的一起,还产出一部分钼中矿。萨尔瓦多选用九段精选,从惯例钼精矿中别离出优质钼精矿(含MoS2 97%,钼回收率65%),一起还产出一部分普通钼精矿。     笔者选用TL药剂强化浮选,从含钼47%的钼精矿,出产出含钼为57%~58%、钼回收率≥97%的优质钼精矿,一起还产出一少部分钼中矿(Mo≤2%)。     2、浸出     浮选精矿中含CaO、PbS较高时,可运用浸除。     常见含钙矿藏为方解石(CaCO3),其次为萤石(CaF2)。它们自身不易浮,一般进当选钼尾矿中。可是,连生体、受油药污染或机械搀杂等原因,往往少数进入钼精矿,使其CaO含量超支。     方解石可溶于生成可溶CaCl2:   CaCO3+2HC1=CaC12+CO2↑+H2O       加拿大恩达科对CaO含量0.4%的浮选钼精矿,过滤前参加在常温常压下浸出,使钼精矿CaO含量降到0.03%。     方铅矿(PbS)也能与反响,生成PbCl2。PbCl2不溶于水,但在加热时PbCl2与Cl-反响,生成可溶性PbCl3-: 2PbS+6HCl=2PbCl3+3H2S↑       美国亨德逊钼选厂浮选钼精矿档次为:90%MoS2、0.8%FeS2、0.2%Pb、0.5%CaO、0.05%Cu、6%酸不溶物(大部分为硅酸盐)。为下降铅和氧化钙的含量,出产出优质钼精矿,选用5%浓度的HCl溶液,在80℃下浸出16h,PbCl-3进入滤液,冷却结晶出PbCl2。使钼精矿中的铅含量降到0.03%,氧化钙含量更低,取得了优质钼精矿。     杨家杖子钼选厂当氧化钙过高时,在钼精矿过滤前,向精矿溜槽中滴加工业,亦可下降产品中氧化钙的含量。     但对萤石和硅酸盐中的钙(比方栾川钼矿钙铁石榴石中的钙),用是无法浸除的。     3、氯盐浸出     氯化浸出是运用高氧化功能的FeCl3或CuCl2氧化黄铜矿或方铅矿:   CuFeS2+4FeCl3=CuC12+5FeC12+2S   PbS+2FeC13=PbC12+2FeC12+S       Fe3+离子氧化硫化物,分出S的标准电位Eo(V)为:  硫化物FeSZnSCuFeS2FeS2Cu2SCuSE0(V)0.060.2640.2640.420.560.59 [next]     实际上,硫化矿藏浸出难度次序为:磁黄铁矿<辉铜矿<方铅矿<闪锌矿<黄铜矿<黄铁矿。浸液中除或外,往往还须参加碱金属的氯盐(如NaCl)或碱土金属的氯盐(如CaC12),它们既可以进步浸液的沸点,使浸出能以在100~110℃高温下进行;又能为PbCl2、CuCl供给很多C1-离子,使难溶的PbCl2、CuCl生成可溶的络离子进入液相,Cu、Pb浸除得以完成:   PbCl2+Cl- → PbC13-   CuCl+CI- → CuCl2-       浸液还要参加HCI以坚持必定酸度。     钼精矿的氯化浸出早已在布伦达施行,投产。该工艺也常称布伦达法。     布伦达铜钼矿是国际范围铜-钼档次较低的选厂,原矿含铜0.183%、含钼0.049%。矿石中的铜矿藏首要为黄铜矿。     布伦达的浮选钼精矿均匀含钼54.97%、含铜0.32%、含铅0.38%(1974年)。明显铜、铅含量都较高,1974年布伦达选厂选用了诺兰达公司研究中心研究出的氯盐浸出工艺后,钼精矿档次上升到55.89%Mo、0.054%Cu、0.033%Pb。其质量之高在其时是国际罕见的。     浸液配方一般为:CuCl2 1%、FeC13 10%、CaCl2(或NaC1)30%、HCl 10%。浸出在常压加温下进行,浸出温度一般控制在100~110℃。浸出为接连作业,每次2~3h,浸出后,经过滤将CuCl2-与PbCl3-别离出来。滤液中含反响产品CuCl2-、PbC13-、FeC12…,还含有未效果完的药剂。一般抛弃30%滤液,避免Cu、Pb等在浸液中堆集,其他滤液通入,使FeCl2再生为FeCl3后循环运用。     浸出本钱约9~11美分/kg钼,价格进步95美分/kg钼。布伦达年增赢利约300万美元。     智利安迪那、加拿大海蒙特、美国西雅丽塔等选厂也都选用了相似的氯盐浸出工艺,将钼精矿的铜含量降至0.1%以下。     氯盐加温浸出工艺,原则上适用脱除简直一切的硫化杂质。但因药耗高、能耗大,一般只用于浸出、化浸出难于脱除的黄铜矿。当然,当脱除黄铜矿时,天然也浸除了其它硫化杂质。     4、化浸出     能与硫化铜表面的铜离子反响,生成可溶性铜络离子,使硫化铜矿藏溶解。辉钼矿不与反响,不溶于溶液。根据这个原理,可用化浸出来进行铜-钼别离。     铜矿藏不同,在化溶液中溶解度不同,见下表。   表  几种硫化铜在化液中溶解度①  矿藏 溶解率 (%) 温度(℃)辉铜矿 (Cu2S)斑铜矿 (Cu5FeS4)硫砷铜矿 (Cu3AsS4)黝铜矿 (Cu12Sb4S13)黄铜矿 (CuFeS2)23 4590.2 100.070.0 100.065.8 75.121.9 43.75.6 8.2        ①0.1%NaCN,24h [next]     明显,辉铜矿等次生铜矿藏在化液中溶解度很高,在常温、常压下也可很好地浸出,黄钼矿在化液中溶解度很低,很难浸出。化浸出法也只适合浸除钼精矿中的次生钼矿藏。     浸出是在常温、常压下进行。用量为1~1.5kg/t。     智利的几个大型铜-钼矿山正挖掘次生富集铜矿带,当选矿石中,首要铜矿藏为辉铜矿(Cu2S)。经铜-钼别离后,所获钼精矿含铜约在0.5%~1.0%,为将铜含量降至0.3%以下,大多选用了简单易行的化浸出工艺。     智利丘基卡马塔浮选钼精矿含钼52.5%、含铜1.5%(辉铜矿)。当经接连和分批两段化浸出后,终究产品含钼54%、含铜0.1%.榜首段浸出耗0.8kg/t、第二段浸出耗0.4kg/t。     智利萨尔瓦多、夸琼、帕克帕拉等铜-钼矿山也都选用化浸出工艺浸除浮选钼精矿里的辉铜矿,使终究产品含铜低于0.3%。     化浸出药耗低,可在常温、常压下作业,浸液腐蚀性小,易于施行。但毒性太大,严峻影响到它的推行。     5、氟化浸出     浮选钼精矿(甚至高纯钼精矿)还往往含必定量的石英或硅酸盐,在制取MOS2润滑剂时,还须参加使其脱除。     浸除硅类杂质的机理在于生成可溶性盐:   SiO2+6HF=H2SiF4+3H2O   Ca3Fe2(SiO4)3+8HF+6HCl=3CaSiF6+2FeC13+12H2O       HF是一种中强酸,电离度较低(3.53×10-4)。为进步F-离子浓度,加速反响。1978年罗马尼亚专利改用(NH4F)替代HF。     HF或NH4F都要添加HC1(H2SO4),在加温下进行。因为F-对硅酸盐的溶解效果,使惯例搪玻璃反响釜遭到应战。     上海某化工厂在每产出1t含MoS2 97%产品时,需耗费50%350kg,30%2t。终究产品含SiO2<0.5%,     笔者氟化浸出在玻璃钢(粉醛树脂)反响釜内进行,浸液中HF浓度3%~5%、HC1浓度1%、反响液固比1:1,反响温度:75~80℃。在加温浸出3~4h后,产品中SiO2含量降至0.0275%,钼含量达59%以上。     氟化浸出无法脱除钼精矿中非钼硫化杂质,出产MoS2润滑剂(Molykote)时,有时还须在氟化浸出前添加氯化浸除硫化铜、铁的工艺。     由化浸出、氯化浸出、氟化浸出等化学选矿手法,一般可出产出由浮选工艺无法到达的高纯度钼精矿。

超纯金属的制备和检测方法

2019-03-08 11:19:22

超纯金属,指的是相对高纯度的金属,一般指金属纯度到达纯度9以上的金属,物理杂质的概念才是有意义的,任何金属都不能到达肯定纯。“超纯”具有相对的意义,是指技能上到达的标准。因为技能的开展,也常使“超纯”的标准晋级。 材料的纯度对其功能,特别是微电子学、光电子学功能影响很大,现代高技能产业要求制备出超纯金属以利于制造高功能器材。例如曩昔高纯金属的杂质为ppm级(即百万分之几),而超纯半导体材料的杂质达ppb级(十亿分之几),并将逐渐开展到以ppt级(一万亿分之几)表明。 “超纯”的相对名词是指“杂质”,广义的杂质是指化学杂质(元素)及“物理杂质”(晶体缺陷),后者是指位错及空位等,而化学杂质是指基体以外的原子以代位或填隙等方式掺入。但只当金属纯度到达很高的标准时(如纯度9以上的金属),物理杂质的概念才是有意义的,因而现在工业生产的金属仍是以化学杂质的含量作为标准,即以金属中杂质总含量为百万分之几表明。比较清晰的办法有两种:一种是以材料的用处来表明,如“光谱纯”、“电子级纯”等;一种是以某种特征来表明,例如半导体材料用载流子浓度,即一立方厘米的基体元素中起导电效果的杂质个数(原子/厘米)来表明。而金属则可用剩余电阻率(ρ4.2K/ρ300K)表明。 实际上纯度以几个“9”()来表明(如杂质总含量为百万分之一,即称为6个“9”或6),是不完整概念,如电子器材用的超纯硅以金属杂质核算,其纯度相当于9个“9”,但如计入碳,则可能不到6个“9”。 制备办法 超纯金属的制备有化学提纯法如精馏(特别是金属氯化物的精馏及氢复原)、提高、溶剂萃取等和物理提纯法如区熔提纯等(见硅、锗、铝、镓、铟)。其间以区熔提纯或区熔提纯与其他办法相结合最有用。 因为容器与药剂中杂质的污染,使得到的金属纯度遭到必定的约束,只有用化学办法将金属提纯到必定纯度之后,再用物理办法如区熔提纯,才能将金属纯度说到一个新的高度。能够用半导体材料锗及超纯金属铝为例阐明典型的超纯金属制备及检测的原理(见区域熔炼)。 提纯金属时,杂质的分配系数对提纯金属有严重的联系,因为锗中大部分杂质的分配系数都小于1,所以锗的区熔提纯是非常有用的。半导体材料的纯度,也可用电阻率来表征。区域提纯后的金属锗,其锭底表面上的电阻率为30~50欧姆·厘米时,纯度相当于8~9,能够满意电子器材的要求。但关于杂质浓度小于[KG2]10原子/厘米[KG2]的探测器级超纯锗,则尚须通过特殊处理。因为锗中有少量杂质如磷、砷、铝、镓、硅、硼的分配系数接近于1或大于1,要加强化学提纯办法除掉这些杂质,然后再进行区熔提纯。电子级纯的区熔锗锭用霍尔效应丈量杂质(载流子)浓度,一般可达10~10原子/厘米。经切头去尾,再利用屡次拉晶和切开头尾,一向到达所要求的纯度(10原子/厘米),这样纯度的锗(相当于13)所作的探测器,其分辨率已接近于理论数值。 超纯金属铝的制备与检测办法与锗不同。用三层电解法制备的精铝,其纯度为99.99%,金属铝中杂质的分配系数如表1 [金属铝中杂质的分配系数]。 精铝通过区熔提纯,只能到达5的高纯铝,但如运用在有机物电解液中进行电解,可将铝提纯到99.9995%,并可除掉有晦气分配系数的杂质,然后进行区熔提纯数次,就能到达接近于 7的纯度,杂质总含量 检测办法 超纯金属的检测办法极为困难。痕量元素的化学分析系指一克样品中含有微克级(10克/克)、毫微克级(10克/克)、微微克级(10克/克)杂质的断定。常用的手法有中子和带电粒子活化分析,原子吸收光谱分析,荧光分光光度分析,质谱分析,化学光谱分析及气体分析等。 在单晶体高纯材料中,晶体缺陷对材料功能起明显影响,称为物理杂质,首要依靠在晶体成长过程中操控单晶平稳均匀的成长来削减晶体缺陷。

阳极氧化法制备彩色铝粉

2019-03-11 11:09:41

铝粉的阳极氧化是通过电解液的阳极反响而生成氧化铝膜的电化学进程。这个氧化膜吸附有机染料、无机颜料的色彩而上色。将铝粉置于硫酸电解液中,并不断地加以拌和,使铝粉呈漂浮和半漂浮状况,边活动边随时触摸阳极,并坚持不触摸阳极状况,从而在铝粉表面生成易于上色的氧化铝膜。阳极反响是阳极分出的初生态氧与铝粉表面的铝原子化组成氧化铝的反响,其间部分氧化铝立刻与水化组成水合氧化铝,这就是氧化铝膜的构成进程。一起氧化铝膜可被硫酸电解液溶解,所以阳极氧化进程一起存在成膜反响和溶膜反响,因而有必要操控适合的条件,才干构成必定厚度的氧化铝膜。阴极反响中发生,故使构成的氧化铝膜具有多孔疏松的特色,有利于吸附才能的增强。  铝粉上色是一个物理化学进程,将经阳极氧化处理过的铝粉置于有机染色液中浸泡,使铝粉表面氧化膜吸附有机染料分子,一起氧化铝膜中的氧化铝分子可与有机染料分子以共价键、配位键或氢键等方式结合生成合作物,从而使氧化膜上色。   阳极氧化在铝粉粒子表面构成氧化铝膜的进程中,影响成膜的要素较多,一起不同的上色液导致不同的上色作用,因而应该考虑电解液浓度、反响时刻、温度、上色液等要素的影响。研讨结果标明:(1)硫酸电解液的浓度对氧化膜的生成具有显着的影响。硫酸浓度过低,电解液的导电性不强,氧化铝的成膜速度慢,硫酸浓度过高,生成的氧化膜又溶解,最佳的试验条件:硫酸电解液的浓度应为5-10%。(2)阳极电流密度与氧化铝膜生成速度成正比,因为铝粉在某一瞬间触摸阳极,因而阳极电流密度越大,越有利于铝粉在阳极放电,阳极电流密度越大,生成的氧化铝膜越疏松,有利于上色。试验标明,在7%硫酸电解液中进行阳极氧化,一般操控电流密度为5安/分米2以上,电压不该小于40伏。(3)在阳极氧化进程中,只要通过必定的时刻后,才干使铝粉与阳极充沛触摸,试验标明,氧化时刻以60-90分钟为宜,一起氧化时温度也要坚持在25-35°C为宜。(4)在氧化铝膜上上色,其上色的难易程度与氧化膜的厚度及上色液的浓度有关,氧化膜越厚,越易上色;上色液的浓度越大,越易上色,且色彩越深[4]。因而在上色进程中,一般选用较浓的上色液。试验标明:依据所需色彩的深浅,对上色液浓度加以调整。一起上色液温度为50-60°C,上色时刻为20-40分钟,pH为4.5-6.0为宜。

电石渣制备碳酸钙工艺研究

2019-03-07 09:03:45

渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。 1、渣的预处理 渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。 试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。 2、渣的浸出 许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。 (1)浸出 高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。 (2)氯化铵浸出 卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。 (3)甘酸浸出 袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。 3、碳酸钙的制备 (1)CO2碳化 吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。 Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。 (2)碳酸钠碳化 YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。 Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。 (3)碳酸铵碳化 张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。 闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。 4、渣碳酸钙在塑猜中的使用 聚  董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。