钼合金的加工
2019-01-25 13:36:45
钼和钼合金可采用真空熔炼和粉末冶金方法制成进一步加工的坯料,其加工方法除与纯钼一样可经旋锻和拉拔成棒和丝材之外,也可用锻造、热挤压和轧制等方法进行深加工。采用粉末冶金方法制取的坯料,由于晶粒结构细且均匀,可直接投入深加工。真空熔炼法制得的坯料必须首先进行热挤压,改变其组织结构后才能进行深加工。 钼合金的加工技术规范中,和纯钼相比,它的加热次数多,加工压力大。如钼合金锻造时为保证得到细晶粒组织,在1250~1400℃变形时,每道次变形量要大于15%。由于钼合金的再结晶温度比纯钼高300~500℃,因而合金的变形加工温度应当比纯钼的高一些。在轧制时,为了获得优质板材,在轧制开始时,每一道次的压下量要相当大,才能使金属沿整个截面的变形尽可能均匀。关于钼和钼合金的深加工技术的详细知识,需要者望参阅文献《钼合金》(冶金工业出版社,北京,1984年)。
铬钼合金钢管规格标准
2019-03-15 10:05:15
铬钼合金管
铬钼合金管是无缝钢管的一种,其性能要比一般的无缝钢管高很多,因为这种钢管里面含 Cr 比较多,其耐高温,耐低温,耐腐蚀的性能是其他无缝钢管比 不上的,所以合金管在石油,化工,电力,锅炉等行业的用途比较广泛. 铬钼合金管纯化氢的原理是,在 300—500℃下,把待纯化的氢通入 铬 钼合金管的一侧时,氢被吸附在铬钼合金管壁上,由于钯的 4d 电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为 1.5×10m,而钯的晶格常数为 3.88×10-10 m(20时),故可通过铬钼合金管,在钯的作用下质子又与电子结合并重新形成氢分子,从铬钼合金管的另一侧逸出.在铬钼合金管表面,未被离解 的气体是不能透过的,故可利用铬钼合金管获得高纯氢.
铬钼合金钢管标准:GB5310-1995、GB17396-1998、DIN17175-79、GB6479-2000、GB9948-88
铬钼合金钢管主要用途:石油、化工、电力、锅炉行业的耐高温、耐低温、耐腐蚀用无缝钢管
铬钼合金钢管规格
ф 14x2 ф 219.1x18 ф 323.9x10 ф 16x3 ф 219.1x22 ф323.9x12 ф 18x2x7.1M ф 219.1x25 ф 323.9x13 ф 25.4x3x5 ф 219.1x28x6 ф 323.9x13.5 ф 28x4 ф 219.1x26 ф 323.9x16 ф 31.8x4x12M ф 219.1x30 ф 323.9x17.5 ф 38x4x7 ф 219.1x36 ф 323.9x20 ф 38x4.5 ф 273x7 ф 323.9x25x12Mф 38x6 ф 273 ф 323.9x26 ф 42x3.5 ф 273x12 ф 323.9x30 ф 42x4 ф 273x16 ф 323.9x32 ф 42x5 ф 273x20 ф 323.9x42 ф 42x5.5 ф 273x22.2 ф 355.6x11 ф 45x4 ф 273x26 ф 355.6x38 ф 48x4 ф 273x28 ф 355.6x36x3Mф 48x5x6M ф 273x32 ф 335.6x40 ф 48x5.5 ф 273x36 ф 355.6x40x1.6M铬钼合金钢管规格ф 51x4 ф 159x14 ф 323.9x10 ф 57x3 ф 159x18 ф323.9x12 ф 57x4 ф 159x18x8-12 ф 323.9x13 ф57x5 ф 159x20 ф 323.9x13.5 ф57x6 ф 159x25 ф 323.9x16 ф60.3x5 ф 168x5 ф 323.9x17.5 ф60.3x6 ф 168.3x7.11 ф 323.9x20 ф60.3x6.5 ф 168.3x8 ф 323.9x25x12Mф 60.3x8 ф 168.3x10 ф 323.9x26 ф 60.3x8.5 ф 168.3x12 ф 323.9x30 ф 60.3x10 ф 168.3x16x12M ф 323.9x32 ф 73x5.2x6 ф 168.3x18 ф 323.9x42 ф76x4 ф 168.3x22x12M ф 355.6x11 ф76.2x6 ф 194x6 ф 355.6x38 ф76.3x8 ф 193.7x8 ф 355.6x36x3Mф76.3x10 ф 193.7x10 ф 335.6x40
铜镍硅合金
2017-06-06 17:50:09
铜镍硅合金 (copper-nickel-silicon alloy)以铜镍合金为基础加入硅的白铜。铜镍硅合金含5%~30%Ni、0.1%~3%Si,余量为铜和其他元素和杂质。镍和硅形成Ni2 Si化合物,其中镍与硅的质量比为4。Ni2 Si能固溶于铜中.在共晶温度(1025C)时的最大溶解度为9%,温度降低时,溶解度减小,在室温时几乎等于零。合金在热处理过程中,由于Ni2 Si相的沉淀而强化,既具有铜镍合金的耐蚀性,又克服铜镍合金疲劳强度低的缺点。合金在混合盐水介质中的耐蚀性显著高于一般白铜和锌白铜,因而受到人们的重视。 含10%~20%Ni、1.5%~3%Si,余量为铜的合金,经热处理后抗拉强度达780~980MPa,弹性极限达580~780MPa,弹性模量达120000~150000MPa,伸长率为1%~4%。 铜镍硅合金主要用于制作电气仪表、电子工业用的精密弹簧片,以及耐蚀的仪器仪表零件。
稀土硅合金
2017-06-06 17:50:03
稀土硅合金稀土
金属
(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。稀土
金属
是从18世纪末叶开始陆续发现。稀土
金属
的光泽介于银和铁之间。稀土
金属
的化学活性很强。铝硅合金 aluminium silicon alloy 一种以铝、硅为主成分的锻造和铸造合金。一般含硅11%。同时加入少量铜、铁、镍以提高强度。密度2.6~2.7g/cm3。导热系数101~126W/(m·℃)。杨氏模量71.0GPa。冲击值7~8.5J。疲劳极限±45MPa。用于制造低中强度的形状复杂的铸件,如盖板、电机壳、托架等,也用作钎焊焊料。在含硅量超过Al-Si共晶点(硅11.7%)的铝硅合金中,硅的颗粒可明显提高合金的耐磨性,组成一类用途很广的耐磨合金。当含硅量高达14.5%~25%时,再加入一定量的Ni,CU,Mg等元素能改善其综合力学性能。它们可用于汽车发动机中代替铸铁汽缸而明显减轻重量。用作汽缸的铝硅合金,可经过电化学处理以浸蚀表层铝而在缸内壁保留镶嵌于基体的初生硅质点,其抗擦伤能力和抗磨损性以明显改善。含硅量11%~13%的合金以其质轻、低膨胀系数和高耐蚀性能等特点而成为最佳的活塞材料之一。 稀土硅合金的用途将来今后更加的广阔。 以上是稀土硅合金的介绍,更多信息请详见上海
有色金属
网。
氧化钼烧结块替代钼铁炼钢制钼合金钢
2019-01-24 17:45:50
利用氧化钼代替钼铁直接进行钢的合金化,在国外应用已经比较广泛,1974年美国在工业钢方面氧化钼与钼铁的消耗中氧化钼占73.3%,钼铁占25.2%,其它1.5%。日本用氧化钼直接投入电炉炼钢,氧化钼用量占83%,用钼铁占很小的比例。美国1984年氧化钼和钼铁产量比为6.3∶1。我国用氧化钼炼钢也在不断提升,现今已有大连钢厂、重庆特钢等主要大型特钢企业在广泛利用氧化钼直接炼钢。使用氧化钼炼钢与使用钼铁炼钢相比优越性明显。
氧化钼由钼精矿(MoS2)焙烧生成三氧化钼,被炼钢做添加剂使用。由于三氧化钼做炼钢的添加剂,钼的回收率较低,透气性比较差,脱氧剂消耗较高等缺陷。某集团公司科研所研究人员,试验研究一种在结构和成份上与三氧化钼不同的氧化钼炼钢添加剂,叫做氧化钼烧结块,氧化钼烧结块强度比三氧化钼压块的强度大,并且含有二氧化钼成份。因此,使用氧化钼烧结块克服了用三氧化钼压块时某些缺陷。
氧化钼烧结块试验方法与条件
一、试验过程
1、所用原料:钼精矿 44.49%
2、试验主要设备:反射炉、热电偶、毫伏表、吸收塔、风机等。
3、操做规程,将钼精矿加入反射炉后,随温度不断升高,钼精矿被氧化,当氧化层达到15mm~20mm厚时,再将氧化层移到炉前700~800℃的部位的温区堆集一块进行烧结,烧结成块后出炉。
尾气中的SO2气体使用石灰乳吸收除去。
4、反应原理:
反应方程式
MoS2+3 O2=MoO3+2SO2↑
MoS2+6MoO3=7MoO2+2SO2↑
在焙烧过程中由于焙烧料是在没有搅拌静态的状况下焙烧的,所以从上面的反应方程式可以得知烧结块的成份主要是由MoO3和MoO2两种钼的氧化物组成。由于烧结时也是在静态状况下进行,当温度达到氧化钼熔化温度时,堆积面上的烧结料有部分三氧化钼挥发,但由于过热,表面又形成一层粘结物,所以,堆积料内部是不会有三氧化钼挥发的。
二、工艺条件选择焙烧时间(t)400℃氧化层厚度(mm)600℃氧化层厚度(mm)0.5-0.52.0154.04186.05207.0620
从上述试验条件分析:焙烧条件应控制在600℃左右,焙烧时间应为4小时,氧化速度较快。
焙烧时间、温度、回收率之间关系试验结果
焙烧时间 焙烧温度 钼回收率
2小时 790℃~900℃ >87%
3小时 790℃~900℃ 85%
结果分析:焙烧温度应在790~900℃。烧结时间应控制2小时之内,钼回收率较高,钼的回收率还有一些具体操作方面的影响因素。
烧结块化学成分批号烧结前Mo%烧结后分析结果Mo%S%MoO3%MoO2%443.6548.261.262.7611.12743.6550.86<0.0166.369.15843.6550.67<0.0152.3922.0011-48.12<0.011343.9849.460.0651744.4949.510.089烧结钼回收率批号烧结前烧结后回收率%重量kgMo%H2O重量kgMo%1395.543.9837149.4685.91797.544.49383.549.5198.2累计91.62
试料的累计回收率是91.62%,操作严格控制温度与烧结时间,焙烧料不能在炉内停留时间过长,减少机械损失,以及增加尾气中三氧化钼回收设施,回收率可以达到95%以上。
氧化钼烧结块符合炼钢厂对氧化钼添加剂的技术要求。重庆钢厂对氧化钼添加剂技术指标要求为:Mo48%以上,S<0.15%、Cu<1%、P<0.04%、Sn<0.07%、Sb<0.06%,Pb<0.05%。试验用料Mo44.49%,焙烧出的氧化钼烧结块成分为Mo49.51%,S<0.089%、Cu 0.16%、Sn 0.0054%、Pb 0.092%。(Pb烧结前后没有变化)。
经测试氧化钼烧结块中二氧化钼含量占20%左右。通过配料调整、炉内气氛的严格控制,二氧化钼含量可以再提高。
氧化钼烧结块的销路前景广阔,经济效益十分可观。据重度钢厂试用结果表明,用氧化钼烧结块做炼钢添加剂可减少钼铁用量30%。重庆钢厂钼总用量的80%都用在炼合金钢的添加剂方面。
研究氧化钼烧结块还应该继续做的工作是:进一步解决提高氧化钼烧结块的生产效率以及增加氧化钼烧结块中二氧化钼的含量。
锰硅合金冶炼原理
2019-01-25 15:50:04
在炉料的冶炼受热过程中,炉料中的锰和铁的高价氧化物在炉料区被高温分解或被CO还原成低价氧化物,到1373~1473K时,高价氧化锰逐渐被充分还原为MnO,全部的FeO进一步还原成Fe;MnO比较稳定,只能用碳进行直接还原,由于炉料中SiO2较高,MnO还没来得及还原就与之反反应结合成了低熔点的硅酸锰。因此,MnO的还原反应实际上是在液态炉渣的硅酸锰中进行的,硅酸锰的状态和熔点为 MnO+SiO2===MnSiO3 t熔=1250℃ 2MnO+SiO2===Mn2SiO4 t熔=1345℃ 由于锰与碳能生成稳定的化合物Mn3C,用碳直接还原得到的是锰的碳化物Mn3C。其反应式是 MnO•SiO2+4/3C===1/3Mn3C+SiO2+CO↑ 炉料中的氧化铁比氧化锰容易还原,预先出来的铁与锰形成共熔体(MnFe)3C,极大地改善了MnO的还原条件。 随着温度的增高。硅也被还原出来,其反应式是 SiO2+2C===Si+2CO↑ 由于硅与锰能生成比Mn3C更稳定的化合物MnSi,当还原出来的Si遇到Mn3C时,Mn3C中的碳就被置换出来,造成合金中碳量下降,其反应式为 1/3Mn3C+Si===MnSi+1/3C 随着还原出来的硅含量的提高,碳化锰受到破坏,合金中的碳含量进一步降低。 用碳从液态炉渣中还原生产锰硅合金的总反应式为 其开始反应温度为773℃。炉料中的磷约有75%进入合金。 在锰硅合金的冶炼过程中,为了改善硅的还原条件,炉料中必须有足够的SiO2,以保证冶炼过程始终处在酸性渣下进行;但是,如果渣中SiO2过量,又会造成排渣困难,通常冶炼锰硅合金的炉渣成分为 w(SiO2)=34%~42% n(CaO+MgO)/nSiO2=0.6~0.8 w(Mn)<8%
锰硅合金价格
2017-06-06 17:49:53
硅锰合金价格,国内硅锰价格暂时出现高位盘整,各地报价趋于集中,市场现货仍紧,但也有部分商家有高价现货出售,市场现货紧张局面暂时未得到完全解决,进口锰矿价格仍有上涨出现,但钢材价格有所回落调整,目前市场商家心态微妙。产品国标地区含税价格(元/吨)备注硅锰FeMn65Si17辽宁7100-7300出厂含税价硅锰FeMn65Si17天津7100-7200出厂含税价硅锰FeMn65Si17河北7000-7200出厂含税价硅锰FeMn65Si17内蒙古7000-7250出厂含税价硅锰FeMn65Si17宁夏7000-7200出厂含税价硅锰FeMn65Si17山东7000-7200
铝硅合金的用途
2018-12-27 16:26:15
铝硅合金是一种以铝、硅为主成分的锻造和铸造合金。 一般含硅11%。同时加入少量铜、铁、镍以提高强度。密度2.6~2.7g/cm3。导热系数101~126W/(m·℃)。杨氏模量71.0GPa。冲击值7~8.5J。疲劳极限±45MPa。
铝硅合金有以下用途:
1、在含硅量超过Al-Si共晶点(硅11.7%)的铝硅合金中,硅的颗粒可明显提高合金的耐磨性,组成一类用途很广的耐磨合金。
2、用于制造低中强度的形状复杂的铸件,如盖板、电机壳、托架等,也用作钎焊焊料。
3、铝硅合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。用铝脱氧的钢锭,一般称为,镇定钢,由于铝脱氧后会被氧化成氧化铝,氧化铝可以细化奥氏体晶粒,所以铝脱氧的钢具有较好的综合力学性能。
4、硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。
锰硅合金的知识
2018-12-12 09:37:20
俗称硅锰合金。
(1)用途适用于炼钢及铸造作合金剂、复合脱氧剂和脱硫剂。
(2)牌号和化学成分见表。
锰硅合金的牌号和化学成分
牌 号化学成分(质量分数)(%)MnSjCPSIⅡⅢ≤
FeMn64Si2760.O~67.O25.0~28.0O.5O.10O.150.25O.04
FeMn67Si2363.0~70.O22.0~25.00.70.100.150.25O.04
FeMn68Si2265.0~72.020.0~23.O1.2O.100.15O.250.04
FeMn64sj2360.O~67.020.O~25.Ol.2O.10O.15O.250.04
FeMn68Sil865.0~72.O17.O~20.O1.8O.10O.15O.25O.04
FeMn64Sil860.0~67.O17.O~20.O1.80.100.150.25O.04
FeMn68Sil665.0~72.014.0~17.02.50.100.150.250.04
FeMn64Sil660.O~67.O14.O~17.02.5O.20O.25O.300.05
注:1.硫为保证元素,其余均为必测元素。
2.锰硅合金以块状或粒状供货,其粒度范围及允许偏差应符合下表的规定。
等 级粒度范围
/mm偏差(%)筛上物筛下物≤
l20~30055
210~15055
310~10055
410~5055
钼及钼合金粉末冶金技术研究现状与发展
2019-03-04 11:11:26
体系总结了钼及钼合金粉末冶金技能的研讨进展和工业运用现状。别离论说了钼粉末冶金理论、超细(纳米)钼粉、大粒度(和高活动性)钼粉、高纯钼粉、新式钼成型技能、新式钼烧结技能、钼粉末冶金进程数值模仿技能等7个研讨方向的技能原理、技能特色、设备结构和工业运用现状,并分析其展开远景。
钼及钼合金具有高的高温强度和高温硬度,杰出的导热性和导电性,低的热膨胀系数,优异的耐磨性和抗腐蚀性,被广泛运用于航天航空、动力电力、微电子、生物医药、机械加工、医疗器械、照明、玻纤、国防建设等范畴。本文体系总结钼及钼合金粉末冶金技能的原理、技能特色、设备结构和工业运用现状,并分析其展开远景。
一、钼粉末制备技能展开
跟着轿车、电子、航空、航天等职业的日益展开,对钼粉末冶金制品的质量要求越来越高,因而要求钼粉质料在化学成分、物理描摹、均匀粒度、粒度散布、松装密度、活动性等许多方面具有愈加优异的功能目标,钼粉朝着高纯、超细、成分可调的方向展开,然后对其制备理论和制备技能提出了更高的要求。
(一)钼粉复原理论研讨
钼粉的制取进程是一个包含钼酸铵到MoO3、MoO到MoO2、MoO2到钼粉等3个独立化学反响,阅历一系列杂乱的相变进程,触及钼酸铵质料以及MoO3、MoO2、钼蓝等中间钼氧化产品的描摹、尺度、结构、功能等许多要素的极端杂乱的物理化学进程。
现在,已根本清晰MoO3到Mo的复原进程动力学机制,即:MoO3到MoO2阶段反响进程契合核决裂模型,MoO2到Mo阶段反响契合核减缩模型;MoO2到Mo阶段反响有两种办法,低露点气氛时通过假晶改变,高露点气氛时通过化学气相搬迁。但对MoO3到MoO2阶段的反响办法没有构成共同观点,Sloczynski以为MoO3到MoO2的复原是以Mo4O11为中间产品的接连反响,Ressler等以为在复原进程中,MoO3首要吸附氢原子[H]生成HxMoO3,然后HxMoO3开释所吸附的[H]改变为MoO3和MoO22种产品,跟着温度上升MoO2不断长大,而改变成的中间态MoO3进一步复原为Mo4O11,进而复原成MoO2。国内尹周澜等、刘心宇等、潘叶金等在这一范畴也进行了必定作业,但未见到较完善的物理模型和数学模型的报道。
(二)超细(纳米)钼粉制备技能研讨
现在,制备超细钼粉的办法首要有:蒸腾态三氧化钼复原法、活化复原法和十二钼酸铵复原法。纳米钼粉的制备办法首要有:微波等离子法、电脉冲放电等。
1、蒸腾态三氧化钼复原法
蒸腾态三氧化钼复原法,是将MoO3粉末(纯度达99.9%)装在钼舟上,置于1300~1500℃的预热炉中蒸腾成气态,在流量为150mL/min的H2-N2气体和流量为400mL/min的H2的混合气流的夹载下,MoO3蒸气进入反响区,通过复原成为超细钼粉。该办法可取得粒径为40~70nm的均匀球形颗粒钼粉,但其工艺参数操控比较困难,其间,MoO3-N2和H2-N2气流的混合温度以及MoO3成分都对粉末粒度的影响很大。
2、活化复原法
活化复原法以七钼酸铵(APM)为质料,在NH4Cl的催化效果下,通过复原进程制备超细钼粉,复原进程中NH4Cl彻底蒸发。其复原进程大致分为氯化铵加热分化、APM分化成氧化钼、MoO3和HCl反响生成7MoO2Cl2、MoO2Cl2被复原为超细钼粉等4个阶段。总反响式为:NH4Cl+(NH4)6Mo7O24+4H2O=HCl+7NH3+28H2O+7Mo。该办法比传统办法的复原温度下降约200~300℃,而且只运用一次复原进程,工艺较简略。此办法制备的钼粉均匀粒度为0.1μm,且粉末具有杰出的烧结功能。韩国岭南大学提出了类似办法,仅仅所用质料为高纯MoO3。
3、十二钼酸铵复原法
十二钼酸铵复原法 是将十二钼酸铵在镍合金舟中,并置于管式炉中,在530℃下用复原,然后再在900℃下用复原,可制出比表面积为3.0m2/g以上的钼粉,这种钼粉的粒度为900nm左右。该办法仅有工艺进程描绘,未见到进程机制的分析,其可行性没有可知。
4、羰基热分化法
羟基法是以羟基钼为质料,在常压和350~1000℃的温度及N2气氛下,对羟基钼料进行蒸气热分化处理。因为羟基化合物分化后,在气相中情况下完结形核、结晶、晶核长大,所以制备的钼粉颗粒较细,均匀粒度为1~2μm。运用羟基法制得的钼粉具有很高的化学纯度和杰出的烧结性。
5、微波等离子法
微波等离子法运用羟基热解的原理制取钼粉。微波等离子设备运用高频电磁振荡微波击穿N2等反响气体,构成高温微波等离子体,进而使Mo(CO)6在N2等离子体气氛下热解发生粒度均匀共同的纳米级钼粉,该设备能够将生成的CO当即排走,且使发生的Mo敏捷冷凝进入搜集设备,所以能制备出比羟基热解法粒度更小的纳米钼粉(均匀粒径在50nm以下),单颗粒近似球形,常温下在空气中的稳定性好,因而此种纳米钼粉可广泛运用。
6、等离子氢复原法
等离子复原法的原理是:选用混合等离子反响设备将高压直流电弧喷射在高频等离子气流上,然后构成一种混合等离子气流,运用等离子蒸气复原,开端得到超细钼粉。取得的初始超细钼粉打针在直流弧喷射器上,当即被冷却水冷却成超细粉粒。所得到粉末均匀粒径约为30~50nm,适用于热喷涂用的球形粉末。该办法也可用于制备其他难熔金属的超细粉末,如W、Ta和Nb。微波等离子法和等离子氢复原法制备的纳米钼粉纯度较高,描摹较好,但其出产本钱大大提高。
7、机械合金化法
日本的桑野寿选用碳素钢、SUS304不锈钢、硬质合金钢nm左右的钼粉。这种办引起Fe、Fe-Cr-Ni和W在钼中固溶,其固溶量到达百分数级。此外,电脉冲法和电子束辐照法、冷气流破坏、金属丝电爆破法、高强度超声波法、电脉冲放电、关闭循环氢复原法、电子束辐射法等大多只具有实验研讨的价值,尚不具有工业化制备的条件。
(三)大粒度(和高活动性)钼粉制备技能研讨--钼粉的增大改形技能研讨大粒度(和高活动性)钼粉首要用于精细器材的焊接和喷涂,其物性目标首要有:大粒度(≥10μm)、大松装密度(3.0~5.0g/cm3)、杰出的活动性(10~30s/50g)。相对费氏粒度一般为5μm以下,粒度散布根本呈正态散布,松装密度在0.9~1.3g/cm3之间,钼粉描摹为不规矩颗粒团,活动性较差(霍尔流速计无法测出)的惯例钼粉而言,这类钼粉的制备难点首要有3点:粒度大、密度大、活动性好。满意这3点要求的抱负钼粉描摹是大直径的实心球体,这与惯例钼粉非规格松懈颗粒团的描摹天壤之别。一般地,钼粉增大改形技能首要有化学法和物理法两大类。
1、化学法
制备出大粒度钼酸铵单晶块状颗粒,依照遗传性原理,通过后续焙烧、复原,制备出大粒度的钼粉真颗粒(惯例钼粉颗粒实践上是许多小颗粒的聚会体),随后进行必定的机械处理,取得描摹圆整、密度大、尺度大的钼粉颗粒。这种办法理论上可行,可是制备大单晶钼酸铵颗粒的难度较大,而且后续钼粉尺度和描摹的遗传性量化规矩不清晰,工艺流程较长。
2、机械造粒技能
将加有粘结剂的混合钼粉在模具或造粒设备中,通过机械约束得到必定尺度,然后脱除粘结剂,烧结成必定强度的规矩颗粒团。这种办法原理简略,但实验标明,这种办法增大钼粉粒度较为简略,但对活动性改善不大。
3、等离子造粒技能
等离子造粒技能在粉末改形方面运用由来已久,其原理是,在维护气氛下,通过必定途径将粉末送入等离子火焰心部,运用高达几千摄氏度的高温使粉末颗粒熔化,然后在自在下落进程中运用液滴的表面张力自行球化,球形液滴通过冷却介质激冷呈大粒度、高密度球形粉末。这种办法取得的粉末具有很好的物性目标,商场远景宽广,但其技能难度较大,特别在粉末运送和维护气氛的坚持、制品的冷却搜集等方面较为困难,设备出资大,保养比较困难。
4、流化床复原法
钼粉的流化床复原法由美国Carpenter等提出,通过2阶段流化床复原直接把粒状或粉末状的MoO3复原成金属钼粉。第1阶段选用作流态化复原气体,在400~650℃下把MoO3复原为MoO2;第2阶段选用作流态化复原气体,在700~1400℃下将MoO2复原成金属Mo。因为在流化床内,气-固之间能够取得最充沛的触摸,床内温度最均匀,因而反响速度快,能够有效地完结对钼粉粒度和形状的操控,所以该办法出产出的钼粉颗粒呈等轴状,粉末活动性好,后续烧结细密度高。这种办法没有见到详细出产运用的信息。
(四)高纯钼粉制备技能研讨
高纯钼粉用于耐高压大电流半导体器材的钼引线、声像设备、照相机零件和高密度集成电路中的门电极靶材等。要制备高纯钼粉,有必要首要取得高纯三氧化钼或高纯卤化物。取得高纯三氧化钼的工艺首要有:
1、等离子物理气相堆积法
以空气等离子处理普通的三氧化钼,运用三氧化钼沸点比大大都杂质低的特色,令其在空气等离子焰中敏捷蒸发,然后在等离子焰外引进很多冷空气使气态三氧化钼激冷,取得超纯三氧化钼粉末。
2、离子交换法
将质料粉末溶于聚四氟乙烯容器中加水拌和,然后以1L/h的速度向容器中参加浓度为30%的H2O2。所得溶液通过H型阳离子交换剂,将容器中的溶液加热至95℃,抽气压力在25Pa左右坚持5h,浓缩后构成沉积,即为高纯三氧化钼。
3、化学净化法
通过屡次重结晶,取得高纯钼酸铵,然后煅烧得到高纯三氧化钼。
取得高纯三氧化钼后,选用传统氢复原法和等离子氢复原法均可取得高纯度钼粉。这几种制备技能均有运用的报道,但详细技能思路和细节均未揭露。
取得高纯卤化物的工艺原理是:将工业三氧化钼或钼金属废料(如垂熔条的夹头、钼材边角料、废钼丝等)卤化得到卤化物(一般为),然后在550℃左右的高温条件下对卤化钼进行分馏处理,使里边的杂质蒸发,得到深度提纯的卤化钼(据称纯度可到达5N),终究通过氢氯焰或氢等离子焰复原,得到高纯钼粉。日本学者佐伯雄造报道了800~1000℃下氢复原高纯的研讨,得到的超纯钼粉中金属杂质含量比其时商场上高纯钼粉低2个数量级。氢复原法是一种产品纯度高,简略易行的办法。可是的制备、提纯和氢复原进程均运用了,对操作人员和环境危害较大。
二、新式钼成型技能展开
现在,粉末的成型技能朝着"成型件的高细密化、结构杂乱化、(近)净成型、成型快速化"的方向展开。以下几种约束成型技能具有很大的技能创新性,一旦取得打破,将对钼固结技能(包含约束和烧结)发生性的影响,但这些技能的详细技能细节没有发表。
1、动磁约束(DMC)技能
1995年美国开端研讨“动磁约束”并于2000年取得成功。动磁约束的作业原理是:将粉末装于一个导电的护套内,置于高强磁场线圈的中心腔内。电容器放电在数微秒内对线圈通入高脉冲电流,线圈腔内构成磁场,护套内发生感应电流。感应电流与施加磁场彼此效果,发生由外向内紧缩护套的磁力,因而粉末得到二维约束。整个约束进程缺乏1ms。相对传统的模压技能,动磁约束技能具有工件约束密度高(生坯密度可到达理论密度的95%以上),作业条件愈加灵敏,不运用润滑剂与粘结剂,有利于环保等长处。现在动磁约束的运用已挨近工业化阶段,第1台动磁约束体系已在试运行。
2、温压技能
温压技能由美国Hoeganaes公司于1994年提出,其工艺进程是,在140℃左右,将由质料粉末和高温聚合物润滑剂组成的粉末喂入模具型腔,然后约束取得高细密度的压坯。这种专利聚合物在约150℃具有杰出的润滑性,而在室温则成为杰出的粘结剂。温压技能是一项运用单次约束/烧结制备高细密度零件的低本钱技能,只通过一次约束便可到达复压/复烧或熔渗工艺方能到达的密度,而出产本钱却低得多,乃至可与粉末铸造相竞赛。但现在适合于钼合金的喂料配方需求实验断定。
3、活动温压(WFC)技能
活动温压技能由德国Fraunhofer研讨所提出。其根本原理是:通过在惯例粒度粉末中,参加适量的微细粉末和润滑剂,然后大大提高了混合粉末的活动性、填充才能和成形性,进而能够在80~130℃温度下,在传统压机上精细成形具有杂乱几许外形的零件,如带有与约束方向笔直的凹槽、孔和螺纹孔等零件,而不需求这以后的二次机加工。作为一种簇新的粉末冶金零部件近终构成形技能,活动温压技能既克服了传统粉末冶金技能在成形方面的缺乏,又防止了打针成形技能的高本钱,具有非常宽广的运用潜力。现在,该技能尚处于研讨的初始阶段,混合粉末的制备办法、适用性、成形规矩、受力情况、流变特性、烧结操控、细密化机制等方面的研讨均未见报道。
4、高速约束(HVC)技能
粉末冶金用高速约束技能是瑞典Hoganas公司与Hydrapulsor公司合作开发的,选用液压机,在比传统快500~1000倍的约束速度(压头速度高达2~30m/s)下,一起运用液压驱动发生的多重冲击波,间隔约0.3s的附加冲击波将密度不断提高。高速约束压坯的径向弹性后效很小,压坯的尺度误差小,可用于粉末的近净构成型,且出产功率极高;但其设备吨位较大,尚不具有制备大尺度工件的才能,且工艺进程环境噪音污染严峻。
三、新式钼烧结技能展开
近年来,粉末烧结技能层出不穷。电场活化烧结技能(FAST)是通过在烧结进程中施加低电压(~30V)和高电流(>600A)的电场,完结脉冲放电与直流电一起进行,到达电场活化烧结,取得显微结构显着细化、烧结温度显着下降、烧结时刻显着缩短的意图。挑选性激光烧结(SLS)运用分层制作办法,首要在核算机上完结契合需求的三维CAD模型,再用分层软件对模型进行分层,得到每层的截面,然后选用自动操控技能,使激光有挑选地烧结出与核算机内零件截面相对应部分的粉末,完结分层烧结。
从理论上讲,这些烧结技能都具有很高的学术价值,但大多尚处于实验室研讨阶段,只能用于小尺度钼制品的小批量烧结,间隔工业运用研讨尚有很大间隔。具有必定工业化运用远景的钼烧结技能首要有以下几种:
1、微波烧结技能
微波烧结运用材料吸收微波能转化为内部分子的动能和热能,使材料全体均匀加热至必定温度而完结细密化烧结的意图。微波烧结是快速制备高质量的新材料和制备具有新功能的传统材料的重要技能手段之一。
相对电阻烧结、火焰烧结、感应烧结等传统烧结办法而言,微波烧结法不只具有节能显着,出产功率高,加热均匀(其温度梯度为传统办法的1/10),烧结制品少(无)内应力、大幅变形和烧结裂纹等缺点,烧结进程准确可控等长处。别的,微波加热技能可用于钼精矿提高除杂、钼精矿焙烧、钼酸铵焙解、钼粉复原等多种工艺环节。但因为微波穿透深度的约束,被烧结材料的直径一般不大于60mm,别的微波烧结气氛很难确保处于2,因而很难防止钼的烧结进程氧化污染。
2、热等静压技能
气压烧结(热压烧结)技能是一种约束机械能与烧结热能耦合效果下的钼固结技能,热等静压是其间运用最成功的工艺。对烧结密度、安排均匀性和空地率等烧结目标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多选用热等静压技能,其产品质量远高于传统的冷等静压-无压烧结工艺,国内尚无类似出产工艺的报道。
3、放电等离子烧结技能
放电等离子烧结技能(SPS)是一种运用通-断直流脉冲电流直接通电烧结的加压烧结法。其工艺原理是,电极通入通-断式直流脉冲电流时瞬间发生的放电等离子体、放电冲击压力、焦耳热和电场分散效果,使烧结体内部各个颗粒均匀地本身发生焦耳热并使颗粒表面活化,然后运用粉末内部的本身发热效果完结烧结细密化,取得均质、细密、细晶的烧结安排。这种比传统烧结工艺低180~500℃,且高温等离子的溅射和放电冲击可铲除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。德国FCT公司现已选用这种技能制备出直径为300mm的钼靶材,国内尚无类似出产工艺的报道。
4、铝热法复原-烧结一体化技能
铝热法选用铝粉末作为复原剂,在200~300℃下,对钼酸钙、硫化钼或三氧化钼进行低温复原,可用大大低于惯例氢复原工艺的本钱和较高出产功率制得低密度粗制钼产品或钼合金涂层。一起,在必定的气体压力效果下,跟着复原进程的进行,钼粉可发生开端烧结,取得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精粹法制备高纯钼制品的质料。
四、钼粉的粉末冶金特性规矩性研讨
HCStark、Plansee等国外首要钼厂商对钼粉有严厉的分类,构成了较为完好的钼粉系列,不同加工制品选用不同目标的钼粉,不同的钼粉在约束成型前选用不同的前处理办法,不同的钼粉选用不同的约束、烧结工艺,而且不同物性目标钼粉能够彼此调配,取得最优质料组成和最佳的密度、均匀性等压坯质量,然后确保烧结件和终究产品的质量。而国内只要少量组织进行了开端探究,国内厂商没有构成体系的钼粉分级,不管哪种质料、哪种工艺、哪种设备取得的钼粉,均选用类似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提及。较为体系地展开钼粉的粉末冶金特性研讨,理清质料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应联系,关于取得产品的多元化、系列化、最优化具有很大的出产辅导意义。
五、钼粉末冶金进程数值模仿技能展开
长期以来,钼粉复原、成型、烧结工艺多依赖于出产经历堆集。近年来跟着钼制备加工技能的精整化,数值模仿逐步用于钼的这3个粉末冶金工艺段,为研讨微观演化进程,提醒钼制备加工进程的准确机制,进而为完结钼成型工艺的可控性供给理论支撑。就这3段工艺的本质而言,钼粉复原阶段归于典型的分散场现象,可学习流体介质模仿技能;成型、烧结进程归于典型的非接连介质体,且质料粉末组成反常杂乱,无法树立一致的几许形式、物理模型和数学模型,现在尚无完善的模仿技能和模仿软件。
1、钼粉成型进程数值模仿
钼粉约束成型时,粉末的应力变形比固态金属杂乱,可概括为2个首要阶段:约束前期为松懈粉末颗粒的聚合,约束后期为含孔隙的实体。粉末约束时因为很多不同尺度粉末颗粒间的彼此效果以及粉末与模壁间的机械效果和冲突效果,再加上制品密度、弹性功能、塑性功能间的彼此影响,粉末的力学行为是非常杂乱的,还没有一个一致的材料模型。
现在因为非接连介质力学的根本理论还不完善,国内外的研讨大多是将粉末体作为接连体假定而进行的。粉末约束模型可简化为弹性应力-应变方程。
2、钼粉烧结进程数值模仿
烧结从本质上来说也是一种热加工工艺。烧结进程中的粉末固结和热量搬迁是一起进行的,固结中的物理机制包含塑性屈从、蠕变和分散。而粉末凝结进程中的部分压力和温度决议着这些物理机制对粉末固结所起的效果。一起,粉末凝结中的热量搬迁(首要是热量传递)又深受部分相对密度的影响。因而,对烧结的分析有必要结合热力学。
因为钼粉烧结进程的基础理论展开缺乏,无法树立满足的偏微分方程组,所以烧结进程的数值模仿,只能进行单元素体系、简略尺度和描摹的钼粉情况下的简略模仿。这种模仿成果有助于分析其间的机制,但尚无法有效地辅导出产工艺。
六、结束语
通过近一个世纪的展开,"粉末多样化、制品准确化"逐步成为现代钼粉末冶金技能的展开方向,并开宣布一系列钼粉末冶金新技能、新工艺及其进程理论,这些研讨的重点是粉末和制品的结构、描摹、成分操控技能。总的趋势是钼粉向超细、超纯、粉末特性可控方向展开,钼制品的约束烧结向以彻底细密化、(近)净成型为首要目标的新式固结技能展开。
展开钼粉末复原进程动力学问题研讨和粉末冶金进程的数值模仿研讨,有助于从理论上分析质料、钼粉功能、钼制品功能、复原工艺、约束工艺、烧结工艺之间的影响规矩,为处理实践工艺问题供给理论支撑和技能思路。
锰硅合金生产节能措施
2018-12-10 09:42:47
3月28日消息:随着世界各国对能源消耗的关注,节能降耗已经成为锰硅合金行业的重要环节,也是企业生存的关键。 锰硅合金的生产有电炉法和高炉法两种,我国主要使用电炉法生产,降低电耗可以从以下方面入手。 1、提高炉料电阻 节约电能的根本思想是提高电弧电阻炉的有功功率。根据功率公式(P=I2R),提高R料,从而提高有功功率。 2、调整焦炭配入量和粒度级配 焦炭层过厚,电极上抬,熔池温度低,熔体从炉内排出不畅;焦炭层过薄,电极插入过深,易翻渣,恶化炉况,影响电耗。两种情况都会导致渣比增大,增加电耗。因此控制合适的焦炭厚度至关重要,通过调整粒度可以达到这一目的。 3、降低渣比 降低渣比可以减少热损失,提高锰回收率,有效地降低电耗。主要措施有提高Mn、Si的还原率和适当提高炉温。 4、合理渣型 炉渣成分决定着合适的冶炼温度、碱度、粘度、电性等因素,并影响元素在合金与炉渣中的分配。锰硅合金生产的理想炉渣成分为:MnO8%~10%,CaO12%~15%,MgO4%~5%,SiO232%~36%,Al2O334%~43%。 5、提高入炉含锰物料品位 对于锰硅合金冶炼,提高入炉锰品位,可以提高锰回收率,降低电耗。锰矿品位低,则渣量大,还原剂、熔剂消耗增多,导致电量增加。实验表明,入炉锰矿品位每降低1%,就将多消耗64kWh/t的电。 6、选取合理的冶炼周期 矿热炉冶炼锰硅合金的周期,是由炉内熔池反应区容积大小和渣中元素Mn、Si的还原程度决定的,实际生产中常根据炉内不发生“翻渣”现象为界。适当延长冶炼时间,从而达到锰硅合金矿热炉实施低渣比冶炼操作。由于入炉有功功率的提高,保证了炉内焦炭层反应区的高温条件,使Mn、Si的还原率大幅度提高,节省了电能。但冶炼时间不能过长,否则出铁温度过高将造成合金中锰的挥发损失,降低Mn的回收率。此外,MnO含量已接近还原平衡的“乏渣”,留在炉内,会使冶炼电耗增加。因而,根据具体的操作条件,通过实践决定合理的冶炼时间。 7、留渣法操作 留渣法冶炼铁合金是日本首先提出来的一项新型的铁合金工艺技术,特点是利用炉渣电阻热代替常规的电弧热,促使炉内反应区扩大,达到降低电耗,提高硅、锰回收率及产量并降低电耗的目的。留渣法生产的优点是:一、在渣层中能量转换率稳定;二、在出炉操作中放出的熔液温度稳定;三、扩大了反应区,气体分布均匀,热能利用率高;四、炉渣和合金分离较彻底。 (miki)
铁合金生产节能--金属硅
2018-12-10 09:42:47
3月30日消息:
金属硅是高能耗产品,节能工作十分重要,主要节能途径有:
(1)精心选料。碳质还原剂和硅石的选择对电耗和产量的影响极大。有时质量和电耗有矛盾,要权衡得失,例如多用或全部用石油焦,质量进步,但电耗会明显上升;多用烟煤或木炭,电耗降低,但质量又受影响。采用炉外精制硅的方法在保证质量的条件下搭配部分烟煤等高电阻率还原剂,可以使电耗降低。优质硅石的选择也十分重要,不能只看硅石的化学成分,还要看冶炼性能,如热稳定性,还原性等指标。
(2)精心设计电炉参数。电炉参数选择不当,如电压选择过高会使电耗上升。设计炉膛尺寸必须考虑生产金属硅是用石墨电极,不宜依据石墨电极直径作计算依据,而应按碳素电极直径计算炉膛尺寸。根据某厂经验,1800kV?A三相电炉二次电压选择84V,极心圆选择1150mm为好。
(3)采用大容量电炉生产。从国内统计来看,5000kV?A以上的电炉电耗一般在12000~14000kV?A/t范围内。小型电炉由于热损失占的比例大而电耗较高,一般在14000~17000kV?A/t范围内。美国汉纳矿业公司将9000kV?A电炉扩容为12000kV?A取得日产进步12%,硅回收率进步8%,电耗下降5%的好效果。
(4)采用炉体旋转式电炉生产。1977年挪威埃肯公司研究成功两段旋转炉体,可以防止炉料结壳使其自动下沉。一台9000kV?A电炉试验结果电耗下降10%-14%。
(5)采用团块炉料。将硅石与还原剂制成的团块在重油或煤气加热的炉内预还原加进电炉,产品单位电耗在9000kW?h以下。
(6)采用半封闭电炉回收烟气的热能。
(7)采用炉外精制硅技术进步产品质量,使精整剩下的小颗粒金属硅回炉重熔利用,达到进步产量降低电耗的目的。
(8)精心操纵。包括配料的正确称量,把握好用碳量,及时加料不空烧,捣炉深而逶,使电极深插稳插,有一个好炉况,实现优质、低耗、高产。(Fiona)
锰硅合金冶炼工艺操作(二)
2019-01-08 09:52:46
五、炉渣中的A12O3含量对炉况的影响 炉渣中的A12O3具有增高炉渣熔点、稠化炉渣的作用,在同一温度条件下,增加Al2O3含量,将降低炉渣的导电性,如图6所示。 A12O3-CaO-MnO-SiO2系粘度图(图2)说明,等温条件下,提高A12O3含量,将增大炉渣粘度。某研究所实测的锰硅炉渣粘度和A12O3含量及温度关系图(图7)表明,在同样温度条件下炉渣粘度随A12O3含量的增加而增加。高铝渣与低铝渣的低温粘度相差很大,高温粘度差别不大;炉渣温度超过1500℃时,含A12O312%~21%的炉渣粘度相差不到1Pa·S.挪威埃肯公司和我国上海铁合金厂的生产实践表明,炉渣温度足够高时,炉渣粘度不再成为反应趋近于平衡的障碍。由于硅酸钙、硅酸镁和硅酸铝比硅酸更稳定,提高碱度和A12O3含量有增大MnO活度的作用,适当提高炉渣碱度和A12O3含量有利于MnO的还原、降低渣中MnO含量,提高锰的回收率。上海铁合金厂以此为理论依据组织进行了低渣法锰硅合金的生产,特别是生产含硅较高的锰硅合金(Sil7%~23%)取得了较好的冶炼指标。[next] 六、炉缸温度 SiO2是较难还原的氧化物,它的还原程度与还原剂用量,特别是炉缸温度有关。因此,冶炼含硅量较高的锰硅合金除了要适当增加焦炭量外,关键是设法提高炉缸温度。在连续式操作过程中,炉渣的熔点对炉温有很大影响。冶炼锰硅合金时,炉渣中SiO2和MnO在1240℃形成低熔点的硅酸锰,而从MnSiO3中还原得到含Si20%的合金液的开始还原温度是1490℃,因此冶炼含硅较高的锰硅合金的主要困难也是炉温问题。 由于炉内的冶炼过程是连续进行的,出炉时熔池溶液在上层炉料的重压下,几乎全部被挤出炉外,低密度的SiC等高熔点物质直接接触并凝结在炉底上,增高了炉缸的位置,缩小了反应区面积,部分熔化但还没有来得及充分还原的炉料也被排出炉外。这可从出炉间隔较短的锰硅合金炉渣MnO含量较高得到证实。 当炉眼堵实后,新的一炉开始的初期,炉内由于缺少液相溶液的帮助,不能够通过液相溶液把电极脚下的电热能及时传递开,传到整个炉膛熔池界面,以至由于反应区狭小,形成局部的超高温,使锰元素过量挥发而损失。 稳定和提高反应区面积的措施有: (1)提高炉体内衬的蓄热能力。锰硅合金电炉内衬采用碳质材料制作,其导热、蓄热性能良好,由于蓄热量和砖体体积成正比,通常选择2~3倍于炉墙内衬厚度的炉底碳质内衬,以便尽量减小出炉前后炉缸温度的波动范围。 (2)延长出炉时间间隔。在堵眼后的1h内,液相熔液明显不足,不能适应平衡炉膛单位面积电热分布的需要,反应区的面积不够;随着冶炼时间的延续,熔池逐渐加深,反应区的MnO·SiO2还原反应近于合理,若能长期保持即可以取得理想的技术经济指标;然而,由于受炉前设备容量的限制,必须按规定要求定时出炉,以避免不必要的炉前事故。在炉前设备容量允许的前提下,有意识地降低产品冶炼的渣铁比,延长出炉时间间隔,在许多铁合金厂已经明显地改善了产品的技术经济指标。 (3)采用留渣或留铁操作法。留渣法冶炼是日本首先提出来的,它利用炉渣电阻热代替常规法的电弧热,使炉内形成广泛的反应区,以此提高电炉的生产能力,降低冶炼电耗。留渣或留铁操作法的优点是:①在熔池中能量转换稳定;②放出的液体的温度稳定;③扩大了反应区,逸出气体分布均匀,热利用率高。 (4)减少热停炉次数。经常地热停炉,对电极在炉料中的插入深度影响极大,生产中宁愿一次停炉30min,也不愿分两次停炉20min.频繁地升吊电极对炉况综合利用维护不利,经常停炉势必造成高温区上移,炉底温度降低。 锰矿石的品位和粒度对炉温也有一定影响。矿石含锰量越高,渣铁比就越低,可以相应地延长出炉时间,均匀提高炉温。如果矿石粒度合适,粉末率低,则炉料透气性良好,整个炉口均匀冒火、下沉,炉料预热效果好,带入下部反应区的显热较多,生产技术指标较好;如果矿石粒度较大,则熔化速度减慢,成渣温度提高,有助于提高炉温,但是塌料现象会有所增加。 提高合金含硅量,需要有合适的炉渣成分,炉渣成分是影响炉况及各项技术经济指标的重要因素。冶炼锰硅合金所用原材料不是固定不变的,原料成分稍有变化,炉渣成分也随之改变。实践经验表明,炉渣碱度n(CaO+MgO)/n(SiO2)控制在0.6~0.8是合适的,此时合金含量较高,渣中含锰量在6%左右。如果炉渣含有5%~7%的MgO,将大大改善炉渣的流动性,有利于炉温的提高,促进SiO2的还原。 电极工作端长度对于炉温有着直接的影响。9000~12500kVA电炉冶炼锰硅合金时电极的正常插入深度为1.2~1.4m,工作电压130~145V;3000~6000kVA的电炉冶炼锰硅合金时电极的正常插入深度为0.6~0.8m。 此外,如果骑马碳砖受到侵蚀变薄,炉眼太大会造成出炉时淌料严重,也将妨碍炉温的提高,从而影响合金中硅含量的提高。 七、锰的回收率 锰的回收率是生产锰硅合金的一项重要指标。提高锰的回收率就是要减少进入炉渣和随同炉气逸出的锰。表1 渣中锰含量与炉渣碱度的关系碱度n(CaO)/ n(SiO2)0.21~0.30.24~0.40.41~0.50.51~0.60.61~0.70.71~0.80.81~0.9渣中含锰量/%10.39.68.358.417.255.764.88
炉渣中锰含量与炉渣碱度有关,如表1所示。炉渣碱度越高,其锰含量也就越低。但是这并不是结论。因为随着炉渣碱度的增高,渣量相应增大,虽然渣中锰的百分比下降,炉渣中总的跑锰量却不一定下降。实践经验证明,当碱度由0.2增大到0.7~0.8时,锰的回收率随着碱度的增加而提高,当碱度进一步提高时,锰的回收率反而降低。[next] 八、炉膛压力和炉气成分 全封闭炉冶炼锰硅合金时,判断炉况除了要根据原料情况(粒度、成分)、电极位置,炉渣碱度、合金成分、渣量(与敞口炉相同)等分析外,还要考虑炉气成分、炉膛各部位温度变化等情况,对冶炼过程进行全面分析,综合判断。例如: (1)炉气出口压力波动,炉盖温度局部升高说明炉膛内局部翻渣或刺火。 (2)炉气出口压力增大,炉盖温度未升高,二次电流下降,说明炉内有塌料现象。 (3)炉气出口压力增大,炉盖温度升高,电极波动,出炉压力显著下降,是炉膛内翻渣的象征。 (4)炉气中氢含量急剧上升,在原料温度不变的情况下,说明炉内设备有严重漏水现象,应立即停电处理。如果氧含量增加,说明密封不好,应搞好密封。 为了减少随炉气逸出的锰损失,需要避免高温区过于集中,减少锰的挥发,因此,二次电压不宜过高,如果电极插得深,料柱厚,炉气外逸有比较长的路径,炉料能够吸附一部分挥发锰,减少锰的挥发损失。 近年来国内外一些大型电炉推行低渣比操作法,减少料批中的熔剂配入量,延长出炉时间间隔,提高炉缸热容量,提高炉温,借此提高硅的利用率,降低渣铁比。随着渣铁比的降低,炉渣中的A12O3含量也大幅度地提高,尽管高铝渣的熔点比低铝渣高一百多度,当炉况良好,炉缸温度真正地提高时,在上层炉料的压力作用下,高A12O3含量的炉渣是可以顺利地排出炉外的,并与金属液很好地分离。某厂自1984年以来一直推行低渣比配料计算法,在同样的原材料条件下将渣铁比由1.35降到1.1左右,电耗从4650kWh/t左右降至4400kWh/t左右。 冶炼锰硅合金时的出炉程序和铁水浇铸程序与电炉高碳锰铁冶炼相同。 冶炼一吨锰硅合金的消耗大致为: 锰矿(含Mn28.5%) 2000~2100kg 富锰渣(含Mn36%) 700~850kg 硅石 250~180kg 焦炭 550~650kg 锰的回收率 75%~80% 硅的回收率 40%~50kg 某厂锰硅合金冶炼的主要技术经济指标如表2所示。表2 某厂锰硅合金治炼的主要技术经济指标主要原料锰硅合金牌号Mn64Si18Mn64Si23锰矿(Mn33%)/(kg·t-1)1340~15201400~1540富锰矿(Mn38%)/(kg·t-1)400~600400~490硅石(kg·t-1)150~160180~200石灰(kg·t-1)150~170 白云石(kg·t-1) 130~170萤石(kg·t-1)60~7060~70锰铁返回渣(kg·t-1)500~600 硅铁炉渣(kg·t-1)60~7010~20电耗(kWh·t-1)3300~35004000~4200锰的回收率/%80~8385~87[next]
九、配料计算 根据以下条件进行配料计算: 按品种要求混合锰矿m(Mn)/m(Fe)≥4.5,m(P)/m(Mn)<0.0025.原材料化学成分如表3所示。表3 原材料化学成分(%)名称MnPFeOSiO2CaOMgOAl2O3混合锰矿300.061323.991.14.3焦碳固定碳灰分挥发分 821520 灰分组成 64541.23硅石 0.0080.597
注:焦炭含水量约10% 元素分配如表4所示。表4 元素分配(%)元素入合金入渣挥发Mn781012Fe9550Si405010P85510
锰硅合金化学成分为:Mn70%,Si20%,C1%,Fe8%,P0.18%. 出铁口排炭及炉口燃烧损失10%。 以100kg混合锰矿为计算基础,求需焦炭、硅石量,并计算出炉渣碱度。 (1)合金质量的计算
[next]
(2)焦炭用量的计算 焦炭用量如表5所示。 考虑出铁口排炭,炉口烧损折合成含水10%计,则焦炭量: 13.584÷0.82÷0.9÷0.9=20.4(kg) (3)硅石用量的计算 以上炉渣碱度稍低,可加适量石灰调整,合适的炉渣碱度为0.6~0.7。如采用碱度为0.698,则加石灰(石灰含CaO85%)量为: 每批料的组成为:混合锰矿100kg;硅石12.4kg;焦炭20.4kg;石灰3.3kg。
锰硅合金冶炼工艺操作(一)
2019-01-08 09:52:46
锰硅合金的生产与电炉高碳锰铁一样都是在矿热炉内进行的,采用有渣法冶炼。主要采用焦炭作还原剂,锰矿石、富锰渣和硅石作原料,石灰或白云石作熔剂在电炉内连续生产,操作方法与高碳锰铁相同;渣铁比受锰矿的金属含量波动影响较大,锰矿品位高,渣量则少,反之渣量就多,波动范围一般为0.8~1.5。 炉况掌握比冶炼高碳锰铁困难一些,为此在操作上更要求精心细致,正确地判断炉况并及时处理。为保证冶炼过程正常进行,在操作中需要特别重视还原剂的用量和炉渣成分。 一、炉况正常的标志和熔池结构 正常炉况的标志是:电极的插入深度合适,炉料均匀下沉,炉口冒火均匀,产品和炉渣成分稳定,各项技术经济指标良好。生产中密切观察炉况,及时正确地调整配料比例是保证正常炉况的关键。 锰硅合金矿热炉熔池是由炉料区、焦炭区、冶炼区和合金池四个不同区域构成。如图1所示,在炉料区锰和铁的高价氧化物被还原成低价氧化物,MnO与SiO2结合成复合硅酸盐,并在1250~1300℃熔化,锰和硅的还原主要是在焦炭区和冶炼区之间进行的。 二、焦炭层的作用 焦炭层对锰硅合金的冶炼是否正常起着关键的作用。焦炭层处于固态的炉料层与液态的冶炼层之间,其厚度和部位决定了电极工作端的位置和电炉操作的稳定性,不同容量或不同工艺参数的锰硅电炉都有着各自的最佳焦炭层厚度和部位。最佳焦炭层部位保证了电极能够在炉料中插入足够的深度和炉况的顺行;最佳的焦炭层厚度则保证MnO,SiO2等氧化物的直接还原反应得以顺利进行及其还原过程的稳定性。选择合适的焦炭粒度,适当的配炭量是维持焦炭层一定的厚度和部位的主要方式之一。[next] 三、配炭量对焦炭层和炉况的作用与影响 当炉料中的配炭量过量时,炉料电阻率减小,导电性增强,电表电流上涨,电极上抬,焦炭层增厚,焦炭层的部位上移,炉膛熔池坩埚缩小,刺火塌料现象增多,合金含硅量偏高。这种现象如果持续下去,则会由于电极插入深度不够,使高温区上移,炉口温度升高,电极上抬严重,炉内塌料增多,炉底温度降低SiO2得不到充分还原,合金中含硅量反而下降,同时出铁排渣不畅。对于封闭炉则会出现炉气压力升高且不稳定的现象。当炉况出现上述特征时,就可以判断为还原剂过剩,必须在料批中减碳,必要时配入不带焦炭的料批。 当炉料中焦炭量不足时,就会引起焦炭层减薄,此时虽然电极插入较深,但负荷会不足,炉料消耗速度慢,炉口翻渣频繁,炉口火焰低、发暗。由于还原剂不足,人炉SiO2还原率降低,炉渣中的SiO2和MnO含量增高。合金中的锰、硅含量偏低,磷含量升高,这时料批中应增加焦炭的配入量,或者单独附加焦炭。 因此,计算配料比,特别是还原剂焦炭的用量直接关系到合金的质量和炉况的顺行。焦炭层的厚度和部位不仅决定于配碳量,还决定于锰矿和焦炭的性质及粒度,以及电炉容量的大小和其他一些因素。在某一特定电炉和同样的原材料条件下,就主要决定于焦炭粒度和出铁工艺。 配碳量是先使用公式计算,再综合考虑炉子上的一些实际情况,进行具体修正后确定。例如炉渣碱度高时渣液较稀,出炉时带走的生料较多,配碳量可以稍多些;又比如炉眼较大时,出炉带走的残余焦炭较多,配碳量也应适当多一些。 四、矿渣碱度对炉况的作用与影响 在冶炼原理中已经介绍了锰和硅都是从液态硅酸锰中还原出来的。由于SiO2比MnO难还原得多,当SiO2能够被大量还原时,MnO的还原也是比较充分的。 为促使SiO2充分还原,需要提高SiO2的活度系数,炉渣碱度选择似乎应该越低越好;但是当碱度小于0.5时,虽然SiO2的活度大,但其炉渣的粘度也大(图2),熔液中SiO2的传质速度低;沪渣的导电性变差。炉内温度梯度大,距离电极稍远的一些区域渣液温度降低;还原SiO2所需的温度不够SiO2还原困难,硅的回收率降低;粘稠炉渣中的一些高熔点物质如SiC等在炉内积存结瘤,难以排出炉外。具体表现为:渣液粘稠,出炉排渣困难,排渣不彻底,熔池坩埚缩小,化料速度趋缓,生产效率低,合金中的硅低碳高,炉渣跑锰损失增大。 向炉料中添加适量的石灰或白云石等碱性物质,有利于改善炉渣的流动性和导电性,提高SiO2的还原率,改善炉况,提高产品冶炼的技术经济指标。[next] 当碱度小于0.75时,锰的回收率随碱度的提高而提高,硅的回收率也随着碱度的提高也有所提高(图3和图4).这说明在规定的限度范围内提高碱度可以改善炉渣的导电性和流动性,使输往炉内的电能可以在较大的范围内均匀分布,减小炉内反应区的温度梯度,有利于加快SiO2的传质速度,而不会由于碱度的提高SiO2活度下降而恶化SiO2还原的热力学条件。需要特别指出的是,为了提高炉渣碱度,不能只靠增加碱性物质来实现,重要的是要提高SiO2还原率。只有在提高SiO2还原率的前提下,炉渣跑锰量才低。单凭增加炉料中CaO,MgO的含量来提高炉渣碱度,往往限制了SiO2还原,也不能提高锰的回收率。通过增加炉料中的n(CaO+MgO)/n(SiO2)比值来提高炉渣碱度,其增加值是有限的,并且在这种情况下不但炉渣跑锰不低,渣量增大,而且由于SiO2活度随着碱度的提高而越来越小,SiO2还原的热力学条件严重恶化,导致硅的回收率迅速降低。分析图5可以得出如下结论:在生产锰硅合金时较高或合适的炉渣碱度是凭SiO2的还原度来达到的,只有SiO2的还原率得到提高,锰的回收率才能得到真正提高。 碱度过高时,成渣温度降低,炉内温度提不高,加上CaO与SiO2结合成硅酸钙,这些都造成SiO2还原的困难,合金含硅量上不去。此外,碱度过高,渣液过稀,不仅出炉时带走的生料多,而且出铁口容易烧坏,炉眼不好堵,因此,碱度太高不好。
锰硅合金冶炼的新技术
2019-01-25 15:50:04
一、留渣法冶炼铁合金 留渣法冶炼铁合金是日本首先提出来的一种新型铁合金生产工艺,在日本称为双出铁口连续操作法或称为米持法,在德国称为炉渣电阻冶炼。这种方法的特点在于它是利用炉渣电阻热代替常规法的电弧热,促使炉内反应区扩大,达到降低电耗,提高元素回收率和生产能力的目的。留渣法用于锰硅合金和高碳锰铁的冶炼,显示出如下优点: (1)在渣层中能量转换率稳定; (2)在出铁操作中放出的液体温度稳定; (3)扩大了反应区,气体分布均匀,热的利用率高; (4)炉渣与合金分离较彻底。 日本重化学工业公司庄川厂的51000kVA电炉采用留渣法工艺,生产锰硅合金,产品的实物电耗为4400kWh/t,锰的回收率达到85%。 二、等离子炉冶炼锰硅合金 等离子冶炼技术在铁合金生产中表现出了许多优越性。由于等离子体温度很高,能充分满足大多数铁合金冶炼过程对还原温度的要求,具有升温快、冶炼温度高等特点。在碳热冶炼还原过程中,碳和矿石中的氧化物熔合良好,还原反应速度特别快。等离子炉可以直接任意使用粉状矿石和劣质煤粉,加料速度和电热功率可以直接任意调节,得到平衡的冶炼还原条件,不存在电极消耗问题。 前苏联弗拉索夫经过试验确认,等离子炉冶炼锰硅合金可以降低合金中的磷含量,磷入合金率25%~44%。应用长弧式等离子炉开发高磷锰矿和海底锰结核具有直接熔化处理的可能性。SKF钢铁公司采用Plasmasnelt法冶炼锰硅合金,把氧化锰矿粉、石英粉、煤粉和熔剂混合喷入充满焦炭的竖炉反应区内,可炼得含Si18%的锰硅合金,单位电耗为4500kWh/t。
用电热法生产铝硅合金
2019-01-14 14:53:00
国家靠前批重点高新技术火炬计划项目———电热法生产铝硅合金技术,近日由河南省登封电厂集团自主研发成功。该集团铝合金有限公司成功用低品位铝土矿冶炼出铝含量55%的初始铝硅合金。 电热法生产铝硅合金技术是国际公认的优于电解铝的铝冶炼新技术,曾被列入国家六五、七五攻关计划,但未获成功。登封电厂集团铝合金有限公司利用公司16.5MVA大型矿热炉,从冶炼硅铁成功转产铝硅合金。 据了解,电热法生产的铝硅合金产品成本比传统方法低20%左右,特别是能有效解决我国铝矿资源铝比率相对较低的问题,大大提高了铝硅合金产品的市场竞争能力,为中国铝工业可持续发展开辟了新的道路。
硅碳合金与硅铁的区别有哪些为何受厂家青睐?
2019-10-24 15:24:19
硅碳合金作为现在比较受供应商喜爱的冶金产品,主要原因仍是由于近期硅铁提价,硅碳合金相对硅铁多少钱廉价能够杰出的替代硅铁,因而许多供应商为了减小炼钢本钱都开端购买较为抱负的硅碳合金来运用,关于许多人都会有疑问,硅碳合金究竟与硅铁有哪些差异呢?为何受供应商喜爱?咱们先来听听专业的硅碳合金供应商 冶金为我们介绍。No.1 硅碳合金与硅铁多少钱方面的差异硅碳合金是新式的铁合金产品,硅碳合金比较硅铁来说多少钱较为廉价,在购买相同类型的硅铁时,硅碳合金往往能够廉价2/5,因而在硅铁多少钱上涨的状况下硅碳合金是供应商节省本钱加工的较好的挑选。No.2 硅碳合金与硅铁元素含量的差异硅碳合金因多少钱比较硅铁多少钱廉价,因而在含量方面会呈现比硅铁元素稍有下降的状况呈现,但下降区间较小彻底能够替代硅铁运用,而且考虑到硅碳合金的多少钱优点,硅碳合金是比较好的抱负挑选。No.3 硅碳合金与硅铁在运用效果中的差异硅碳合金能够替代硅铁运用但在运用效果中仍是会有必定的差异,在运用中放入硅碳合金,因硅碳合金比较硅铁元素略低,因而在脱氧、除渣等方面比较硅铁会有所差劲,但彻底不影响正常的运用。归纳比较,在硅铁多少钱较为贵重的时分硅碳合金显然是比较抱负的硅铁替代品,硅碳合金在运用效果和元素含量均接近于硅铁相差较小,而且硅碳合金多少钱比硅铁多少钱廉价,因而才会如此受供应商喜爱,以上便是专业的硅碳合金供应商 冶金为我们介绍的硅碳合金与硅铁的差异。
影响铝合金材料的元素——硅
2018-12-29 13:37:17
铝合金是以铝为基体的合金总称,主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍铁钛铬等等;铝合金密度低,塑性好,可加工成各种型材,具有优良的导电性、导热性、抗蚀性,还具有优异的隔绝性能和良好的连接性; 工业使用量仅次于钢。目前,应用较为广泛的牌号有ADC12、ADC10、A356等。当前,在国家标准GB/T3190中,规定了铝合金成分范围,在规定的这一范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在很大范围内波动,以致铝材的综合性能会比较难控制。因此,根据需要选择铝合金的化学成分成为生产优质铝合金建筑型材的重要部分。硅是铝合金中的是主要合金元素,它在铝合金中的组成和含量的多少对铝合金的材质与性能有着至关重要的作用。
硅(Si)元素的作用和影响:
Si的数量应使合金中所有的Mg都能以Mg2Si相的形式存在,以确保Mg的作用得到充分的发挥。随着Si含量增加,合金的晶粒变细,金属流动性增大,铸造性能变好,热处理强化效果增加,型材的抗拉强度提高而塑性降低,耐蚀性变坏。Al—Si合金系平衡相图富铝部分。在共晶温度577 时,硅在固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。铝合金中Si含量应是:Si%=(Si基+Si过)% 3 合金元素控制范围的确定。
在共晶温度577摄氏度时,硅在固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。
金属硅工业硅
2017-06-06 17:49:50
金属硅工业硅生产和对外贸易及硅业的发展。 2004年以来,国家针对高耗能,高排放的资源性产品行业相继出台了一系列宏观调控政策措施。工业硅行业和钢铁、电解铝和铁合金等行业一样,都是被重点调控的行业之一。在国家不断加强宏观调控力度下,应该说工业硅项目低水平重复建设的势头已受到一定遏制,落后生产能力开始被淘汰,整个行业节能和环保意识有新增强。但不能不看到,在取得这些初步成效的同时,长期盲目扩张积累的问题仍很突出,仍有某些地区和企业还在盲目上新项目。整个行业要遏制盲目扩张势头,消除无序竞争,还有很多工作要做。 2008年一开始,从2008年1月1日起,国家就对我国出口的工业硅征收10%的关税,这是继取消出口工业硅13%的出口退税之后又一项十分明确又很有力度的对工业行业的宏观调控措施。对我国工业硅行业2008年和以后的发展都将产生重要影响。既为工业硅企业的健康发展提供了新的机遇,也是十分严峻的挑战。2008年上半年相继发生的历史上罕见的低温、雨雪、冰冻灾害和千年不遇的特大地震,对我国若干省区的工业硅企业发展也造成了重大损失和困难。 在这种新形势下,我国2008年1~5月份共出口工业硅29.304万t,而2007年1~5月份的出口量是24.39万t。2008年上半年月均出口量为5.966万t,而2007年上半年月均出口量是5.013万t。实际情况表明,宏观调控的加强和自然灾害的影响只使我国工业硅生产和出口快速增长的势头受到消弱,但出口量仍在增长,并没有降下来。 更多关于金属硅工业硅的资讯,请登录上海有色网查询。
有机硅 多晶硅
2017-06-06 17:50:13
有机硅 多晶硅的区别?由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等
行业
,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的
市场
,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
硅铬
2017-06-06 17:50:12
硅铬,硅铬合金90%以上用作电硅热法冶炼中、低、微碳铬铁的还原剂。此外,硅铬合金还作炼钢的脱氧剂与合金剂。随着氧气炼钢的发展,用硅铬合金还原钢渣中的铬和补加部分的铬量得到了日益广泛的应用。据统计,平均每吨钢消耗硅铬合金0.5kg左右。硅铬合金的性质硅铬合金系铬、铁的硅化物,是含有足够硅量的铬铁。铬的硅化物较碳化物稳定,因此当Fe-Cr-Si合金中的硅含量增高时,碳含量下降冶炼工艺硅铬合金的冶炼方法有一步法和二步法两种。一步法又叫有渣法;二步法又名无渣法。一步法是将铬矿、硅石和焦炭一起加入炉内,冶炼硅铬合金。二步法的第一步是将铬矿和焦炭加入第一台电炉内,冶炼出高碳铬铁;第二步是将高碳铬铁破碎,把它与硅石、焦炭一起加入另一台电炉内,冶炼硅铬合金。目前,我国在工业生产中采用二步法冶炼硅铬合金,少部分使用一步法。 冶炼原理一步法冶炼硅铬合金是用碳同时还原铬矿中的三氧化二铬和硅石中的二氧化硅。电炉内的主要反应有还原和精炼脱碳反应两部分。还原反应与冶炼高碳铬铁和硅铁的还原反应差不多。所不同的是一步法冶炼硅铬合金使用了难还原铬矿,铬矿的块度也较大,从而确保了Cr2O3的还原和SiO2的还原在温度相差不多的条件下同时进行。二步法冶炼硅铬合金使用的原料有高碳铬铁(再制铬铁)、硅石、焦炭和钢屑。高碳铬铁的成分应符合国家标准;粒度不能太大,采用12500kV.A电炉时要求高碳铬铁粒度小于20mm,采用3000kV.A电炉时要求高碳铬铁粒度小于13mm。对硅石、焦炭和钢屑的要求与冶炼硅铁的技术条件基本相同。二步法冶炼硅铬合金是在高碳铬铁的存在下,由碳还原硅石中的SiO2,被还原出来的硅破坏铬的碳化物,排除合金中的碳而制硅铬合金。冶炼过程与冶炼45%硅铁的过程基本相同。想要了解更多关于硅铬的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
硅青铜
2017-06-06 17:50:04
硅青铜是以硅为主要合金元 素的青铜。工业上应用的硅青铜除含硅外,还含有少量 的锰、镍、锌或其他元素。硅在铜中呈有限固溶,在 852C时最大溶解度可达5.3%,并随温度降低而减 小,但时效硬化效应不强,一般不进行强化热处理。 变形硅青铜含硅量为1%一4%,硅增高会出现脆性相,铜的代用品。列入中国国家标准中的变形硅青铜共2 降低塑性。硅青铜的结晶温度范围较小,有足够的流动种牌号,其主要化学成分和力学性能列于表。 性,力学性能较锡青铜高,在机械制造工业中可作锡青 变形硅青铜的主要化学成分和力学性能 才仁莽口牛 在铜硅合金中加入适量的锰可改善力学性能、耐 蚀性和工艺性能。常采用的是含硅3%和锰1%的硅青 铜QSi3一1,高温时为单相。固溶体,冷却到450℃以下 时,有少量化合物MnZSi或Mnsi析出,但强化效果极 弱,通常是在退火或加工硬化状态下使用。QSi3一1拉 制棒材由于相变应力,在存放过程中易出现自行破裂 现象,故成品应进行低温退火,且合金硅含量宜取下 限。QSi3一1硅青铜可在冷、热态下压力加工,力学、耐 蚀、耐磨和焊接性能好,无磁,冲击时不发生火花,在机 械、化工、石油、船舶等工业部门都被广泛应用。 镍能提高硅青铜的力学性能和耐蚀性,且兼有良 好的电导性。镍与硅形成能固溶于铜的化合物NiZSi, 在共晶温度(1025’C)的最大溶解度为9.0%,并随温 度降低而减小,在室温几乎为零。镍与硅的比值为4: 1的铜合金在时效处理中会因NiZSi相沉淀而强化,获 得良好的综合性能。工业上常用的含硅1%和镍3%的 硅青铜QSil一3,在900一950‘C淬火后塑性良好,再经 350一55oC时效处理1一4h,强度可提高1倍以上。这 种合金的耐磨性、高温强度较高。其电导性亦比一般高 强度的铜合金为高。因此在机械工业等部门制造重要 零件,也可作通讯用高强度架空线和导电极等。 铅、锑、秘、砷、硫、磷等元素对合金有害,应严加控制。QSi3.5-3-1.5硅青铜为含有锌、锰、铁等元素的硅青铜,性能同QSi3-1,但耐热性较好,棒材、线材存放时自行开裂的倾向性较小。QSi3.5-3-1.5主要用作在高温工作的轴套材料。
单晶硅多晶硅
2017-06-06 17:50:08
单晶硅多晶硅都是硅的一种形态。单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。单晶硅:熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准
金属
的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。多晶硅:灰色
金属
光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。想要了解更多单晶硅多晶硅的相关资讯,请浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
单晶硅 多晶硅
2017-06-06 17:50:07
单晶硅 多晶硅.首先要了解两者的本质和性质。单晶硅是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。接下来了解两者的性质。单晶硅:熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准
金属
的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。多晶硅:灰色
金属
光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。想要了解更多单晶硅 多晶硅的相关资讯,请浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
非晶硅 多晶硅
2017-06-06 17:50:11
非晶硅薄膜既环保又节能,太阳能光伏发电蕴含巨大发展前景,而太阳能光伏板主要分为两类:1) 单晶/多晶硅及 2) 薄膜太阳能电池。以往,中国制造的太阳能光伏板主要是使用多晶硅。 多晶硅在提炼过程中需要使用千多度高热才能完成,生产过程中耗用大量能源,而且造价相对昂贵。此外,多晶硅在生产过程中还会排放超过十种的有毒物质。据统计,2008年,中国便用了3,000万吨煤炭提炼多晶硅,所产生的二氧化碳等空气污染物排放量非常之高,故这才是国家抑制多晶硅的真正原因。 中国占全球光伏组件
产量
39%,是全球最大的生产国,但99%的产品都是出口外国,这代表中国正为国外太阳能发展承担上环境污染的代价,强制减少多晶硅的产能可避免环境进一步恶化。 为降低成本及保护环境,非晶硅薄膜技术的需求正快速上升。生产多晶硅需要较多能源,而且能源回收期长达7年;非晶硅薄膜所采用的硅材料则少于多晶硅的1%,能源回收期亦只需要1.5年,无论对环境的破坏,还是污染物的排放量均符合国家减排节能环保的要求。 非晶硅薄膜被视为一种节能的技术,但究竟有何优势呢?首先在转换效能上,多晶硅因应硅不可改变的物理特性,其最高效能为15%至16%;而非晶硅薄膜可透过沉淀不同化学特性的物质于不同段层,以提升转换效能可由6%提升至12%或更高,于实验室的效率最高更可达17.8%。其次,薄膜吸收较广的阳光波长,在阴天或微弱阳光下运作亦较佳;相反,多晶硅的效能在较暗的情况下就会急速下降。因此,非晶硅薄膜在实际环境下的转换效能较多晶硅高出10%以上。
硅铁
2017-07-04 17:10:29
硅铁就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂。硅的用途:①高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。②金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。 可应用于军事武器的制造第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时磨擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。③光导纤维通信,最新的现代通信手段。用纯二氧化硅拉制出高透明度的玻璃纤维,激光在玻璃纤维的通路里,无数次的全反射向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话,它还不受电、磁干扰,不怕窃听,具有高度的保密性。光纤通信将会使 21世纪人类的生活发生革命性巨变。④性能优异的硅有机化合物。例如有机硅塑料是极好的防水涂布材料。在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。
天安门
广场上的
人民英雄纪念碑
,便是经过有机硅塑料处理表面的,因此永远洁白、清新。有机硅化合物,是指含有Si-O键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。有机硅材料具有独特的结构:(1) Si原子上充足的甲基将高能量的聚硅氧烷主链屏蔽起来;(2) C-H无极性,使分子间相互作用力十分微弱;(3) Si-O键长较长,Si-O-Si键键角大。(4) Si-O键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等行业,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。 有机硅材料按其形态的不同,可分为:硅烷偶联剂(有机硅化学试剂)、硅油(硅脂、硅乳液、硅表面活性剂)、高温硫化硅橡胶、液体硅橡胶、硅树脂、复合物等。发现
1822年,
瑞典
化学家白则里用金属钾还原
四氟化硅
,得到了单质硅。构成铁和硅组成的
铁合金
(以硅石、钢、焦碳为原料,经过1500-1800度高温还原的硅熔于铁液中,形成硅铁合金)。是冶炼行业重要的合金品种。硅铁按硅及其杂质含量,分为21个牌号,其化学成分如下表:(根据GB/T 2272-2009)用途(1)在炼钢工业中用作脱氧剂和合金剂。为了获得化学成分合格的钢和保证钢的质量,在炼钢的最后阶段必须进行脱氧,硅和氧之间的化学亲和力很大,因而硅铁是炼钢较强的脱氧剂用于沉淀和扩散脱氧。在钢中添加一定数量的硅,能显著的提高钢的强度、硬度和弹性,因而在冶炼结构钢(含硅0.40-1.75%)、工具钢(含SiO.30-1.8%)、弹簧钢(含SiO.40-2.8%)和变压器用
硅钢
(含硅2.81-4.8%)时,也把硅铁作为合金剂使用。 同时改善夹杂物形态减少钢液中气体元素含量,是提高钢质量、降低成本、节约用铁的有效新技术。特别适用于连铸钢水脱氧要求,实践证明,硅铁不仅满足炼钢脱氧要求,还具有脱硫性能且具有比重大,穿透力强等优点。此外,在炼钢工业中,利用
硅铁粉
在高温下烯烧能放出大量热这一特点,常作为钢锭帽发热剂使用以提高钢锭的质量和回收率。(2)在铸铁工业中用作孕育剂和球化剂。铸铁是现代工业中一种重要的金属材料,它比钢便宜,容易熔化冶炼,具有优良的铸造性能和比钢好得多的抗震能力。特别是球墨铸铁,其机械性能达到或接近钢的机械性能。在铸铁中加入一定量的硅铁能阻止铁中形成碳化物、促进石墨的析出和球化,因而在球墨铸铁生产中,硅铁是一种重要的孕育剂(帮助析出石墨)和球化剂。(3)铁合金生产中用作还原剂。不仅硅与氧之间化学亲和力很大,而且高硅硅铁的含碳量很低。因此高硅硅铁(或硅质合金)是铁合金工业中生产低碳铁合金时比较常用的一种还原剂。(4)75#硅铁在皮江法炼镁中常用于金属镁的高温冶炼过程中,将CaO.MgO中的镁置换出来,每生产一吨金属镁就要消耗1.2吨左右的硅铁,对金属镁生产起着很大的作用。(5)在其他方面的用途。磨细或雾化处理过的硅铁粉,在选矿工业中可作为悬浮相。在焊条制造业中可作为焊条的涂料。高硅硅铁在化学工业中可用于制造硅酮等产品。在这些用途中,炼钢工业、铸造工业和铁合金工业是硅铁的最大用户。它们共消耗约90%以上的硅铁。在各种不同牌号的硅铁中,目前应用最广的是75%硅铁。在炼钢工业中,每生产1t钢大约消耗3-5kg75%硅铁。
硅铁
2017-06-06 17:49:59
硅铁硅铁就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂。用途(1)在炼钢工业中用作脱氧剂和合金剂。为了获得化学成分合格的钢和保证钢的质量,在炼钢的最后阶段必须进行脱氧,硅和氧之间的化学亲和力很大,因而硅铁是炼钢较强的脱氧剂用于沉淀和扩散脱氧。在钢中添加一定数量的硅,能显著的提高钢的强度、硬度和弹性,因而在冶炼结构钢(含硅0.40-1.75%)、工具钢(含SiO.30-1.8%)、弹簧钢(含SiO.40-2.8%)和变压器用硅钢(含硅2.81-4.8%)时,也把硅铁作为合金剂使用。 此外,在炼钢工业中,利用硅铁粉在高温下烯烧能放出大量热这一特点,常作为钢锭帽发热剂使用以提高钢锭的质量和回收率。 (2)在铸铁工业中用作孕育剂和球化剂。铸铁是现代工业中一种重要的金属材料,它比钢便宜,容易熔化冶炼,具有优良的铸造性能和比钢好得多的抗震能力。特别是球墨铸铁,其机械性能达到或接近钢的机械性能。在铸铁中加入一定量的硅铁能阻止铁中形成碳化物、促进石墨的析出和球化,因而在球墨铸铁生产中,硅铁是一种重要的孕育剂(帮助析出石墨)和球化剂。 (3)铁合金生产中用作还原剂。不仅硅与氧之间化学亲和力很大,而且高硅硅铁的含碳量很低。因此高硅硅铁(或硅质合金)是铁合金工业中生产低碳铁合金时比较常用的一种还原剂。 (4)75#硅铁在皮江法炼镁中常用于金属镁的高温冶炼过程中,将CaO.MgO中的镁置换出来,每生产一吨金属镁就要消耗1.2吨左右的硅铁,对金属镁生产起着很大的作用。 (5)在其他方面的用途。磨细或雾化处理过的硅铁粉,在选矿工业中可作为悬浮相。在焊条制造业中可作为焊条的涂料。高硅硅铁在化学工业中可用于制造硅酮等产品。 在这些用途中,炼钢工业、铸造工业和铁合金工业是硅铁的最大用户。它们共消耗约90%以上的硅铁。在各种不同牌号的硅铁中,目前应用最广的是75%硅铁。在炼钢工业中,每生产1t钢大约消耗3-5kg75%硅铁。应用硅铁在钢工业、铸造工业及其他工业生产中被广泛应用。 硅铁是炼钢工业中必不可少的脱氧剂。炬钢中,硅铁用于沉淀脱氧和扩散脱氧。砖坯铁还作为合金剂用于炼钢中。钢中添加一定数量的硅,能显著提高钢的强度、硬度和弹性,提高钢的磁导率,降低变压器钢的磁滞损耗。一般钢中含硅0.15%-0.35%,结构钢中含硅0.40%~1.75%,工具钢中含硅0.30%~1.80%,弹簧钢中含硅0.40%~2.80%,不锈耐酸钢中含硅3.40%~4.00%,耐热钢中含硅1.00%~3.00%,硅钢中含硅2%~3%或更高。 高硅硅铁或硅质合金在铁合金工业中用作生产低碳铁合金的还原剂。硅铁加入铸铁中可作球墨铸铁的孕育剂,且能阻止碳化物形成,促进石墨的析出和球化,改善铸铁性能。 此外,硅铁粉在选矿工业中可作悬浮相使用,在焊条制造业中作焊条的涂料;高硅硅铁在电气工业中可用制备半导体纯硅,在化学工业中可用于制造硅酮等。 在炼钢工业中,每生产一吨钢大约消耗3~5kg75%硅铁。 熔点:75SiFe为1300℃
硅知识
2019-03-08 09:05:26
硅有无定形和晶体两种同素异形体。晶体硅具有金刚石晶格,硬而脆,密度2.4,熔点1420℃,沸点2355℃。无定形硅是一种灰黑色粉末,实践是微晶体。晶体硅的电导率不及金属,且随温度升高而添加,具有显着的半导体性质。
硅在常温下不生动,与空气、水和酸等没有显着效果;在加热下,能与卤素反响生成四卤化硅;650℃时硅开端与氧彻底反响;硅单质在高温下还能与碳、氮、硫等非金属单质反响;硅可直接生成一系列硅的氢化物;硅还能与钙、镁、铁等化合生成金属硅化物。超纯的单晶硅可作半导体材料。粗的单晶硅及其金属互化物组成的合金,常被用来增强铝、镁、铜等金属的强度。
自然界中的硅以含氧化合物的方式存在,硅与氧结组成二氧化硅,与金属结合生成金属的硅酸盐。首要的硅矿藏为石英和硅石,一般的硅石和石英用于玻璃和其它建材,优质的石英用于制作合金、金属和单晶。
工业上,通常是在电炉中由碳复原二氧化硅而制得金属硅,化学反响方程式:SiO2 + 2C → Si +2CO,这样制得的硅纯度为97-98%,叫做金属硅。再将它消融后重结晶,用酸除掉杂质,得到纯度为99.7-99.8%的金属硅。用作半导体的超纯硅的制法则是先用纯度不高的硅与氯化氢和的混合物效果,制取三氯氢硅,并用精馏法提纯。然后在复原炉内用纯氢将三氯氢硅复原,硅就堆积在用超纯硅制成的细芯上,这样制得的超纯硅称为多晶硅,把它放在单晶炉内,就可拉制成单晶硅。
单晶硅的出产工艺首要有直拉法、区熔法和外延法。直拉法适宜于成长低电阻大直径的单晶,其径向杂质散布均匀,适协作低压硅器材和集成电路的材料。区熔单晶径向杂质散布均匀性较直拉法差,但氧、碳含量低,用高阻区熔单晶通过中子辐照能够得到杂质散布均匀性适当满足的单晶材料,适宜于制作高压大功率器材。衡量单晶质量的参数首要有导电类型、晶向电阻率及其均匀性、位错密度、补偿度等。影响单晶质量的关键因素是晶格缺点和杂质。
因为硅的资源非常丰厚,易于提纯,报价便宜,并且硅器材易于完成平面工艺,具有效率高、寿命长、体积小、导热好、耐高温、可靠性高档长处,大多数半导体器材都选硅作质料。硅首要用于制作各种集成电路、晶体管及电力电子器材,后者包含大功率的整流管、晶闸管、晶体管及各种派生器材,已广泛用于机械、冶金、电力、矿山、交通运输、航天、化工等各个领域。硅晶体管和集成电路首要用于无线电设备、电信设备、自动控制系统、计算机、航天等各个领域。此外,还可制作太阳能电池,用作航天飞机、人造卫星、无人灯塔等的电源。
硅还用来出产硅橡胶、硅树脂、硅油等有机硅。硅橡胶弹性好,耐高温,用于制作医疗用品、耐高温垫圈。硅树脂用于出产绝缘漆、高温涂料等。硅油是一种油状物,其粘度受温度的影响很小,用于出产高档润滑剂、上光剂、流体绷簧、介电液体等,还可加工成无色通明的液体,作为高档防水剂喷涂在建筑物表面。
在钢铁工业中,硅铁用作合金添加剂,在多种金属冶炼中用作复原剂。硅铝合金用量最大,是一种强复合脱氧剂,在炼钢过程中替代纯铝可进步脱氧剂利用率,并可净化钢液,进步钢材质量。硅铝合金密度小,热膨胀系数低,铸造功用和抗磨功用好,用其铸造的合金铸件具有很高的抗冲击才能和很好的高压细密性,可大大进步使用寿命,常用其出产航天飞行器和轿车零部件。
冶炼铝合金时参加少数的纯度为98%的冶金级硅可大大改进铝合金的功用。硅铜合金具有杰出的焊接功用,且在受到冲击时不易发生火花,具有防爆功用,可用于制作储罐。钢中参加硅制成硅钢片,能大大改进钢的导磁性,下降磁滞和涡流丢失,可用其制作变压器和电机的铁芯,进步变压器和电机的功用。
硅冶炼
2017-06-06 17:50:12
近年来,工业硅冶炼的新工艺,新技术不断出现,我国工业硅的生产和技术有了很大的发展。现在工业硅的发展和出口量,在世界上均居于首位。2000年以来,工业硅年出口量实际以达30万吨以上,但是,出口
价格
严重偏低,效益低下。这虽然与我国工业硅出口体制,各工业硅厂家竞相降价,外商有意压价有关外,其核心的问题还是我们的产品质量不高,化学用硅比例小,出口价值低。如2002年上半年日本从中国进口工业硅的到岸价平均
价格
是每吨865美元,而同期挪威的是1764美元,法国的是1260美元,中国的工业硅
价格
最低,比最高
价格
低了近一半,严重制约着我国工业硅的发展。所以,我国的工业硅要进一步扩大出口,要增加效益,进一步提高产品质量,扩大产品品种,是必须重视的一个重要方面。扩大和提高化学用硅生产比例,大力发展化学用硅生产是提高工业用硅
市场
竞争力的途径。一、高温冶炼冶炼工业硅与硅铁相比,需要更高的炉温,生产硅含量大于95%以上的工业硅,液相线温度在1410℃以上,需要在1800℃以上高温冶炼,此外,由于炉料不配加钢屑,所以SiO2还原热力学条件恶化,破坏SiC的条件也变得更加不利。由此产生三个结果:其一是炉料更易烧结;其二是上层炉料中生成的片状SiC积存后容易使炉底上涨;其三是Si和SiO高温挥发的现象更加显著。为此,在冶炼过程中必须做到:1)控制较高的炉膛温度。2)控制Si和SiO挥发。3)使SiC的形成和破坏相对平衡。为了提高炉温,减少Si和SiO的挥发损失,基本上应保持SiC在炉内平衡。在具体操作中必须千方百计地减少热损失,基本上保持或扩大坩埚。 在工业硅生产中,采用烧结性良好的石油焦,有利于炉内热量集中,但料面难以自动下沉。与小电炉生产75硅铁相比,可以采用一定时间的焖烧和定期集中加料的操作方法。二、正确的配加料正确的配加料是炉况稳定的先决条件。对于小电炉生产工业硅来说,更应强调这一点。正确配比应根据炉料化学成分、粒度、含水量及炉况等因素确定,其中应该特别注意还原剂使用比例和使用数量,正确的配比应使料面松软又不塌料,透气性良好,能保证规定的焖烧时间。炉料配比确定后,炉料应进行准确称量,误差应不超过0.5%,均匀混合后入炉。 炉料配比不准或炉料混合不均都会在炉内造成还原剂过多或缺少现象,影响电极下插,缩小“坩埚”,破坏正常冶炼进行。三、沉料捣炉在工业硅生产中采用烧结性良好的石油焦,以自动下沉,一般需要强制沉料。当炉内炉料焖烧到规定的时间时,料面料壳下面的炉料基本化清烧空,料面也开始发白发亮,火焰短而黄,局部地区出现刺火塌料,此时应该立刻进行强制沉料操作。沉料时,先用捣炉机从锥体外缘开始将料壳向下压,使料层下塌。然后用捣炉机捣松锥体下脚,捣松熟料就地推在下塌的料层上,捣出的大块黏料和死料推向炉心,同时铲净电极上的黏料。沉料时高温区外露,热损失很大,因而,沉料捣炉操作必须快速进行。四、炉料形状和焖烧提温沉料捣炉完毕后,应将混合炉料迅速集中加于电极周围炉心地区,使炉料在炉内形成一平顶锥体,并保持一定的料面高度。不准偏加料,一次加入新料数量相当于1h左右的用料量。 新料加完后,进行焖烧,焖烧时间控制1h左右,焖烧和定期沉料的操作方法,有利于减少热损失,提高炉温和扩大:“坩埚”。五、扎透气眼集中加料时,大量生料加入炉内,可能使反应区温度下降。因而在加料前期,炉温较低,反应进行得缓慢,气体生成量不会太多,在焖烧一段时间后,炉温迅速上升,反应趋于激烈,气体生成量也将急剧增加,此时为了帮助炉气均匀外逸,有必要在锥体下脚“扎眼透气”。石油焦具有良好的烧结性能,集中加料焖烧一段时间后,容易在料面形成一层硬壳,炉内也容易出现块料,为了改善炉料的透气性,调节炉内电流分布,扩大“坩埚”,除扎眼氧气外,还应用捣炉机或钢棒松动锥体下脚严重的部分炉料。至于彻底的捣炉,则在沉料时进行。六、炉况正常的标志及不正常炉况的处理电炉生产工业硅,炉况容易波动,较难控制,因此必须正确判断炉况并及时处理。和生产75%硅铁一样,影响炉况的因素是很多的,但是在实际生产中,影响炉况最主要的因素还是还原剂用量,还原剂用量不当会使炉况发生急剧变化。一般来说,炉况变化通常反应在电极插入深度、电流稳定程度、炉子表面冒火情况,出铁情况及产品质量波动情况等几方面。1)炉况正常的标志是电极深而稳地插入炉料,电流电压稳定,炉内电弧响声稳而低,料面冒火区域广而均匀;炉料透气性好,料面松软而且有一定的烧结性,各处炉料烧结程度相关不大,焖烧时间稳定,基本上无刺火塌料现象;出铁时炉眼好开,流头开始较大,而后均匀变小,产品质量稳定。2)不正常炉况的处理。原料含水量波动,还原剂质量变化,称量准确程度较差,操作不当等各种因素,均会影响实用碳量,炉子出现还原剂不足或过剩现象。 炉子还原剂过剩的特征是料层松散,火焰变长,火头大多集中于电极周围,电极周围下料快,炉料不烧结,“刺火”塌料严重,电极消耗慢,炉内显著生成SiC,锥体边缘发硬,电流上涨,电极上抬,当还原剂过剩严重时,在电极周围窄小区域内频繁“刺火”塌料,其他地区的料层发硬,不吃料,坩埚大大缩小,热量高度集中于电极周围,电极高抬,热损失严重,电弧声很响,炉底温度严重下降,假炉底很快上涨,铁水温度低,炉眼缩小,有时甚至烧不开炉眼,被迫停炉。更多有关硅冶炼请详见于上海
有色
网
硅黄铜
2017-06-06 17:50:04
硅黄铜是在铜锌合金的基础上,加入硅的黄铜。 它在大气和海水中均有较高的耐蚀性,抗应力腐蚀破裂的能力高于一般黄铜。含硅量一般在4%以下。常用硅黄铜80Cu-17Zn-3Si能承受热压力加工,耐蚀性优良,软态的拉伸强度为300MPa,伸长率为58%,适用于制作船舶零件,蒸汽管和水管配件等。这种合金的含铅量不能超过0.01%,否则会损害热塑性,特别是热锻性能。65Cu-31.5Zn-1.5Si-Pb为含铅的硅黄铜,具有较高的切削性,减摩性和耐蚀性,主要用于耐磨锡青铜的代用品。 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。了解更多有关硅黄铜信息,请关注上海
有色
网。