铋的用途
2019-03-07 10:03:00
铋首要用于制作易熔合金,熔点规模是47~262℃,最常用的是铋同铅、锡、锑 、铟等金属组成的合金,用于消防设备、主动喷水器、锅炉的安全塞,一旦发作火灾时,一些水管的活塞会“主动”熔化,喷出水来。 在消防和电气工业上,用作主动救活体系和电器保险丝、焊锡。铋合金具有凝结时不缩短的特性,用于铸造印刷铅字和高精度铸型。
铋作为可安全运用的“绿色金属”,除用于医药行业外,也广泛应用于半导体、超导体、阻燃剂、颜料、化妆品、化学试剂、电子陶瓷等范畴,大有替代铅、锑、镉等有毒元素的趋势。
钼酸钙
2019-02-12 10:08:00
同钼铁、氧化钼相同,钼酸钙也常作为钢铁的钼合金添加剂。其运用远没钼铁、氧化钼广泛。纯钼酸钙含钼48.0%。下表列出了前苏联钼酸钙标准,供参阅。
表 钼酸钙(前苏联)标准UMTY-4523-65ROC
类型Mo
≥Ca
≤P
≤S
≤MДK-144220.10.2MДK-240240.20.3
钼酸钙的出产可由钼焙砂加石灰(CaO)混匀焙烧,钼精矿加石灰(CaO)后混匀焙烧。但更多的是在处理低档次钼精矿时,用氯化钙(CaCl2)沉积MoO42-而制成,惯例工艺见下图。
图 低档次钼精矿制钼酸钙流程
当用苏打液浸出钼焙砂时,不只能与三氧化钼反响,也能与钼酸钼,钼酸铁反响而溶解(但就不能使它们溶解、反响):
MoO3+Na2CO3←→Na2MoO4+CO2↑
CaMoO4+ Na2CO3←→Na2MoO4+CaCO2↓
FeMoO4+ Na2CO3+H2O←→Na2MoO4+Fe(OH)2↓CO2↑
为了溶解充沛并节约苏打,一般选用四到五段逆流浸出。对过泸后的浸液经蒸汽加热浓缩,钼酸钠溶液的钼浓度超越50~70g/L后,就可在80~90℃下参加氯化钙(CaCl2)生成钼酸钙沉积。沉积需在中性或碱性溶液中进行,所加CaCl2量应比理论反响量多10~15%。对所生成的沉积用清水清洗去硫酸盐后,经过滤、锻烧(600~700℃)即可获炼钢工业钼酸钙。
由低档次钼精矿,乃至出产钼酸铵的浸渣,都可与苏打拌合后焙烧,发生如下反响:
MoS2+Na2CO3+O2△Na2MoO4+CO2↑+SO2↑←→
SiO2+ Na2CO3→Na2SiO3+CO2↑
生成的可溶性钼酸钠与硅酸(或偏硅酸)钠可在必定的pH范围下进行别离。别离出硅酸后的母液参加氯化钙,将生成钼酸钙的沉积。对沉积先经清洗、烘干后即成工业级钼酸钙。
钼酸的出产工艺与钼酸钙的出产工艺类似。所不同的仅仅不必氯化钙而用氯化去沉积钼酸钠溶液中的钼:
Na2MoO4+BaCl2→2NaC1+BaMoO4↓
钼酸使用于珐琅工业中。出产时,国内用浸渣加苏打焙烧的工艺使用较多,它的出产要害,是溶液中偏硅酸与钼酸钠的充沛别离。
钼酸铵的介绍
2019-02-12 10:08:00
钼酸铵易于纯化、易于溶解、易于热解离,并且,热解离出的NH3气随加热可充沛逸出,不再污染钼产品。因此,钼酸铵广泛用作出产高纯度钼制品的根本质料。比方,热解离钼酸铵出产高纯三氧化钼、用硫化钼酸铵溶液出产高纯二硫化钼,经过钼酸铵出产各种含钼的化学试剂等。钼酸铵也常用作出产钼催化剂、钼颜料等钼的化工产品的根本质料。
在钼的初级产品中,钼酸铵仅次于钼焙砂和钼铁,占有着重要的位置。
工业钼酸铵并非单一化合物,它是一系列钼同多酸铵的混合物,随(NH3)2/MoO3比率的不同而异。但它们都可概括进一个通式,常见几种钼酸铵和通式见表1。Dnval Rode等从实验成果提出了仲钼酸铵新的转化道路:
(NH4)6Mo7O24·4H2O△(NH4)4Mo5O16△(NH4)4Mo8O26△MoO3→→→
这儿又证明a=5或8,b=2或2,c=0或0两种钼杂多酸铵的存在。但不管有几种杂多酸,工业钼酸铵中首要成份一般仍是仲钼酸铵。
表1 常见几种钼酸铵特性
名 称分 子 式参 数(NH3)2/MoO3%Mo转 化abc钼酸铵(NH4)2MoO41101:148.94 仲钼酸铵(NH4)6Mo7O24·4H2O7343:754.34130℃脱结晶水,230℃转化为四钼酸铵(放出NH3↑)四钼酸铵(NH4)2Mo4O134101:461.12315℃转化为三氧化钼(放出NH3↑)通 式(NH4)2bMoaO3a+bCH2O b:a
从钼精矿动身,制取工业钼酸铵的工艺繁复。从钼精矿中辉钼矿分化方法,可将这些工艺概括为两大类,即(1)火法:经过氧化焙烧,将钼精矿转化为钼焙砂,再经湿法处理。(2)湿法:钼精矿直接浸出,辉钼矿转化为可溶钼盐。
火法或湿法差异仅在于MoS2氧化方法不同,前者选用焙烧,后者选用氧化剂溶液分化。终究,都使Mo4+→Mo6+,S2-→S0或S4+。
钼酸铵因为各杂多酸份额不同,钼含量也不同,但杂质含量往往很少,要求也很严厉。工业钼酸铵的技能要求见表2。
表2 钼酸铵质量标准
标准
含量(%)
成份我国国标GB3460-82克莱麦克斯1971年标准MSA-1MSA-2MSA-3标准产品典型分析Mo Si
︵
杂
质
︶
≯0.00060.00100.0020.00250.0013Al0.00060.00060.0020.00100.0005Fe0.00060.00080.0050.00200.0007Cu0.00030.0005 0.00100.0006Mg0.00060.00060.0020.00050.0005Ni0.00030.00050.0010.00050.0005Mn0.00030.0006 P0.00050.00050.001 K0.010.080 Na0.0010.003 Ca0.00080.0010 0.00150.0007Pb0.00050.00050.00060.00050.0005Bi 0.0006 Sn0.00050.00050.00060.00350.0010Sb 0.0006 Cd 0.0006 Cr 0.00100.0005Ti 0.00100.0005粒度<40网目
钼酸铵的火法工艺
2019-02-12 10:08:00
所谓火法,特点是工艺前半部钼精矿经氧化焙烧成钼焙砂。从钼焙砂出产钼酸铵仍是湿法,根本工艺道路见下图。整个工艺分以下几步。
图 钼酸铵(火法)出产流程
1、浸
钼焙砂里里除了主成份的三氧化钼外还含有:没焙烧透的二氧化钼和二硫化钼、金属的硫酸盐、金属的钼酸盐、硅类杂质。这些不同物质在浸工艺中的反响也各不相同。
三氧化钼是酸酐,它极易溶于液中,发作如下反响而进入液相:
MoO3+2NH4OH =(NH4)2MoO4+H2O
二氧化钼和二硫化钼不溶于液,残留在固相中。铜、锌、镍的硫酸盐、钼酸盐能溶于,生成铁的络合物,发作如下反进而应入液相:
MeSO4+6NH4OH=Me[(NH3)4](OH)2+(NH4)2SO4+4H2O
MeMoO4+4NH4OH=Me[(NH3)4]2MoO4+4H2O
硫酸钙可与MoO2-4反响:
CaSO4+ MoO2-4=CaMoO4↓+SO2-4
反响新生成的钼酸钙和本来焙砂中的钼酸钙都不溶于,进入固相。
钼酸铁虽能被分化,但反响缓慢。由于,在钼酸铁表面上会生成一层实际上不溶于的氢氧化铁的薄膜,阻止了钼酸铁进一步被液溶解的进程。钼酸铁也大部分残留在固相。[next]
亚铁的硫酸盐或钼酸盐在液中生成氢氧化亚铁,它可溶于液构成铵的络合物:
Fe(OH)2+6NH4OH=[Fe(NH3)6](OH)2+6H2O
硅类杂质为石英(SiO2)或硅酸盐,是钼焙砂中首要杂质,不溶于而残留在固相。
对浸液进行液固别离,取得的钼酸铵溶液含杂量大为削减。
用8%~10%液,在常温或50~60℃,液固比为(3~4):1的条件下浸出钼焙砂。增加量为反响理论耗费值的1.2~1.4倍。这儿留有防止生成聚钼酸盐和确保在终究浸液中有必要坚持的剩下浓度(25~30g/L)。
钼焙砂中杂质含量不同,钼浸出率也不同。当氧化焙烧不充分时,会呈现二氧化钼或二硫化钼;当钙、铁含量较多时,都会使钼的浸出率下降。一般,钼焙砂的浸出率在80%~95%之间。
浸渣分量约为所加焙砂分量的10%~25%,含钼量在5%~25%之间。还需进一步收回其间的钼。
为处理钙、铁等杂质金属离子对浸的搅扰,除了进步钼精矿质量外,还有以下方法:
(1)向浸液中参加碳酸铵,它与硫酸钙反响生成更难溶的碳酸钙(CaCO3),便可防止硫酸钙生成钼酸钙,而进步钼的浸出率。碳酸铵还能与硫酸铁、钼酸铁发作反响,生成碱式碳酸铁的沉积,它的吸附才干比氢氧化铁小,可下降浸渣中钼含量。
(2)浸前,用酸“预浸”钼焙砂是一个卓有成效的方法。此刻会发作如下反响:
MeSO4+2HCl=MeCl2+H2SO4
MeMoO4+2HCl=MeCl2+H2MoO4↓
钙、铁、铜、锌……等以可溶盐方式进入液相,三氧化钼以被酸分化出呈钼酸不溶于酸(应调好PH值)而进入固相。尔后,经过固液别离,可使焙砂中大部分杂质金属被别离出。对净化后的焙砂再浸,浸渣中钼含量可降至3%以下。“预浸”时,二氧化钼可溶于酸进入液相:
MoO2+4HC1=MoCl4+2H2O
所以,钼焙砂含二氧化钼较高时,“预浸”废液应增加收回钼的工艺。
浸工艺一般在珐琅反响釜或钢制浸槽中进行。这些设备带有机械拌和器和蒸汽加热套。浸出进程往往须重复2~4次。后几回稀浸液可循环运用。
2、净化除杂
浸、过滤后所获钼酸铵溶液还含有不少金属的络离子。特别铁和铜的络离子含量较多。为脱除它们,往往要向溶液参加硫氢化铵(或硫化铵、)。
这些金属的络离子中除[Fe(NH3)6]2+移定性较差,其他[Cu(NH3)4]2+、[Zn[Ni(NH3)4]2+结合得都很安稳,它们PK不稳分别为13.32、9.46。因此,溶液中铜、锌、镍的正二价离子浓度很低。
虽然[Cu(NH3)4]2+很安稳,但CuS与FeS溶度积更低。(LFeS=3.7×10-19,LCuS=8.5×10-45)所以,溶液中会发作如下反响,直至铜、铁沉积完:
[Cu(NH3)4](OH)2+NH4HS+3H2O→CuS↓+5NH4OH
[Fe(NH3)6](OH)2+NH4HS+5H2O→FeS↓+7NH4OH
关于锌和镍,虽然它们的硫化物溶度积也不高(LZnS=1.2×10-19,LCuS=1.4×10-24),但它们的络离子相对就安稳得多。此刻,溶液中很低的[Zn2+]、〔Ni2+〕与〔S2-〕不可能到达按此溶度积生成硫化锌、硫化镍的必需浓度。因此,锌、镍的杂质大部分仍留在溶液中。[next]
经过液固别离,就可以脱除钼酸铵溶液中的铜、铁杂质。
出产中,有必要当心操控铵的加人量,假设溶液中铵过量,将生成硫代钼酸盐使终究产品被硫污染。所以,铵需一点一点缓慢参加溶液并不断拌和。每次加往后要取样查验沉降是否已彻底,如发现溶液中铵过量,需参加新鲜的浸液冲销。
铵亦可用硫化铵或替代,但易形成终究产品含Na2O过量而较少选用。
净化是在珐琅反响釜或衬有橡胶的钢制浸出槽中进行。相同,需带拌和器和加热蒸汽套。
3、结晶
经净化的钼酸铵母液往往含有MoO3120~140g/L,母液密度约1.09~1.12g/mL。一般先经预先蒸腾浓缩至含MoO3为280~300g/L,或母液密度1.20~1.23g/mL。此刻,母液中为数不多的CuS、FeS、Fe(OH)3易沉降,可滤除。往后,将有两种加工计划:
(1)计划I—浓缩-结晶法:将经预浓缩后的母液在带机械拌和器、蒸汽加热套的不锈钢或珐琅反响釜中加热、蒸腾、浓缩。使溶液密度到达1.38~1.4g/mL(适当含MoO3为400g/L),过滤热溶液并搜集在冷却、结晶器内。
结晶是在带拌和器、冷却系统的不锈钢或珐琅结晶器中进行的。当母液温度冷却至40~45℃后,约50%~60%的仲钼酸铵从溶液结晶分出。经离心过滤、洗滤、枯燥获终究产品。剩下母液再经“浓缩-结晶”重复屡次,终究再将尾液蒸干,在350~400℃下煅烧,所得三氧化钼含杂太高,须回来浸。
操作须留意:蒸腾进程应保存4~6g/L自在;而且为防部分过热,应不断拌和,这样才干防止生成酸性较强、晶粒较细的钼酸铵沉积,从溶液中分出。
“浓缩-结晶”需重复屡次,进程持续时间较长,第2次后各批结晶含杂较高往往超越标准,而需重复结晶以净化。
(2)计划Ⅱ—中和法:对预浓缩的母液参加中和,依据溶液终究pH和温度不同,可分出不同成份聚钼酸盐。
当心翼翼地用中和加热到55~65℃的钼酸铵母液,直到pH=2.3,强烈拌和,可将96%~97%的钼以二水四钼酸盐方式沉积出来:
4(NH4)2MoO4+5H2OPH=2~2.5(NH4)2Mo4O13·2H2O+6NH4OH→
分出的结晶有必要立刻过滤,不然,在与母液长期触摸后易脱水,生成细晶粒无水四钼酸铵而难过滤。
四钼酸铵沉积物纯度很高,Ni、Zn、Cu……及AS、P、S……等杂质都残留在弱酸性母液中。但它却含有较多氯离子(0.2%~0.4%)不易被水洗掉,而需重结晶,以脱除氯离子。
首要,将四钼酸铵在70~80℃下,用含3%~5%的溶液溶解,直到饱满(溶液密度1.41~1.42g/mL)。然后将饱满溶液冷却到15~20℃,50%~60%的钼会以纯洁的仲钼酸铵((NH4)6Mo7O24·4H2O)方式从中分出。母液再重复溶解四钼酸铵,再冷却结晶,重复可达十次左右。四钼酸铵逐步转变成纯洁仲钼酸铵,杂质在母液中堆集到必定程度后,送去净化处理。
别离四钼酸铵后的酸性母液中,还残留有3%~4%的钼(适当6~10g/L),将其再酸化至pH=2送沉积池,可从中分出各种成份聚钼酸盐非晶形沉积。沉积送净化处理除杂,尾液还含约1g/L的钼,可用离子交换法加以收回。
4、浸渣收回
依据钼焙砂的不同成份,钼的浸出率在80%~95%之间,其余部分残留在产率10%~25%的浸渣中,渣的含钼量还高达5%~25%之间。[next]
浸渣中钼的物相生要为:难溶或不溶于的钼酸钙、钼酸铁;不溶于的二氧化钼、二硫化钼;极少量吸附在氢氧化铁表面的钼酸根离子。笔者在对栾川县钼酸铵厂浸渣所作物相分析发现:吸附MoO2-4很少,而CaMoO4、MoS2含量占渣中钼量的80%以上。见下表。
表 浸渣中钼的散布
钼的物相MoO2-4Fe2(MoO4)3CaMoO4MoO2MoS2算计钼分配率(%)4.199.3335.754.6746.06100.00
从浸渣中收回钼的工艺繁复,不少工艺与钼精矿分化工艺相同,此仅作简略介绍。这些工艺也有火法、湿法之分。
火法常见工艺有:(1)二次焙烧-浸;(2)碳酸钠焙烧-水浸;(3)硫酸焙烧-浸。后两种适用于含各种钼化合物的浸渣。其间碳酸钠焙烧法用得最多。
二次焙烧法:Richard将浸渣在富氧(或纯氧)中焙烧600~650℃,15~30min后总浸率达99%以上。
碳酸钠焙烧-水溶法:将湿渣拌上碳酸钠粉,放焙烧炉内,经700~750℃焙烧6~8h。此刻,浸渣中的各种钼化合物都会转化成可溶的钼酸钠。用水加热溶解此焙渣,钼酸钠溶入液相经过滤后别离出。在pH=3.5~5微酸性介质中,用从浸液中沉积出钼酸铁。沉积物中的FeO3/MoO3份额不定,一般不与Fe2(MoO4)3共同,可用溶解得钼酸铵溶液。
硫酸焙烧-水浸法:将浸渣拌入硫酸在600℃下焙烧,各种钼化合物转化为钼酸。用浸出焙渣,钼酸转化为钼酸铵进入溶液再收回。
湿法常见工艺有:(1)碱液压煮;(2)酸分化;(3)次分化。
碱液压煮:当浸渣中钼首要以钼酸盐方式存在,而MoO2或MoS2含量很低时,在高压反响釜内用碳酸钠溶液浸出浸渣。在180~200℃,1.2~1.5MPa浸出,可将其他钼酸盐转化为可溶钼酸钠别离收回。
酸分化法:当浸渣的钨档次较高(3%~5%W)时,用其他方法难将W-Mo别脱离。此刻用20~30%加温到100℃左右浸出浸渣,可将其间钼酸盐彻底分化,生成易溶于的钼酸,而钨酸盐大部分不会分化而与杂质一块残留在固相,别离出钼酸溶液收回钼。残渣可再收回钨和MoS2、MoO2。
用15%浓度硝酸、10%浓度硫酸,在液固比为3:1,加温到70~80℃时,浸出浸渣2h,可将浸渣中各种钼化合物转化为钼酸,残渣含钼量仅0.44%。
铋常识
2019-03-14 09:02:01
铋是银白色金属,密度9.8,熔点271.3℃,沸点 1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。 自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。 铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。 铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。 铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
铋知识
2019-03-08 09:05:26
铋是银白色金属,密度9.8,熔点271.3℃,沸点1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。
自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。
铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
钼酸铵、钼酸钠实行分等级报价的具体方法
2018-12-14 09:31:07
中国有色金属工业协会钼业分会于2006年4月26-27日在杭州召开了“钼业分 会全国钼化工企业第三次峰会”。与会代表围绕会议讨论议题进行了认真讨论,大 家各抒己见,畅所欲言,最后达成了多项有利于全国钼化工行业及钼行业发展的共 识。其中提出了对钼酸铵、钼酸钠的报价问题,大家一致认为,钼酸铵、钼酸钠应 实行分等级报价,这种报价较为科学,有利于钼行业的发展,现将具体事宜通知如 下: 一、四钼酸铵 1、精品级 Mo≥56% 化学物理性能达标,满足钼拉丝条及深加工; 2、一级品 Mo≥56% 各项化学性能达标,满足钼粉制备及钼制品棒、杆、板 等; 3、二级品 Mo≥56% 主含量满足炼钢钼条、块、坯及其普通应用。 二、七钼铵酸 1、一级品 Mo≥54% 化工原料及其主应用; 2、二级品 Mo≥52% 钼肥生产原料; 三 、二钼酸铵 参照七钼酸铵一级品价格执行mo≥56% 四、钼酸钠 1、精品级 Mo≥39.2% 含量≥99% 无钨、钒杂质; 2、一级品 Mo≥38.5% 含量≥98.5%; 3、二级品 Mo≤38% 含量≤98%。.
铋的冶炼
2019-03-07 10:03:00
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其中所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的性质
2019-03-07 10:03:00
银白色或微赤色,有金属光泽,性脆,导电和导热性都较差。铋在凝结时体积增大,膨胀率为 3.3%。铋的硒化物和碲化物具有半导体性质。室温下,铋不与氧气或水反响,在空气中安稳,加热到熔点以上时能焚烧,宣布淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋粉在内着火。铋不溶于水,不溶于非氧化性的酸(如),使浓硫酸和浓,也仅仅在共热时才稍有反响,但能溶于和浓硝酸。
因为铋的熔点低,因此用炭等能够将它从它的天然矿石中复原出来。所以铋早被古代人们获得,但因为铋性脆而硬,缺少延展性,因此古代人们得到它后,没有找到它的使用,仅仅把它留在合金中。
铜铋合金
2017-06-06 17:50:04
一种低熔点核/壳型锡铋铜合金粉体及其制备方法 一种低熔点核/壳型锡铋铜合金粉体及其制备方法,涉及一种低熔点核/壳型合金粉体。提供一种低熔点核/壳型锡铋铜合金粉体及其制备方法。包括核和壳,核为铜锡基合金核,壳为锡铋基合金壳。按质量百分比,按预先设定的锡铋铜合金粉体的成分,称量锡、铋、铜各
金属
放入真空感应炉内的熔炼装置熔化;将熔化的合金液体倾倒于受液斗,在液体流入雾化室的瞬间,用惰性气体(最好为氩气或氮气等)吹之,即得核/壳型锡铋铜合金粉体。其工艺简单、成本低、效率高、污染少。
自然铋(Bismuth)
2019-01-21 10:39:06
Bi
【化学组成】成分较纯,偶含微量Fe、S、Te、As、Sb等元素。
【晶体结构】三方晶系;arh=0.475nm,α=57°14′,Z=2;ah=0.456nm,ch=1.187nm,Z=8。砷型结构(图Z-12)。
图Z-12自然铋的晶体结构(砷型结构)
(引自陈武,季寿元,1985)
(a)NaCl型结构,(b)NaCl型结构沿L3方向变形而形成的砷型结构
【形态】单晶少见,常见呈粒状、片状、致密块状或羽毛状集合体。
【物理性质】新鲜断面呈微带浅黄的银白色,在空气中易变成具浅红的锖色;条痕灰色;金属光泽。{0001}完全解理。硬度2~2.5。相对密度9.70~9.83;具弱延展性;熔点271°C。具逆磁性。
【成因及产状】自然铋可形成于高温热液矿床、伟晶矿床中。自然铋在地表条件下易于氧化形成铋华和泡铋矿。
【鉴定特征】浅红的锖色,完全的解理,硬度较低和相对密度较大。
铋的来历
2019-11-14 16:58:18
早在古希腊和罗马时期,就有金属铋的使用,人们用木炭复原辉铋矿制得它,首要用作盒子和箱子的底座。1450年,德国修士B•瓦伦丁曾描绘过铋。直到1556年,德意志的G.阿格里科拉才在《论金属》一书中提出锑和铋是两种独立金属的观点。1737年赫罗特用火法剖析钴矿时曾取得一小块样品,但当时并不知是何物。1753年,英国C. 若弗鲁瓦和T.伯格曼承认铋是一种化学元素,定名为bismuth。1757年法国人日夫鲁瓦(Geoffroy)经剖析研究,确定为新元素。铋的拉丁称号bismuthum和元素符号来自德文weisse masse(白色物质),可是金属铋并非银白色,而是粉红色。
铋精矿新氯化-水解沉铋法
2019-01-31 11:06:04
唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大提高了铋的浸出回收率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大提高,后续工序的生产能力相应得以扩展。准则工艺流程见图1。图1 新氯化水解法准则工艺流程图
由所以在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反应将导致氧气的消耗量增大。
铋铜 英文
2017-06-06 17:50:14
铋铜 英文是什么?铋铜英文是 bismuth copper.铋在自然界中以游离
金属
和矿物的形式存在。矿物有辉铋矿、铋华等。
金属
铋由矿物经煅烧后成三氧化二铋,再与碳共热还原而获得,可用火法精炼和电解精炼制得高纯铋。为有银白色光泽的
金属
,质脆易粉碎;熔点271.3°C,沸点1560°C,密度9.8克/厘米3;导电导热性差;由液态到固态时体积增大。铋在红热时与空气作用;铋可直接与硫、卤素化合;不溶于非氧化性酸,溶于硝酸、热浓硫酸。铋可制低熔点合金,用于自动关闭器或活字合金中;碳酸氧铋和硝酸氧铋用作药物;氧化铋用于玻璃、陶瓷工业中。元素类型:
金属
;晶体结构:晶胞为三斜晶胞。室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于水,不溶于非氧化性的酸(如盐酸)即使浓硫酸和浓盐酸,也只是在共热时才稍有反应,但能溶于王水和浓硝酸。其中+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。元素在海水中的含量(ppm):太平洋表面 0.00000004 ;元素在太阳中的含量(ppm):0.01铋主要用于制造易熔合金,熔点范围是47~262℃,最常用的是铋同铅、锡、锑 、铟等
金属
组成的合金,用于消防装置、自动喷水器、锅炉的安全塞,一旦发生火灾时,一些水管的活塞会“自动”熔化,喷出水来。 在消防和电气工业上,用作自动灭火系统和电器保险丝、焊锡。铋合金具有凝固时不收缩的特性,用于铸造印刷铅字和高精度铸型。碳酸氧铋和硝酸氧铋用于治疗皮肤损伤和肠胃病。铋在自然界中以游离
金属
和矿物的形式存在。矿物有辉铋矿、铋华等。
金属
铋由矿物经煅烧后成三氧化二铋,再与碳共热还原而获得,可用火法精炼和电解精炼制得高纯铋。铋在地壳中的含量不大,为2×10-5%,自然界中铋以单质和化合物两种状态存在,主要矿物有辉铋矿(Bi2S3)、泡铋矿( Bi2O3)、菱铋矿(nBi2O3?mCO2?H2O)、铜铋矿(3Cu2S?4Bi2S3)、方铅铋矿(2PbS?Bi2S)。铋在自然界中有硫化物的辉铋矿(Bi2S3)和氧化物氧化铋(Bi2O3),或称铋黄土,是由辉铋矿和其他含铋的硫化物氧化后形成的。由于铋的熔点低,因此用炭等可以将它从它的天然矿石中还原出来。所以铋早被古代人们取得,但由于铋性脆而硬,缺乏延展性,因而古代人们得到它后,没有找到它的应用,只是把它留在合金中。铋是由阿格里科拉首先明确它是一种
金属
的。铋的拉丁名称bismuthum和元素符号来自德文weisse masse(白色物质),但是
金属
铋并非银白色,而是粉红色。更多有关铋铜 英文请详见于上海
有色
网
铋铜 英文
2017-06-02 16:14:48
铋铜 英文是什么?铋铜英文是 bismuth copper.铋在自然界中以游离
金属
和矿物的形式存在。矿物有辉铋矿、铋华等。金属铋由矿物经煅烧后成三氧化二铋,再与碳共热还原而获得,可用火法精炼和电解精炼制得高纯铋。为有银白色光泽的金属,质脆易粉碎;熔点271.3°C,沸点1560°C,密度9.8克/厘米3;导电导热性差;由液态到固态时体积增大。铋在红热时与空气作用;铋可直接与硫、卤素化合;不溶于非氧化性酸,溶于硝酸、热浓硫酸。铋可制低熔点合金,用于自动关闭器或活字合金中;碳酸氧铋和硝酸氧铋用作药物;氧化铋用于玻璃、陶瓷工业中。元素类型:金属;晶体结构:晶胞为三斜晶胞。室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于水,不溶于非氧化性的酸(如盐酸)即使浓硫酸和浓盐酸,也只是在共热时才稍有反应,但能溶于王水和浓硝酸。其中+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。元素在海水中的含量(ppm):太平洋表面 0.00000004 ;元素在太阳中的含量(ppm):0.01铋主要用于制造易熔合金,熔点范围是47~262℃,最常用的是铋同铅、锡、锑 、铟等金属组成的合金,用于消防装置、自动喷水器、锅炉的安全塞,一旦发生火灾时,一些水管的活塞会“自动”熔化,喷出水来。 在消防和电气工业上,用作自动灭火系统和电器保险丝、
焊锡
。铋合金具有凝固时不收缩的特性,用于铸造印刷铅字和高精度铸型。碳酸氧铋和硝酸氧铋用于治疗皮肤损伤和肠胃病。铋在自然界中以游离金属和矿物的形式存在。矿物有辉铋矿、铋华等。金属铋由矿物经煅烧后成三氧化二铋,再与碳共热还原而获得,可用火法精炼和电解精炼制得高纯铋。铋在地壳中的含量不大,为2×10-5%,自然界中铋以单质和化合物两种状态存在,主要矿物有辉铋矿(Bi2S3)、泡铋矿( Bi2O3)、菱铋矿(nBi2O3?mCO2?H2O)、铜铋矿(3Cu2S?4Bi2S3)、方铅铋矿(2PbS?Bi2S)。铋在自然界中有硫化物的辉铋矿(Bi2S3)和氧化物氧化铋(Bi2O3),或称铋黄土,是由辉铋矿和其他含铋的硫化物氧化后形成的。由于铋的熔点低,因此用炭等可以将它从它的天然矿石中还原出来。所以铋早被古代人们取得,但由于铋性脆而硬,缺乏延展性,因而古代人们得到它后,没有找到它的应用,只是把它留在合金中。铋是由阿格里科拉首先明确它是一种金属的。铋的拉丁名称bismuthum和元素符号来自德文weisse masse(白色物质),但是金属铋并非银白色,而是粉红色。更多有关铋铜 英文请详见于上海
有色网本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
铋发现小史
2019-02-14 10:39:59
发现小史 希腊、古罗马年代人们就运用铋,但不知道是一种金属元素,铋的姓名取自德文白色金属(Wismut)。大约在16世纪,阿格里科拉(G.Agricola)将此名拉丁化为bismntum。长时期铋被人们误认为是铅、锡、银、锑等。直到1753年,若弗鲁瓦(C.Ggeoffroy)和伯格曼(T•Bergman)才断定铋是一种元素,1860年今后,铋开端初具工业规划。 铋的性质 铋性脆,赋有光泽。铋在凝结时体积增大,膨胀率为3.3%。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。除外,铋是热导充最低的金属。铋及其合金具有热电效应。铋的硒、碲化合物具有半导体性质。室温下铋在湿空气中细微氧化,加热到熔点时则焚烧生成三氧化二铋。铋同效果缓慢,同硫酸反响放出二氧化硫,同硝酸反响生成硝酸盐。 铋的资源 天然界存在少数的铋,其主要矿藏有:辉铋矿、泡铋矿、铋华、天然铋、方铅铋矿、菱铋矿、铜铋矿。铋独自矿床少,常与铅、锌、铜、钨、钼、锡等矿伴生,其独自挖掘工业档次为0.5%。 国际铋年产量约4400吨。我国铋金属量50万吨,1993年产铋约1052吨。 铋的制取 铋的冶炼分粗炼和精粹两步。粗炼的办法因质料而异。以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。 以铅的火法冶金精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其中所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。 精粹一般分为四个过程:氧化除砷、锑、碲等;加锌除银;氯化除铅锌;高温除氯。 铋的用处 铋主要用处是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金;这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料,金属热处理的熔浴介质等。铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金效果作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性作制作磁力测定仪。铋锰合金可制永磁合金。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差电制器元件用于太阳能电池。铋银合金用于制作光电放大器。硫化银铋用于制作半导体仪器。铋镉温差元件用于报警设备。
钼中矿处理——钼酸铵生产
2019-02-15 14:21:24
钼矿选矿过程中,有的流程产出一个难以用浮选收回的低档次钼中矿;有的因杂质含量太高得不到合格钼精矿〈或称低档次钼精矿〉。使用这些不合格的钼精矿和钼中矿来出产钼酸铵是收回这部分钼的一个方法。 1.钼中矿的化学选矿 杨家杖子钼矿在选矿过程中产出一个含钼0.6~0.8%的钼中矿,以此为质料出产钼酸铵的工艺流程如下: 首先把钼中矿浓缩到60%固体浓度,参加次溶液浸出,反响式如下:
MoS2+9NaClO+6H2O→Na2MoO4+2Na2SO4+9NaCl+3H2O
次溶液含NaClO130~140克/升、含NaOH50~60克/升。浸出温度45~55℃,钼中矿细度为0.074毫米以下。 浸出生成的钼酸钠溶液参加使pH=5~6,然后加氯化钙,用蒸汽煮沸生成钼酸钙沉积。反响式如下:
Na2MoO4+CaCl2→CaMoO4↓+2NaCl
把钼酸钙沉积过滤后,加碳酸钠溶液分化钼酸钙以除掉其中平杂的重金属离子,反响式如下:
CaMoO4+Na2O3←→Na2MoO4+CaCO3↓
然后加使溶液的pH=0.5,在95℃下反响生成钼酸沉积,反响式如下:
Na2MoO4+2HCl→H2MoO4↓+2NaCl[next]
把钼酸别离出来后,直接溶解于中,生成钼酸铵。参加活性产脱色,然后加使pH=2.5,得到白色结晶的二水四钼酸铵[(NH4)2O•4MoO4•2H2O]。过滤、枯燥、破坏得到钼酸铵制品。整个出产流程如下图所示。
[next]
2.低档次钼精矿出产钼酸铵 有的选厂如金口岭和宝穴选矿厂,因含炭质矿藏的影响,浮选得到的钼精矿含钼仅20~35%。该厂选用化学选矿制成钼酸铵。出产流程如下:首先将低档次钼精矿烘干后焙烧成三氧化钼,反响式如下:
2MoS2+7O2 4.5小时 → 2MoO3+4SO2↑600~650℃
然后将三氧化钼用浸出、生成正钼酸铵,反响式如下:
MoO3+2NH4OH 3小时 → (NH4)2MoO4+H2O
过滤除掉氢氧化铁等不溶物。滤液加(或硫化铵),将浸出液中铜络合物转化为硫化铜沉积、与正钼酸铵别离。除掉重金属离子的溶液,参加硝酸,使pH=2.5,正钼酸铵转化为四钼酸铵晶体,反响式如下:
4(NH4)2MoO4+6HNO3→(NH4)2O·4MoO3↓+6NH4NO3+3H2O
把晶体过滤、在120℃枯燥3小时得到白色结晶的四钼酸铵。出产流程如下图所示。[next]
钼酸铵的湿法生产工艺
2019-02-12 10:08:00
传统的氧化焙烧钼精矿出产钼酸铵的火法工艺,存在SO2烟气严峻污染环境,钼和铼收回率低一级缺点。温法分化钼精矿就可防止这些缺点。
湿法工艺品种繁复,从钼精矿分化手法区分,常见工艺有以下几种(见表1)。
表1 常见湿法工艺
工 艺氧化剂压力(MPa)温度(℃)浸 液硝酸氧压煮O2△0.8~1.5①
※2.0~2.5②180~22020~40g/LHNO3
(HNO3:Mo=0.2~0.3:1)烧碱氧压煮O2同上200 硝酸分化HNO319027~30%浓度硝酸次分化NaOCl120~4030g/L NaOCl,
20~30g/L NaOH
①氯分压;②釜内总压。
1、(硝酸)氧压煮
钼精矿在水介质里,经硝酸催化的氧化煮是一个三相(液-固-气)反响的放热进程,反响为:
MoS29O2+3H2O→H2MoO4+2H2SO4+△Q2
硝酸起作催化剂作用,在反响中循环:
MoS2+9HNO3+3H2O→H2MoO4+9HNO2+2H2SO4+△Q
2HNO2→NO+NO2+H2O
2NO+O2→2NO2+1233kJ
3NO2+H2O→2HNO3+NO+484.5kJ
从亚硝酸→NO+NO2→NO2→HNO3反响很快到达平衡。增大氧分压、下降气相温度,都有利反响进行。
压煮进程中,钼除少数在强酸介质中呈阴离子进入压煮液外,94%左右钼以钼酸方式留在固相。钼精矿里伴生的铼绝大部分转化为可溶的高铼酸或其盐进入压煮液中。钼精矿中铁、铜、铝、镁等呈硫酸盐,部分磷、砷、硅以阴离子方式进入了压煮液。
硝酸氧压煮工艺流程如图1,工艺条件见表2。
表2 氧压煮出产钼酸铵工艺条件
工 艺工 艺 条 件压煮钼精矿(kg):水(L)1:1.5~2.5①釜内加压(MPa)2(反响中上升至3)加热温度(℃)14~15(反响上升至20)②硝酸用量(kg HNO3/kg Mo)0.20~0.30反响时刻(h)2(滤饼)
浸滤饼(kg):水(L):(L)1:0.7~0.8:1.2~1.23PH8.5~90加热温度(℃)70~75拌和时刻(min)15~20溶液比重(g/mL)1.16~1.18净化加热温度(℃)80~PH8.5~9参加过量时溶液呈淡黄色浓缩溶液比重(g/mL)1.2~1.21冷却温度(℃)40~45酸沉反响温度(℃)≯60PH2~2.5溶
再结晶粗晶(kg):蒸馏水(L):(L)100:(40~50):(45~50)溶液比重(g/mL)1.40~1.50溶解加热温度(℃)70~80
① 现在蒸煮加压已可降至0.8~1.2Mpa;
② 反响中,压力还会上升,温度自行再升高[next]
图2 (酸)氧压蒸煮出产钼酸铵工艺流程
钼精矿、硝酸和水(或回来的洗液)参加钛材高压反响釜,向反响釜送入蒸汽开端加热并通入氧气。当釜内温度上升到140~150℃、压力达1.5~2.5MPa后中止蒸汽加热。持续送入氧气,随反响开释热量,釜内的温度、压力得到上升,可到达180~220℃、3~3.5MPa。在不就义载时保持反响2h。反响完毕,中止送氧,温度会随之下降到150℃以下。冷却浸液使温度降至l00℃以下,排气降压,再经液固别离:可获钼酸滤饼和压煮液。对钼酸滤饼的进一步加工与钼焙砂浸工艺类似。
氧压煮工艺里钼和锌的转化率都可达98%~99%以上,加工费不高、三废较少但氧压煮能否施行于出产的关键是设备能否耐压、耐温、耐酸腐蚀。高压反响釜用钛材、密封材料可用四氟乙烯材料制备,对高压、高温、高酸度、高氧化气氛下的阀门等尤须留意。
氧压煮液的处理可选用萃取或离子交流提取钼和铼。几个典型氧压煮条件、作用比照见表3。
表3 氧压煮条件、作用比照
项 目单 位株洲硬质合金厂前苏联美国专利3988418美国专利3739057日本专利昭-37-1520氧分压MPa1.5~2.01.01.05~1.41.0~1.52.0硝酸用量Kg/kg(Mo)0.20~0.30/0.45~0.90.34/液固比/1.5~2.5:110:110:15:110:1温度℃180~220200~225120~160155~160200精矿粒度目75%-200/-325-200-200浸出时刻h2~33~43~426钼转化率%99.1393~993599.5>9998.4进压煮液钼量%~75~720~2510~15/
2、硝酸氧压煮液收回铼的工艺
铼广泛散布在地壳中,但还没有发现有天然形状铼的存在,它也很少呈首要矿藏组分呈现。存在于其他矿藏中的铼仅为痕迹量,辉钼矿却是铼仅有重要的宿主矿藏。至今,世界上所出产铼的99%来源于热液型斑岩铜-钼矿。
从钼精矿出产铼的办法也依靠钼精矿分化的工艺。当氧化焙烧钼精矿时,在500℃以下的焙烧温度,铼就以Re2O7提高进入烟气。用高压力差的高洗刷塔,从烟尘中搜集率约65%。再从溶解有高铼酸或高铼酸铵的洗刷液里萃取或离子交流收回铼。氧压煮时钼精矿中铼的98%转化成高铼酸进入压煮液,压煮液里还含有总钼量5%~6%的钼。
从压煮液可用萃取法或离子交流法收回钼与铼。萃取工艺见图1,萃取铼的工艺条件见表4。
表4 压煮液中收回钼、铼的工艺条件
工 序工 艺 条 件沉 硅聚醚用量50g/m3压煮液萃取与反萃取条 件铼钼有机相组成N2352.520仲辛醇4010火油57.570反萃取剂(mol)NH4OH5~69~10洗刷剂(mol)NH4OH 1.8流比萃取萃铼1.3g/L萃钼20g/L洗刷 1/0.5反萃取铼液10g/L钼液150 g/L铼一次结晶用量(g/L)50 用量(ml/L)20 结晶温度(℃)≤0 铼二次结晶溶解液组成(:水)1:1 一次结晶溶解温度(℃)95 固液比1/10 结晶温度(℃)≤0
[next]
3、烧碱氧压煮
在130℃和氧分压为0.2MPa、釜内总压1MPa时,用NaOH溶液浸出钼精矿。经浸出7~8h后,98%~99%的钼与铼转化进液相。当温度提高到200℃,氧分压可达1~1.5MPa,反响如下:
MoS29O2+6OH-→MoO2-4+2SO2-4+3H2O2
溶液中除含有MoO2-4、ReO4-外,还含有Cu、Fe、Si、As、Sb、P的化合物,这些杂质使溶液处理复杂化。
从含硫酸盐离子高的溶液中别离钼,不适宜选用沉积钼酸钙的办法,由于这会一起生成硫酸钙的沉积而污染钼酸钙。因而,可选用在高压釜中200℃的弱酸溶液中(pH=2)用钼粉复原MoO2-4:
MoO2-4+Mo+4H+→3MoO2↓+2OH-
再用H2复原MoO2即可得工业钼粉。复原后的残液再用以萃铼。该工艺可提取96%钼和85%~90%的铼。
在弱酸性介质中,在加压下通入H2也可复原MoO2-4
MoO2-4+H2→MoO2↓+2OH-
MoO2最佳沉积条件为200℃,氢分压6MPa,pH=2~3,参加晶种反响1~4h后,98%以上相钼会以粗粒MoO3晶体分出。
从苛性碱压煮液中提取钼的另一有效途径是用强碱性阴离子交流树脂作离子交流。
惯例处理钼溶液的萃取、活性炭吸附、离子交流工艺都适用于酸性介质。株洲钨钼材料研究所选用OH-型717#或D296阴离子树脂,从苛性碱氧压煮的钼液中吸附钼,吸附率可达99.5%。而且除掉90%以上磷、砷、硅和80%以上SO42-等杂质。实验中,湿树脂的吸附量较大,pH=8时717#树脂穿透简单(交流柱流出与流入液相含量之比为0.01时简单)为25~29g/L;饱满容量(当流入,流出液的含量到达持平后的树脂含量)为38~40g/L;D296-10在pH=10时的穿透容量为29.06g/L,饱满容量为37g/L。在对树脂用NH4Cl解吸,解吸液酸沉等工序中,可进一步脱除SO42-及铜铁等杂质,取得合格的高质量仲钼酸铵。
4、次氧化法
这往往用作低档次钼精矿和钼中矿的湿法分化工艺。
在碱性介质中,加氧化剂次简直能氧化一切的硫化物:
但在20~40℃时,铁、铜的硫化物氧化速度远比辉钼矿的低。此刻,可充沛将MoS2转化为MoO42-,而铜、铁的硫化物很少溶解。一起,氢氧化铁,特别氢氧化铜在碱性介质能催化次的分化,加速辉钼矿的氧化:
NaClO→NaCl+[O]
浸液成份一般为:NaCIO30g/L,NaOH20~30g/L。一般用此法浸取含钼5%~23%的钼中矿时,钼的收回率可高达96%~98%。这个办法可在常温,常压下作业,比氧压煮易操控。不足之处是药剂耗量太大,理论上核算,每浸取lkg钼,需耗费7kg次,而实践出产耗费还为理论值的1.5~2倍。
为此,呈现通以再生次的工艺:
2NaOH+Cl2→2NaClO+H2↑
亦呈现电氧化法:用通电的氯化钠溶液浸出:
NaCl+H2O电解NaClO+H2↑→
[next]
这些工艺都只是次法的分支,见图2。
图2 次法流程
铋的基本知识
2019-03-12 11:03:26
铋是银白色金属,密度9.8,熔点271.3℃,沸点 1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。 自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。 铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。 铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。 铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
含铋物料湿法冶金
2019-03-04 16:12:50
含铋物料湿法冶金(hydrometallurgy of material containing bismuth)
含铋物料通过浸出、置换、熔铸等处理,产出粗铋的进程。为铋冶炼办法之一,首要用于处理含硅高的铋氧化矿、中矿、贫矿及铋渣等。我国选用湿法冶金出产的铋占铋总产量的10%~15%。
工艺特色
湿法冶金首要选用氯化浸出,依据质料的不同,可选用浸出、加氧化剂浸出、通氯浸出、硫酸通氯浸出、硫酸加食盐浸出等法。其间以浸出最具典型。浸出的长处是在水溶液中溶解度大,稳定性好,不易生成黄钾铁矾类不溶配(络)合物;的氧化电位能使金属硫化物中的硫以元素硫形状分出,消除了SO2气体的污染;可在常压下浸出,可选择性浸出金属;可再生运用。不足之处是浸出液中铁量多,给浸出液别离净化带来困难;由于是强氧化剂,有必要选用防腐蚀的浸出设备,因此增加了投资额;有必要处理逸出对环境污染的问题。由于上述原因,浸出一般用于处理硫化矿,特别是富银的硫化矿。
工艺进程
包含浸出、铁粉置换、再生和海绵铋熔铸等进程,工艺流程如图。
浸出
运用和作浸出剂,首要用于处理铋中矿与贫矿。这些铋矿常含有辉铋矿、铋华、天然铋等,浸出的反应为:
Bi2S3+6FeCl3=2BiCl3+6FeCl2+3S
Bi2O3+6HCl=2BiCl3+2H2O
Bi+3FeCl3=BiCl3+3FeCl2
往浸出液中参加的,除与Bi2O3效果外,还使溶液坚持必定酸度,使BiCl。不水解为BiO-Cl。铋矿中所含杂质,如以金属硫化物形状存在的硫在浸出时被氧化为元素硫堆积,可用选矿办法别离;以硫化物存在的砷和以氧化物存在的锡,在浸出中不被氯化而留在浸出渣中;以方铅矿存在的铅,浸出中被氧化为PbCl2,常温浸出时其在溶液中的溶解度仅1%左右。
铁粉置换
运用铁置换溶液中较正电性的有价金属,使其从溶液中堆积别离出来。酸性浸出液中的Bi-Cl3。被铁置换为金属铋:2BiCl3+3Fe=2Bi+2FeCl2被置换堆积的金属铋为海绵状。置换剂铁屑被氧化为FeCl2进入溶液。
再生
氯化浸出有必要考虑氯化剂的收回,这对进步经济效益和环境保护都很重要。再生有氧化法和隔阂电解法两种,常选用氧化再生法。即往置换后液中通入将FeCl2氧化成FeCl3:
2FeCl2+Cl2=2FeCl3
再生后的FeCl3再回来氯化浸出运用。
海绵铋熔铸铁
粉置换堆积产出的海绵铋,在熔融的NaOH中熔化为粗铋。由于熔融的NaOH隔断了海绵铋与空气的触摸,而能避免海绵铋氧化。熔化的金属铋珠在熔融的NaOH中下沉集合,海绵铋表面的氧化膜被NaOH吸收,构成固态浮渣与铋液别离。海绵铋中一些杂质金属氧化物进入浮渣,进步了粗铋档次。海绵铋中残存的氯离子与 NaOH构成钠盐,使粗铋脱氯。
铋的氯化溶液电解
2019-03-04 11:11:26
铋的电解精粹是以经过开端火法精粹的铋铸成阳极,将电解分出铋铸成阴极,在和三氯化铋的电解液中电解,凭借直流电的效果,使阳极铋溶解,铋在阴极上分出。
铋的氯化溶液电解的工艺流程如图1所示。图1 铋的氯化溶液电解工艺流程
粗铋中杂质在电解时分为三类:一类在阴极分出;一类溶入电解液;一类不溶解而进入阳极泥。
一、铋电解的电极反响
铋电解示意图如图2。图2 铋电解示意图
在由和三氯化铋组成的电解液中的电离反响:在直流电效果下,阳极发作铋的溶解:阴极发作铋的堆积分出:跟着电解进程的进行,阳极铋逐步溶解,阴极上逐步分出铋而增厚。
二、杂质在电解中的行为
粗铋阳极板中含有多种杂质,这些杂质可分为三类:
(一)较铋更负电性的金属:如铁、碲、铅、锡等,因为它们的标准电位比铋更负,所以先于铋进入电解液,生成氯化物盐类,其间氯化铅在溶液中溶解度小而沉积,其他氯化物进入电解液后,下降BiCl3浓度,使耗费添加,电耗添加,还会使阳极泥中海绵铋量添加,电流效率下降,使分出铋质量下降。
(二)较铋更正电性的杂质:如金、银等不溶解,进入阳极泥。少数银进入阴极铋是因为电解液循环机械夹藏所形成的。
(三)与铋电位挨近的杂质:如砷、锑、铜等,当这些杂质在溶液中浓度较大时,可能与铋一道在阴极分出。
所以要求电解运用的阳极质量好,主成分含量高,杂质含量低,特别是应严格控制砷、锑、铜的含量,以削减其在阴极分出的可能性。
三、铋电解造液法
因为铋离子在溶液中导电性差,因此铋阳极溶解的速度慢,而在阴极分出的速度快,从而使电解液中铋离子浓度不断下降,这种现象叫阳极钝化。所以在铋电解进程中,有必要制作部分含铋高的电解液弥补到已贫化的电解液中去。造液有两种办法:坩埚造液法与碱性造液法。
1、坩埚造液法。粗铋为阳极,铅条为阴极,铅条外用素烧的陶瓷坩埚作阴极隔阂。当新造液时,原液选用和食盐的混合液:而旧造液时,用电解后的溶液造液回来运用。在直流电效果下,氯离子移向阳极,使阳极铋溶解生成三氯化铋溶液,因为铋离子体积较大,不能透过阴极坩埚隔阂,而被留在电解液中,只要氢离子体积小,能经过隔阂在阴极放电。在不断对阴极弥补的情况下,电解液含铋量不断添加,其反响为:造液后的高铋溶液,经过电解液的循环,接连地弥补到电解出产中去,而含铋低的电解液,也经过循环不断回来造液。
坩埚造液法能够在不改变电解液量的情况下,进步电解液中铋离子浓度。
2、碱性造液法。阴极与阳极均用粗铋,不需阴极隔阂,造液运用食盐溶液,在直流电效果下,阳极铋溶解生成BiCl3,而在阴极表面分出并发生NaOH,其反响为:生成的氯化铋被水解为氯氧化铋,仅少数在阴极分出:阳极不断溶解,直至将溶液中氯离子耗费完毕。电解完毕后将碱液抽去,用将BiOCl浸出:因为浸出BiOCl的溶解度约束在100~120克/升铋左右,所以碱性造液法只能添加所需的电解液量,而不能进步电解液含铋量。
四、铋电解的技能条件
(一)电解液组成。电解液由与三氯化铋组成。在开槽制备电解液时,需配入一定量的食盐,其浓度为100千克食盐/1米3,以添加溶液中氯离子浓度。电解液中游离酸控制在80~100克/升,铋控制在120~150克/升。电解液密度1.2克/厘米3左右。电解液中酸量超越含铋量时,在阴极分出海绵铋,酸量过低则阳板溶解欠好,有片状物掉落,阳极泥含铋高,下降电流效率。当电解液中铋量过低时,阴极也分出海绵铋,而含铋过高时则需很多造液,使电耗添加。
2、阳极。阳极档次宜高,一般在90%~95%,最好大于95%,含硫要求不超越0.5%,含铅不超越3%。阳极中杂质含量对电解作业影响很大。某厂曾对表1所列阳极进行电解,技能条件控制为:电解液组成:Bi 90~115克/升,HCl 100~120克∕升,NaCl 80~100克/升,电流密度100安/米2。
表1 粗铋组成与电解作业联系由表1可见,粗铋含硫高时,阴极分出物呈混状,有一半的分出铋掉入阳极泥中,电流效率下降至50%左右,这是因为不溶的硫化铋薄膜阻止阳极铋溶解形成的。
粗铋中锑的含量直接影响阳极泥的附着情况,含锑高时,阳极泥不掉落,但含锑过高将引起槽压上升;当阳极含锑低时,阳极泥易掉落,添加了槽底阳极泥量,且电解液易污染。
粗铋含银与阴极分出铋含银间联系如图3所示。图3 粗铋含银与分出的铋含银间的联系
当粗铋含银低于1.5%时,电铋含银低于0.05%。
参加适量硫酸以除掉电解液中Pb2+。但参加硫酸也有利于银在阴极分出,所以当粗铋含银大于1%时,不宜加硫酸避免银分出。
阳极板的厚度与电解周期有关,当阳极厚5毫米,电流密度100安∕米2时,可饱尝24小时电解,残极率35%。
(三)电流密度。电流密度是每米2阴极表面上经过的电流安培数,单位为安/米2。电流密度直接影响电解的出产率、电耗和出产本钱,是至关重要的技能参数。选定电流密度时要考虑经济和技能条件。不引起阳极钝化又能确保阴极分出物质量的最大电流密度称答应电流密度,在答应电流密度范围内,经济上最合理的电流密度叫经济电流密度,也就是本钱最低的电流密度,能够确保较高的阴极质量、较高的电流效率和较低的电耗的高电流密度。铋电解的电流密度一般控制在100~150安/米2,造液的电流密度为200~300安/米2。
(四)电耗、槽电压及电流效率。电耗是电解出产的首要技能经济指标,是每出产一吨铋在电解时所耗费的直流电数量,以千瓦小时/吨铋或千瓦小时/吨分出铋表明,电耗(W)首要由槽电压(V)和电流效率(η)所断定,其核算式:
从上式可见,电耗与槽电压成正比,与电流效率成反比,而以槽电压影响最大。
槽电压可用下式核算:式中,Ea-由阳极浓差极化引起的阳极电位(伏);
Ek-由阴极浓差极化引起的阴极电位(伏);
I-经过电解槽的电流强度(安)即电流密度乘以一个电解槽内阴极总面积(米2);
R1-电解液电阻(欧);
R2-阴极、阳极与导电铜板和导电杆等的电阻(欧)。
槽电压随电流密度的进步及电解时刻的延伸而进步。开端电解时槽压为0.25伏左右,跟着电解的进行,阳极泥层加厚,浓差极化加重,至电解后期达0.5伏以上。造液则开端为3.5伏左右,后期升至5.5伏左右。
铋电解的电流效率在90%以上,一般在95%左右。核算电流效率的公式为:式中G-分出铋分量(克);
q-铋的电化当量,为2.6克/安·小时;
I-电流强度(安);
t-通电时刻(小时);
n-电解槽数目。
综上所述,列出铋电解技能条件如下:
电解液组成:游离80~100克/升;铋离子120~150克/升;NaCl 100~120克/升;
阳极档次:Bi高于90%;S低于0.5%;
电流密度:100~150安/米2;造液200~300安/米2;
槽电压:0.25~0.5伏:造液3.5~5.5伏;
电解液温度:25~30℃;造液时低于50℃;
电解液循环量:下进上出,5升/分;
极距:100~110毫米;
电解周期:2~3天;造液3~4天;
阳极泥率:10%左右;阳极泥含铋50%~70%;
残极率:35%~50%。
五、铋电解设备
某厂年产500吨电铋之电解设备为:
电解槽:2500×1050×1000毫米共30只,水泥槽体,内村沥青;
地下贮槽:2500×2000×1000毫米共2只,材料为混凝土槽体内衬沥青;
洗残极槽2个;
离心过滤机:φ600毫米(内衬胶)一台;
电动单樑桥式超重机(2吨)一台;
酸泵:φ'2"(内衬胶)2台。
六、分出铋的火法精粹
粗铋经电解精粹在阴极分出的电铋,含铋在99%左右,还含有铅、铜、砷、锑、碲、银等杂质,有必要再经火法精粹提纯。
将粉与分出铋分层装锅,每层分出铋厚度约300~400毫米,加硫份额为Bi∶S=200∶1。装锅后缓慢升温至600℃,拌和捞除铜浮渣,然后参加固体碱,拌和除硫。再进行加锌除银与氯化除锌、铅,其原理与操作办法如前述。
铋的氯化精炼实例
2019-02-18 15:19:33
将除银后铋液用泵转入4号锅进行氯化精粹。降温至320~340℃通入,每锅刺进通氯管4~8根,刺进深度为300~400毫米。插管太浅,易逸出蒸发,基层含铅高的液体难以氯化,插管太深,则通氯阻力大,钢锅易被腐蚀。
氯化锌熔点283℃,因为密度小(2.9克/厘米3),上浮至液面而有掩盖效果,锅面构成灰白色薄膜,当开端呈现深灰色渣时,则为除锌结尾,此刻将液态的氯化锌渣舀出,作为出产ZnCl2的质料。
然后氯化除铅。因为铅是铋液中首要杂质,为了加速氯化除铅的速度和进步利用率,操作温度一般控制在350~400℃。PhCl2的密度5.9克/厘米3,熔点498℃,较铋液轻而上浮,呈固态浮渣掩盖铋液表面,避免的蒸发丢失和污染环境。除铅过程中要抓取氯化铅渣数次,捞渣时先停氯,升温至500℃以上,使呈液态舀出,以削减渣中夹藏金属铋丢失。半途捞渣不用捞净,每次捞完后仍降温至350~400℃,持续通氯,直至除铅结尾。氯化锌渣量约为料重的3%~5%,氯化铅渣量约为料重的13%~20%,其成分于下表。
表 氯化精粹渣成分(%)氯化除铅结尾的判别极为重要。判别过早,因除铅不完全而添加出锅前弥补脱铅工序,判别过晚,就会添加铋被氯化入渣丢失量。判别结尾可根据粗铋中杂质铅含量概算氯化铅渣产出量,而大略估量除铅结尾。在出产实践中首要经过取试样目测判别:当试样表面发黑,不冒金属小珠,试祥断面贯穿细密的笔直条纹状结晶,呈金属光泽,无灰色斑驳,则为除铅结尾,此刻之铋液含铅小于0.01%,然后持续通氯一小时左右,取样分析铅,此刻之含铅量动摇在0.0005%~0.001%之间。
剧毒,激烈影响人的呼吸系统,吸入过量会引起肺水肿,乃至引起逝世。
钼铋选矿新技术
2019-02-25 13:30:49
钼因其优异的物理化学功能而被广泛运用在钢铁、催化剂、润滑剂、颜料等职业。跟着科学技能的不断进步,钼化工产品的运用也在敏捷扩展 ,人们对产品的要求也越来越严厉,为了取得较高质量的产品,生产供应商对原材料的要求也随之进步。铋自然界中极罕见独自矿床,首要伴生在钨、铅锌、铜、锡、铁等金属矿床中。低档次钼铋的收回及其与其它伴生矿藏有用地别离是选矿的难题之一。柿竹园多金属矿是世界级特大型钨钼铋矿床,有用矿藏品种多,嵌布粒度不均匀且偏细,不同矿藏的可选性不同大,收回钼铋和钨的工艺流程杂乱且收回率低,我院研讨开发了归纳选矿新技能—柿竹园法,较好处理了选矿技能难题。用柿竹园法使钼精矿档次进步1.77%,收回率进步2.86%;铋精矿档次进步9.02%,收回率进步12.64%,该项目获国家科学技能进步奖二等奖。
铁山垅钨矿毛砂及细泥处理系统的硫化矿中含有黄铜矿、闪锌矿、辉钼矿、辉铋矿和硫铁矿等有用矿藏,使其有用别离难度很大,生产供应商运用了很多的(每年10吨左右),剧毒,并存在的收购、保管、运用及环保等问题。我院通过多计划研讨,既可用无剂替代,选别目标又可取得较大进步。归纳实验目标:铜精矿含铜25.68 %、铜收回率91.78 %;锌精矿含锌49.06%、锌收回率63.43 %;钼精矿含钼47.45%、钼收回率79.19%;铋精矿含铋32.36%、铋收回率58.46%;银在铜、锌、钼、铋精矿中的总收回率 86.00 %。
铋粗炼指标分析
2019-01-04 09:45:31
一、粗炼直收率与回收率以及冰铜含铋与渣含铋。
直收率和回收率,是衡量工厂技术水平和经济效果的重要指标,主要决定于冰铜与渣的产量和冰铜含铋与渣含铋。烟尘由于返炉重炼,所以对直收率和回收率影响不大。在铋的火法粗炼中冰铜产出量大,约为渣量的一倍,而且冰铜含铋,约为渣含铋的一倍,故冰铜所带走的铋约为渣带走的铋的四倍。所以,提高直收率与回收率的重要途径,是控制冰铜产出量与降低冰铜含铋量。但是冰铜产出量常由炉料含硫量及加入铁屑量所决定,难以减少。所以,采取有效措施,降低冰铜含铋,是提高粗炼直收率与回收率的关键。当冰铜含铋过高时,常常不得不返炉重炼。
影响冰铜含铋与渣含铋因素很多,主要决定于配料比、熔炼温度、沉淀时间、操作制度等方面。
二、燃料消耗。
包括反射炉煤耗与转炉油耗。熔炼每吨粗铋所消耗的燃料,与炉子处理量、炉料含铋品位、炉料熔化温度、炉型及炉膛抽力,热利用率及余热利用等因素有关。当炉况正常时,主要影响因素是处理量与炉料品位。加大炉子处理量,提高炉料品位,对降低燃料消耗有利。
三、单位生产率。
是衡量炉子生产强度的指标。与炉料性质、配料比、炉温、炉况、操作质量等因素有关。为了提高炉子单位生产率,宜选用含铋高、含难熔组分低的原料,掌握最佳配料比,适当选择添加剂,保持高而稳定的炉温,避免生成炉结,要及时处理炉结,要求操作工严守操作规程。
铋的碱性精炼实例
2019-01-21 18:04:55
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
铋湿法冶金方法
2019-03-04 11:11:26
关于档次高、成分单一的铋矿,火法冶炼虽然还存在着SO2的污染问题,但现在仍是铋冶炼的首要办法。但对杂乱难选的低档次铋精矿、铋中矿,选用反射炉火法熔炼,不只收回率低,并且难以精粹产出优质精铋。20世纪60年代后期,我国开端致力于铋矿湿法冶金新工艺的研讨,用作浸出剂,在酸性氯盐系统中浸出铋矿,使矿藏中的铋以铋氯合作物的形状进入溶液,用铁粉置换产出海绵铋,经火法精粹出产精铋,并首先在云锡第三冶炼厂建成了湿法车间,处理锡铋混合精矿。
近年来,国内外的许多科研单位相继依据硫化铋矿的不同组成,环绕下降作业本钱,处理环境污染,的再生和溶液中有价金属浓度的富集问题,研讨了许多新的湿法冶金流程,浸出-铁粉置换法、浸出-隔阂电积法、浸出-水解沉铋法、选择性浸出法、亚硝酸法和中南大学的新氯化法。这些工艺流程大都巳进行丁扩展实验或半工业、工业实验。
一、浸出-铁粉置换法
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合使用好,污染较小,为进步铋资源的综合使用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
二、浸出-隔阂电积法
为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。
此工艺与-铁粉置换法比较,流程简略。但因为溶液中铁离子浓度较高,电积进程在电场力的作用下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。
三、浸出-水解沉铋法
此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉积物,制取氯氧铋精矿。
为使水解彻底,溶液pH值一般操控在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋收回率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋收回率为60%~70%。
四、亚硝酸法
此法已在原苏联完成了半工业实验,用来处理哈萨克矿的难选含铋硫化矿精矿。根本原理是根据反响:此法耗费试剂品种多,除及氯化钠之外,需求、火油及过氧化氢等药剂。工艺流程见图2。技能经济指标(精矿耗费∕t):HCl 185kg、NaCl 260kg、NaNO3 3kg火油3kg、H2O2 6kg。图2 亚硝酸法处理铋精矿准则工艺流程图
五、选择性浸出法
此法选用操控电位的办法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。较之前面的几种办法,避免了很多的铁离子在流程中的循环和三价铁的再生问题,进步了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反响为:选择性浸出,铋的选择性较高,但耗费量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。
选择性浸出的工艺流程见图3。图3 选择性浸出铋准则工艺流程图
六、新氯化-水解沉铋法
唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大进步了铋的浸出收回率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大进步,后续工序的出产能力相应得以扩展。准则工艺流程见图4。图4 新氯化水解法准则工艺流程图
因为是在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反响将导致氧气的耗费量增大。
铋的最终精炼
2019-01-04 09:45:48
一、最终精炼机理
氯化精炼为可逆的置换反应。为了除去残留的比铋更易氧化的痕迹元素,如氯、锌、锑、碲、铁、铅等,必须进行最终精炼。
最终精炼实质上为碱性精炼,将重量为铋量的1%~2%的固体碱加入除氯后铋液中,并加入KNO3(或NaNO3)2~5千克,压缩空气搅拌,某厂最终精炼杂质除去情况如图1所示。图1 最终精炼杂质去除程度
从图1可见,以除氯效果显著,对除残锌、残铁亦有效,而对脱除残铅作用不大。这大概是由于铅与铋的氧化物的自由焓较接近,而铅与铋之间又能生成稳定的金属间化合物之故。
最终精炼时锌首先氧化,被NaOH吸收入渣,为了加强氧化效果,在铋液中加入少量KNO3(NaNO3),生成锌酸盐以除去残锌。
若含铅高于0.001%,则需补充通氯脱铅,直至合格。
二、最终精炼实践
最终精炼在实践中又分“高温法”与“低温法”两种。
高温法是将最终精炼温度控制在680~720℃,加入料重0.5%~1%的NaOH和1~2千克KNO3,向除氯后铋液中鼓入压缩空气搅拌约2小时后捞渣,取样分析铅与银,至铅低于0.001%,银低于0.003%为合格。然后加入少量固体碱熔化后覆盖液面,降温至300~400℃铸锭。精铋采用立模浇铸,铸模内部尺寸为370×140×30毫米,每块重约15.6千克。
低温法是将精炼温度控制在550℃左右,其它操作与技术条件与高温法类似。实践证明,采用低温法不影响质量,并可降低燃料消耗,延长精炼锅使用寿命。
某厂最终精炼渣成分如表1所示。
表1 最终精炼渣成分(%)精铋表面呈玫瑰红金属光泽,无夹渣、无气孔、无毛翅。某厂为使精铋表面呈银白色,增加“做表面”工序。将合格后铋液,降温至320~340℃,加入0.2~0.5千克氯化铵,2~5分钟后,取样观察表面呈银白色,即可出锅铸型。
通过直接火法精炼,可产出1号或2号精铋。精铋的国家标准如表2。
表2 精铋的国家标准GB915-84
铋的转炉熔炼
2019-01-04 09:45:29
炼铋转炉与铜冰铜吹炼炉不同,仅外形有某些相似,炼铋转炉采用厚16~20毫米锅炉钢板焊成圆筒状,外有两筋状钢轮包围筒体,水平安置在四对滚轮上,滚轮安装在铸钢底座上,底座固定在钢筋混凝土基础上。圆筒有两个端盖钢板,并在圆筒一端靠近支承轮旁有一大齿轮圈,大齿轮圈是转动机构的主动轮。电动机经减速箱传动驱动小齿轮,小齿轮与大齿轮啮合,从而通过电机运转驱动转炉炉体。
炼铋转炉实际上是一旋转式熔炼炉,不需要如吹炉似的一排风口。炉体用镁砖砌筑,其结构如图1所示。图1 铋转炉的一般构造
1-烟道;2-托圈;3-风口;4-炉口;5-大齿圈;6-油口;
7-小齿圈;8-减速箱;9-转动电机;10-后托轮;11-前托轮
一、转炉的构造及主要尺寸
转炉由炉体、燃油装置、炉口、转动装置、炉尾烟道、余热利用设备等主要部分组成。
(一)炉体。炉体为圆筒形,卧式,用锅炉钢板焊成,两端钢板与圆筒用螺钉联结固定,一端设重油燃烧孔,一端炉尾烟道与水平固定烟道相接。
(二)重油燃烧系统。采用100号重油作燃料。燃烧系统包括下述主要设备:齿轮油泵、流量计、压力式温度计、电加热器、减压阀、低压油嘴等。
(三)炉口。炉口在转炉中部,如图1所示。炉口有两个作用:炉料从炉口装入炉内:熔体(粗铋、冰铜、炉渣)从炉口放出。
(四)转动装置。用4.5千瓦电动机经减速箱后,以6分/转的转速转动炉体至任意位置。
(五)炉尾烟道。转炉炉头安装重油喷嘴,炉尾设烟道排送烟气,炉尾烟遭与水平固定烟道之间,用法兰盘螺钉密封联接,其联接部位示意图如图2所示:图2 铋转炉烟道接口示意图
1-固定部分;2-转动部分;3-接口部分
(六)余热利用设备。转炉炉尾烟气温度在1150℃左右,在水平固定烟遭中安装套管式换热器,如图3所示。图3 套管式换热器示意图
1-水平烟道;2-换热器;3-喷流孔
冷空气从内管进入换热器,经管壁无数小孔呈喷流状态喷在被炉尾烟气加热的外管壁,实现热交抉,被预热的空气经夹套送入重油燃烧系统。套管式换热器可将空气预热到300℃以上,供重油燃烧用。
二、转炉作业基本条件
(一)炉料与装科方法铋转。铋炉多用来进行氧化铋渣的还原熔炼。这是由于转炉便于操作,炉温易于调节,所以处理氧化铋渣时可以减少产生炉结,即使生成炉结也易于处理。转炉产出冰铜含铋高,可以返炉再炼。最近某厂已将转炉用于处理铋精矿及混合料,正在探索最佳技术条件。
转炉备料及装料方式与反射炉大致相同,采用地坑配料,箕斗盛装,卷扬提升至炉顶。不同之处是转炉不另置进料口,而是转动炉体使炉口朝上,将箕斗内的炉料直接倒入炉内。进料后,再将炉口转至水平位置。
(二)燃料及燃烧方法。转炉可采用重油、粉煤、天然气作燃料,铋转炉多采用重油,因为重油发热量高、灰分极少,设备投资省。重油需先预热至80~100℃,并用98066.5~196133帕油泵送入喷嘴。一般采用低压喷嘴,喷嘴的内管输送燃料、夹套间输送1373~1961帕的压缩空气。重油燃烧所需空气的3%~6%随重油一道喷入炉内,其余绝大部分空气从喷嘴周围大气中吸入炉内。低压喷嘴的一般构造如图4所示。图4 低压油嘴的构造示意图
1-固定螺丝;2-重油喷头;3-油量调节器
三、转炉熔炼实践
转炉熔炼包括备料、熔炼、出炉等步骤。
(一)备料。处理氧化铋渣时,其配料比控制在:氧化铋渣100%,纯碱3%~4%,煤粉3%,黄铁矿20%~30%,萤石粉3%~4%。处理返炉冰铜时,其配料比为:返炉冰钢100%,煤粉3%。纯碱3%~4%,黄铁矿15%,萤石粉酌情加入。处理铋精矿及混合料时,其配料比可参考反射炉配料比。
各工序操作时间与温度的控制如表1。
表1 转炉各工序操作时间与温度(二)熔化。采用低压喷嘴燃烧重油。由于是周期性作业,每炉升温前要点火。点火可用木柴或煤气点火,点火时操作人员应站在油嘴两侧,先开风后开油,点火后遂渐加大风量与油量,使炉温逐渐上升。风油比控制为每千克重油耗10米3风量,油压应大于0.39×106帕,当用压缩空气雾化时,风压应大子0.39×106帕,当用蒸汽雾化时,蒸汽压力应大干0.59×106帕。
在熔化过程中必须经常观察炉料熔化情况,根据具体情况翻动炉料或转动液面。炉料完全熔化后,为了使还原反应完全,可加入煤粉后翻动炉料,再封好炉口继续熔化。
(三)出炉。出炉包括放渣、放冰铜,放铋合金(粗铋),放渣时不许停风停油,保持高温放稀渣,溜口要清理得又宽又平,缓慢转动炉体,使渣流出时薄而慢,经常取样观察,炉内粘渣、浮砖要及时抓出,不让在炉内形成炉结。放渣后要清理干净炉口,将炉口转至水平位置。为了降低冰铜含铋,可加入部分铁屑,用铁扒搅匀后升温。放冰铜时速度应稍快,但要防止粗铋流出,要经常采样观察。放完冰铜后降温,直至炉内残存之冰铜冷凝成固体后,再放粗铋,放到斗内的粗铋上的浮渣,要及时捞干净。
四、转炉故障及排除
(一)炉结。转炉炉结与反射炉炉结大体相同,主要是由黄渣组成,因为氧化铋渣含砷高达2%左右,而加入黄铁矿后,热分解产生FeS,FeS被纯碱氧化成FeO,FeO在转炉熔炼温度下,当炉内局部气氛含CO高于70%时,可以还原为金属铁。
金属铁与氧化铋渣中被还原的砷一道组成黄渣。黄渣的处理方法与反射炉大致相同,由于转炉燃料是重油,炉温较反射炉更易掌握,所以炉结较易排除。
(二)重油燃烧的主要故障及预防
1、点不着火的原因是无油或油中渗水过多、烧嘴服堵塞、温度不够、风量过大、重油闪点过高。预防法是重油须经滤油器过滤、点火时确认有油喷出,雾化空气量必须适当。
2、火焰不稳定的原因是重油粘度过大、燃烧器喷嘴过大、风压,油压不稳定。预防法是提高加热温度、选用适当的油嘴砖、设置减压阀。
3、回火的原因是重油闪点过低、油灰过大、一次空气压力不够。预防法是选用合适的燃烧器,观察雾化状况及喷出速度,防止排气管堵塞。
4、积炭结焦包括喷口及油嘴砖积炭结焦。原因是由于预热温度过高、喷射不良、油含碳高而引起喷嘴结焦;而油嘴砖扩散度不够、喷嘴喷射角度太陡、重油雾化不够是造成油嘴砖结焦的原因。对积炭结焦要经常检查,及时清理。
铜铋分离研究现状
2019-02-18 15:19:33
一、黄铜矿的性质
硫化铜矿藏首要有黄铜矿(CuFeS2)、辉铜矿(Cu2S)、斑铜矿(Cu5FeS4)、铜蓝(Cu2S·CuS2)、砷黝铜矿(Cu12As4S13)等,其间最首要的是黄铜矿和辉铜矿,我国以黄铜矿为主。
黄铜矿含Cu34.56%,黄铜色,表面常因氧化而显金黄、红紫等锖色,外表很似黄铁矿,但硬度较小(3.0~4),密度为4.1~4.3g/cm3,条痕为绿黑色,晶体结构为四方晶系,常常呈粒状或细密块状集合体,是最首要的炼铜和制备铜化合物的矿藏质料。黄铜矿在地表氧化带往往能够生成一系列的次生含铜矿藏,如铜蓝、孔雀石、蓝铜矿、赤铜矿、辉铜矿和斑铜矿等,使氧化带的下部构成一个次生富集带。
在黄铜矿的结晶结构中,每一个硫离子被散布于四面体顶角的4个金属离子(2个铜离子,2个铁离子)所围住,一切配位四面体的方位都是相同的。因为黄铜矿具有较高的晶格能,并且结晶结构中硫离子所在的方位相关于铜铁来说是在晶格的内层,因而,黄铜矿对氧化作用具有较大的稳定性。
黄铜矿在中性及弱碱性介质中表面疏水性较好,在强碱性介质中表面构成氢氧化铁薄膜,疏水性下降。
浮选黄铜矿最常用的捕收剂是黄药、黑药、硫氮类捕收剂。黄铜矿在较宽的pH规模央(4~12)具有杰出的可浮性,在碱性介质中易受和石灰的按捺。
二、辉铋矿的性质
铋是一种恰当稀疏的元素,在地壳中的含量仅有3.4×10-4%左右。铋在天然界中多以氧化物、硫化物、含硫盐类矿藏等化合物形状存在,只要少数单质铋。已知的铋矿藏有辉铋矿(Bi2S3)、泡铋矿[Bi2CO3·(2~3)H2O]、铋华(Bi2S3)、菱铋矿(nBi2O3·mCO2·H2O)、铜铋矿(3Cu2S·4Bi2O3)、方铅铋矿(2PbS·Bi2S3)等50多种,有工业价值的首要为辉铋矿、泡铋矿、铋华和天然铋。铋常与铅、铜、锡、锑、钨等有色金属共生。
辉铋矿(Bi2S3)含铋81.3%,微带铅灰的锡白色,表面常现黄色或斑状锖色,条痕为铅灰色,硬度为2~2.5,密度为6.8g/cm3,正交(斜方)晶系,晶体呈长柱状或针状,柱面具纵条纹,集合体为放射柱状或细密粒状。辉铋矿是炼铋的最首要矿藏质料,但很少构成独立矿床,首要见于钨锡高温热液矿床和触摸告知矿床中,辉铋矿在地表风化后构成铋的氧化物(如铋华)或碳酸盐(如泡铋矿)。
辉铋矿(Bi2S3)具有链状结构,链内Bi-S之间以共价键相联,键距较短;链带间以分子键相联,键距较长。受力时链间Bi-S分子键开裂,(010)面解理完全。因而,辉铋矿解理面上分子键较弱,吸附水分子的才能不强。
辉铋矿具有象辉钼矿那样的天然可浮性,易被黄药、黑药、黑药和硫氮类捕收剂捕收。辉铋矿不受按捺,在与硫化铁、铜、砷等矿藏别离时,可用按捺其它硫化矿而浮铋。
三、黄铜矿与辉铋矿别离的研讨现状
铜铋矿藏常与钨矿藏共生或伴生,如江西铁山垅钨矿含有钼铜铋锌矿藏,江西修水香炉山钨矿含有铜铋矿藏,云南马关某钨矿含铜铋矿藏等。铜铋别离在选矿中是一个较难的课题,但国内外对铜铋别离的研讨相对较少。我国许多矿山因为铜铋未能较好别离,无法取得合格的铋精矿,构成铋的丢失恰当严峻。因而,研讨开发合理的铜铋别离工艺流程和药剂准则有着极为重要的含义。现在,铜铋别离的办法首要有重选、浮选和湿法,但因为重选别离作用较差,本文侧重从浮选和湿法两个方面来介绍铜铋别离的研讨现状。
(一)铜铋浮选别离的研讨现状
黄铜矿与辉铋矿的可浮性很附近,铜铋浮选别离存在必定的难度。现在国内关于铜铋浮选别离首要选用的是有抑铜浮铋和无抑铋浮铜两种工艺。
刘日和在分选某铜铋硫化矿时选用铋铜混浮-抑铜浮铋工艺,铋铜混浮以丁黄煞费苦心作捕收剂,以石灰按捺黄铁矿,别离作业以NaCN和石灰混合按捺剂抑铜浮铋,取得了较好的目标。
张三田进行了钼、铋-铜,钼、铜-铋及等可浮3种流程计划的比较实验,其间钼、铋-铜流程在浮钼铋时选用按捺铜,钼、铜-铋流程在浮钼铜选选用钠按捺铋矿藏。实验结果表明:钼、铋-铜流程最终难以得到独立铜精矿;钼、铜-铋流程因为铋矿藏经按捺后难以活化,构成56.98%的铋进入尾矿无法收回;等可浮流程因为在浮钼铜精矿一起浮出后再进行别离,因而不影响后边难浮铋矿藏的浮选,所获各项目标均比前两个流程好。
罗建中等对铜-铅铋的别离进行了研讨,比较了重铬酸盐法、氧硫法、羧甲基纤维素法、法的别离作用,结果表明,选用K2Cr2O7作为铅铋的按捺剂,浮选别离作用最佳,黄铜矿依然坚持杰出的可浮性。别的铅铋表面捕收剂的脱除也是要害,脱药作用欠好,铜-铅铋不行别离。
王政德对含有钼铜铋的硫化矿混合精矿选用加温-盐浮选别离工艺,完成了铜铋别离。其准则流程为:参加拌和脱药,磨矿,将蒸汽直接通入浮选槽加温(50~60℃),用硫酸将矿浆pH值调至5.5左右,先以钠作铋的按捺剂用火油及松醇油浮钼,再用丁铵黑药和丁黄药浮铜,铋则留在槽底。该工艺相关于有浮选,简化了流程,节省了药剂用量,一起削减了环境污染。
抑铜浮铋工艺因为一般要运用,对环境污染严峻,所以应用得越来越少。抑铋浮铜工艺的要害在于寻觅辉铋矿的有用按捺剂,不然很难完成铋的较好收回。
(二)铜铋湿法别离的研讨现状
一般,因为矿石中铋的硫化物与其它硫化矿藏的浮游功能挨近、氧化的含铋矿藏与泥状氢氧化铁伴生以及铋矿藏在矿石中与其他矿藏细密共生且嵌布粒度很细等原因,致使浮选难以将铋矿藏完全与其他矿的别离,精矿含铋量低,收回率不高。因而近年来铜铋湿法别离的研讨也取得了不少发展。
现在铜铋的湿法别离首要是选用或氯盐作浸出剂进行化学浸出,其机量首要是运用铜、铋在浸出介质中的溶解速度不同而完成别离,有时恰当添加一些氧化剂会有利于进步选择性浸出的作用。
覃朝科对惯例浮选产出的铋金铜混合精矿用进行了浸出实验研讨。混合精矿含Bi15.14%、Cu7.65%、Zn8.07%、Au33.5g/t、Ag2072g/t,经热浸出后,铋、铜、锌溶解,金银则不溶,留在残渣中构成金银精矿。溶液冷却后加水稀释,氯化铋发作水解反响,生成氯氧铋沉积,过滤、枯燥后即为铋产品;滤液加锌或铁置换出海绵铜后,再从残液中收回锌。得到的氯氧铋含铋68%左右、收回率90%~95%,海绵铜含铜80%。
陈名瑞研讨了用浸出-铁屑置换法从钨细泥硫化矿中提取铋的新工艺。研讨结果表明:因为金属硫化矿藏在酸性的溶液中发作氧化复原反响的标准复原电位以及溶解速度不同,因而经过操控浸出条件,可使金属硫化矿藏在溶液中选择性浸出,浸出的简单程度排序为:辉银矿>辉铜矿>方铅矿(辉铋矿及含银硫盐矿藏等)>闪锌矿>黄铜矿>黄铁矿>辉钼矿。依据质料性质分析,选用溶液一步浸出法从钨细泥硫化矿中提取铋和部分铅金属,浸出液经铁屑置换得到海绵铋,铜、锌、铁等硫化矿藏则存留在浸出渣中。实验取得的海绵铋含铋40%,铋收回率到达80%;浸出渣含铜11%~13%,含铋量很低,可作为低度铜精矿供应。
张荣华经过很多的实验发现,选用漂氧化-热浸出-铁屑置换工艺能有用地从铜硫精矿中别离收回铋金属。实验别离研讨了浸出温度、用量、浸出时刻、漂用量对铋收回率和铜丢失率的影响,结果表明:(1)漂是一种强氧化剂,其水溶液可选择性氧化铋和银的硫化矿藏,在有工业存在时,可同构成联合氧化作用,正是这种联合氧化作用为铜精矿中铋、铜的别离供给了一条新的途径,并且用漂作氧化剂可下降生产成本,削减铜金属丢失,进步铋精矿档次。(2)加热浸出是取得较高铋收回率的要害,与常温浸出比较,国热浸出的铋收回率可进步35个百分点,一起还可恰当缩短浸出时刻。(3)浸出进程中进行拌和可进步铋的浸出率5~10个百分点。实验取得了铋档次在80%以上、铋收回率达90%的海绵铋,铜金属丢失率在1%以下。
唐冠中研讨出了选用HCl+CuCl2+CaCl2系统氯化络合浸出低档次硫化铋的新办法。在始酸浓度为50~60g/L、温度为O 55℃、Cu2+浓度为6~8g/L的条件下,Bi的总收回率为97%,铜的损耗率为参加铜量的3%。沉铋后液经空气氧化除铁、再生、复生铜离子后可循环运用,整个进程无废水、废气排放。
王政德等选用二氧化锰加选择性浸出工艺下降铜精矿中铋的含量,取得了较好的目标。实验研讨了磨矿细度、二氧化锰用量、浓度、浸出温度、浸出时刻及液固比对浸出的影响,发现二氧化锰用量和浓度是影响选择性浸出降铋作用的要害,跟着二氧化锰用量的削减(浓度添加),浸渣中含铋量先削减后增大,含铜量则一向削减;温度和时刻对铜的浸出影响不大,但铋浸出率会跟着温度的升高和时刻的延伸而增大。在适合条件下,铜、铋的浸出率别离为7.12%和61.43%,到达了选择性浸出降铋的意图。
铜铋湿法别离收回能取得较高的收回率,但需求处理陈低生产成本、减轻设备腐蚀和防止环境污染等问题。
四、结语
寻觅辉铋矿的选择性按捺剂、开发铜铋别离的浮选新工艺是进步铜铋浮选别离作用的要害;下降成本、减轻腐蚀和污染是铜铋湿法别离面对的难题,而研讨开宣布高效的生物细菌,展开生物浸出无疑是处理这些难题的有用途径。
铋的氧化精炼实例
2019-01-21 18:04:55
除铜后之铋液,升温至680~750℃,鼓入压缩空气,使砷、锑氧化挥发,作业时间根据粗铋中砷、锑含量而定,一般为4~12小时,至白烟稀薄,铋液表面出现氧化铅渣时,则为除砷、锑的终点。在操作中如渣覆盖液面时,可酌情捞出,以免影响气体挥发逸出,渣稀时,可加入少量固体碱或谷壳、木屑,使渣变干,便于捞渣。除砷、锑氧化渣量,约为料重的4%~8%。氧化渣组成列于下表。
表 氧化精炼渣成分(%)