您所在的位置: 上海有色 > 有色金属产品库 > 钼酸盐 > 钼酸盐百科

钼酸盐百科

钼酸钙

2019-02-12 10:08:00

同钼铁、氧化钼相同,钼酸钙也常作为钢铁的钼合金添加剂。其运用远没钼铁、氧化钼广泛。纯钼酸钙含钼48.0%。下表列出了前苏联钼酸钙标准,供参阅。   表  钼酸钙(前苏联)标准UMTY-4523-65ROC  类型Mo ≥Ca ≤P ≤S ≤MДK-144220.10.2MДK-240240.20.3       钼酸钙的出产可由钼焙砂加石灰(CaO)混匀焙烧,钼精矿加石灰(CaO)后混匀焙烧。但更多的是在处理低档次钼精矿时,用氯化钙(CaCl2)沉积MoO42-而制成,惯例工艺见下图。   图  低档次钼精矿制钼酸钙流程       当用苏打液浸出钼焙砂时,不只能与三氧化钼反响,也能与钼酸钼,钼酸铁反响而溶解(但就不能使它们溶解、反响):   MoO3+Na2CO3←→Na2MoO4+CO2↑   CaMoO4+ Na2CO3←→Na2MoO4+CaCO2↓   FeMoO4+ Na2CO3+H2O←→Na2MoO4+Fe(OH)2↓CO2↑       为了溶解充沛并节约苏打,一般选用四到五段逆流浸出。对过泸后的浸液经蒸汽加热浓缩,钼酸钠溶液的钼浓度超越50~70g/L后,就可在80~90℃下参加氯化钙(CaCl2)生成钼酸钙沉积。沉积需在中性或碱性溶液中进行,所加CaCl2量应比理论反响量多10~15%。对所生成的沉积用清水清洗去硫酸盐后,经过滤、锻烧(600~700℃)即可获炼钢工业钼酸钙。     由低档次钼精矿,乃至出产钼酸铵的浸渣,都可与苏打拌合后焙烧,发生如下反响:  MoS2+Na2CO3+O2△Na2MoO4+CO2↑+SO2↑←→ SiO2+ Na2CO3→Na2SiO3+CO2↑   生成的可溶性钼酸钠与硅酸(或偏硅酸)钠可在必定的pH范围下进行别离。别离出硅酸后的母液参加氯化钙,将生成钼酸钙的沉积。对沉积先经清洗、烘干后即成工业级钼酸钙。     钼酸的出产工艺与钼酸钙的出产工艺类似。所不同的仅仅不必氯化钙而用氯化去沉积钼酸钠溶液中的钼:   Na2MoO4+BaCl2→2NaC1+BaMoO4↓   钼酸使用于珐琅工业中。出产时,国内用浸渣加苏打焙烧的工艺使用较多,它的出产要害,是溶液中偏硅酸与钼酸钠的充沛别离。

钼酸铵的介绍

2019-02-12 10:08:00

钼酸铵易于纯化、易于溶解、易于热解离,并且,热解离出的NH3气随加热可充沛逸出,不再污染钼产品。因此,钼酸铵广泛用作出产高纯度钼制品的根本质料。比方,热解离钼酸铵出产高纯三氧化钼、用硫化钼酸铵溶液出产高纯二硫化钼,经过钼酸铵出产各种含钼的化学试剂等。钼酸铵也常用作出产钼催化剂、钼颜料等钼的化工产品的根本质料。     在钼的初级产品中,钼酸铵仅次于钼焙砂和钼铁,占有着重要的位置。     工业钼酸铵并非单一化合物,它是一系列钼同多酸铵的混合物,随(NH3)2/MoO3比率的不同而异。但它们都可概括进一个通式,常见几种钼酸铵和通式见表1。Dnval Rode等从实验成果提出了仲钼酸铵新的转化道路:  (NH4)6Mo7O24·4H2O△(NH4)4Mo5O16△(NH4)4Mo8O26△MoO3→→→   这儿又证明a=5或8,b=2或2,c=0或0两种钼杂多酸铵的存在。但不管有几种杂多酸,工业钼酸铵中首要成份一般仍是仲钼酸铵。   表1  常见几种钼酸铵特性  名  称分  子  式参 数(NH3)2/MoO3%Mo转   化abc钼酸铵(NH4)2MoO41101:148.94 仲钼酸铵(NH4)6Mo7O24·4H2O7343:754.34130℃脱结晶水,230℃转化为四钼酸铵(放出NH3↑)四钼酸铵(NH4)2Mo4O134101:461.12315℃转化为三氧化钼(放出NH3↑)通 式(NH4)2bMoaO3a+bCH2O   b:a         从钼精矿动身,制取工业钼酸铵的工艺繁复。从钼精矿中辉钼矿分化方法,可将这些工艺概括为两大类,即(1)火法:经过氧化焙烧,将钼精矿转化为钼焙砂,再经湿法处理。(2)湿法:钼精矿直接浸出,辉钼矿转化为可溶钼盐。     火法或湿法差异仅在于MoS2氧化方法不同,前者选用焙烧,后者选用氧化剂溶液分化。终究,都使Mo4+→Mo6+,S2-→S0或S4+。     钼酸铵因为各杂多酸份额不同,钼含量也不同,但杂质含量往往很少,要求也很严厉。工业钼酸铵的技能要求见表2。   表2  钼酸铵质量标准  标准 含量(%) 成份我国国标GB3460-82克莱麦克斯1971年标准MSA-1MSA-2MSA-3标准产品典型分析Mo     Si        ︵ 杂 质 ︶ ≯0.00060.00100.0020.00250.0013Al0.00060.00060.0020.00100.0005Fe0.00060.00080.0050.00200.0007Cu0.00030.0005 0.00100.0006Mg0.00060.00060.0020.00050.0005Ni0.00030.00050.0010.00050.0005Mn0.00030.0006   P0.00050.00050.001  K0.010.080   Na0.0010.003   Ca0.00080.0010 0.00150.0007Pb0.00050.00050.00060.00050.0005Bi  0.0006  Sn0.00050.00050.00060.00350.0010Sb  0.0006  Cd  0.0006  Cr   0.00100.0005Ti   0.00100.0005粒度<40网目

钼酸铵的火法工艺

2019-02-12 10:08:00

所谓火法,特点是工艺前半部钼精矿经氧化焙烧成钼焙砂。从钼焙砂出产钼酸铵仍是湿法,根本工艺道路见下图。整个工艺分以下几步。   图  钼酸铵(火法)出产流程       1、浸     钼焙砂里里除了主成份的三氧化钼外还含有:没焙烧透的二氧化钼和二硫化钼、金属的硫酸盐、金属的钼酸盐、硅类杂质。这些不同物质在浸工艺中的反响也各不相同。     三氧化钼是酸酐,它极易溶于液中,发作如下反响而进入液相:   MoO3+2NH4OH =(NH4)2MoO4+H2O   二氧化钼和二硫化钼不溶于液,残留在固相中。铜、锌、镍的硫酸盐、钼酸盐能溶于,生成铁的络合物,发作如下反进而应入液相:   MeSO4+6NH4OH=Me[(NH3)4](OH)2+(NH4)2SO4+4H2O   MeMoO4+4NH4OH=Me[(NH3)4]2MoO4+4H2O       硫酸钙可与MoO2-4反响:   CaSO4+ MoO2-4=CaMoO4↓+SO2-4       反响新生成的钼酸钙和本来焙砂中的钼酸钙都不溶于,进入固相。     钼酸铁虽能被分化,但反响缓慢。由于,在钼酸铁表面上会生成一层实际上不溶于的氢氧化铁的薄膜,阻止了钼酸铁进一步被液溶解的进程。钼酸铁也大部分残留在固相。[next]     亚铁的硫酸盐或钼酸盐在液中生成氢氧化亚铁,它可溶于液构成铵的络合物:   Fe(OH)2+6NH4OH=[Fe(NH3)6](OH)2+6H2O       硅类杂质为石英(SiO2)或硅酸盐,是钼焙砂中首要杂质,不溶于而残留在固相。     对浸液进行液固别离,取得的钼酸铵溶液含杂量大为削减。     用8%~10%液,在常温或50~60℃,液固比为(3~4):1的条件下浸出钼焙砂。增加量为反响理论耗费值的1.2~1.4倍。这儿留有防止生成聚钼酸盐和确保在终究浸液中有必要坚持的剩下浓度(25~30g/L)。     钼焙砂中杂质含量不同,钼浸出率也不同。当氧化焙烧不充分时,会呈现二氧化钼或二硫化钼;当钙、铁含量较多时,都会使钼的浸出率下降。一般,钼焙砂的浸出率在80%~95%之间。     浸渣分量约为所加焙砂分量的10%~25%,含钼量在5%~25%之间。还需进一步收回其间的钼。     为处理钙、铁等杂质金属离子对浸的搅扰,除了进步钼精矿质量外,还有以下方法:     (1)向浸液中参加碳酸铵,它与硫酸钙反响生成更难溶的碳酸钙(CaCO3),便可防止硫酸钙生成钼酸钙,而进步钼的浸出率。碳酸铵还能与硫酸铁、钼酸铁发作反响,生成碱式碳酸铁的沉积,它的吸附才干比氢氧化铁小,可下降浸渣中钼含量。     (2)浸前,用酸“预浸”钼焙砂是一个卓有成效的方法。此刻会发作如下反响:   MeSO4+2HCl=MeCl2+H2SO4   MeMoO4+2HCl=MeCl2+H2MoO4↓       钙、铁、铜、锌……等以可溶盐方式进入液相,三氧化钼以被酸分化出呈钼酸不溶于酸(应调好PH值)而进入固相。尔后,经过固液别离,可使焙砂中大部分杂质金属被别离出。对净化后的焙砂再浸,浸渣中钼含量可降至3%以下。“预浸”时,二氧化钼可溶于酸进入液相:   MoO2+4HC1=MoCl4+2H2O       所以,钼焙砂含二氧化钼较高时,“预浸”废液应增加收回钼的工艺。     浸工艺一般在珐琅反响釜或钢制浸槽中进行。这些设备带有机械拌和器和蒸汽加热套。浸出进程往往须重复2~4次。后几回稀浸液可循环运用。     2、净化除杂     浸、过滤后所获钼酸铵溶液还含有不少金属的络离子。特别铁和铜的络离子含量较多。为脱除它们,往往要向溶液参加硫氢化铵(或硫化铵、)。     这些金属的络离子中除[Fe(NH3)6]2+移定性较差,其他[Cu(NH3)4]2+、[Zn[Ni(NH3)4]2+结合得都很安稳,它们PK不稳分别为13.32、9.46。因此,溶液中铜、锌、镍的正二价离子浓度很低。     虽然[Cu(NH3)4]2+很安稳,但CuS与FeS溶度积更低。(LFeS=3.7×10-19,LCuS=8.5×10-45)所以,溶液中会发作如下反响,直至铜、铁沉积完:   [Cu(NH3)4](OH)2+NH4HS+3H2O→CuS↓+5NH4OH   [Fe(NH3)6](OH)2+NH4HS+5H2O→FeS↓+7NH4OH       关于锌和镍,虽然它们的硫化物溶度积也不高(LZnS=1.2×10-19,LCuS=1.4×10-24),但它们的络离子相对就安稳得多。此刻,溶液中很低的[Zn2+]、〔Ni2+〕与〔S2-〕不可能到达按此溶度积生成硫化锌、硫化镍的必需浓度。因此,锌、镍的杂质大部分仍留在溶液中。[next]     经过液固别离,就可以脱除钼酸铵溶液中的铜、铁杂质。     出产中,有必要当心操控铵的加人量,假设溶液中铵过量,将生成硫代钼酸盐使终究产品被硫污染。所以,铵需一点一点缓慢参加溶液并不断拌和。每次加往后要取样查验沉降是否已彻底,如发现溶液中铵过量,需参加新鲜的浸液冲销。     铵亦可用硫化铵或替代,但易形成终究产品含Na2O过量而较少选用。     净化是在珐琅反响釜或衬有橡胶的钢制浸出槽中进行。相同,需带拌和器和加热蒸汽套。     3、结晶     经净化的钼酸铵母液往往含有MoO3120~140g/L,母液密度约1.09~1.12g/mL。一般先经预先蒸腾浓缩至含MoO3为280~300g/L,或母液密度1.20~1.23g/mL。此刻,母液中为数不多的CuS、FeS、Fe(OH)3易沉降,可滤除。往后,将有两种加工计划:     (1)计划I—浓缩-结晶法:将经预浓缩后的母液在带机械拌和器、蒸汽加热套的不锈钢或珐琅反响釜中加热、蒸腾、浓缩。使溶液密度到达1.38~1.4g/mL(适当含MoO3为400g/L),过滤热溶液并搜集在冷却、结晶器内。     结晶是在带拌和器、冷却系统的不锈钢或珐琅结晶器中进行的。当母液温度冷却至40~45℃后,约50%~60%的仲钼酸铵从溶液结晶分出。经离心过滤、洗滤、枯燥获终究产品。剩下母液再经“浓缩-结晶”重复屡次,终究再将尾液蒸干,在350~400℃下煅烧,所得三氧化钼含杂太高,须回来浸。     操作须留意:蒸腾进程应保存4~6g/L自在;而且为防部分过热,应不断拌和,这样才干防止生成酸性较强、晶粒较细的钼酸铵沉积,从溶液中分出。     “浓缩-结晶”需重复屡次,进程持续时间较长,第2次后各批结晶含杂较高往往超越标准,而需重复结晶以净化。     (2)计划Ⅱ—中和法:对预浓缩的母液参加中和,依据溶液终究pH和温度不同,可分出不同成份聚钼酸盐。     当心翼翼地用中和加热到55~65℃的钼酸铵母液,直到pH=2.3,强烈拌和,可将96%~97%的钼以二水四钼酸盐方式沉积出来:  4(NH4)2MoO4+5H2OPH=2~2.5(NH4)2Mo4O13·2H2O+6NH4OH→   分出的结晶有必要立刻过滤,不然,在与母液长期触摸后易脱水,生成细晶粒无水四钼酸铵而难过滤。     四钼酸铵沉积物纯度很高,Ni、Zn、Cu……及AS、P、S……等杂质都残留在弱酸性母液中。但它却含有较多氯离子(0.2%~0.4%)不易被水洗掉,而需重结晶,以脱除氯离子。     首要,将四钼酸铵在70~80℃下,用含3%~5%的溶液溶解,直到饱满(溶液密度1.41~1.42g/mL)。然后将饱满溶液冷却到15~20℃,50%~60%的钼会以纯洁的仲钼酸铵((NH4)6Mo7O24·4H2O)方式从中分出。母液再重复溶解四钼酸铵,再冷却结晶,重复可达十次左右。四钼酸铵逐步转变成纯洁仲钼酸铵,杂质在母液中堆集到必定程度后,送去净化处理。     别离四钼酸铵后的酸性母液中,还残留有3%~4%的钼(适当6~10g/L),将其再酸化至pH=2送沉积池,可从中分出各种成份聚钼酸盐非晶形沉积。沉积送净化处理除杂,尾液还含约1g/L的钼,可用离子交换法加以收回。     4、浸渣收回     依据钼焙砂的不同成份,钼的浸出率在80%~95%之间,其余部分残留在产率10%~25%的浸渣中,渣的含钼量还高达5%~25%之间。[next]     浸渣中钼的物相生要为:难溶或不溶于的钼酸钙、钼酸铁;不溶于的二氧化钼、二硫化钼;极少量吸附在氢氧化铁表面的钼酸根离子。笔者在对栾川县钼酸铵厂浸渣所作物相分析发现:吸附MoO2-4很少,而CaMoO4、MoS2含量占渣中钼量的80%以上。见下表。   表  浸渣中钼的散布  钼的物相MoO2-4Fe2(MoO4)3CaMoO4MoO2MoS2算计钼分配率(%)4.199.3335.754.6746.06100.00       从浸渣中收回钼的工艺繁复,不少工艺与钼精矿分化工艺相同,此仅作简略介绍。这些工艺也有火法、湿法之分。     火法常见工艺有:(1)二次焙烧-浸;(2)碳酸钠焙烧-水浸;(3)硫酸焙烧-浸。后两种适用于含各种钼化合物的浸渣。其间碳酸钠焙烧法用得最多。     二次焙烧法:Richard将浸渣在富氧(或纯氧)中焙烧600~650℃,15~30min后总浸率达99%以上。     碳酸钠焙烧-水溶法:将湿渣拌上碳酸钠粉,放焙烧炉内,经700~750℃焙烧6~8h。此刻,浸渣中的各种钼化合物都会转化成可溶的钼酸钠。用水加热溶解此焙渣,钼酸钠溶入液相经过滤后别离出。在pH=3.5~5微酸性介质中,用从浸液中沉积出钼酸铁。沉积物中的FeO3/MoO3份额不定,一般不与Fe2(MoO4)3共同,可用溶解得钼酸铵溶液。     硫酸焙烧-水浸法:将浸渣拌入硫酸在600℃下焙烧,各种钼化合物转化为钼酸。用浸出焙渣,钼酸转化为钼酸铵进入溶液再收回。     湿法常见工艺有:(1)碱液压煮;(2)酸分化;(3)次分化。     碱液压煮:当浸渣中钼首要以钼酸盐方式存在,而MoO2或MoS2含量很低时,在高压反响釜内用碳酸钠溶液浸出浸渣。在180~200℃,1.2~1.5MPa浸出,可将其他钼酸盐转化为可溶钼酸钠别离收回。     酸分化法:当浸渣的钨档次较高(3%~5%W)时,用其他方法难将W-Mo别脱离。此刻用20~30%加温到100℃左右浸出浸渣,可将其间钼酸盐彻底分化,生成易溶于的钼酸,而钨酸盐大部分不会分化而与杂质一块残留在固相,别离出钼酸溶液收回钼。残渣可再收回钨和MoS2、MoO2。     用15%浓度硝酸、10%浓度硫酸,在液固比为3:1,加温到70~80℃时,浸出浸渣2h,可将浸渣中各种钼化合物转化为钼酸,残渣含钼量仅0.44%。

钼酸铵、钼酸钠实行分等级报价的具体方法

2018-12-14 09:31:07

中国有色金属工业协会钼业分会于2006年4月26-27日在杭州召开了“钼业分 会全国钼化工企业第三次峰会”。与会代表围绕会议讨论议题进行了认真讨论,大 家各抒己见,畅所欲言,最后达成了多项有利于全国钼化工行业及钼行业发展的共 识。其中提出了对钼酸铵、钼酸钠的报价问题,大家一致认为,钼酸铵、钼酸钠应 实行分等级报价,这种报价较为科学,有利于钼行业的发展,现将具体事宜通知如 下:     一、四钼酸铵    1、精品级 Mo≥56% 化学物理性能达标,满足钼拉丝条及深加工;    2、一级品 Mo≥56% 各项化学性能达标,满足钼粉制备及钼制品棒、杆、板  等;    3、二级品 Mo≥56% 主含量满足炼钢钼条、块、坯及其普通应用。     二、七钼铵酸    1、一级品 Mo≥54% 化工原料及其主应用;    2、二级品 Mo≥52% 钼肥生产原料;     三 、二钼酸铵    参照七钼酸铵一级品价格执行mo≥56%     四、钼酸钠    1、精品级 Mo≥39.2% 含量≥99% 无钨、钒杂质;    2、一级品 Mo≥38.5% 含量≥98.5%;    3、二级品 Mo≤38% 含量≤98%。.

硅酸盐类

2019-01-21 18:04:31

一、概述硅酸盐矿物包括所有含硅酸根的矿物。这类矿物在自然界分布非常广泛,目前已发现的矿物约有800多种,占已知矿物的三分之一,占地壳总重量的80%。它们不仅是三大类岩石(火成岩、变质岩、部分沉积岩)的主要造岩矿物,同时也是工业上、国防上重要的非金属矿物资源。如云母、石棉、高岭石、长石、滑石等。此外,还有一系列有用元素如Be、Li、B、Zn、Rb、Cs等也可从硅酸盐中提取。    二、晶体化学特点(一)化学成分 组成硅酸盐矿物的主要元素有:O、Si、Al、Fe、Ca、Mg、Na、K其次是Mn、Ti、B、Be、Zr、Rb、Cs、F及其他元素等。组成硅酸盐的元素主要为惰性气体型离子,其次为过渡型离子,由铜型离子所组成的硅酸盐数量很少。 (二)晶体构造 组成硅酸盐矿物的元素种类虽然不多,但矿物的种数却非常繁多,这主要是由于其内部构造比较复杂,并存在着广泛的类质同象的原因所引起的。在硅酸盐晶体构造中,每一个硅离子都被四个氧离子包围,而四个氧离子则分布于四个角顶,构成硅氧四面体[SiO4]4+,这是硅酸盐的基本构造单位。 1、岛状构造    2、环状构造    3、链状构造(包括单链和双链)  4、层状构造    5、架状构造 (三)类质同象 硅酸盐中类质同象代替现象极为普遍。从而使硅酸盐的成分进一步复杂化。连续类质同象矿物系列在硅酸盐中很普遍。如大家熟知的斜长石类质同象系列;橄榄石系列等。除了阳离子之间存在着广泛的等价和异价的类质同象外,阴离子之间亦存在着类质同象现象,如[SiO4]4-可被[PO4]3-或[SO4]2-代替;O、[OH]和F之间的互相替换等。 (四)化学键 硅酸盐矿物的化学键主要为离子键和共价键。硅氧形成的络阴离子内部主要为共价键,而络阴离子与阳离子结合的键为离子键。层状构造硅酸盐矿物尚有分子键。    三、分类硅酸盐矿物的形态和许多物理性质都与其内部构造有明显的制约关系,如链状构造硅酸盐,其晶形多为柱状、针状;层状构造硅酸盐晶体多呈板状、片状,且有一组完全解理。由此可见,硅酸盐构造能较好的反映硅酸盐的本质特征,故可根据内部构造将硅酸盐分成以下五个亚类。 1、岛状硅酸盐亚类, 2、环状硅酸盐亚类, 3、链状硅酸盐亚类, 4、层状硅酸盐亚类, 5、架状硅酸盐亚类。

稀土硝酸盐

2017-06-06 17:50:13

稀土硝酸盐掺杂的氧化锌压敏陶瓷材料及制备方法,属功能陶瓷材料制造技术领域。其特征在于氧化锌压敏电阻材料按摩尔百分比包括下述组分:ZnO 94-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1-1.0%,稀土硝酸盐为0.01-2.0%,其中稀土硝酸盐为稀土钇、镨、锶的硝酸盐的一种。稀土硝酸盐掺杂的氧化锌压敏陶瓷发明通过稀土硝酸盐掺杂并通过调整稀土硝酸盐的合理掺杂浓度,使氧化锌压敏陶瓷的显微组织均匀,电性能得以提高,压敏陶瓷的电位梯度提高到1000- 1300V/mm,非线性系数为30-50,漏电流为2-20μA。稀土硝酸盐掺杂的氧化锌发明的压敏陶瓷可用于制造超高压电力系统的优质避雷器产品。更多有关稀土硝酸盐的内容请查阅上海 有色 网

铝酸盐水泥特点

2018-12-20 09:35:41

铝酸盐水泥特点:  铝酸盐水泥凝结硬化速度快。1d强度可达最高强度的80%以上,主要用于工期紧急的工程,如国防、道路和特殊抢修工程等。  铝酸盐水泥水化热大,且放热量集中。1d内放出的水化热为总量的70%~80%,使混凝土内部温度上升较高,即使在-10℃下施工,铝酸盐水泥也能很快凝结硬化,可用于冬季施工的工程。  铝酸盐水泥在普通硬化条件下,由于水泥石中不含铝酸三钙和氢氧化钙,且密实度较大,因此具有很强的抗硫酸盐腐蚀作用。  铝酸盐水泥具有较高的耐热性。如采用耐火粗细骨料(如铬铁矿等)可制成使用温度达1300~1400℃的耐热混凝土。  但铝酸盐水泥的长期强度及其他性能有降低的趋势,长期强度约降低40%~50%左右,因此铝酸盐水泥不宜用于长期承重的结构及处在高温高湿环境的工程中,它只适用于紧急军事工程(筑路、桥)、抢修工程(堵漏等)、临时性工程,以及配制耐热混凝土等。  另外,铝酸盐水泥与硅酸盐水泥或石灰相混不但产生闪凝,而且由于生成高碱性的水化铝酸钙,使混凝土开裂,甚至破坏。因此施工时除不得与石灰或硅酸盐水泥混合外,也不得与未硬化的硅酸盐水泥接触使用。

钼中矿处理——钼酸铵生产

2019-02-15 14:21:24

钼矿选矿过程中,有的流程产出一个难以用浮选收回的低档次钼中矿;有的因杂质含量太高得不到合格钼精矿〈或称低档次钼精矿〉。使用这些不合格的钼精矿和钼中矿来出产钼酸铵是收回这部分钼的一个方法。    1.钼中矿的化学选矿    杨家杖子钼矿在选矿过程中产出一个含钼0.6~0.8%的钼中矿,以此为质料出产钼酸铵的工艺流程如下:    首先把钼中矿浓缩到60%固体浓度,参加次溶液浸出,反响式如下: MoS2+9NaClO+6H2O→Na2MoO4+2Na2SO4+9NaCl+3H2O     次溶液含NaClO130~140克/升、含NaOH50~60克/升。浸出温度45~55℃,钼中矿细度为0.074毫米以下。    浸出生成的钼酸钠溶液参加使pH=5~6,然后加氯化钙,用蒸汽煮沸生成钼酸钙沉积。反响式如下: Na2MoO4+CaCl2→CaMoO4↓+2NaCl     把钼酸钙沉积过滤后,加碳酸钠溶液分化钼酸钙以除掉其中平杂的重金属离子,反响式如下: CaMoO4+Na2O3←→Na2MoO4+CaCO3↓     然后加使溶液的pH=0.5,在95℃下反响生成钼酸沉积,反响式如下: Na2MoO4+2HCl→H2MoO4↓+2NaCl[next]     把钼酸别离出来后,直接溶解于中,生成钼酸铵。参加活性产脱色,然后加使pH=2.5,得到白色结晶的二水四钼酸铵[(NH4)2O•4MoO4•2H2O]。过滤、枯燥、破坏得到钼酸铵制品。整个出产流程如下图所示。 [next]     2.低档次钼精矿出产钼酸铵    有的选厂如金口岭和宝穴选矿厂,因含炭质矿藏的影响,浮选得到的钼精矿含钼仅20~35%。该厂选用化学选矿制成钼酸铵。出产流程如下:首先将低档次钼精矿烘干后焙烧成三氧化钼,反响式如下: 2MoS2+7O2     4.5小时  →  2MoO3+4SO2↑600~650℃     然后将三氧化钼用浸出、生成正钼酸铵,反响式如下: MoO3+2NH4OH   3小时  → (NH4)2MoO4+H2O     过滤除掉氢氧化铁等不溶物。滤液加(或硫化铵),将浸出液中铜络合物转化为硫化铜沉积、与正钼酸铵别离。除掉重金属离子的溶液,参加硝酸,使pH=2.5,正钼酸铵转化为四钼酸铵晶体,反响式如下: 4(NH4)2MoO4+6HNO3→(NH4)2O·4MoO3↓+6NH4NO3+3H2O     把晶体过滤、在120℃枯燥3小时得到白色结晶的四钼酸铵。出产流程如下图所示。[next]

钼酸铵的湿法生产工艺

2019-02-12 10:08:00

传统的氧化焙烧钼精矿出产钼酸铵的火法工艺,存在SO2烟气严峻污染环境,钼和铼收回率低一级缺点。温法分化钼精矿就可防止这些缺点。     湿法工艺品种繁复,从钼精矿分化手法区分,常见工艺有以下几种(见表1)。   表1  常见湿法工艺  工  艺氧化剂压力(MPa)温度(℃)浸  液硝酸氧压煮O2△0.8~1.5① ※2.0~2.5②180~22020~40g/LHNO3 (HNO3:Mo=0.2~0.3:1)烧碱氧压煮O2同上200 硝酸分化HNO319027~30%浓度硝酸次分化NaOCl120~4030g/L NaOCl, 20~30g/L NaOH           ①氯分压;②釜内总压。       1、(硝酸)氧压煮     钼精矿在水介质里,经硝酸催化的氧化煮是一个三相(液-固-气)反响的放热进程,反响为:  MoS29O2+3H2O→H2MoO4+2H2SO4+△Q2   硝酸起作催化剂作用,在反响中循环:   MoS2+9HNO3+3H2O→H2MoO4+9HNO2+2H2SO4+△Q   2HNO2→NO+NO2+H2O   2NO+O2→2NO2+1233kJ   3NO2+H2O→2HNO3+NO+484.5kJ       从亚硝酸→NO+NO2→NO2→HNO3反响很快到达平衡。增大氧分压、下降气相温度,都有利反响进行。     压煮进程中,钼除少数在强酸介质中呈阴离子进入压煮液外,94%左右钼以钼酸方式留在固相。钼精矿里伴生的铼绝大部分转化为可溶的高铼酸或其盐进入压煮液中。钼精矿中铁、铜、铝、镁等呈硫酸盐,部分磷、砷、硅以阴离子方式进入了压煮液。     硝酸氧压煮工艺流程如图1,工艺条件见表2。   表2  氧压煮出产钼酸铵工艺条件  工  艺工  艺  条  件压煮钼精矿(kg):水(L)1:1.5~2.5①釜内加压(MPa)2(反响中上升至3)加热温度(℃)14~15(反响上升至20)②硝酸用量(kg HNO3/kg Mo)0.20~0.30反响时刻(h)2(滤饼) 浸滤饼(kg):水(L):(L)1:0.7~0.8:1.2~1.23PH8.5~90加热温度(℃)70~75拌和时刻(min)15~20溶液比重(g/mL)1.16~1.18净化加热温度(℃)80~PH8.5~9参加过量时溶液呈淡黄色浓缩溶液比重(g/mL)1.2~1.21冷却温度(℃)40~45酸沉反响温度(℃)≯60PH2~2.5溶 再结晶粗晶(kg):蒸馏水(L):(L)100:(40~50):(45~50)溶液比重(g/mL)1.40~1.50溶解加热温度(℃)70~80            ①     现在蒸煮加压已可降至0.8~1.2Mpa;            ②     反响中,压力还会上升,温度自行再升高[next]  图2  (酸)氧压蒸煮出产钼酸铵工艺流程       钼精矿、硝酸和水(或回来的洗液)参加钛材高压反响釜,向反响釜送入蒸汽开端加热并通入氧气。当釜内温度上升到140~150℃、压力达1.5~2.5MPa后中止蒸汽加热。持续送入氧气,随反响开释热量,釜内的温度、压力得到上升,可到达180~220℃、3~3.5MPa。在不就义载时保持反响2h。反响完毕,中止送氧,温度会随之下降到150℃以下。冷却浸液使温度降至l00℃以下,排气降压,再经液固别离:可获钼酸滤饼和压煮液。对钼酸滤饼的进一步加工与钼焙砂浸工艺类似。     氧压煮工艺里钼和锌的转化率都可达98%~99%以上,加工费不高、三废较少但氧压煮能否施行于出产的关键是设备能否耐压、耐温、耐酸腐蚀。高压反响釜用钛材、密封材料可用四氟乙烯材料制备,对高压、高温、高酸度、高氧化气氛下的阀门等尤须留意。     氧压煮液的处理可选用萃取或离子交流提取钼和铼。几个典型氧压煮条件、作用比照见表3。   表3  氧压煮条件、作用比照  项  目单 位株洲硬质合金厂前苏联美国专利3988418美国专利3739057日本专利昭-37-1520氧分压MPa1.5~2.01.01.05~1.41.0~1.52.0硝酸用量Kg/kg(Mo)0.20~0.30/0.45~0.90.34/液固比/1.5~2.5:110:110:15:110:1温度℃180~220200~225120~160155~160200精矿粒度目75%-200/-325-200-200浸出时刻h2~33~43~426钼转化率%99.1393~993599.5>9998.4进压煮液钼量%~75~720~2510~15/       2、硝酸氧压煮液收回铼的工艺     铼广泛散布在地壳中,但还没有发现有天然形状铼的存在,它也很少呈首要矿藏组分呈现。存在于其他矿藏中的铼仅为痕迹量,辉钼矿却是铼仅有重要的宿主矿藏。至今,世界上所出产铼的99%来源于热液型斑岩铜-钼矿。     从钼精矿出产铼的办法也依靠钼精矿分化的工艺。当氧化焙烧钼精矿时,在500℃以下的焙烧温度,铼就以Re2O7提高进入烟气。用高压力差的高洗刷塔,从烟尘中搜集率约65%。再从溶解有高铼酸或高铼酸铵的洗刷液里萃取或离子交流收回铼。氧压煮时钼精矿中铼的98%转化成高铼酸进入压煮液,压煮液里还含有总钼量5%~6%的钼。 从压煮液可用萃取法或离子交流法收回钼与铼。萃取工艺见图1,萃取铼的工艺条件见表4。   表4  压煮液中收回钼、铼的工艺条件  工 序工    艺    条    件沉 硅聚醚用量50g/m3压煮液萃取与反萃取条  件铼钼有机相组成N2352.520仲辛醇4010火油57.570反萃取剂(mol)NH4OH5~69~10洗刷剂(mol)NH4OH 1.8流比萃取萃铼1.3g/L萃钼20g/L洗刷 1/0.5反萃取铼液10g/L钼液150 g/L铼一次结晶用量(g/L)50 用量(ml/L)20 结晶温度(℃)≤0 铼二次结晶溶解液组成(:水)1:1 一次结晶溶解温度(℃)95 固液比1/10 结晶温度(℃)≤0  [next]     3、烧碱氧压煮     在130℃和氧分压为0.2MPa、釜内总压1MPa时,用NaOH溶液浸出钼精矿。经浸出7~8h后,98%~99%的钼与铼转化进液相。当温度提高到200℃,氧分压可达1~1.5MPa,反响如下:   MoS29O2+6OH-→MoO2-4+2SO2-4+3H2O2       溶液中除含有MoO2-4、ReO4-外,还含有Cu、Fe、Si、As、Sb、P的化合物,这些杂质使溶液处理复杂化。     从含硫酸盐离子高的溶液中别离钼,不适宜选用沉积钼酸钙的办法,由于这会一起生成硫酸钙的沉积而污染钼酸钙。因而,可选用在高压釜中200℃的弱酸溶液中(pH=2)用钼粉复原MoO2-4:   MoO2-4+Mo+4H+→3MoO2↓+2OH-   再用H2复原MoO2即可得工业钼粉。复原后的残液再用以萃铼。该工艺可提取96%钼和85%~90%的铼。 在弱酸性介质中,在加压下通入H2也可复原MoO2-4   MoO2-4+H2→MoO2↓+2OH-   MoO2最佳沉积条件为200℃,氢分压6MPa,pH=2~3,参加晶种反响1~4h后,98%以上相钼会以粗粒MoO3晶体分出。     从苛性碱压煮液中提取钼的另一有效途径是用强碱性阴离子交流树脂作离子交流。     惯例处理钼溶液的萃取、活性炭吸附、离子交流工艺都适用于酸性介质。株洲钨钼材料研究所选用OH-型717#或D296阴离子树脂,从苛性碱氧压煮的钼液中吸附钼,吸附率可达99.5%。而且除掉90%以上磷、砷、硅和80%以上SO42-等杂质。实验中,湿树脂的吸附量较大,pH=8时717#树脂穿透简单(交流柱流出与流入液相含量之比为0.01时简单)为25~29g/L;饱满容量(当流入,流出液的含量到达持平后的树脂含量)为38~40g/L;D296-10在pH=10时的穿透容量为29.06g/L,饱满容量为37g/L。在对树脂用NH4Cl解吸,解吸液酸沉等工序中,可进一步脱除SO42-及铜铁等杂质,取得合格的高质量仲钼酸铵。     4、次氧化法     这往往用作低档次钼精矿和钼中矿的湿法分化工艺。     在碱性介质中,加氧化剂次简直能氧化一切的硫化物:     但在20~40℃时,铁、铜的硫化物氧化速度远比辉钼矿的低。此刻,可充沛将MoS2转化为MoO42-,而铜、铁的硫化物很少溶解。一起,氢氧化铁,特别氢氧化铜在碱性介质能催化次的分化,加速辉钼矿的氧化:   NaClO→NaCl+[O]   浸液成份一般为:NaCIO30g/L,NaOH20~30g/L。一般用此法浸取含钼5%~23%的钼中矿时,钼的收回率可高达96%~98%。这个办法可在常温,常压下作业,比氧压煮易操控。不足之处是药剂耗量太大,理论上核算,每浸取lkg钼,需耗费7kg次,而实践出产耗费还为理论值的1.5~2倍。 为此,呈现通以再生次的工艺:   2NaOH+Cl2→2NaClO+H2↑       亦呈现电氧化法:用通电的氯化钠溶液浸出:  NaCl+H2O电解NaClO+H2↑→ [next] 这些工艺都只是次法的分支,见图2。   图2  次法流程

铝酸盐水泥概述

2019-02-28 11:46:07

铝酸盐水泥是以铝矾土和石灰石为质料,经煅烧制得的以铝酸钙为首要成分、氧化铝含量约50%的熟料,再磨制成的水硬性胶凝材料。铝酸盐水泥常为黄或褐色,也有呈灰色的。铝酸盐水泥的首要矿藏成为铝酸一钙(CaO·Al2O3,简写CA)及其他的铝酸盐,以及少数的硅酸二钙(2CaO·SiO2)等。    依据国家标准(GB201—2000)的规则:铝酸盐水泥的密度和堆积密度与普通硅酸盐水泥附近。其细度为比表面积≥300m2/kg或45μm筛筛余≤20%。铝酸盐水泥分为CA-50、CA-60、CA-70、CA-80四个类型,各类型水泥的凝聚时刻和各龄期强度不得低于标准的规则。    铝酸盐水泥包含铝酸钙、铝酸、铝酸锆三种水泥。其间铝酸水泥具有快硬、高强度、耐火度高级特色。

用非晶态钼矿石制备钼酸铵的研究

2019-01-25 13:36:45

摘  要:以中国某地含钼矿石为原料,通过研究发现钼以非晶态硫化物形式存在,一般选矿及文献记载的湿法提取方法均无法使之达到工业应用要求。研究了用原矿直接通过氧化焙烧、碳酸钠溶液高温高压浸取,将其中的钼转化为含钼溶液,再加入一定量固体氯化铵,加热析出钼酸铵,从而制备钼酸铵产品,并通过条件试验选取最佳工艺技术参数。钼酸铵中钼含量大于55%(质量分数),钼的回收率大于90%。关键词:非晶态钼矿石;钼酸铵;氯化铵。    1  物质组分    原矿分析结果:ω/(SiO2)=21.77%,ω/(K2O)=1.04%,ω/(Fe2O3)=15.96%,ω(Na2O)=0.22%,ω(Al2O3)=8.28%,ω/(TiO2)=0.33%,ω/(CaO)=7.28%,ω/(MgO)=2.10%,ω(S)=19.48%,ω(P)=0.16%,ω/(Mo)=4.32%,ω(Ni)=3.14%,ω/(Mn)=O 0.045%,ω/(C) =13.00%。    原矿经X射线衍射图谱分析,未见钼(镍)矿物的谱线和峰值,含硫矿物只有黄铁矿(二硫化铁),质量分数在14%左右,换算其中的硫含量占总质量的7.5%,而原矿化学分析结果表明硫含量高达19.48%,显然无法 平衡。据此判断,钼(镍)以非晶态硫化物形式存在。原矿其它主要矿物组成为:石英、碳、白云石、云母、菱铁矿、高岭石等。    2  原则工艺流程的制定    原矿钼品位较低,硫、碳含量较高,曾尝试浮选或重浮联选进行富集,由于其未结晶形成独立矿物,与碳等共生紧密,且嵌布粒度极细,无法与其它矿物进行有效分离,使得精矿晶位和回收率均极不理想。因此,本研究采用湿法冶金工艺提取其中的钼。原矿直接经氧化焙烧后,用碳酸钠溶液高温高压浸取,再用氯化铵析出浸取液中的钼,制备钼酸铵产品。原则工艺流程为:原矿→破碎→磨矿→氧化焙烧→碳酸钠溶液浸取→氯化铵析出→过滤洗涤→干燥→钼酸铵产品。    文献介绍了用低品位钼精矿制备钼酸铵的工艺路线,制备工艺在常压下进行且为结晶完好的辉钼矿原料。在文献的基础上,研究碳酸钠用量、浸取反应时间、浸取温度(压力)对浸出率的影响,并据此确定最佳浸取工艺条件,以及研究了用氯化铵制备钼酸铵的工艺技术指标。[next]    3  试验结果及分析    3.1  碳酸钠溶液浸取试验    试验仪器:l 000 W可调电炉;调速电动搅拌机;200 mL不锈钢反应釜,自制;调温烘箱。    试剂:碳酸钠,化学纯。    主要反应:    2MoS2+7O2=2MoO3+4SO2 ↑    MoO3+Na2CO2=Na2MoO4+CO2  ↑    3.1.1  碳酸钠用量试验    试验条件为:液固质量比2:1,温度100℃,时间1 h。取100g焙烧后的样品,磨至52 µm,加入不同量的碳酸钠,加人量为与固体原矿的质量比,两级浸取,第一次与第二次加入的量相同,加200 mL水,加热到100℃,搅拌反应l h,冷却后过滤洗涤,渣烘干后分析钼含量。浸取焙烧后的样品钼含量为4.07%(质量分数),试验结果见表1。从表l看出,当每次碳酸钠用量为50%时,浸出率相对较突出,但用量过高,不经济。总的来看,常压下浸取效果并不理想,但为高温高压浸取试验提供了一定的参考依据。表l  碳酸钠用量试验结果(质量分数)  %碳酸钠用量一次浸出渣钼含量二次浸出渣钼含量总浸出率103.793.0226.8203.521.7656.8301.471.2669401.41.0973.2501.481.5187.5[next]     3.1.2  浸取时间试验    试验条件:液固质量比2:l,碳酸钠用量40%,温度100℃。浸取时间分别为1 h、2 h、3 h、4h时,一次浸出渣钼含量(质量分数)分别为1.40%、1.6l%、1.54%、1.68%。结果表明,浸取时间对浸取效果无显著影响,以1 h为宜。    3.1.3  浸取温度(压力)试验    试验条件:液固质量比2:l,浸取时间l h,碳酸钠用量30%,结果见表2。结果显示,在碳酸钠用量相同的情况下,160℃时的密闭静态浸出率远高于常压下动态浸出率,超过了90%的预期指标。考虑到温度过高,反应时状态的平衡压力也随之增高,对设备的要求更加严格,反应温度以160℃较为适宜,此时状态的压力约606 kPa。表2  浸取温度(压力)试验结果浸取温度/℃一次浸出渣钼质量分数/%二次浸出渣钼质量分数/%总浸出率/%室温3.262.6933.91001.471.26691601.380.2691.2

氨基磺酸盐镀镍有何优点?

2019-03-12 11:03:26

盐镀镍层的最大长处是应力较低,且镀速快,合适电铸镍及印制板镀金的底层。     因为镍自身有张应力,一般镍层不是太厚时,应力效果不大。当电铸镍时,厚度要求较高,应力效果会形成电铸件变形。而盐镀镍工艺调整得好(主要靠加糖精来调整),镀镍层应力要比用其他镀镍工艺得到的镀镍层小许多。用盐镀镍工艺得到的镀层应力与镀液的pH值、温度、电流密度有亲近的联系,严厉依照工艺进行施镀,最佳组合可获得零应力镀层。所以特别适应于模具制作等职业。       要注意的是操控欠好应力相同能够很大。不要认为用了盐镀镍工艺就必定得到低应力镀层。       盐镀镍工艺缺陷是本钱较高。

硫代硫酸盐提金

2019-02-22 09:16:34

硫代硫酸盐一般为硫代硫酸的钠盐和铵盐,它们报价便宜,浸金速度快,无毒,对杂质不灵敏,浸金指标高。 巴格达萨良等人对硫代硫酸钠溶液溶金动力学研讨标明,温度在45~85℃范围内,金的溶解速度与温度呈直线联系,但为了防止硫代硫酸盐剧烈分化,浸出温度应控制在65.75℃。罗杰日科夫等人用含和氧化剂的硫代硫酸盐溶液从矿石中浸金的动力学研讨中得出另一种定论,即只要在热压浸出器中较高的温度条件下(130~140℃),才干到达满足的速度和回收率。卡科夫斯基等人还发现,铜离子对硫代硫酸盐溶金有催化作用,可使金的溶解速度进步17~19倍。我国的姜涛、曹昌琳等人对硫代硫酸盐提金的机理进行了较为具体的研讨。 但由于硫代硫酸盐法要求得太高,且硫代硫酸盐化学上不稳定,此法至今未得到推广应用。

钼酸铵热解生产三氧化钼

2019-01-29 10:09:51

工业仲钼酸铵是一系列钼的同多酸铵盐的混合物,它主要包括有:钼酸铵,四钼酸铵与仲钼酸铵。     下表列出了常见几种钼酸铵盐。   表  常见几种钼酸铵盐  名称分子式脱水温度(℃)转化温度(℃)转化产品仲钼酸铵(NH4)6Mo7O24·4H2O90°脱一个结晶水230四钼酸铵四钼酸铵(NH4)2MoO13130°脱其余结晶水315三氧化钼钼酸铵(NH4)2MoO4·2H2O120 三氧化钼       仲钼酸铵热离解反应及条件如下:  (NH4)6Mo7O24·4H2O90~130℃(NH4)6Mo7O24·4H2O+4H2O↑→    (NH4)6Mo7O24150~250℃(NH4)2Mo4O13+NH3↑+2H2O↑→    (NH4)2Mo4O13280~380℃4MoO3+2NH3↑+H2O↑→         工业生产中,这一系列反应在同1台回转炉内进行。炉温保持在450~500℃。炉温偏低,仲钼酸铵等热解离不彻底;炉温偏高,解离后的三氧化钼蒸汽压上升,会因升华而损失。回转炉的加热通常由炉外缠绕的电阻丝来实现。     由仲钼酸铵热解离生产的三氧化钼呈极淡的黄绿色,基本可满足高纯三氧化钼的要求。此工艺对原料——仲钼酸铵的质量要求较高,原料中的杂质往往进入焙烧后钼砂——高纯三氧化钼的产品中。所以,当原料含杂质较高时,必须先经除杂纯化,直至达到要求之后,再进入热解离段工艺。

从钨酸盐溶液中除钼

2019-03-05 09:04:34

现在许多用户对钨制品中钼含量约束十分严苛,我国GB 10116-88规则0级APT含钼量应不超越20×10-6,因而钨冶金中除钼为重要的工序之一。 在钨冶金中,视原猜中钼含量的不同以及详细工艺流程的不同,除钼可能是从Na2WO4溶液或净化转型所得的(NH4)2WO4港液或APT结晶母液中除掉(当原猜中钼含量很少时)。现在研讨的除钼办法甚多,但在工业中使用最广的都是根据钨、钼对硫的亲和力的不同,首要在pH=7.5~8的条件下(对(NH4)2WO4溶液面言,pH值提至pH=10~11)向溶液中参加S2-,此刻,MoO42-与S2-作用:而WO42-根本不变,因而使溶液中钨和钼别离以WO42-、MoO4-nSn2-形状存在,然后使用两者性质的差异进行别离,现在已工业化的别离工艺为: 一、选择性沉积法从钨酸盐溶液中除钼、砷、锡、锑 作者首要用量子化学核算的办法开始找出WO42-与MoO4-nSn2-在微观性质上的差异,再用分子规划办法定向寻觅,发现参加M115对MoS42-有特殊的亲和力,构成沉积进入渣相,而WO42-不反响,保留在溶液中,经过滤后,钨钼到达高效别离。与此一起发现SnO32-、AsO43-、SbO43-等亲硫元素的含氧阴离子都能被硫化成硫代酸根离子,因而也能一起除掉。本工艺的特点是: (一)适用性广,能从各种钨酸盐溶液(包含Na2WO4溶液、(NH4)2WO4溶液及APT结晶母液等)中一次性除掉上述多种杂质。 (二)除钼率高,对原始溶液中钼含量根本上没有约束,工业条件下其除钼作用如表1所示。 (三)WO3回收率高,沉钼渣中含Mo15%~20%,WO32%~4%,相当于除掉1kg Mo丢失0.2~0.3kgWO3,对含1g∕L Mo、200g∕L WO3的溶液而言,回收率达99.8%~99.90%。 本工艺在我国钨冶金技术市场中占有率已达72%。 表1  选择性沉积法除钼的工业生产成果二、离子改换法 根据强碱性阴离子交流树脂上的胺功用团对MoO4-nSn2-的亲和力比WO42-大,故将WO42-、MoO42-混合液加S2-转化后,用凝胶型或大孔型强碱性阴离子交流树脂吸附,钼优先吸附在树脂相,改换后液则为含钼很少的钨溶液。对吸附有MoO4-nSn2-的树脂则加氧化剂如NaClO、H2O2等进行解吸,其反响为:因而MoO4-nSn2-变成MoO42-解吸。其首要参数和目标如下: (一)料液制备进程 对(NH4)2WO4料液含WO3∶100~250g∕L,pH=9~10,S2-参加量按生成MoS42-计过量0.57~1.43g/L,40~90℃保温1~2.5h。再在室温保温10-16h。 (二)除钼进程 当除钼进程在离子交流柱进步行时:吸附流速2~8cm∕min,至钼穿透停止。淋洗钨溶液含NH4Cl 1~3mol∕L,pH=8.5~1.3,流速2~8cm∕min。解吸钼选用NaClO+NaCl溶液(其间NaCl浓度为0.5~3.5mol∕L,NaClO浓度为含有效氯1~15g∕L)或H2O2的碱性液,pH=11~14。 使用上述氧化剂将树脂上吸附的MnO4-nSn2-氧化为MoO42-和SO42-,然后完成将其解吸的意图。 (三)除钼作用 当溶液中Mo∕WO3=0.05%左右,交流后液Mo∕WO3约为0.005%。 (四)回收率 当溶液中Mo∕WO3=0.05%左右,钨进入交流后液的回收率为85%~90%,进入淋洗液为7%~8%。钼进入解吸液回收率为87%~96%。 因为在离子交流柱进步行时,交流容量小,一起解吸进程氧化速度很慢。因而,肖连生等进行了改善,将除钼的吸附进程在移动床中进行,而将氧化解吸在流化床内进行,大幅度提高了交流容量和解吸速度,交流容量达Mo 70kg∕m3树脂,WO3的丢失相当于1kg WO3∕kg Mo。 三、MoS3沉积法 (一)根本原理 上述硫化后的溶液加HCl中和到pH=2.5~3,则MoS42-。成MoS3沉积,然后与钨别离,反响为:(二)工业实践 MoS3沉积法除钼的操作进程、设备及首要操控条件、净化目标综合于表2中。 表2  三硫化钼沉积法除钼的工业实践操作进程及设备首要操控条件净化目标在耐酸珐琅反响锅中将Na2WO4溶液加热至70~80℃,参加理论量125%~150%的NaHS,拌和2~2.5h,用3~5mol∕L的HCl(若除钼后直接用萃取法则用2~3mol∕L H2SO4)中和至pH=2.5~3,煮沸1.5~2h后用耐酸真空抽滤器过滤MOS42-转化阶段:pH=7.2~7.3,温度为70~75℃,时刻为2~2.5h,NaHS加量为确保转化后溶液中游离S2-浓度1.5~3g∕L;MoS3沉积阶段:pH=2.5~3,煮沸时刻1.5~2h除钼率98%~99%,或除钼后的溶液中Mo∕W=0.01%~0.05%;钨的回收率大于98% 硫化钼沉积法除钼的缺陷是除钼作用欠佳,钨的回收率较低,一起放出有毒气体H2S,因而只适宜于含钼较低的Na2WO4溶液,故在我国已被筛选。 四、有机溶剂萃取法除钼 现在用萃取法除钼的计划繁复,其间较老练的为季铵盐萃取,其实质是先参加S2-使溶液中MoO42-转化为MoS42-后,以季铵盐作萃取剂萃取钼,其反响为:富钼的有机相用次溶液反萃,使MoS42-氧化成MoO42-;进入溶液(与离子交流法除钼的解吸进程类似),反萃后有机相回来萃取。 黄蔚庄等处理的料液成分为WO3 75~85g∕L、Mo 0.03~0.17g∕L、pH=8.2~8.4,经硫化后萃取,有机相为1.2% N263+20%TBP,其他为火油,反萃剂为0.3 mol∕L NaOH和30g/L NaCl的次溶液,选用6级逆流萃取,二级逆流反萃,萃余液中Mo∕WO3≤0.01%,进程中WO3丢践约0.5%,有机相丢践约3L∕WO3。除上述办法外,现在研讨的钨钼别离办法繁复,详细可参看参考文献。

硅酸盐成份快速分析仪

2019-02-21 10:13:28

丈量规模    1-1 丈量元素及规模  SiO2 0.2-99%   Al2O3 0.2-99%  Fe2O3 0.1-15%   TiO2  0.1-15%  CaO  0.1-60%   MgO  0.1-40%   K2O  0.1-15%   Na2O  0.1-15%   Li2O 0.1-15%   ZrO2  0.1-99%  CoO  0.1-10%   P2O5  0.1-30%  B2O3  0.1-30%  SnO  0.1-99%  PbO  0.1-20%   ZnO  0.1-15%  BaO  0.1-10%   NiO  0.1-15%  MnO  0.1-15%   Cr2O3 0.1-15%        1-2 对下列化工原料主成份进行快速分析    铬盐产品、V2O5产品、MnO产品、NiO产品、钛、磷酸盐、氧化钴、氧化锌 、硼砂、碳酸、水玻璃、腐植酸钠    1-3 低含量组份的高精度分析  可将Fe2O3、TiO2、CaO、MgO、K2O、Na2O、P2O5、MnO、Cr2O3等元素的检测下限扩展到0.02%,分析精度优于0.02%。    2、分析精度    对各元素的分析精度到达或优于相关国家标准分析办法中规则的答应差错。    3、分析速度  自称量开端2-3小时完结SiO2、CaO Al2O3、Fe2O3、TiO2、MgO、K2O、Na2O的全分析,其它元素的分析4-6小时完结    4、进样通道: 3个    5、连测样品数:10个    仪器成套性    1 DHF81型主机   壹台    2 数据处理系统   壹套    3 火焰光度计    壹套    4 银坩埚      肆套    5 超声波清洗器   壹台    仪器工作条件    1 电源    220V 50Hz      2 整机功率  1Kw          3 整机分量  100kg          4 装置面积 3500×850mm

用离子交换法分离钼酸铵溶液中的钒

2019-02-21 11:21:37

跟着现代工业的飞速发展,钼的用量不断添加,其报价也继续上涨,但优质钼矿资源越来越少。在各种类型的钼矿藏和钼系废催化剂中都含有一定量的钒酸根,钒酸根是钼产品的有害杂质,因此,需求经过除钒酸根来制备纯钼化合物。 钼酸根、钒酸根在水溶液中的性质十分类似,别离很困难。已有的一些钼酸根、钒酸根别离办法有铵盐沉淀法、溶剂萃取法、电化学离子交流法、电化学复原反萃取法、螯合树脂吸附法等。铵盐沉淀法和溶剂萃取法对钼酸根、钒酸根别离不完全,后3种办法可使钼酸铵产品中钒酸根质量分数小于0. 0015%,可是电化学离子交流法和电化学复原反萃取法操作工艺杂乱,而螯合树脂吸附容量低,工业运用不抱负。实验研讨了用强碱性阴离子交流树脂从钼酸铵溶液中去除钒酸根。 一、实验部分 (一)实验仪器、试剂和分析办法 强碱性阴离子交流树脂D231-Ⅱ,浙江争气实业股份有限公司产品。 实验料液由钼酸铵、和去离子水制造而成,钼质量浓度62.36gL,钒质量浓度0.52gL,pH为6.5~7.5。 、、钼酸铵、均为分析纯。 溶液中钼质量浓度用铜离子催化硫酸盐法在722S型分光光度计上测定,钒酸根质量浓度用硫酸亚铁铵滴定测定,氯离子质量浓度用滴定测定,溶液pH值用pHS-25数显pH计测定。 离子交流柱:Ф2.5 cm×200 cm。 (二)实验办法 树脂先用去离子水浸泡24 h,充沛溶胀后再用去离子水洗至无杂质;用40gL溶液和40 gL溶液替换处理2次,每次用2倍树脂体积的用量浸泡8h并用去离子水洗至中性;最后用4倍树脂体积的40 gL溶液转为氯型,再用去离子水洗至中性,备用。 取200 mL处理好的D231-Ⅱ树脂装填在交流柱中,室温下,将制造好的料液从上向下经过树脂层,操控流速为200 mL/h,每2h取交流柱流出液一次,检测钼和钒的质量浓度。 交流柱流出液中钒酸根质量浓度达0.02 g/L时中止吸附。当树脂吸附饱满后,用4倍树脂体积的50 g/L溶液(或50gL溶液)解吸,用去离子水洗至pH=8,再用4倍树脂体积的50g/L溶液转为氯型,用去离子水洗至pH值为中性后,进行下一个周期的吸附。 二、实验成果与评论 (一)吸附 3个周期的吸附实验曲线如图1~3所示。图1  第1周期树脂对钒酸根的吸附曲线图2  第2周期树脂对钒酸根的吸附曲线图3  第3周期树脂对钒酸根的吸附曲线 从图1~3看出:D231-Ⅱ树脂对料液中的钼酸根和钒酸根都有吸附作用,当流出液体积为1倍树脂体积时,钼酸根开端穿透,随后流出液中钼酸根质量浓度敏捷升高;当流出液体积为8倍树脂体积时,流出液中钼酸根质量浓度与进料液中的根本共同,而钒酸根根本检测不出;当流出液体积为20倍树脂体积时,流出液中检测出有微量的钒酸根。若以钒酸根质量浓度0.02g/L为失效结尾,则树脂对钒酸根的吸附容量约为16.0g/L,处理料液量为26倍树脂体积。 (二)解吸 选用强碱性阴离子交流树脂D231-Ⅱ去除钼酸铵溶液中的钒酸根作用很好。流出液中钒酸根质量浓度达0.02g/L为吸附结尾,此刻对树脂进行解吸处理。负载树脂先用清水淋洗,去除残留的吸附原液,然后用4倍树脂体积的50 g/L溶液进行解吸,再用去离子水洗至pH=8。3个周期的解析实验曲线如图4~6所示。树脂吸附容量、洗脱量和洗脱率见表1。图4  第1周期树脂对钼酸根和钒酸根的解析曲线图5  第2周期树脂对钼酸根和钒酸根的解析曲线图6  第3周期树脂对钼酸根和钒酸根的解析曲线 表1  D231-Ⅱ树脂3个周期的吸附参数从表1看出:3个周期的解析成果根本共同,钒酸根洗脱率均在99%以上,阐明D231-Ⅱ树脂吸附钒酸根的重复性好、洗脱率高。D231-Ⅱ树脂作为一种大孔强碱性阴离子交流树脂,具有特殊的孔结构和比表面积,在pH为6.5~7.5范围内,对钒酸根的吸附选择性大于对钼酸根的吸附选择性。一起,树脂的抗污染才能强,具有很高的吸附才能、耐温性、稳定性和机械强度,十分合适从实践溶液中吸附别离钒酸根。 三、定论 实验成果表明:D231-Ⅱ树脂可用于从钼酸铵溶液中别离钒酸根;溶液pH为6.5~7.5时,D231-Ⅱ树脂对钒酸根的吸附选择性很高,吸附率大于99%;负载树脂用稀(稀碱液)脱附,钒酸根洗脱率在99%以上。D231-Ⅱ树脂有较高的耐氧化、耐酸碱、耐有机溶剂的功能,机械强度大,正常情况下,年损耗率小于5%。选用D231-Ⅱ树脂从钼酸铵溶液中吸附钒酸根,工艺简略,别离作用好,不需求特殊设备,技能简单把握,可完成自动化。

硫代硫酸盐法提金

2019-03-05 10:21:23

硫代硫酸盐法与法不同,浸出介质为性溶液,合适处理碱性组分多的金矿,特别适于含有对灵敏的铜、锰、砷等硫化物的金矿。硫代硫酸盐浸金的速度较快、选择性好、试剂无毒、对设备无腐蚀性,因而被认为是较有期望在工业上运用的一种非化提金办法。国内外对此法展开了许多研讨作业,包含硫代硫酸盐浸金的热力学、动力学、影响要素及反响机理、对不同金矿的适应性、从浸出液中收回金和提金的工艺流程等。最近,Aylmore和Muir等对硫代硫酸盐法浸金进行了较全面的总结和评述。 硫代硫酸盐是含有S2O32-基团的化合物,它可看作是硫酸盐中一个氧原子被硫原子替代的产品。最重要的硫代硫酸盐是硫代硫酸钠Na2S2O3(或Na2S2O3·H2O)和硫代硫酸铵(NH4)2S2O3,两者一般均为无色或白色粒状晶体。 硫代硫酸盐浸金是一个杂乱的化学进程,首要根据一价金能与硫代硫酸根构成合作物。在有氧存在时,金在硫代硫酸盐溶液中的总反响式可表示为: 4Au+8S2O32-+O2+2H2O→4Au(S2O3)23-+4OH- 在酸性介质中,S2O32-会发作如下的分化反响: S2O32-+2H+→H2O+2SO2+S所以,浸金进程需要在碱性条件下进行。 为使金能够有效地溶解于硫代硫酸盐溶液中,一般要在溶液中坚持有恰当浓度的NH3、Na2SO3和Cu(NH3)42+,这与动力学要素有关。 二价铜合作离子在金的溶解进程中可能有如下的催化反响: Au+5S2O32-+Cu(NH3)42+→Au(S2O3)23-+4NH3+Cu(S2O3)35- Au+2S2O32-+Cu(NH3)42+→Au(S2O3)23-+2NH3+Cu(S2O3)3+ 硫代硫酸盐在碱性溶液中比较安稳,由于硫代硫酸盐的氧化产品连四硫酸盐在碱性条件下约有60%又转变成硫代硫酸盐: 2S4O62-+3OH-→5/2S2O32-+S3O62-+3/2H2O 但溶液的pH值又不宜太高,由于S4O62-又会发作如下的歧化反响: 3S2O32-+6OH-→4SO32-+2S2-+3H2O歧化反响产出的S2-,则会导致重金属,特别是银生成硫化物沉积。但是,歧化反响产品SO32-,却能够按捺金属硫化物沉积,又有利于S2O32-的安稳存在。实质上S2O32-的歧化反响是可逆的,在溶液中处于动态平衡状况。为坚持适合的价质pH值,选用性溶液作为硫代硫酸盐安稳存在的介质是最合适的。性硫代硫酸盐溶液的pH值可缓冲在10左右,电位安稳在200mV左右。的存在能下降S2O32-的氧化速度,但过量的又会导致OH-离子增多,对金浸出晦气。二价铜离子的影响是与S2O32-浓度有关,Cu2+与S2O32-的最佳摩尔浓度比为1∶6,适合的S2O32-浓度为0.5mol/L。参加钠(Na2SO3∶Na2S2O3=1∶1)能够避免硫或硫化物的沉积,并削减硫代硫酸盐的用量。在用硫代硫酸盐法浸出金时,主张各组分的质量比经Na2S2O3∶Na2SO3∶CuSO4=1∶1∶0.7为宜,浸出温度40~60℃。 参加盐虽能下降硫代硫酸盐的耗费,但盐自身也耗费了,实际上是用盐丢失来替代硫代硫酸盐丢失,并没有处理试剂耗费高的问题。因而,提出在硫代硫酸盐浸金进程顶用硫酸盐替代硫代硫酸盐的办法,由于硫酸盐很安稳,在浸出进程中不耗费,能够削减试剂的总用量。为进一步下降试剂耗费,还必须操控浸出进程的氧化条件(如通入氧量及参加Cu2+浓度),并要留意浸出渣对试剂的夹藏丢失,可在保证金浸出率的前提下尽可能运用较低浓度的硫代酸盐溶液浸出金。 从浸出液中收回金,也是硫代硫酸盐法浸金工艺的关键问题之一。已研讨过的办法,有金属置换法(锌粉、铁粉、铝粉和铜粉等),活性炭吸附法,树脂在浆附法等,但都尚不行非常抱负,还有待进一步开发与完善。由于,这直接涉及到浸出液的循环和再生运用、下降试剂耗费以及进步金收回的问题。 下面扼要介绍硫代硫酸盐法浸金工艺的几个较典型的研讨结果。 一、硫代硫酸盐浸出含锰金矿 美国亚利桑那州的Oro Blanco矿区的含锰金矿,矿石含Au3g/t、Ag113g/t、MnO27%,矿石中的金呈细粒状浸染,银大部分与MnO2共生。矿石磨至80%-200目,在温度50℃和液固比1.5∶1条件下,用(NH4)2S2O31.48mol/L、NH34.1mol/L和Cu2+0.09mol/L的溶液,拌和浸出1~3h,金的浸出率为90%,但银的浸出率只要70%。 二、硫代硫酸盐浸出含金的硫化铅锌浮选尾矿 美国新墨西哥州Pecos矿山的硫化铅锌浮选尾矿,含Au1.75g/t、Ag22.5g/t、Pb0.5%、Zn0.07%、Fe11.1%、Cu0.4%和S9.8%,用(NH4)2S2O30.5mol/L溶液,在温度50℃下充入空气(流速2dm3/min),并进行机械拌和,经两段逆流浸出1.5h,金的浸出率为95%,但银的浸出率只要27%,含金浸出液用活性炭吸附收回金。 三、硫代硫酸盐浸出含金原生矿 针对我国西北地区黄铁矿-蚀变岩型含金原生矿的特色,曾进行了性硫代硫酸盐溶液浸出金实验,该矿石含Au3.57g/t,金的粒度细微,首要嵌布于黄铁矿、褐矿、石英和长石中。矿石磨至-200目达65%,选用(NH4)2S2O30.51mol/L、Na2SO30.2mol/L、NH33.3mol/L和CuSO41.7mol/L的溶液系统,在温度50℃、pH>8、液固3∶1的条件下拌和浸出3h,金浸出率为92.4%,而该矿用全泥化法浸出的金浸出率为79.96%。 四、硫代硫酸盐浸出含铜金精矿 我国广东河台硫化物含铜浮选金精矿,金首要赋存于黄铜矿、黄铁矿及斑铜矿中,含Au50g/t、Ag25g/t、Cu3.19%、S20.59%。矿石磨至100%-200目,在温度40℃、液固比3∶1的条件下,选用(NH4)2S2O30.8~1.0mol/L、NH4OH1.8~2.2mol/L和CuSO40.015mol/L的溶液系统充氧拌和浸出1.5h,金的浸出率达95%。 五、硫代硫酸盐浸出含碳质金矿 美国内华达州的碳质金矿,矿石含金均匀档次为12.2g/t,含有机碳2.5%、总碳4.8%,归于难处理金矿,用化法浸出24h的金浸出率仅为10%左右。选用(NH4)2S2O3溶液在高压釜内通氧气浸出,在(NH4)2S2O30.71mol/L、(NH4)2SO30.10~0.22mol/L、CuSO40.15mol/L的溶液系统中,于35℃、pH=10.5、po2=103kPa的条件下,拌和浸出1~4h,金的浸出率达93%。美国Newmont公司针对含硫化物高的难处理碳质金矿,提出了先用细菌预处理氧化部分硫化物后,再用硫代硫酸盐法浸出金,是运用(NH4)2S2O3或Na2S2O30.1~0.2mol/L、NH4OH0.1mol/L,增加适量的Cu2+作催化剂,金的浸出率为70%,而用惯例化法浸出的金浸出率仅为20%左右。一起,美国Barrick公司则提出先用加压碱性氧化预处理脱硫后,再用硫代硫酸盐法浸出碳质金矿,运用(NH4)2S2O30.0.025~0.1mol/L,增加盐0.01~0.05mol/L和满足量的及适量的Cu2+, 坚持NH3∶Cu=4∶1,在45~55℃、pH=7.0~8.7条件下浸出1~3h,金的浸出率达70%~75%。 尽管硫代硫酸盐法已获得较大发展,国内外都曾进行必定规划的扩展实验或半工业实验,但首要问题仍是试剂耗费量高、进程的影响要素多、操控条件严厉等,还有待作更进一步的作业,以获得新的打破。

硫代硫酸盐法提金概述

2019-02-14 10:39:39

硫代硫酸盐法具有浸金速度快、无毒、对杂质不灵敏和浸金目标较高、报价低、对设备无腐蚀性等长处。该办法中钠盐和胺盐是最常用的两种试剂,浸出温度一般为50~60℃,在加热条件下进行,对温度影响灵敏,浸出温度区间狭隘,工艺不容易操控。为避免S2O32-的分化常参加SO2或盐作稳定剂,浸出进程以坚持其碱性环境,Cu (NH3)42+是常见的浸出催化剂,硫代硫酸盐提金法与硫脉法不同,提金溶液介质为性溶液,合适处理碱性组分多的金矿,特别适于含有对化灵敏的金属铜、锰、砷的金矿或金精矿和含铜金矿石,由于这类矿石在浸取进程中会本身发生催化剂Cu(II)化合物。该法试剂用量比较大,必须加强试剂的再生使用。因而,研讨适合的硫代硫酸盐提金工艺,对促进硫代硫酸盐法在工业上的应用是很重要的。    美国研讨过用硫代硫酸盐法从含铜、锑、砷、抗、蹄和锰等重金属矿石中提取金、银的技能工艺,并在墨西哥州建了一个硫代硫酸盐提金工厂,但工作不行正常。我国的沈阳矿冶院、东北工学院、北京有色冶金规划研讨总院和中南大学都先后在乳山金矿进行了硫代硫酸盐提金的工业实验。

硫代硫酸盐提金应用实例

2019-02-13 10:12:44

选用溶液处理含铜、锰或含铜和锰的金矿时,由于铜、锰的存在,严重地下降了贵金属的回收率,并使耗费添加,使提金在经济技术指标上遇到了费事。从含有碳和有机化合物的矿中提取金,化厂也相同遇到了一些问题,即金矿中碳质物的存在,形成金很难从碳基体中释放出来,这是由于一价的金络合物被碳抢先吸附,随后丢掉到尾矿中。本节将介绍用硫代硫酸盐法处理上述矿石及处理尾矿与低品矿的实例。    1)从含铜金精矿中浸出金    国内某金精矿,含金矿藏为黄铜矿、黄铁矿和斑铜矿。首要化学组成:Au 50g/t,Cu3.19%,Fe203 28.9%,MnO 0. 048%,Co 0. 042%,Pb<0.03%,Zn 0.10%,S 20.59%,Si02 37.75%,A1203 5.75%,,精矿粒度100%~100目,在矿浆液固比3:1和40℃温度下,用浓度为0.8~1.0 mol/L的Na2S203、1.8~2.2 mol/L的NH4OH、0.015 mol/L的Cu2+和0.1 mol/L的Na2S03混合溶液充氧拌和浸取1.5 h,金浸出率约95%,浸渣残留金贮存在铁矿藏中。    浸出液用锌粉置换沉积金,置换后溶液循环用作金的浸出剂,通过7次循环,金浸出率有所添加,达96.8%,,循环浸出过程中,硫代硫酸盐基本不丢失。锌粉置换时S2O32-有所添加,而静置过程中S2O32-有所丢失,S2O32-的丢失与溶液组成和容器密闭条件有关。通过精心操控可将硫代硫酸盐的氧化分化丢失降到最低极限。    2)从含锰金矿中浸出金    美国亚利桑那州圣克鲁斯的OroBlanco矿区,矿石含Au 3 g/t, Ag 113 g/t, Mn02 7 g/t。矿石中的金呈细粒状浸染在流纹岩和安山岩的角砾岩基质中,银大部分与Mn02共生。矿石磨至-200目占80%,在液固比1.5:1和50℃温度条件下,用浓度为1.48 mol/L的(NH4)2 S2 03、4.1 mol/L的NH3和0.09 mol/L的Cu2+溶液拌和浸出1h,金浸出率90%;拌和浸出3h,银浸出率70%。    影响金、银浸出的首要因素有温度、硫代硫酸盐浓度、铜离子浓度和浓度。浸出温度对金浸出的影响大于银浸出,如图1所示,而铜浓度和浓度对银浸出的影响则大于金浸出,如图2,3所示。银的浸出对铜离子浓度改动比较灵敏,银浸出率随Cu2+浓度增大先升高然后下降。金的浸出受二价铜离子的影响很小,但没有Cu2+参与,金很难浸出,金浸出率仅14%,,金、银浸出随S2O32-浓度增大而添加,没有S2O32-时,金、银很少浸出,如图4所示。在溶液中铜离子将硫代硫酸根离子氧化成连四硫酸根离子,然后耗费硫代硫酸盐。在室温文pH为9.5~10的规模内,浸出28 h,硫代硫酸盐耗费量约为原浓度的一半。        [next]          3)从低档次含金原生矿中浸出金    我国西北有色地质研讨所对天然金-黄铁矿-蚀变岩型含金原生矿进行性硫代硫酸盐浸出金试验。矿石中金以天然金为主,金在硫化物矿藏和脉石矿藏中多呈包裹金、裂隙金和晶隙金的状况存在。天然金的粒度细微,首要散布在黄铁矿、褐铁矿、石英和长石等矿藏中。    矿石中首要金属矿藏有黄铁矿、天然金;非金属矿藏首要有钾长石、石英,其次有斜长石、云母、粘土等。此外,还有少数的赤铁矿、磁铁矿、方铅矿、黄铜矿、重晶石、闪锌矿等。原矿元素分析成果见表1。 表1          含金原生矿组成(Au:4.57g/t)元素STFeCuPbZnNiCoTeCs组成/%1.184.350.020.160.030.0020.0011.560.0017元素InTiCaOMnONa2OMgOK2OSiO2Al2O3组成/%0.00030.00031.560.30.89727.9759.4912.38     试样含金4.57g/t,磨矿细度-200目占65%,拌和浸出温度50℃,浸出时刻3h,浸出液固比3:1.浸出剂( NH4 )2S203 0.51 mol/L, Na2S03 0.2 mol/L, NH3 3.3 mol/L, CuSO4 1.7g/L。金的浸出率为92.40%。[next]    在浸出剂用量与浸出条件的挑选过程中调查到:①作为强氧化剂的Na2S03跟着浓度的增高,金的浸出率改动不大,只要在大于0.1 mol/L的情况下就可以起到增强浸出体系安稳性的效果;②金的浸出率跟着(NH4)2S203浓度的增大有较大起伏的进步,浸出液中( NH4) 2S203浓度至少要保持在0.5 mol/L;③浸出液中NH3浓度的添加,有利于金浸出率的进步,以3. 3 mol/L为好;④CuS04的浓度在1.7 g/L左右即可。    该试验曾在原矿档次、磨细度、浸出液固比共同的情况下,用不同的浸出办法进行试验,试验成果见表2。 表2      性硫代硫酸盐法与惯例化法对低档次原生矿金的浸出成果浸出办法浸出条件浸出时刻/h金的浸出率/%原矿性硫代硫酸盐法(NH4)2S2O30.5mol/L,Na2SO30.2mol/L,NH33.3mol/L,CuSO41.7g/L,拌和浸出温度50℃,液固比=3:1,pH>8,磨矿细度-200目占65%,原矿含金4.57g/t392.40原矿藏全泥化法NaCN开端浓度0.02%,NaCN添加量2kg/t,加CsO操控pH9.5~10.5,液固比=3:1,磨矿细度-200目占65%,原矿含金4.57g/t779.96原矿焙烧-化法焙烧温度800℃,焙烧时刻1h,NaCN开端浓度0.02%,NaCN添加量2kg/t,加CaO操控pH9.5~10.5,液固比-3:1,磨矿细度-200目点65%,原矿含金4.57g/t794.42     由表2不难看出,用性硫代硫酸盐法浸出低档次含金原生矿,具有浸出时刻短、浸出温度低、并有较高金的浸出率等特色,是无浸出金替代有浸出金工艺较有期望的办法之一。    4)从碳质金矿中浸出金    用化法处理美国内华达Freeport-McMoran Jerrit Canyon金矿的碳质金矿(粉红色矿)遇到费事。本文介绍选用硫代硫酸铵溶液在高压釜中进行试验的成果。    为了进行高压釜浸出试验,首先把矿石破碎到小于152.4 mm(6英寸),然后破坏到-100目,对矿样的矿藏组成、金档次以及碳含量进行分析。此矿由暗黑色的碎片和带有少数细粒黄铁矿的不纯石英岩和部分白色的方解石矿脉组成。分析成果为:该矿含有机碳2.5%,总碳为4.9%。矿石金的均匀档次是12.2g/t。    ①高压釜浸出。试验在一个500cm3的不锈钢高压釜中进行。它由一个3.18 cm直径叶轮的拌和器、冷却蛇形管和热电偶组成。拌和器、冷却蛇形管以及热电偶都用螺栓固定在盖子上。高压釜被加热时,它的温度由一个电加热套操控。高压釜预热到挨近所需温度,把配好的浸出剂和已称好的矿参加釜中,压紧釜盖,开端拌和;高压釜通氮排出空气,然后压入氧气。操作温度规模是25℃到85℃,一起氧分压一般保持在103 kPa,并在浸出前后测定溶液的pH。    浸出完毕后,把溶液过滤出来。滤液中的硫代硫酸盐浓度用电化学检测活动注射法(FIA)分析。固体渣枯燥后,用火法试金与原子吸收法相合作分析渣中的金含量。所用的初始硫代硫酸盐样品的纯度也用FIA法测定。试验得到的硫代硫酸盐耗费量和金的浸出率的成果见表3和表4。 表3     硫代硫酸盐耗费量[S2O3]i2-/(mol·L-1)[S2O3]f2-/(mol·L-1)耗费的[S2O3] 2-/(mol·L-1)耗费的[S2O3] 2-/%1~1.9 1.19 0.712~2 0.712 0.712~3 0.7121.006 1.022 0.635 0.633 0.589 0.5740.184 0.168 0.077 0.049 0.123 0.13815.5 14.1 10.8 6.9 17.3 19.4             注:i为初始[S2O3]2-浓度;f为终究溶液[S2O3]2-浓度[next] 表4      金的浸出率[Au]i/(g·t-1)[Au]f/(g·t-1)金浸出率/%1~12.45 12.45 2~11.99 11.65 3~13.76 12.085.90 6.35 3.94 3.43 3.43 3.43 3.4952.6 49.0 67.1 70.6 73.1 71.1             注:i为初始金档次;f为浸出渣金档次     ②最佳浸出条件的挑选。pH的影响:为调查pH的影响,将NH3浓度从0.03 mol/L变为4.5mol/L,相当于pH规模由8.5到10.5。由于形成了缓冲溶液,所以最大pH被约束在大约10.5。在这个pH规模内,硫代硫酸盐的耗费简直不变,均匀大约15%;而金的浸出率跟着pH的添加而添加。最佳pH值为10.5。    温度的影响:在25℃到85℃之间所做的试验成果如图5所示。浸出曲线在35℃和75℃有极大值,在65℃有一极小值,最佳温度35℃左右。从25℃到55℃硫代硫酸盐耗费一般是添加的,55℃到65℃是下降的,然后从65℃到85℃又添加,这是一个触及硫代硫酸盐的杂乱的平衡联系随同温度改动的成果。归纳考虑到金的浸出率、硫代硫酸盐耗费以及投人能量,最佳温度是35℃。 图5[next]     硫代硫酸铵浓度的影响:试验是在35℃,pH=10.5,硫代硫酸盐浓度从0.09 mol/L变到0.88 mol/L下进行的。金的浸出率跟着硫代硫酸盐浓度的添加仅稍有添加,这是由于硫代硫酸盐的实践耗费添加了。硫代硫酸盐耗费量在其浓度为0.09 mol/L时是5.3 × 10 -2 mol/L(58.9%),在其浓度为0.88 mol/L时是9×10-2mol/L(10.2%)。考虑到金浸出率及所用的硫代硫酸盐总量这两点,挑选的最佳硫代硫酸盐浓度为0.71 mol/Lo    盐浓度的影响:把铵加到浸出液中,以安稳硫代硫酸盐,并避免硫化物沉定(6H++4S032-+2S2←→3S2032-+3H20)。在35℃,0.71 mol/L S2032-,pH=10.5,0.15 mol/L CuSO4条件下,盐浓度从0变到0.6mol/L,浸出2 h。明显盐对金浸出率简直没影响。但是,硫代硫酸盐耗费却跟着盐浓度的添加逐步下降。考虑到盐用量,以为盐浓度在0.1 mol/L和0.22 mol/L之间是适宜的。    铜浓度的影响:在35`C , 0.71 mol/L S2032- 、0.22 mol/L S2032-和pH =10.5条件下,硫酸铜浓度从0.05 mol/L变到0.2 mol/L时,金浸出率和硫代硫酸盐耗费没有明显影响。关于这样的成果,有两个或许:榜首,是由于铜在浸出过程中充当了氧化还原催化剂,所以在某一浓度值以上时,它的浓度改动对反响就没有什么影响。第二,也许是更重要的原因,即矿中存在铜,它的量足以起催化剂的效果。    时刻的影响:在温度35℃、物质的量浓度为0.71 mol/L(S2032-)、0.22 mol/L(SO32)、0.15 mol/L(CuSO4)和pH为10.5,浸出时刻在0.5~4h之间改动的条件下,调查了时刻对金浸出率和硫代硫酸盐耗费上的影响。在0.5 h时金浸出率是69%,4h后金浸出率是71%。在这些条件下,金的浸出是很快的。硫代硫酸盐的耗费跟着时刻的延伸有一适量的添加,0.5 h时硫代硫酸盐耗费10%,4h后耗费添加到20%。反响时刻0.5 h到1h是满足的。    氧压的影响:改动氧压从常压到206 kPa(表压)。氧压的改动无论是对金浸出率,仍是对硫代硫酸盐耗费都没有什么大的影响。硫代硫酸盐的耗费在氧压加大到206 kPa(表压)时稍有下降,从常压的12%到206 kPa时下降到8%。因而,假如浸出液可循环运用的话,较高的氧压或许是有利的。    其他类型矿石的浸出:除了研讨上述的碳质矿外,还研讨了用硫代硫酸盐溶液从有代表性的氧化矿和硫化物矿中浸出金。对这些矿进行研讨时,并未能找出最佳条件,而是除一组条件稍稍改动外,均选用了碳质矿的最佳条件。正如表5和表6成果所指出的,硫代硫酸盐浸出氧化矿好像难处理的碳质矿那样给出好的或更好的金浸出率。关于硫化物矿金浸出率是差的。硫代硫酸盐法与化法比较,从碳质矿中浸出金选用硫代硫酸盐法优于化法:但从氧化矿浸出金,硫代硫酸盐法不如化法。表5     用硫代硫酸盐法从不同类型矿中浸出金矿石品种pH金浸出率/%S2O32-耗费/%碳质矿 氧化矿1 氧化矿2 硫化物矿1 矿化物矿210.6 10.5 10.5 10.5 10.568.9 60.6 56.8 18.1 77.230.0 34.4 27.2 29.2 32.8     注:p(O2)为103kPa(表压);时刻为1h;温度为35℃;拌和速度为0.333m/s; pH为10.5时,[NH3]为3.0mol/L;[S2O32-]为0.18mol/L;[Cu2+]为0.10mol/L;[SO32-]为0.01mol/L。 表6         用硫化硫酸盐浸出碳质矿和氧化矿之比较矿石品种pH金浸出率/%碳质矿 氧化矿1 氧化矿210.5 10.5 10.570.9 81.0 81.4         注:p(O2)为103kPa(表压);时刻为2h;温度为35℃;拌和速度为0.333m/s; pH为10.5时,[NH3]为3.0mol/L;[S2O32-]为0.712mol/L;[Cu2+]为0.15mol/L;[SO32-]为0.22mol/L。

硫代硫酸盐浸金工艺问题

2019-02-13 10:12:44

蒂欧泰克(Thiotech)有限公司以硫代硫酸铵和硫代硫酸钠作为从矿石提取金、银的首要浸出剂。在美国,硫代硫酸铵法也曾用于含金硫化铜精矿的处理,其浸出率大于90%。    波特指出,含金、银的矿石和残渣在常压下可用硫代硫酸铵浸出,随溶液加热至50℃或更高温度,某种氧化剂如二价铜离子可加快反响,当硫代硫酸铵浓度高至20%时仍可选用,不过为了药剂的收回,需分外留意洗刷。为削减丢失,选用闭路系统是很必要的。现在,进一步的作业是要清晰硫代硫酸铵法可否替代化法。    选用硫代硫酸盐法浸出金、银在以下方面较化法优胜:①硫代硫酸盐毒性小,铵盐可作化肥;②硫代硫酸盐法浸出速度较快,一般为3h,对某种矿藏金浸出率可望比化法高;③适用于化法难以处理的含Cu, Fe203、Mn的矿石;④该法药剂耗费很低,这一点在经济上尤为重要。此外,该法在环保上具有吸引力。    可是,和传统的化法比较,硫代硫酸盐法存在的问题有:①硫代硫酸盐耗量高,有人提出经过操控供应浸出系统的氧可削减S2032-的氧化;②硫代硫酸盐的循环运用问题,有人以为用铁粉替代锌粉或铜粉来置换收回金有利于浸液的循环运用。该法浸出条件严苛,如需有铜离子存在,还需参加稳定剂等;用于处理低档次金矿,浸出率要低得多,故至今没有得到推广应用。

锑的硫化物和硫代酸盐

2019-02-11 14:05:30

一、硫化物    Sb2S3为橙红色沉积,显,既溶于酸又溶于碱。                           Sb2S3+6OH-SbO33-+SbS33-+3H2O                          Sb2S3+6H++12Cl-2[SbCl6]3-+3H2S↑    Sb2S3还能溶于碱性硫化物如Na2S或(NH4)2S中:                                  Sb2S3+3S2-2AsS33-    Sb2S5可溶于浓HCl中,并发作氧化复原反响:                          Sb2S5+12HCl(热,浓)2H3[SbCl6]+3H2S↑+2S↓    Sb2S5的酸性比Sb2S3的更强,因而,Sb2S5比Sb2S3更易溶于碱性硫化物溶液中。                                Sb2S5+3Na2S2Na3SbS4    Sb2S3具有复原性,与多硫化物反响生成硫代酸盐:                                   Sb2S3+3S2-2SbS43-+S    二、硫代酸盐    与砷相同,硫代亚锑酸钠(Na3SbS3)和硫代锑酸钠(Na3SbS4)遇酸当即反响生成相应的硫化物和H2S。                             2SbS43-+6H+Sb2S5↓+3H2S↑                             2SbS33-+6H+Sb2S3↓+3H2S↑

硫代硫酸盐法提金工艺技术

2019-03-05 10:21:23

硫代硫酸金络合物是И.А.卡可夫斯基(Какояский)1957年研讨乙基黄原酸金时从中制取出来的: AuC2H5OCSS+2S2O32- Au(S2O3)23-+C2H5OCSS- 后来,福沃德(Forward)等人在选用高压浸硫化镍钴铜矿时,发现矿石中所含的硫能氧化生成S2O32-。因而想象:选用浸法处理含金硫化矿,使矿石中的硫在浸进程中氧化为S2O32-来浸出金是或许的。为此,许多研讨者对此进行了实验研讨。 一、硫代硫酸盐浸出金的研讨 1972年,梅津良之等宣布了硫代硫酸铵从产品纯金板浸出金的实验报告。实验进程中对溶液温度、氧分化压、拌和强度、试剂浓度和铜离子增加量对金溶解速度的影响进行了多因子比照系统研讨。他以为,金的溶解是按下式进行的: 2Au+4S2O32-+H2O+ O2 2Au(S2O3)23-+2OH- 即在碱性溶液中,金银能与硫代硫酸盐反响,生成安稳的络阴离子〔Au(S2O3)23-和   Ag(S2O3)23-〕,并可削减杂质(尤其是铁的硫化物)的溶出率。且反响进程中Cu(NH3)42+具有催化作用,若短少它上式的反响则不能进行。 在Cu(NH3)4+存在的室温180℃条件下,金的溶解速度在约65和140℃时呈现两个顶峰,约100℃时呈现一个低谷。即温度18~65℃之间,金的溶解速度随温度的上升而加速;65~100℃时,因为金板表面生成黑色硫化铜薄膜沉积而逐步发作钝化,金的溶解速度随温度上升而下降;温度100~140℃之间,溶液中的可使硫化铜薄膜沉积分化而生成硫代硫酸铵,金的溶解速度又随温度的上升而加速;当液温升至140~180℃,因为S2O32-逐步被氧化耗费而使浓度下降,金的溶解速度又逐步下降。 经过多要素条件比照实验标明,在温度65℃时金溶解的最佳条件是:氧压101.32kPa(1atm)、拌和速度200r/min、NH30.5mol、Na2S2O30.44mol、CuSO40.04mol。 1979年,G.S.贝雷佐夫斯基等选用含(%)Cu 25.3、Fe 28.7、Zn 3.26、S 33.2、Au 5.83g∕t、Ag 142g∕t的铜精矿经氧化浸出96%~98%铜的浸出渣,运用上述硫代硫酸铵的条件,在40~60℃浸出2~4h,金的浸出率达92%~94%,银的浸出率也达83%~87%。将此浸出渣进行化浸出比照,金的浸出率虽达97%,银的浸出率只要33%。用此工艺处理另一种铜精矿的浸出脱铜渣也获得成功。 上述实验证明,选用硫代硫酸铵加压浸出,金银的溶解速度快。铜离子的存在不光无害(相对化法),还有杰出的催化作用。选用硫代硫酸铵法浸出金,虽药剂的耗费量过高,但浸液中(NH4)2S2O3约有90~95%能够回来运用。 小约翰·克利对含Au0.43g∕t、Ag376.3g/t的含锰难处理矿石进行浸出标明,金银的浸出率别离达86.7%和93.2%。他还对(NH4)2S2O3浸出液进行了屡次循环运用实验,标明浸出液能够重复运用,而很多下降药剂耗费。据他的实验证明,浸出液的屡次循环运用,吨矿石的实践药剂耗费可降至(NH4)2S2O33.63kg∕t、(NH4)SO3 1.36kg/t、CuSO40.45kg∕t。 鉴于文献报导的硫代硫酸铵溶解金银在实践运用中遇到的困难,К.А.巴格达萨良(Багдарилц)等人改甩硫代硫酸钠,运用旋转圆盘法对金银溶解的动力学进行了研讨。 实验别离运用φ20mm的金盘和银盘,在容积1L的反响器中,别离选用Na2S2O3 0.09~0.19mol∕L,温度65℃,鼓入空气,拌和15~30min并浸渍6h。成果圆盘表面都掩盖一层黑色沉积,而金银未溶解进入溶液。经X线衍射物相分析,金盘上的黑色沉积是元素硫,而银盘上的沉积是元素硫和硫化银。后又参加催化剂CuSO4,并将圆盘别离浸渍于Na2S2O3 0.09~0.19mol/L,CuSO4 0.016mol/L的溶液中15~20min,圆盘上仍掩盖一层黑色沉积,经物相分析,金盘上的沉积是元素硫和硫化铜,银盘上是元素硫、硫化铜和硫化银。这都是S2O32-分化生成S2-的晦气反响所造成的。 考虑到60~85℃时,S2O32-分化的S2-能与Na2SO3结合还原成Na2S2O3,又向溶液中参加助剂Na2SO3。并在溶液别离含Na2S2O30.06~0.22mol∕L(1.0%~3.5%)、Na2SO30.2mol/L(2.5%)、CuSO4 0.01 6mol∕L(0.25%)温度65~70℃、圆盘表面积3.14cm2、圆盘转速约   4r∕min( r∕s),拌和时刻6h条件下实验。成果在Na2S2O3浓度0.06~0.13mol∕L时,金、银的溶解速度呈直线上升(见图1),跟着Na2S2O3浓度的增大,溶解速度反而减慢或中止。图1  Na2S2O3浓度与金银溶解速度的联系 经过以上Na2S2O3溶解金银圆盘的实验和理论核算,其结论是: (一)在温度45~85℃范围内,金银的溶解速度随温度的上升呈直线上升,一起Na2S2O3的分化也随温度的上升急剧增大。为防止Na2S2O3的剧烈分化,溶解进程的温度宜控制在65~75℃。 (二)经过核算,求出的金银在Na2S2O3液中溶解的活化能为:金17.55kJ∕mol,银21.14kJ∕mol。它标明金银的溶解是以分散方法进行的。 (三)金银在Na2S2O3液中溶解的分散特征,是Na2S2O3浓度在0.13mol∕L曾经,此刻金银的溶解速度处于正常状况;当浓度超越这一边界后,溶解进程的反响动力学就变得复杂起来,以使金银的溶解减缓乃至中止。 (四)在圆盘转速4~16r∕min之间,金银的溶解速度大致与圆盘转数的0.5次方成正比。证明转盘的流体动力学理论适用于金银在Na2S2O3液中的溶解,但在金银圆盘的表面会逐步生成元素硫和硫化物沉积,它会影响溶剂抵达圆盘表面的速度。故从动力学上讲,溶剂的分散作用有必要穿过硫和硫化物层才干抵达金属表面,这是溶解进程的晦气要素。 (五)为下降溶液中因为Na2S2O3分化生成的S2-浓度,削减S2-在金属表面生成元素硫和硫化物沉积,应向溶液中增加Na2SO3,其参加量与Na2S2O3之比为1∶1。 (六)铜离子具有催化作崩,实验中增加量为0.016mol∕LCuSO4。 二、硫代硫酸钠从矿石中浸出金的工业实验 新疆伊宁提金实验站于1987年开端进行硫代硫酸钠从矿石中提金的工艺研讨,并在扩展实验和半工业实验的基础上建立起一座50t∕d的实验工厂,用于处理经混、浮选产出的含硫金精矿。它是已知的第一个运用硫代硫酸钠提金的工厂。该厂投产以来,首要技能经济指标都到达了规划要求,金的浸出率到达92%。因为硫代硫酸钠可就地直销,且报价低廉,金的出产费用(包含环保)与化法附近,金的回收率也与化法相同。

硫氰酸盐法提金工艺技术

2019-03-05 10:21:23

一、硫酸盐的性质 硫酸盐浸出金可用NH4SCN或NaSCN。后者为焦化厂的副产品,价廉易得,且进程中不会释放出。运用硫酸盐法,可在常温下离解发作SCN-而与Au+、Ag+生成较安稳的络合物。在酸性(pH1~2)溶液中增加的氧化剂(MnO2等)又能使载金矿藏(FeS2等)分化而释出单体金,可加速金、银的浸出速度,进步浸出率。但跟着溶液pH值的增高,载体矿藏中的金不易解离,会使金的浸出率不断下降。浸出进程中,硫酸盐功能安稳,基本上不会污染环境。 文献报导,光照、pH、CuS、PbS、Fe3+、Fe2+等对硫酸铵的影响都不大,而可溶铜盐(如CuSO4)则影响较大,且随增加量的增加耗费量敏捷增大。当向pH1的100mL2.5%NH4SCN液中,别离参加CuSO4·5H2O 0.1~1.0g,经1h后取样测定,NH4SCN的耗费量为;0.1g为1%,0.4g为5.5%,0.6g为8%,1.0g为25.5%。MnO2对硫酸盐也有较大的影响,特别是在强酸性溶液中,它的耗费量随MnO2增加量的增大和时刻的延伸而加大。当向pHl的100ml 2.5%NH4SCN液中参加0.5gMnO2,经5hNH4SCN的耗费量约3%;当MnO2增加至2.0g经5h,耗费量增大至约8%。虽如此,但在酸性溶液中增加MnO2可氧化矿石或精矿中的FeS2使包裹金解离成单体,有利于进步金的浸出率。 二、硫酸盐溶解金、银的机理 硫酸盐对金、银的溶解归于电化学腐蚀进程。当选用硫酸盐浸出含黄铁矿的硫金精矿时,向体系中参加氧化助荆(MnO2等),可使FeS2分化为Fe2+,并进一步氧化为Fe3+。故金银溶解的电化学进程为: 阴极区发作Fe3++e Fe2+,而阳极区则发作Au+2SCN- Au(SCN)2-+e的反响生成络离子进入溶液。 实验者将制备的Au3+、Au+、Ag+、Fe3+、Fe+和NaSCN参加带夹套的五颈瓶中,在25℃恒温并通氮气维护的电磁拌和下,选用H2SO4和NaOH作pH调整剂,用UJ-25型电位差计别离测得了不同pH时各电对的电动势。图1是测定的有关电对pH-电位和计算出的MnO2∕Mn2+电对pH-电位曲线图。从图中看出:在pH<3的溶液中,Au(SCN)4∕Au电对电位约为0.41V,比Au++Au电对的标准电位1.68V低得多,有利于金的溶解。Ag(SCN)2-/Ag电对约为0.07V,比金线更低,对银的溶解有利。Fe3+∕Fe2+电对电位约0.67V,是金氧化浸出的杰出氧化剂。而MnO2∕Mn2+电对在强酸性液中的电位又高于Fe3+/Fe2+,故参加MnO2不光能有效地氧化FeS2,还可使Fe2+不断氧化为Fe3+。图1  25℃时,Au(Ag)-SCN--H2O系pH-电位图 条件:Au(SCN)2-=Ag(SCN)2-=10-4mol/L SCN-=0.4mol∕L 金的探索性浸出运用抡马金矿浮选的硫金精矿100g置于三颈瓶中,参加5%NaSCN液200mL和适量软锰矿,在室温文拌和下浸出,不一起刻的pH值、电位、铁含量和金溶出量列于表1。表1  NaSCN+MnO2体系中金的浸出量和各项条件的改变时刻5min15min30min1h2h3h4h5hpH0.90.951.11.11.21.01.01.1电位∕V0.63820.64220.65820.65820.65040.65120.65650.6577全铁 ∕g·L-10.260.680.910.941.061.351.401.67亚铁 ∕g·L-10.000.000.000.000.030.060.080.10金溶出量4.8×10-611.8× 10-614.1× 10-615.8× 10-617.4× 10-620.0× 10-620.1× 10-620.1× 10-6 从上表中看出,在不向体系中加铁离子条件下,浸液中铁含量的逐渐增高是MnO2氧化精矿中FeS2发作的,且生成的Fe2+又被MnO2氧化为Fe3+,它使MnO2的耗费过快。金的溶解则主要是Fe3+的氧化效果来完成的: FeS2+MnO2+4H+ Fe2++Mn2++2H2O+2S0 2Fe2++MnO2+4H+ 2Fe3++Mn2++2H2O Au+Fe3++2SCN- Au(SCN)2-+Fe2+ 表中,当浸出时刻达3h后金的溶出量不再增加,或许是氧化助剂MnO2已耗尽所形成的。但在上述条件下,MnO2也或许不只起氧化助剂效果,在浸出前期Fe3+浓度尚低时,或许有部分MnO2直接作为氧化剂而溶解部分金: Au+MnO2+2SCN-+4H+ Au(SCN)2-+Mn2++2H2O 银的溶解反响与金相同,能够写出相似的反响式。 某些研究者还指出:运用Fe3+和氧作氧化剂,金虽可溶于硫酸盐溶液中生成         Au(SCN)2-。但Fe2+也会与SCN-结组成亚铁硫酸盐而加大硫酸盐的耗费,特别是Fe3+浓度大时尤为显着。故氧化剂的增加应适量,或按总量分次参加。 Au+Fe3++4SCN- Au(SCN)2-+Fe(SCN)2三、硫酸盐浸出金的小型实验     硫酸盐浸出金的小型体系研究首先是用NH4SCN浸出含Au59.3g∕t、Ag144g∕t、Fe21.27%、Cu1.3%、Pb1.7%、S34.8%的不含As和Te浮选精矿。进行条件实验的规划为精矿10g,参加软锰矿(MnO224%)0.5g,5%NH4SCN20mL,在室温下振动3h不同pH条件下金、银的浸出率如表2。 表2  pH对金、银浸出的影响pH值1.32.22.53.04.15.05.56.57.59.2金浸出率∕%93.0391.0689.2585.6074.8069.8166.0055.9849.2441.82银浸出率∕%90.0589.0787.0086.8086.6075.9073.8071.9464.8650.69 从上表中看出:在pH1.3~2.2范围内,金、银的浸出均高于或近于90%。跟着pH值的升高、金、银的浸出率均逐级下降。虽然银的下降量比金小些,但下降趋势是共同的。在强酸性(pH1.3~2.2)条件下,金、银的浸出率均大于或近于90%,主要是MnO2在强酸液中能激烈氧化分化黄铁矿使金、银解离出来,黄铁矿分化生成的Fe2+又被MnO2氧化成Fe3+而成为溶金的氧化剂。但在弱酸和中、碱性溶液中,MnO2分化黄铁矿的效果则逐渐削弱,使金、银的浸出率逐渐下降。 经过10g矿样的条件实验后,扩展小试选用100g精矿,固液比1∶2,NH4SCN50g/L,H2SO4 0.5mol/L,参加软锰矿5g,在常温下拌和浸出3h,Au、Ag的浸出率别离为92.24%和84.58%;将拌和浸出时刻延伸至7h,Au、Ag的浸出率别离为94.97和84.50%。鉴于在强酸条件下软锰矿在溶液中的氧化耗费是很快的,扩展小试的浸出时刻能接连至7h,并获得Au浸出率94.97%的好成绩,或许是拌和作业带入空气中的氧不断将Fe2+氧化成Fe3+的成果。 扩展小试还一起进行了多种办法的比照实验,成果如表3所示。 表3  不同溶剂浸出金、银的比照实验成果办法硫酸铵法化法硫代硫酸钠法法时刻∕h3724105金浸出率∕%92.2494.9794.9663.2326.85银浸出率∕%84.5884.5065.7673.1224.65     四、硫酸盐浸出金、银的中间实验 中间实验是在上述小试基础上进行的。所用质料为抡马金矿的浮选硫金精矿,其主要组分为:Au 64.00~72.85g∕t、Cu 5.76~11.00%,Pb 1.93~2.00%,Fe≥30%,S≥35%。实验规划为每批次1t精矿,共进行9批次。浸出作业选用含NaSCN4%~5%的溶液。固液比1∶2。在接连拌和下参加精矿粉1t,软锰矿(含MnO235.98%)50kg,并加H2SO4使作业进程中的pH值保持在1~2,拌和浸出4h。停止后加NaHCO3调pH至4~5过滤,滤渣加水洗刷,洗液放入贮槽回来体系中运用。 浸出液加H2SO4或HCl调pH至挨近2,按每立方米加锌粉1kg拌和置换30min。经抽气过滤,滤液和洗液兼并补加NaSCN后供下批料浸出用。 锌置换产出的金泥经500~600℃煅烧,再用稀H2SO4或HCl浸出除Zn、Cu、Fe等杂质后,加溶解并用FeSO4复原金。产出的海绵金加硼砂于坩埚中在焦炭炉内熔炼,产出纯度93~97%的金锭。 实验成果:金的浸出率为89.88%~94.67%(均匀91.74%),NaSCN耗费3.26~9.00kg∕t(均匀5.60kg∕t)精矿,与小试成果相符。每置换1g金均匀耗费锌粉38.97g,金置换回收率97.12%~100%(均匀98.79%)。锌粉耗费如此高,主要是在强酸液中与酸反响生成ZnSO4或ZnCl形成的。浸渣经4次洗刷,金的总洗刷率为99.57%~100%。金泥中金的回收率93.51%~97.89%。 为查验中试成果,将上述精矿进行了化浸出比照实验。化浸出条件为pH≥10,NaCN耗费9.56kg∕t精矿,拌和浸出24h,金的浸出率为88.80%。二者比较,硫酸盐法具有许多长处。

铝酸盐水泥概述及其产品特点浅析

2019-03-01 10:04:59

铝酸盐水泥是以铝矾土和石灰石为质料,经煅烧制得的以铝酸钙为首要成分、氧化铝含量约50%的熟料,再磨制成的水硬性胶凝材料。铝酸盐水泥常为黄或褐色,也有呈灰色的。铝酸盐水泥的首要矿藏成为铝酸一钙(CaO·Al2O3,简写CA)及其他的铝酸盐,以及少数的硅酸二钙(2CaO·SiO2)等。    依据国家标准(GB201—2000)的规则:铝酸盐水泥的密度和堆积密度与普通硅酸盐水泥附近。其细度为比表面积≥300m2/kg或45μm筛筛余≤20%。铝酸盐水泥分为CA-50、CA-60、CA-70、CA-80四个类型,各类型水泥的凝聚时刻和各龄期强度不得低于标准的规则。    铝酸盐水泥包含铝酸钙、铝酸、铝酸锆三种水泥。其间铝酸水泥具有快硬、高强度、耐火度高级特色。    铝酸盐水泥特色:    铝酸盐水泥凝聚硬化速度快。1d强度可达较高强度的80%以上,首要用于工期紧迫的工程,如国防、路途和特殊抢修工程等。    铝酸盐水泥水化热大,且放热量会集。1d内放出的水化热为总量的70%~80%,使混凝土内部温度上升较高,即便在-10℃下施工,铝酸盐水泥也能很快凝聚硬化,可用于冬天施工的工程。    铝酸盐水泥在普通硬化条件下,因为水泥石中不含铝酸三钙和氢氧化钙,且密实度较大,因而具有很强的抗硫酸盐腐蚀效果。    铝酸盐水泥具有较高的耐热性。如选用耐火粗细骨料(如铬铁矿等)可制成运用温度达1300~1400℃的耐热混凝土。    但铝酸盐水泥的长时间强度及其他功能有下降的趋势,长时间强度约下降40%~50%左右,因而铝酸盐水泥不宜用于长时间承重的结构及处在高温高湿环境的工程中,它只适用于紧迫军事工程(修路、桥)、抢修工程(堵漏等)、临时性工程,以及制造耐热混凝土等。    别的,铝酸盐水泥与硅酸盐水泥或石灰相混不光发生闪凝,并且因为生成高碱性的水化铝酸钙,使混凝土开裂,乃至损坏。因而施工时除不得与石灰或硅酸盐水泥混合外,也不得与未硬化的硅酸盐水泥触摸运用。

铀矿碳酸盐浸出液的性质

2019-03-05 12:01:05

用碳酸盐作浸出剂时,原生沥青铀矿中的铀很难溶解,有必要参与氧化剂以氧化矿石中的四价铀,但次生铀矿很简单浸出。碳酸钠是常用的浸出剂,碳酸铵也是很有用的浸出剂,浸出反响如下: UO3+3Na2CO3+H2O  Na4[UO2(CO3)3]+2NaOH           (1) UO3+3(NH4)2CO3+H2O  (NH4)4[UO2(CO3)3]+2NH4OH  (2) 当矿石中存在四价铀时,有必要有氧化剂参与浸出反响,四价铀被氧气氧化的反响为 UO2+3Na2CO3+ O2+H2O  Na4[UO2(CO3)3]+2NaOH    (3) 假如浸出时碱度太高,溶解的铀则常与强碱效果生成重铀酸钠沉积(构成金属丢失),即 2Na4[UO2(CO3)3]+6NaOH  Na2U2O7↓+Na2CO3+3H2O     (4) 为了防止铀矿石碱浸时生成重铀酸盐沉积而构成铀的丢失,浸出过程中应当不断中和浸出反响过程中生成的氢氧根离子(见反响1,2)。为此,铀矿石用碳酸钠浸出经常参与碳酸氢钠 HCO3-+OH-  CO32-+H2O         (5) 矿石中的其他矿藏也和碳酸钠不同程度地发作反响。石膏和硫酸镁部分转化为碳酸盐沉积,硫酸根进入浸出溶液 CaSO4+Na2CO3  CaCO3↓+Na2SO4   (6) MgSO4+Na2CO3  MgCO3↓+Na2SO4   (7) 因为反响生成硫酸钠,一方面引起碳酸钠的耗费添加,另一方面导致浸出液中盐浓度的进步致使影响浸出液中铀的吸附。 用碳酸钠浸出含硫化物的铀矿石时,矿石中的硫化物也不同程度参与反响,反响的程度取决于浸出温度、压力和浸出时刻。其反响式如: 2FeS2+8Na2CO3+7 O2+7H2O  2Fe(OH)3+4Na2SO4+8NaHCO3  (8) 反响生成的碳酸氢根能够削减铀溶解反响生成的氢氧根离子,所以在某种意义上说,硫化物存在是有利的。可是,当矿石中的硫化物含量超越2%~4%时导致碳酸钠耗费的很多添加,使碳酸钠浸出铀矿石的本钱明显添加。 用碳酸钠浸出铀矿时,矿石中的二氧化硅很难溶解。一般在浸出液中的SiO2含量不超越0.2~0.4g/L。碳酸钠和矿石中存在的铁、铝反响不明显,浸出液中铁、铝的浓度一般在0.1~0.01g∕L。钙、镁的碳酸盐和碳酸钠不起反响,高碳酸盐含量的铀矿石堆浸时,运用碳酸钠作溶浸剂正是使用这一特色。 碱浸时,矿石中的五氧化二钒、和浸出剂起反响构成钒酸盐和磷酸盐 P2O4+3Na2CO3  2Na3PO4+3CO2↑   (9) V2O5+Na2CO3  2NaVO3+CO2↑      (10) 若矿石中有以氧化物方式存在的钼和砷,它们也部分溶解。 铀矿石堆浸,用碳酸钠作溶浸剂时,浸出液的组成及浓度规模大致如下表所示。 表  铀矿碱浸时的浸出液组成及浓度规模(g∕L)项目浓度规模项目浓度规模U3O80.3~4.0S0.1~5.0V2O50.01~0.4Fe2O30.05~0.1P2O50.05~0.3Al2O30.06~0.6Na2CO32.0~10.0SiO20.05~0.5NaHCO32.0~5.0CaO+MgO0.05~0.1 浸出液的组分取决于矿石成分和浸出条件(即浸出剂的组分及浓度)。用碳酸钠浸出铀矿时,铀主要以三碳酸铀酰络阴离子[UO2(CO3)3]4-存在于浸出液中,但是,当碳酸根离子浓度较低时,浸出液中也有二碳酸铀酰络阴离[UO2(CO3)2(H2O2)2]2-存在。碱浸液中,钒和磷别离以钒酸根和磷酸根方式呈现,硅以硅酸根(SiO32-),铝则以偏铝酸根(AlO2-)的方式存在,而铁是以三碳酸铁络阴离子[Fe(CO3)3]4-存在于浸出液中。

电池放置很久不充电,小心发生硫酸盐化

2018-08-22 16:27:18

很多时候,我们暂时不骑电动车了,就不会再继续保养了,比如充电。但如果电动车放置很久不使用,其实是会损毁电池的寿命的,这是因为虽然不再使用了,但电池的电量还在自然消耗,而长期放置,电池电量在没电之后会继续亏电,而这种情况下,电池极板发生不可逆硫酸盐化,这种情况下可能需要更换电池了。不可逆硫酸盐化是蓄电池常见的故障,许多蓄电池失效也是因这一故障而发生的。极板硫酸盐化主要表现为:充电时电压很快上升,过早析出气体,温度上升快;放电时电压下降快,容量小。下面总结了电池产生极板不可逆硫酸盐化的7个原因:(1)存放时间过长,电池自放电率高,未对其进行维护充电。(2)持续过放电或经常过量放电或小电流深放电。(3)过放电后,24小时内没有及时补充充电。(4)过充电或经常充电不足。(5)在充电不足的情况下,电池大电流工作。(6)环境温度过高或过低对蓄电池性能都有影响。例如,当气温转热,随温度每增加10度,盐化速率呈2倍增长。 (7)缺少电解液。因水份蒸发过多或电解液意外泄漏而没有及时补充,致使液面过低,极板上部长期露出液面,造成极板上部的硫酸盐化。所以,就算电动车闲置,也需要隔一段时间给电池充电,这样才能延长其使用寿命。

硫氰酸盐溶解金、银的机理

2019-03-05 10:21:23

硫酸盐对金、银的溶解归于电化学腐蚀进程。当选用硫酸盐浸出含黄铁矿的硫金精矿时,向系统中参加氧化助荆(MnO2等),可使FeS2分解为Fe2+,并进一步氧化为Fe3+。故金银溶解的电化学进程为: 阴极区发作Fe3++e Fe2+,而阳极区则发作Au+2SCN- Au(SCN)2-+e的反响生成络离子进入溶液。 实验者将制备的Au3+、Au+、Ag+、Fe3+、Fe+和NaSCN参加带夹套的五颈瓶中,在25℃恒温并通氮气维护的电磁拌和下,选用H2SO4和NaOH作pH调整剂,用UJ-25型电位差计别离测得了不同pH时各电对的电动势。图1是测定的有关电对pH-电位和计算出的MnO2∕Mn2+电对pH-电位曲线图。从图中看出:在pH<3的溶液中,Au(SCN)4∕Au电对电位约为0.41V,比Au++Au电对的标准电位1.68V低得多,有利于金的溶解。Ag(SCN)2-/Ag电对约为0.07V,比金线更低,对银的溶解有利。Fe3+∕Fe2+电对电位约0.67V,是金氧化浸出的杰出氧化剂。而MnO2∕Mn2+电对在强酸性液中的电位又高于Fe3+/Fe2+,故参加MnO2不光能有效地氧化FeS2,还可使Fe2+不断氧化为Fe3+。图1  25℃时,Au(Ag)-SCN--H2O系pH-电位图 条件:Au(SCN)2-=Ag(SCN)2-=10-4mol/L SCN-=0.4mol∕L 金的探索性浸出运用抡马金矿浮选的硫金精矿100g置于三颈瓶中,参加5%NaSCN液200mL和适量软锰矿,在室温文拌和下浸出,不同时刻的pH值、电位、铁含量和金溶出量列于下表。表  NaSCN+MnO2系统中金的浸出量和各项条件的改变时刻5min15min30min1h2h3h4h5hpH0.90.951.11.11.21.01.01.1电位∕V0.63820.64220.65820.65820.65040.65120.65650.6577全铁 ∕g·L-10.260.680.910.941.061.351.401.67亚铁 ∕g·L-10.000.000.000.000.030.060.080.10金溶出量4.8×10-611.8× 10-614.1× 10-615.8× 10-617.4× 10-620.0× 10-620.1× 10-620.1× 10-6 从上表中看出,在不向系统中加铁离子条件下,浸液中铁含量的逐渐增高是MnO2氧化精矿中FeS2发生的,且生成的Fe2+又被MnO2氧化为Fe3+,它使MnO2的耗费过快。金的溶解则主要是Fe3+的氧化效果来完成的: FeS2+MnO2+4H+ Fe2++Mn2++2H2O+2S0 2Fe2++MnO2+4H+ 2Fe3++Mn2++2H2O Au+Fe3++2SCN- Au(SCN)2-+Fe2+ 表中,当浸出时刻达3h后金的溶出量不再增加,或许是氧化助剂MnO2已耗尽所造成的。但在上述条件下,MnO2也或许不只起氧化助剂效果,在浸出前期Fe3+浓度尚低时,或许有部分MnO2直接作为氧化剂而溶解部分金: Au+MnO2+2SCN-+4H+ Au(SCN)2-+Mn2++2H2O 银的溶解反响与金相同,能够写出相似的反响式。 某些研究者还指出:运用Fe3+和氧作氧化剂,金虽可溶于硫酸盐溶液中生成         Au(SCN)2-。但Fe2+也会与SCN-结组成亚铁硫酸盐而加大硫酸盐的耗费,特别是Fe3+浓度大时尤为显着。故氧化剂的增加应适量,或按总量分次参加。 Au+Fe3++4SCN- Au(SCN)2-+Fe(SCN)2

硫代硫酸盐法浸金基本原理(二)

2019-02-14 10:39:39

3)浸金的动力学原理    硫代硫酸盐用作金、银的浸出剂,当pH太高时,S2032-发作歧化反响产出S2-,导致重金属,特别是银发生硫化物沉积。可是,歧化反响产品根可与溶液中任何硫化物起反响,又有利于S2032-的安稳存在,按捺金属硫化物沉积。实质上,S2032-的歧化反响是可逆的,在溶液中处于动态平衡状况。为坚持介质pH适中,选用性溶液作为硫代硫酸盐安稳存在的介质是最合适的。性硫代硫酸盐溶液pH可在10左右,电位安稳在200 mV左右,溶液pH与硫代硫酸盐浓度无关。对硫代硫酸根的阳极氧化影响很大,能明显下降S2032-的氧化速度。浓度愈高,S2032-氧化速度下降愈快。当浓度为1.0mol/L时,氧化速度仅为无存在时的四分之一。金的浸出速率也随浓度增高和S2032-氧化速率的下降而加速。可是,过量将导致氢氧根离子增多,对金浸出晦气。    用性硫代硫酸盐溶液浸出金矿时,浓度和硫代硫酸根浓度对金、银、铜的络合物发生影响。在浸出条件(pH=10, E=200 mV)下(图1至图5图中暗影部分),用含浓度为1.0mol/L的S2032-和1~3 mol/L的NH3/ NH4+的溶液浸出金、银,进入溶液的安稳金、银络合离子分别为Au ( NH3)2+和Ag (S203)23-,如图1,图2所示。当溶液中存在Cu2+时,因为铜络合离子的构成,溶液中离子浓度削减,金由Au (NH3)2+转为Au(S203)23-安稳存在。铜的安稳络合离子方式则随S2032-浓度(0.1~1.0 mol/L)、浓度(1.0~3.0 mol/L)和Cu2+浓度(0.0063~0.05 mol/L)的不同而改变。在低浓度S2032-(0.1 mol/L )和低浓度NH3/NH4+(1.0mol/L )溶液中,不管Cu2+浓度高或低,铜都呈Cu(NH3)42+安稳存在,如图3所示。在高浓度S2O32-(1.0mol/L)和低浓度NH3/NH4+(1.0 mol/L)溶液中,高浓度Cu2+(0.05 mol/L) 呈 Cu(S203)34-安稳存在,而低浓度Cu2+(0.0063 mol/L) 呈Cu (NH3)42+安稳存在,如图4所示。在高浓度S2032-(1.0 mol/L )和高浓度NH3/NH4+(3.0mol/L)溶液中,高浓度Cu2+(0.05 mol/L)呈Cu(NH3)42+安稳存在,如图5所示。可见,在浸出条件下,四合铜络合物安稳性比硫代硫酸亚铜差。 图1[next] 图2 图3[next] 图4 图5

铝合金型材的清洁及铬酸盐转化膜层处理

2019-01-15 09:51:29

基材喷涂前,铝合金型材进入喷涂车间的靠前道工序—前处理,其表面有油污、氧化层、铝屑等杂技,必须除去,否则涂层会形成明显颗粒、麻点,这将严重影响氟碳涂料膜层的附着力及外观质量。     当型材表面采用铬酸盐化学转化膜工艺处理时,需满足一定的厚度和一定的外观质量要求(见下表。其处理时间要求严格,时间过短,铬化膜层形成不完善,不利于涂层附着。时间过长(反应过剩)会形成粉状物,使涂层出现针孔、桔皮等现象。一般控制转化膜厚度在200~1300mg/m2范围内(用重量法测定)。铬化膜的耐蚀性较佳,其抗盐雾腐蚀试验的结果几乎是磷铬酸膜的两倍,甚至可以通过2000h中性盐雾腐蚀试验。其优越的耐蚀性原因之一是铬化膜中保留六价格,在腐蚀介质中起到修补的作用。