您所在的位置: 上海有色 > 有色金属产品库 > 回收钼酸钠 > 回收钼酸钠百科

回收钼酸钠百科

钼酸铵、钼酸钠实行分等级报价的具体方法

2018-12-14 09:31:07

中国有色金属工业协会钼业分会于2006年4月26-27日在杭州召开了“钼业分 会全国钼化工企业第三次峰会”。与会代表围绕会议讨论议题进行了认真讨论,大 家各抒己见,畅所欲言,最后达成了多项有利于全国钼化工行业及钼行业发展的共 识。其中提出了对钼酸铵、钼酸钠的报价问题,大家一致认为,钼酸铵、钼酸钠应 实行分等级报价,这种报价较为科学,有利于钼行业的发展,现将具体事宜通知如 下:     一、四钼酸铵    1、精品级 Mo≥56% 化学物理性能达标,满足钼拉丝条及深加工;    2、一级品 Mo≥56% 各项化学性能达标,满足钼粉制备及钼制品棒、杆、板  等;    3、二级品 Mo≥56% 主含量满足炼钢钼条、块、坯及其普通应用。     二、七钼铵酸    1、一级品 Mo≥54% 化工原料及其主应用;    2、二级品 Mo≥52% 钼肥生产原料;     三 、二钼酸铵    参照七钼酸铵一级品价格执行mo≥56%     四、钼酸钠    1、精品级 Mo≥39.2% 含量≥99% 无钨、钒杂质;    2、一级品 Mo≥38.5% 含量≥98.5%;    3、二级品 Mo≤38% 含量≤98%。.

钼酸钙

2019-02-12 10:08:00

同钼铁、氧化钼相同,钼酸钙也常作为钢铁的钼合金添加剂。其运用远没钼铁、氧化钼广泛。纯钼酸钙含钼48.0%。下表列出了前苏联钼酸钙标准,供参阅。   表  钼酸钙(前苏联)标准UMTY-4523-65ROC  类型Mo ≥Ca ≤P ≤S ≤MДK-144220.10.2MДK-240240.20.3       钼酸钙的出产可由钼焙砂加石灰(CaO)混匀焙烧,钼精矿加石灰(CaO)后混匀焙烧。但更多的是在处理低档次钼精矿时,用氯化钙(CaCl2)沉积MoO42-而制成,惯例工艺见下图。   图  低档次钼精矿制钼酸钙流程       当用苏打液浸出钼焙砂时,不只能与三氧化钼反响,也能与钼酸钼,钼酸铁反响而溶解(但就不能使它们溶解、反响):   MoO3+Na2CO3←→Na2MoO4+CO2↑   CaMoO4+ Na2CO3←→Na2MoO4+CaCO2↓   FeMoO4+ Na2CO3+H2O←→Na2MoO4+Fe(OH)2↓CO2↑       为了溶解充沛并节约苏打,一般选用四到五段逆流浸出。对过泸后的浸液经蒸汽加热浓缩,钼酸钠溶液的钼浓度超越50~70g/L后,就可在80~90℃下参加氯化钙(CaCl2)生成钼酸钙沉积。沉积需在中性或碱性溶液中进行,所加CaCl2量应比理论反响量多10~15%。对所生成的沉积用清水清洗去硫酸盐后,经过滤、锻烧(600~700℃)即可获炼钢工业钼酸钙。     由低档次钼精矿,乃至出产钼酸铵的浸渣,都可与苏打拌合后焙烧,发生如下反响:  MoS2+Na2CO3+O2△Na2MoO4+CO2↑+SO2↑←→ SiO2+ Na2CO3→Na2SiO3+CO2↑   生成的可溶性钼酸钠与硅酸(或偏硅酸)钠可在必定的pH范围下进行别离。别离出硅酸后的母液参加氯化钙,将生成钼酸钙的沉积。对沉积先经清洗、烘干后即成工业级钼酸钙。     钼酸的出产工艺与钼酸钙的出产工艺类似。所不同的仅仅不必氯化钙而用氯化去沉积钼酸钠溶液中的钼:   Na2MoO4+BaCl2→2NaC1+BaMoO4↓   钼酸使用于珐琅工业中。出产时,国内用浸渣加苏打焙烧的工艺使用较多,它的出产要害,是溶液中偏硅酸与钼酸钠的充沛别离。

锡酸钠

2017-06-06 17:50:01

锡酸钠是一种投资者想知道,因为了解它可以帮助操作。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。化学性质无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。熔点  140°C如果你想更多的了解关于锡酸钠的信息,你可以登陆上海 有色 网进行查询和关注。

钨酸钠

2017-06-06 17:50:12

什么是钨酸钠?钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。英文名称: Sodium tungstate dihydrate中文名称: 钨酸钠MF: H4Na2O6WMW: 329.85CAS: 10213-10-2【英文名】Sodium Tungstate【分子式】有二水物和无水物二种,二水物分子式为Na2WO4·2H2O ,无水物分子式为Na2WO4【分子量】二水物为329.86 ,无水物为293.86钨酸钠的化学性质,质量标准及用途化学性质白色晶体,易溶于水,不溶于醇,在干燥空气中风化。熔点         698 °C(lit.)密度         4.18 溶解度     H2O: 1 M at 20 °C, clear, colorless水溶解性  730 g/L (20 oC)Merck     14,8698质量标准 AR /  CP / 4N / SP化学成分 化学纯 一级品 二级品Na2WO4.2H2O 99 98 97Mo 0.001 0.02 --AS 0.001 0.001 0.001Cu 0.0005 0.001 0.001Fe 0.001 0.001 0.005Si 0.004 0.04 0.04水不溶物 0.005 0.05 0.05PH 8.5-9 8.5-9 8.5-9用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠请详见于上海 有色 网

锑酸钠

2017-06-06 17:50:12

锑酸钠  英文名称:sodiumantimonate;sodiummetantimonate详细说明:   NaSbO3又称偏锑酸钠。有粒状结晶与等轴结晶的白色粉末。耐高温,在1000℃仍不分解。溶于酒石酸、硫化钠溶液、浓硫酸,微溶于醇、铵盐,不溶于乙酸、稀碱和稀无机酸。冷水中不溶,热水中发生水解形成胶体。有毒。用作显像管、光学玻璃和各种高级玻璃的澄清剂,纺织品、塑料制品的阻燃剂,搪瓷乳白剂,制造铸件用漆的不透明填料及铁皮、钢板抗酸漆的成分;化学分析中用于鉴定纳离子。由锑块粉碎后与硝酸钠混合加热,通空气进行反应,再经硝酸浸取而得。也可由粗三氧化二锑与盐酸混合,再经氯气氯化、水解、用过量碱中和而得。   锑酸钠用途:   1.用作不透明填料、搪瓷的乳白剂及铁皮、钢板的抗酸漆;   2.用作显像管、光学玻璃等高档玻璃澄清剂、裉色剂。能抗暴晒,灯工性能极好;   3.用于塑料、橡胶等工业阻燃剂:   4.用于工程塑料待业着色力低,节约颜料;   用于搪次和耐酸陶瓷、高档陶瓷。

钼酸铵的介绍

2019-02-12 10:08:00

钼酸铵易于纯化、易于溶解、易于热解离,并且,热解离出的NH3气随加热可充沛逸出,不再污染钼产品。因此,钼酸铵广泛用作出产高纯度钼制品的根本质料。比方,热解离钼酸铵出产高纯三氧化钼、用硫化钼酸铵溶液出产高纯二硫化钼,经过钼酸铵出产各种含钼的化学试剂等。钼酸铵也常用作出产钼催化剂、钼颜料等钼的化工产品的根本质料。     在钼的初级产品中,钼酸铵仅次于钼焙砂和钼铁,占有着重要的位置。     工业钼酸铵并非单一化合物,它是一系列钼同多酸铵的混合物,随(NH3)2/MoO3比率的不同而异。但它们都可概括进一个通式,常见几种钼酸铵和通式见表1。Dnval Rode等从实验成果提出了仲钼酸铵新的转化道路:  (NH4)6Mo7O24·4H2O△(NH4)4Mo5O16△(NH4)4Mo8O26△MoO3→→→   这儿又证明a=5或8,b=2或2,c=0或0两种钼杂多酸铵的存在。但不管有几种杂多酸,工业钼酸铵中首要成份一般仍是仲钼酸铵。   表1  常见几种钼酸铵特性  名  称分  子  式参 数(NH3)2/MoO3%Mo转   化abc钼酸铵(NH4)2MoO41101:148.94 仲钼酸铵(NH4)6Mo7O24·4H2O7343:754.34130℃脱结晶水,230℃转化为四钼酸铵(放出NH3↑)四钼酸铵(NH4)2Mo4O134101:461.12315℃转化为三氧化钼(放出NH3↑)通 式(NH4)2bMoaO3a+bCH2O   b:a         从钼精矿动身,制取工业钼酸铵的工艺繁复。从钼精矿中辉钼矿分化方法,可将这些工艺概括为两大类,即(1)火法:经过氧化焙烧,将钼精矿转化为钼焙砂,再经湿法处理。(2)湿法:钼精矿直接浸出,辉钼矿转化为可溶钼盐。     火法或湿法差异仅在于MoS2氧化方法不同,前者选用焙烧,后者选用氧化剂溶液分化。终究,都使Mo4+→Mo6+,S2-→S0或S4+。     钼酸铵因为各杂多酸份额不同,钼含量也不同,但杂质含量往往很少,要求也很严厉。工业钼酸铵的技能要求见表2。   表2  钼酸铵质量标准  标准 含量(%) 成份我国国标GB3460-82克莱麦克斯1971年标准MSA-1MSA-2MSA-3标准产品典型分析Mo     Si        ︵ 杂 质 ︶ ≯0.00060.00100.0020.00250.0013Al0.00060.00060.0020.00100.0005Fe0.00060.00080.0050.00200.0007Cu0.00030.0005 0.00100.0006Mg0.00060.00060.0020.00050.0005Ni0.00030.00050.0010.00050.0005Mn0.00030.0006   P0.00050.00050.001  K0.010.080   Na0.0010.003   Ca0.00080.0010 0.00150.0007Pb0.00050.00050.00060.00050.0005Bi  0.0006  Sn0.00050.00050.00060.00350.0010Sb  0.0006  Cd  0.0006  Cr   0.00100.0005Ti   0.00100.0005粒度<40网目

钼酸铵的火法工艺

2019-02-12 10:08:00

所谓火法,特点是工艺前半部钼精矿经氧化焙烧成钼焙砂。从钼焙砂出产钼酸铵仍是湿法,根本工艺道路见下图。整个工艺分以下几步。   图  钼酸铵(火法)出产流程       1、浸     钼焙砂里里除了主成份的三氧化钼外还含有:没焙烧透的二氧化钼和二硫化钼、金属的硫酸盐、金属的钼酸盐、硅类杂质。这些不同物质在浸工艺中的反响也各不相同。     三氧化钼是酸酐,它极易溶于液中,发作如下反响而进入液相:   MoO3+2NH4OH =(NH4)2MoO4+H2O   二氧化钼和二硫化钼不溶于液,残留在固相中。铜、锌、镍的硫酸盐、钼酸盐能溶于,生成铁的络合物,发作如下反进而应入液相:   MeSO4+6NH4OH=Me[(NH3)4](OH)2+(NH4)2SO4+4H2O   MeMoO4+4NH4OH=Me[(NH3)4]2MoO4+4H2O       硫酸钙可与MoO2-4反响:   CaSO4+ MoO2-4=CaMoO4↓+SO2-4       反响新生成的钼酸钙和本来焙砂中的钼酸钙都不溶于,进入固相。     钼酸铁虽能被分化,但反响缓慢。由于,在钼酸铁表面上会生成一层实际上不溶于的氢氧化铁的薄膜,阻止了钼酸铁进一步被液溶解的进程。钼酸铁也大部分残留在固相。[next]     亚铁的硫酸盐或钼酸盐在液中生成氢氧化亚铁,它可溶于液构成铵的络合物:   Fe(OH)2+6NH4OH=[Fe(NH3)6](OH)2+6H2O       硅类杂质为石英(SiO2)或硅酸盐,是钼焙砂中首要杂质,不溶于而残留在固相。     对浸液进行液固别离,取得的钼酸铵溶液含杂量大为削减。     用8%~10%液,在常温或50~60℃,液固比为(3~4):1的条件下浸出钼焙砂。增加量为反响理论耗费值的1.2~1.4倍。这儿留有防止生成聚钼酸盐和确保在终究浸液中有必要坚持的剩下浓度(25~30g/L)。     钼焙砂中杂质含量不同,钼浸出率也不同。当氧化焙烧不充分时,会呈现二氧化钼或二硫化钼;当钙、铁含量较多时,都会使钼的浸出率下降。一般,钼焙砂的浸出率在80%~95%之间。     浸渣分量约为所加焙砂分量的10%~25%,含钼量在5%~25%之间。还需进一步收回其间的钼。     为处理钙、铁等杂质金属离子对浸的搅扰,除了进步钼精矿质量外,还有以下方法:     (1)向浸液中参加碳酸铵,它与硫酸钙反响生成更难溶的碳酸钙(CaCO3),便可防止硫酸钙生成钼酸钙,而进步钼的浸出率。碳酸铵还能与硫酸铁、钼酸铁发作反响,生成碱式碳酸铁的沉积,它的吸附才干比氢氧化铁小,可下降浸渣中钼含量。     (2)浸前,用酸“预浸”钼焙砂是一个卓有成效的方法。此刻会发作如下反响:   MeSO4+2HCl=MeCl2+H2SO4   MeMoO4+2HCl=MeCl2+H2MoO4↓       钙、铁、铜、锌……等以可溶盐方式进入液相,三氧化钼以被酸分化出呈钼酸不溶于酸(应调好PH值)而进入固相。尔后,经过固液别离,可使焙砂中大部分杂质金属被别离出。对净化后的焙砂再浸,浸渣中钼含量可降至3%以下。“预浸”时,二氧化钼可溶于酸进入液相:   MoO2+4HC1=MoCl4+2H2O       所以,钼焙砂含二氧化钼较高时,“预浸”废液应增加收回钼的工艺。     浸工艺一般在珐琅反响釜或钢制浸槽中进行。这些设备带有机械拌和器和蒸汽加热套。浸出进程往往须重复2~4次。后几回稀浸液可循环运用。     2、净化除杂     浸、过滤后所获钼酸铵溶液还含有不少金属的络离子。特别铁和铜的络离子含量较多。为脱除它们,往往要向溶液参加硫氢化铵(或硫化铵、)。     这些金属的络离子中除[Fe(NH3)6]2+移定性较差,其他[Cu(NH3)4]2+、[Zn[Ni(NH3)4]2+结合得都很安稳,它们PK不稳分别为13.32、9.46。因此,溶液中铜、锌、镍的正二价离子浓度很低。     虽然[Cu(NH3)4]2+很安稳,但CuS与FeS溶度积更低。(LFeS=3.7×10-19,LCuS=8.5×10-45)所以,溶液中会发作如下反响,直至铜、铁沉积完:   [Cu(NH3)4](OH)2+NH4HS+3H2O→CuS↓+5NH4OH   [Fe(NH3)6](OH)2+NH4HS+5H2O→FeS↓+7NH4OH       关于锌和镍,虽然它们的硫化物溶度积也不高(LZnS=1.2×10-19,LCuS=1.4×10-24),但它们的络离子相对就安稳得多。此刻,溶液中很低的[Zn2+]、〔Ni2+〕与〔S2-〕不可能到达按此溶度积生成硫化锌、硫化镍的必需浓度。因此,锌、镍的杂质大部分仍留在溶液中。[next]     经过液固别离,就可以脱除钼酸铵溶液中的铜、铁杂质。     出产中,有必要当心操控铵的加人量,假设溶液中铵过量,将生成硫代钼酸盐使终究产品被硫污染。所以,铵需一点一点缓慢参加溶液并不断拌和。每次加往后要取样查验沉降是否已彻底,如发现溶液中铵过量,需参加新鲜的浸液冲销。     铵亦可用硫化铵或替代,但易形成终究产品含Na2O过量而较少选用。     净化是在珐琅反响釜或衬有橡胶的钢制浸出槽中进行。相同,需带拌和器和加热蒸汽套。     3、结晶     经净化的钼酸铵母液往往含有MoO3120~140g/L,母液密度约1.09~1.12g/mL。一般先经预先蒸腾浓缩至含MoO3为280~300g/L,或母液密度1.20~1.23g/mL。此刻,母液中为数不多的CuS、FeS、Fe(OH)3易沉降,可滤除。往后,将有两种加工计划:     (1)计划I—浓缩-结晶法:将经预浓缩后的母液在带机械拌和器、蒸汽加热套的不锈钢或珐琅反响釜中加热、蒸腾、浓缩。使溶液密度到达1.38~1.4g/mL(适当含MoO3为400g/L),过滤热溶液并搜集在冷却、结晶器内。     结晶是在带拌和器、冷却系统的不锈钢或珐琅结晶器中进行的。当母液温度冷却至40~45℃后,约50%~60%的仲钼酸铵从溶液结晶分出。经离心过滤、洗滤、枯燥获终究产品。剩下母液再经“浓缩-结晶”重复屡次,终究再将尾液蒸干,在350~400℃下煅烧,所得三氧化钼含杂太高,须回来浸。     操作须留意:蒸腾进程应保存4~6g/L自在;而且为防部分过热,应不断拌和,这样才干防止生成酸性较强、晶粒较细的钼酸铵沉积,从溶液中分出。     “浓缩-结晶”需重复屡次,进程持续时间较长,第2次后各批结晶含杂较高往往超越标准,而需重复结晶以净化。     (2)计划Ⅱ—中和法:对预浓缩的母液参加中和,依据溶液终究pH和温度不同,可分出不同成份聚钼酸盐。     当心翼翼地用中和加热到55~65℃的钼酸铵母液,直到pH=2.3,强烈拌和,可将96%~97%的钼以二水四钼酸盐方式沉积出来:  4(NH4)2MoO4+5H2OPH=2~2.5(NH4)2Mo4O13·2H2O+6NH4OH→   分出的结晶有必要立刻过滤,不然,在与母液长期触摸后易脱水,生成细晶粒无水四钼酸铵而难过滤。     四钼酸铵沉积物纯度很高,Ni、Zn、Cu……及AS、P、S……等杂质都残留在弱酸性母液中。但它却含有较多氯离子(0.2%~0.4%)不易被水洗掉,而需重结晶,以脱除氯离子。     首要,将四钼酸铵在70~80℃下,用含3%~5%的溶液溶解,直到饱满(溶液密度1.41~1.42g/mL)。然后将饱满溶液冷却到15~20℃,50%~60%的钼会以纯洁的仲钼酸铵((NH4)6Mo7O24·4H2O)方式从中分出。母液再重复溶解四钼酸铵,再冷却结晶,重复可达十次左右。四钼酸铵逐步转变成纯洁仲钼酸铵,杂质在母液中堆集到必定程度后,送去净化处理。     别离四钼酸铵后的酸性母液中,还残留有3%~4%的钼(适当6~10g/L),将其再酸化至pH=2送沉积池,可从中分出各种成份聚钼酸盐非晶形沉积。沉积送净化处理除杂,尾液还含约1g/L的钼,可用离子交换法加以收回。     4、浸渣收回     依据钼焙砂的不同成份,钼的浸出率在80%~95%之间,其余部分残留在产率10%~25%的浸渣中,渣的含钼量还高达5%~25%之间。[next]     浸渣中钼的物相生要为:难溶或不溶于的钼酸钙、钼酸铁;不溶于的二氧化钼、二硫化钼;极少量吸附在氢氧化铁表面的钼酸根离子。笔者在对栾川县钼酸铵厂浸渣所作物相分析发现:吸附MoO2-4很少,而CaMoO4、MoS2含量占渣中钼量的80%以上。见下表。   表  浸渣中钼的散布  钼的物相MoO2-4Fe2(MoO4)3CaMoO4MoO2MoS2算计钼分配率(%)4.199.3335.754.6746.06100.00       从浸渣中收回钼的工艺繁复,不少工艺与钼精矿分化工艺相同,此仅作简略介绍。这些工艺也有火法、湿法之分。     火法常见工艺有:(1)二次焙烧-浸;(2)碳酸钠焙烧-水浸;(3)硫酸焙烧-浸。后两种适用于含各种钼化合物的浸渣。其间碳酸钠焙烧法用得最多。     二次焙烧法:Richard将浸渣在富氧(或纯氧)中焙烧600~650℃,15~30min后总浸率达99%以上。     碳酸钠焙烧-水溶法:将湿渣拌上碳酸钠粉,放焙烧炉内,经700~750℃焙烧6~8h。此刻,浸渣中的各种钼化合物都会转化成可溶的钼酸钠。用水加热溶解此焙渣,钼酸钠溶入液相经过滤后别离出。在pH=3.5~5微酸性介质中,用从浸液中沉积出钼酸铁。沉积物中的FeO3/MoO3份额不定,一般不与Fe2(MoO4)3共同,可用溶解得钼酸铵溶液。     硫酸焙烧-水浸法:将浸渣拌入硫酸在600℃下焙烧,各种钼化合物转化为钼酸。用浸出焙渣,钼酸转化为钼酸铵进入溶液再收回。     湿法常见工艺有:(1)碱液压煮;(2)酸分化;(3)次分化。     碱液压煮:当浸渣中钼首要以钼酸盐方式存在,而MoO2或MoS2含量很低时,在高压反响釜内用碳酸钠溶液浸出浸渣。在180~200℃,1.2~1.5MPa浸出,可将其他钼酸盐转化为可溶钼酸钠别离收回。     酸分化法:当浸渣的钨档次较高(3%~5%W)时,用其他方法难将W-Mo别脱离。此刻用20~30%加温到100℃左右浸出浸渣,可将其间钼酸盐彻底分化,生成易溶于的钼酸,而钨酸盐大部分不会分化而与杂质一块残留在固相,别离出钼酸溶液收回钼。残渣可再收回钨和MoS2、MoO2。     用15%浓度硝酸、10%浓度硫酸,在液固比为3:1,加温到70~80℃时,浸出浸渣2h,可将浸渣中各种钼化合物转化为钼酸,残渣含钼量仅0.44%。

硅酸钠的性质

2017-12-29 11:05:01

(1)强度高水玻璃硬化后具有较高的粘结强度、抗拉强度和抗压强度。水玻璃硬化后的强度与水玻璃模数、密度、固化剂用量及细度,以及填料、砂和石的用量及配合比等因素有关,同时还与配制、养护、酸化处理等施工质量有关。(2)耐酸性高硬化后的水玻璃,其主要成分为二氧化硅,所以它的耐酸性能很高。尢其是在强氧化性酸中具有较高的化学稳定性,但水玻璃类材料不耐碱性介质的侵蚀。(3)耐热性好水玻璃硬化形成SiO2空间网状骨架,因此具有良好的耐热性能。若以镁质耐火材料为骨料配制水玻璃混凝土,其使用温度可达1100℃。

戊基黄原酸钠(钾)

2019-02-27 08:59:29

品名:戊基黄原酸钠(钾) 英文名称: SODIUM (POTASSIUM) AMYL XANTHATE(SAX,PAX) 牌 号:B1-06分子式:C5H11OCSSNa(K) 性状:淡黄色或灰白色有刺激性气味的粉末(或颗粒),能溶于水。首要用途:戊基黄原酸钠(钾)是一种强捕收剂,首要应用于需求捕收力强而不需求选择性的有色金属矿藏的浮选。例如,它是浮选氧化了的硫化矿或氧化铜矿和氧化铅矿(通过或进行硫化)的杰出捕收剂。该品对铜-镍硫化矿及含金黄铁矿等的浮选也能获得较好的选别作用。规格: 项 目 指 标 粒 状 粉 状 戊基黄原酸钠(钾) % ≥ 90.0 90.0 游离碱 % ≤ 0.2 0.2 水及挥发物 % ≤ 4.0 4.0直径(mm) 3~6 - 长度(mm) 5~15 - 有效期(月) 12 12 包 装 120公斤/铁桶 900公斤/多层板箱,50公斤/塑编袋等120公斤/铁桶 60公斤/塑编袋

锡酸钠价格

2017-06-06 17:49:54

锡酸钠价格是锡投资者会感兴趣的一个话题,其关系到锡的投资与操作。产品名称:柠檬酸亚锡酸钠类别: 食品添加剂 / 防腐剂品牌:国产/进口规格型号:25kg/袋价格:65.0 元/千克分子式:MS Song">Na2SnO3·MS Song">3H2O性状:无色六角板状结晶或白色粉末;溶于水,不溶于醇和丙酮;加热至140℃时失去结晶水而成无水物;在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。用途:其最重要的用途是用于电镀工业的碱性镀锡及其合金(例如:锡>-锌、锡>-镉、锡>-铜和锡>-铝合金)。此外,还用于纺织工业用作防火剂、增重剂;染料工业用作媒染剂;也用于玻璃、陶瓷等工业。在电镀工业中,其性能稳定可靠,易于操作并能获得高质量镀层,且对钢无腐蚀。该镀层经过“流动熔化”处理可变得光亮。锡酸钠也用于浸没镀锡,可在汽车铝合金活塞等零件上形成光洁镀层。另外,锡酸钠还用于制造在相当大的温度范围内具有均匀介电常数的陶瓷电容器的基体、颜料和催化剂。包装:塑料袋包装,外用纸板桶密封,或按用户要求包装。每袋净重5Kg,每桶净重25kg。 【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。如果你想更多的了解锡酸钠价格等其他信息,你可以登陆上海有色网进行查询。

丁基黄原酸钠(钾

2019-01-16 17:42:23

产品名称: 丁基黄原酸钠(钾) 产品类别: 医药与生物化工 产品规格: 项 目 指 标 - 干 燥 品 丁钠合成品 - 粒 状 粉 状 粉状 丁基黄原酸钠(钾)% ≥ 90.0 90.0 84.5 游离碱 % ≤ 0.2 0.2 0.5 水及挥发物 % ≤ 4.0 4.0 - 直径(mm) 3~6 - -长度(mm) 5~15 - - 有效期(月) 12 12 6 包 装 110公斤/铁桶 800公斤/多层板箱 50公斤/塑编袋等 110公斤/铁桶50公斤/塑编袋等 120公斤/铁桶 50公斤/塑编袋等

钨酸钠价格

2017-06-06 17:50:12

钨酸钠 价格 :09月25日全国主要地区钨酸钠 价格行情 产品                价格 (万元/吨)                  地区                                 9.1                        姜堰 钨酸钠96%                       9.3-9.6                  江苏                                9.6-9.7                   河北                                9.4-9.5                    江西  钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等。3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠 价格 请详见于上海 有色 网 

锡酸钠溶解度

2017-06-06 17:50:01

锡酸钠溶解度是一种投资者想知道,因为了解它可以帮助操作。无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。 如果你想更多的了解关于锡酸钠溶解度的信息,你可以登陆上海 有色 网进行查询和关注。

烷基硫酸钠浮选锡石

2019-02-27 08:59:29

烷基硫酸钠浮选锡石 一般说来,烷基硫酸钠 与其它捕收剂比较只能得到中等的浮选目标,例如 ,关于以石英、电气石、赤铁矿为脉石的锡石,十六烷基硫酸钠用量为135g/t,在增加钠的条 件下,得到SnO236.5%的粗精矿及含SnO246%的终究 精矿,回收率为86%。

高锰酸钠价格

2017-06-06 17:49:53

高锰酸钠价格,根据报告数据,来源于国家统计局、国家海关总署、国务院发展研究中心、国内外相关刊物杂志的基础信息以及高锰酸钠科研单位等。报告对我国高锰酸钠行业发展现状与前景、国际高锰酸钠行业发展现状与前景、高锰酸钠行业数据、高锰酸钠行业标杆企业、高锰酸钠行业上下游、高锰酸钠价格和销售渠道价格管理、高锰酸钠行业投资策略、营销策略、经营管理和竞争战略等进行深入研究,并重点分析了高锰酸钠行业的前景与风险。该报告揭示了高锰酸钠市场潜在需求与潜在机会,为战略投资者选择恰当的投资时机和公司领导层做战略规划提供准确的市场情报信息及科学的决策依据,同时对银行信贷部门也具有极大的参考价值。一、健康危害   侵入途径:吸入、食入、经皮吸收。   健康危害:本品有强烈刺激性。高浓度接触严重损害粘膜、上呼吸道、眼睛和皮肤。接触后引烧灼感、咳嗽、喘息、气短、喉炎、头痛、恶心和呕吐等。   二、毒理学资料及环境行为   危险特性:强氧化剂。遇硫酸、铵盐或过氧化氢能发生爆炸。遇甘油、乙醇能引起自燃。与还原剂、有机物、易燃物如硫、磷等接触或混合时有引起燃烧爆炸的危险。   燃烧(分解)产物:氧化锰。   3.现场应急监测方法:   4.实验室监测方法:   原子吸收法(EPA方法 7770、7460)   等离子体光谱法(EPA方法 200.7)   5.环境标准:   中国(TJ36-79)车间空气中有害物质的最高容许浓度 0.2mg/m3[MnO2]一、泄漏应急处理  隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防毒服。不要直接接触泄漏物。勿使泄漏物与有机物、还原剂、易燃物接触。小量泄漏:用砂土、干燥石灰或苏打灰混合。收集于密闭容器中作好标记,等待处理。大量泄漏:用塑料布、帆布覆盖,减少飞散。然后收集回收或运至废物处理场所处置。二、防护措施  呼吸系统防护:可能接触其粉尘时,建议佩戴头罩型电动送风过滤式防尘呼吸器。   眼睛防护:呼吸系统防护中已作防护。   身体防护:穿胶布防毒衣。   手防护:戴氯丁橡胶手套。   其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。三、急救措施  皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。   眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。   吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。   食入:误服者用水漱口,给饮牛奶或蛋清。就医。   灭火方法:灭火剂:雾状水、砂土。小编还了解到,高锰酸钠的健康危害,和环境污染,小编也给你搜寻了关于处理高锰酸钾的危害有关内容。

钨酸钠溶液沉淀净化法

2019-03-04 16:12:50

用沉积(含结晶)法除掉钨酸钠溶液中杂质的钨溶液净化办法。一般可分为杂质元素别离及制取纯钨酸铵溶液两个阶段。 杂质元素别离 从粗钨酸钠溶液中别离杂质元素的办法有沉积杂质元素法及结晶钨酸钠法两类。 沉积杂质元素法 在工业上使用的首要有水解沉积法、镁(铝)盐沉积法及硫化钼沉积法。 (1)水解沉积法。用无机酸中和水解的办法除掉粗钨酸钠溶液中硅和锡的进程。硅和锡别离以Na2SiO3和Na2SnO2或Na2SnO3方式存在于粗钨酸钠溶液中。为确保除锡作用,一般先用次或将两价锡氧化成四价,结尾pH一般操控在9.5。而中和水免除硅的结尾pH则操控在8~9为宜。硅和锡的水解沉积反响别离为: Na2SiO3+2HCl=H2SiO3↓+2NaClNaSnO3+2HCl=H2SnO3↓+2NaCl 为防止部分过酸而构成杂钨酸,无机酸有必要缓慢地参加到拌和的粗钨酸钠溶液中。部分过酸构成的杂钨酸不但会影响除杂质的作用,还会下降后续作业的钨收回率。选用替代无机酸进行均相中和,可解决部分过酸问题。为防止水解发作胶体沉积,除硅、锡作业须在煮沸的粗钨钠溶液中进行。中和水解生成的H2SiO3和H2SnO3通过滤除掉。 (2)镁(铝)盐沉积法。往粗钨酸钠溶液中增加氯化镁或硫酸镁使磷、砷及部分硅生成难溶的镁盐沉积除掉的进程。如有氟离子存在,则大部分氟离子生成氟化镁共沉积除掉。如往粗钨酸钠溶液中增加硫酸铝则可使硅生成难溶的铝硅酸复盐沉积除掉。镁(铝)盐沉积法又可分为磷(砷)酸镁盐法、磷(砷)酸铵镁盐法及铝硅酸复盐法。 a.磷(砷)酸镁盐法。用无机酸将钨酸钠溶液中和至含游离碱达1g/L±0.2g/L时,煮沸约0.5h后,缓缓参加密度1160~1180kg/m3的MgCl2溶液,此刻发作生成Mg3(PO4)2和Mg3(AsO4)2沉积的反响: 2Na2HPO4+3MgCl2=Mg3(PO4)2↓+4NaCl+2HCl 2Na2HAs4+3MgCl2=Mg3(AsO4)2↓+4NaCl+2HCl 因为Mg3(AsO4)2的溶度积(298K时为2.04×10-20)大于Mg3(PO4)2的溶度积(298K时为1.02×10-25),故MgCl2的参加量一般视溶液中砷含量而定。为使除砷符合要求,一般先用次或将AsO3-3氧化成AsO3-4。溶液中的硅酸根一起生成硅酸及硅酸镁沉积而被除掉: Na2SiO3+2HCl=H2SiO3↓+2NaCI Na2SiO3+MgCI2=MgSiO3↓+2NaCl 因而,在粗钨酸钠溶液中的含硅量不太高的情况下,能够免除独自的除硅作业。由上述反响式可见,跟着MgCl2的参加,粗钨酸钠溶液的pH逐步下降,即酸度逐步升高,因而操控粗钨酸钠溶液的开始及结尾pH便成为影响磷(砷)酸镁盐法净化作用的最重要因素。pH过高,氯化镁很多水解成氢氧化镁沉积,一方面使渣量增大,钨丢失随之增加;另一方面因为Mg。’离子削减而使净化作用变差。pH过低,磷(砷)酸镁溶解度增加,除杂质作用下降。加完MgCl2后,再煮沸0.5h,弄清通过滤除掉渣后,滤液一般含SiO2≤0.02g/L,As≤0.015g/L。产出的磷、砷渣经NaOH煮洗收回WO3后,其成分(%,干基)大致为:WO34~5,As1~1.2,MgO40~45,SiO24~10。 b.磷(砷)酸铵镁盐法。当粗钨酸钠溶液含有一定量的NH+4时,参加MgCl2并将pH操控在8~9,此刻磷(砷)便生成磷(砷)酸铵镁盐沉积而被除掉: Na2HPo+MgCl2+NH4OH=MgNH4PO4↓+2NaCl+H2O Na2HAsO4+MgCl2+NH4OH=MgNH4AsO4↓+2NaCI+H2O 此法的特点是将除硅与除磷、砷别离在不同的两个阶段中完结,中和水免除硅后期改用NH4Cl调整溶液pH,以防止部分过酸。过滤除硅渣后,加将溶液回调至pH10~11,再按计量参加MgCl2溶液,拌和0.5~1h,沉清过滤。与磷(砷)酸镁盐法相同,操控溶液的开始及停止pH同样是影响磷(砷)酸铵镁盐法净化作用及钨丢失的最重要因素。 c.铝硅酸复盐法。往热的钨酸钠溶液中参加硫酸铝溶液使硅生成铝硅酸复盐沉积,国际上一些工厂用此法除掉钨酸钠溶液中的硅。 (3)硫化沉积法。首要用于从钨酸钠溶液中沉积除钼。往含有钼的粗钨酸钠溶液中参加沉积剂Na2S或NaHS时,便发作生成:Na2MoS4的反响: Na2MoO4+4NaHS=Na2MoS4+4NaOH 随后用将粗钨酸钠溶液酸化到pH2.5~3,使Na2MoS4分化发作MoS3沉积: Na2MoS4+2HCl=MoS3↓+2NaCl+H2S 因为发作生成Na2MoS4的反响趋势大于发作生成Na2WS4的反响,因而不会生成很多WS3沉积,净化进程中的钨丢失一般小于0.5%。硫化沉积法可将钨酸钠溶液中钼含量降至0.01~0.05g/L因为氟离子可与钼生成安稳的[MoO3F]-和(MoO2F4]2-,故需增加沉积剂用量才能将钼除至所需程度,这又会导致钨丢失的增加。 结晶钨酸钠法      使用钨与磷、砷、硅等元素的钠盐的溶解度不同,操控恰当结晶率,使大部分杂质留在苛性钠碱母液中,而分出较纯Na2WO4晶体的进程。含杂质的苛性碱母液回来黑钨精矿苛性钠液分化作业,在精矿分化进程中杂质与增加的铝、镁盐等构成复盐沉积而进入浸出残渣。 制取纯钨酸铵溶液 首要通过人工白钨、钨酸制取和钨酸溶等过程。 人工白钨 往加热至沸的含游离碱0.3~0.7g/L的净化除杂后的钨酸钠溶液中,注入密度为1200~1250kg/m。的氯化钙溶液,便分出钨酸钙沉积。称这种钨酸钙为人工白钨。沉积后母液含WO30.03~0.1g/L。钨酸钠溶液中残留的磷、砷、硅、钼杂质可与钨共沉积。如注入氯化钙之前加Na2S将钼酸根转变成硫代钼酸根,则可使绝大部分钼留存于母液中而与人工白钨别离。因而,在粗钨酸钠溶液含钼量不太高的情况下,结合沉积人工白钨一起除钼,便可免除独自的除钼作业。 钨酸制取 将人工白钨料浆或钨酸钠晶体注入343~353K温度、浓度在30%以上的浓中即可得到黄色的钨酸。前者的分化产品颗粒较粗,较易洗刷。磷、砷及部分钼杂质留在酸母液中,为进步除钼率,可增加钨粉使H2MoO4转变成MoOCl3 H2MoO4+W+3HCl=WO2+MoOCl3+H2O+3/2H2 所生成的MoOCl3易溶于溶液而与钨酸别离。得到的钨酸经充沛洗刷完全除掉钨离子或钠离子,酸母液含WO30.3~0.5g/L,可用石灰沉积成CaWO4而收回。 钨酸溶将加热至353~358K温度的钨酸浆液注入浓度为25%~28%的中即得到纯钨酸铵溶液,而硅、铁、锰等杂质及酸溶时未分化的钨、磷、砷的钙盐则留在不溶渣中,但钨酸中的钼酸、磷酸、均构成相应之铵盐进入溶液,为进步净化作用,在溶时增加氧化镁,就可使磷砷沉积成铵镁盐而除掉。

钨酸钠基本信息 用途

2019-02-26 16:24:38

性状无色结晶或白色结晶性粉末。在枯燥空气中风化,100℃时失掉结晶水。溶于水,不溶于乙醇。相对密度 3.23~ 3.25。熔点 698℃(无水品)贮存:密封阴凉枯燥保存。 理化性质:钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水,不溶于乙醇,微溶于。在空中风化。加热到100℃失掉结晶水而成无水物。与强酸(在外)反响生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反响生成磷钨杂多酸络合物,与酒石酸、柠檬酸、草酸等有机酸反响生成相应有机酸络合物。制备原理  三氧化钨与反响,或选用钨精矿与压煮,,生成钨酸钠溶液,经精制、过滤、离子交换等工艺,别离杂质成分,再经蒸腾结晶得钨酸钠产品。用处1、用于媒染剂、分析试剂、催化剂、水处理药剂,制作防火、防水材料,以及磷钨酸盐、硼钨酸盐等。2 、用于制作金属钨、钨酸、钨酸盐等。3、用于媒染剂、颜料、染料、油墨。4、纺织工用作织物加剧剂,本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于皮革鞣制。5、用于电镀镀层防腐。6、用作助溶剂引进瓷釉色料能起降低烧成温度和补色效果。7、用于石油工业及航空、航天材料的制作。

钼中矿处理——钼酸铵生产

2019-02-15 14:21:24

钼矿选矿过程中,有的流程产出一个难以用浮选收回的低档次钼中矿;有的因杂质含量太高得不到合格钼精矿〈或称低档次钼精矿〉。使用这些不合格的钼精矿和钼中矿来出产钼酸铵是收回这部分钼的一个方法。    1.钼中矿的化学选矿    杨家杖子钼矿在选矿过程中产出一个含钼0.6~0.8%的钼中矿,以此为质料出产钼酸铵的工艺流程如下:    首先把钼中矿浓缩到60%固体浓度,参加次溶液浸出,反响式如下: MoS2+9NaClO+6H2O→Na2MoO4+2Na2SO4+9NaCl+3H2O     次溶液含NaClO130~140克/升、含NaOH50~60克/升。浸出温度45~55℃,钼中矿细度为0.074毫米以下。    浸出生成的钼酸钠溶液参加使pH=5~6,然后加氯化钙,用蒸汽煮沸生成钼酸钙沉积。反响式如下: Na2MoO4+CaCl2→CaMoO4↓+2NaCl     把钼酸钙沉积过滤后,加碳酸钠溶液分化钼酸钙以除掉其中平杂的重金属离子,反响式如下: CaMoO4+Na2O3←→Na2MoO4+CaCO3↓     然后加使溶液的pH=0.5,在95℃下反响生成钼酸沉积,反响式如下: Na2MoO4+2HCl→H2MoO4↓+2NaCl[next]     把钼酸别离出来后,直接溶解于中,生成钼酸铵。参加活性产脱色,然后加使pH=2.5,得到白色结晶的二水四钼酸铵[(NH4)2O•4MoO4•2H2O]。过滤、枯燥、破坏得到钼酸铵制品。整个出产流程如下图所示。 [next]     2.低档次钼精矿出产钼酸铵    有的选厂如金口岭和宝穴选矿厂,因含炭质矿藏的影响,浮选得到的钼精矿含钼仅20~35%。该厂选用化学选矿制成钼酸铵。出产流程如下:首先将低档次钼精矿烘干后焙烧成三氧化钼,反响式如下: 2MoS2+7O2     4.5小时  →  2MoO3+4SO2↑600~650℃     然后将三氧化钼用浸出、生成正钼酸铵,反响式如下: MoO3+2NH4OH   3小时  → (NH4)2MoO4+H2O     过滤除掉氢氧化铁等不溶物。滤液加(或硫化铵),将浸出液中铜络合物转化为硫化铜沉积、与正钼酸铵别离。除掉重金属离子的溶液,参加硝酸,使pH=2.5,正钼酸铵转化为四钼酸铵晶体,反响式如下: 4(NH4)2MoO4+6HNO3→(NH4)2O·4MoO3↓+6NH4NO3+3H2O     把晶体过滤、在120℃枯燥3小时得到白色结晶的四钼酸铵。出产流程如下图所示。[next]

钼酸铵的湿法生产工艺

2019-02-12 10:08:00

传统的氧化焙烧钼精矿出产钼酸铵的火法工艺,存在SO2烟气严峻污染环境,钼和铼收回率低一级缺点。温法分化钼精矿就可防止这些缺点。     湿法工艺品种繁复,从钼精矿分化手法区分,常见工艺有以下几种(见表1)。   表1  常见湿法工艺  工  艺氧化剂压力(MPa)温度(℃)浸  液硝酸氧压煮O2△0.8~1.5① ※2.0~2.5②180~22020~40g/LHNO3 (HNO3:Mo=0.2~0.3:1)烧碱氧压煮O2同上200 硝酸分化HNO319027~30%浓度硝酸次分化NaOCl120~4030g/L NaOCl, 20~30g/L NaOH           ①氯分压;②釜内总压。       1、(硝酸)氧压煮     钼精矿在水介质里,经硝酸催化的氧化煮是一个三相(液-固-气)反响的放热进程,反响为:  MoS29O2+3H2O→H2MoO4+2H2SO4+△Q2   硝酸起作催化剂作用,在反响中循环:   MoS2+9HNO3+3H2O→H2MoO4+9HNO2+2H2SO4+△Q   2HNO2→NO+NO2+H2O   2NO+O2→2NO2+1233kJ   3NO2+H2O→2HNO3+NO+484.5kJ       从亚硝酸→NO+NO2→NO2→HNO3反响很快到达平衡。增大氧分压、下降气相温度,都有利反响进行。     压煮进程中,钼除少数在强酸介质中呈阴离子进入压煮液外,94%左右钼以钼酸方式留在固相。钼精矿里伴生的铼绝大部分转化为可溶的高铼酸或其盐进入压煮液中。钼精矿中铁、铜、铝、镁等呈硫酸盐,部分磷、砷、硅以阴离子方式进入了压煮液。     硝酸氧压煮工艺流程如图1,工艺条件见表2。   表2  氧压煮出产钼酸铵工艺条件  工  艺工  艺  条  件压煮钼精矿(kg):水(L)1:1.5~2.5①釜内加压(MPa)2(反响中上升至3)加热温度(℃)14~15(反响上升至20)②硝酸用量(kg HNO3/kg Mo)0.20~0.30反响时刻(h)2(滤饼) 浸滤饼(kg):水(L):(L)1:0.7~0.8:1.2~1.23PH8.5~90加热温度(℃)70~75拌和时刻(min)15~20溶液比重(g/mL)1.16~1.18净化加热温度(℃)80~PH8.5~9参加过量时溶液呈淡黄色浓缩溶液比重(g/mL)1.2~1.21冷却温度(℃)40~45酸沉反响温度(℃)≯60PH2~2.5溶 再结晶粗晶(kg):蒸馏水(L):(L)100:(40~50):(45~50)溶液比重(g/mL)1.40~1.50溶解加热温度(℃)70~80            ①     现在蒸煮加压已可降至0.8~1.2Mpa;            ②     反响中,压力还会上升,温度自行再升高[next]  图2  (酸)氧压蒸煮出产钼酸铵工艺流程       钼精矿、硝酸和水(或回来的洗液)参加钛材高压反响釜,向反响釜送入蒸汽开端加热并通入氧气。当釜内温度上升到140~150℃、压力达1.5~2.5MPa后中止蒸汽加热。持续送入氧气,随反响开释热量,釜内的温度、压力得到上升,可到达180~220℃、3~3.5MPa。在不就义载时保持反响2h。反响完毕,中止送氧,温度会随之下降到150℃以下。冷却浸液使温度降至l00℃以下,排气降压,再经液固别离:可获钼酸滤饼和压煮液。对钼酸滤饼的进一步加工与钼焙砂浸工艺类似。     氧压煮工艺里钼和锌的转化率都可达98%~99%以上,加工费不高、三废较少但氧压煮能否施行于出产的关键是设备能否耐压、耐温、耐酸腐蚀。高压反响釜用钛材、密封材料可用四氟乙烯材料制备,对高压、高温、高酸度、高氧化气氛下的阀门等尤须留意。     氧压煮液的处理可选用萃取或离子交流提取钼和铼。几个典型氧压煮条件、作用比照见表3。   表3  氧压煮条件、作用比照  项  目单 位株洲硬质合金厂前苏联美国专利3988418美国专利3739057日本专利昭-37-1520氧分压MPa1.5~2.01.01.05~1.41.0~1.52.0硝酸用量Kg/kg(Mo)0.20~0.30/0.45~0.90.34/液固比/1.5~2.5:110:110:15:110:1温度℃180~220200~225120~160155~160200精矿粒度目75%-200/-325-200-200浸出时刻h2~33~43~426钼转化率%99.1393~993599.5>9998.4进压煮液钼量%~75~720~2510~15/       2、硝酸氧压煮液收回铼的工艺     铼广泛散布在地壳中,但还没有发现有天然形状铼的存在,它也很少呈首要矿藏组分呈现。存在于其他矿藏中的铼仅为痕迹量,辉钼矿却是铼仅有重要的宿主矿藏。至今,世界上所出产铼的99%来源于热液型斑岩铜-钼矿。     从钼精矿出产铼的办法也依靠钼精矿分化的工艺。当氧化焙烧钼精矿时,在500℃以下的焙烧温度,铼就以Re2O7提高进入烟气。用高压力差的高洗刷塔,从烟尘中搜集率约65%。再从溶解有高铼酸或高铼酸铵的洗刷液里萃取或离子交流收回铼。氧压煮时钼精矿中铼的98%转化成高铼酸进入压煮液,压煮液里还含有总钼量5%~6%的钼。 从压煮液可用萃取法或离子交流法收回钼与铼。萃取工艺见图1,萃取铼的工艺条件见表4。   表4  压煮液中收回钼、铼的工艺条件  工 序工    艺    条    件沉 硅聚醚用量50g/m3压煮液萃取与反萃取条  件铼钼有机相组成N2352.520仲辛醇4010火油57.570反萃取剂(mol)NH4OH5~69~10洗刷剂(mol)NH4OH 1.8流比萃取萃铼1.3g/L萃钼20g/L洗刷 1/0.5反萃取铼液10g/L钼液150 g/L铼一次结晶用量(g/L)50 用量(ml/L)20 结晶温度(℃)≤0 铼二次结晶溶解液组成(:水)1:1 一次结晶溶解温度(℃)95 固液比1/10 结晶温度(℃)≤0  [next]     3、烧碱氧压煮     在130℃和氧分压为0.2MPa、釜内总压1MPa时,用NaOH溶液浸出钼精矿。经浸出7~8h后,98%~99%的钼与铼转化进液相。当温度提高到200℃,氧分压可达1~1.5MPa,反响如下:   MoS29O2+6OH-→MoO2-4+2SO2-4+3H2O2       溶液中除含有MoO2-4、ReO4-外,还含有Cu、Fe、Si、As、Sb、P的化合物,这些杂质使溶液处理复杂化。     从含硫酸盐离子高的溶液中别离钼,不适宜选用沉积钼酸钙的办法,由于这会一起生成硫酸钙的沉积而污染钼酸钙。因而,可选用在高压釜中200℃的弱酸溶液中(pH=2)用钼粉复原MoO2-4:   MoO2-4+Mo+4H+→3MoO2↓+2OH-   再用H2复原MoO2即可得工业钼粉。复原后的残液再用以萃铼。该工艺可提取96%钼和85%~90%的铼。 在弱酸性介质中,在加压下通入H2也可复原MoO2-4   MoO2-4+H2→MoO2↓+2OH-   MoO2最佳沉积条件为200℃,氢分压6MPa,pH=2~3,参加晶种反响1~4h后,98%以上相钼会以粗粒MoO3晶体分出。     从苛性碱压煮液中提取钼的另一有效途径是用强碱性阴离子交流树脂作离子交流。     惯例处理钼溶液的萃取、活性炭吸附、离子交流工艺都适用于酸性介质。株洲钨钼材料研究所选用OH-型717#或D296阴离子树脂,从苛性碱氧压煮的钼液中吸附钼,吸附率可达99.5%。而且除掉90%以上磷、砷、硅和80%以上SO42-等杂质。实验中,湿树脂的吸附量较大,pH=8时717#树脂穿透简单(交流柱流出与流入液相含量之比为0.01时简单)为25~29g/L;饱满容量(当流入,流出液的含量到达持平后的树脂含量)为38~40g/L;D296-10在pH=10时的穿透容量为29.06g/L,饱满容量为37g/L。在对树脂用NH4Cl解吸,解吸液酸沉等工序中,可进一步脱除SO42-及铜铁等杂质,取得合格的高质量仲钼酸铵。     4、次氧化法     这往往用作低档次钼精矿和钼中矿的湿法分化工艺。     在碱性介质中,加氧化剂次简直能氧化一切的硫化物:     但在20~40℃时,铁、铜的硫化物氧化速度远比辉钼矿的低。此刻,可充沛将MoS2转化为MoO42-,而铜、铁的硫化物很少溶解。一起,氢氧化铁,特别氢氧化铜在碱性介质能催化次的分化,加速辉钼矿的氧化:   NaClO→NaCl+[O]   浸液成份一般为:NaCIO30g/L,NaOH20~30g/L。一般用此法浸取含钼5%~23%的钼中矿时,钼的收回率可高达96%~98%。这个办法可在常温,常压下作业,比氧压煮易操控。不足之处是药剂耗量太大,理论上核算,每浸取lkg钼,需耗费7kg次,而实践出产耗费还为理论值的1.5~2倍。 为此,呈现通以再生次的工艺:   2NaOH+Cl2→2NaClO+H2↑       亦呈现电氧化法:用通电的氯化钠溶液浸出:  NaCl+H2O电解NaClO+H2↑→ [next] 这些工艺都只是次法的分支,见图2。   图2  次法流程

酒石酸钠钾、罗谢尔盐

2019-01-24 17:45:46

【英文名称】Rochelle salt;potassium sodium tartrate 【结构或分子式】     【密度】1.79 【熔点(℃)】70~80 【性状】 无色透明晶体。 【溶解情况】 溶于水,不溶于乙醇。 【用途】 用于制焙粉、药物,用作化学试剂盒供电镀用等。 【制备或来源】 由酒石酸氢钾溶于水中,加碳酸钠使饱和后,浓缩、结晶而制得。 【其他】 在215℃失去结晶水。

用非晶态钼矿石制备钼酸铵的研究

2019-01-25 13:36:45

摘  要:以中国某地含钼矿石为原料,通过研究发现钼以非晶态硫化物形式存在,一般选矿及文献记载的湿法提取方法均无法使之达到工业应用要求。研究了用原矿直接通过氧化焙烧、碳酸钠溶液高温高压浸取,将其中的钼转化为含钼溶液,再加入一定量固体氯化铵,加热析出钼酸铵,从而制备钼酸铵产品,并通过条件试验选取最佳工艺技术参数。钼酸铵中钼含量大于55%(质量分数),钼的回收率大于90%。关键词:非晶态钼矿石;钼酸铵;氯化铵。    1  物质组分    原矿分析结果:ω/(SiO2)=21.77%,ω/(K2O)=1.04%,ω/(Fe2O3)=15.96%,ω(Na2O)=0.22%,ω(Al2O3)=8.28%,ω/(TiO2)=0.33%,ω/(CaO)=7.28%,ω/(MgO)=2.10%,ω(S)=19.48%,ω(P)=0.16%,ω/(Mo)=4.32%,ω(Ni)=3.14%,ω/(Mn)=O 0.045%,ω/(C) =13.00%。    原矿经X射线衍射图谱分析,未见钼(镍)矿物的谱线和峰值,含硫矿物只有黄铁矿(二硫化铁),质量分数在14%左右,换算其中的硫含量占总质量的7.5%,而原矿化学分析结果表明硫含量高达19.48%,显然无法 平衡。据此判断,钼(镍)以非晶态硫化物形式存在。原矿其它主要矿物组成为:石英、碳、白云石、云母、菱铁矿、高岭石等。    2  原则工艺流程的制定    原矿钼品位较低,硫、碳含量较高,曾尝试浮选或重浮联选进行富集,由于其未结晶形成独立矿物,与碳等共生紧密,且嵌布粒度极细,无法与其它矿物进行有效分离,使得精矿晶位和回收率均极不理想。因此,本研究采用湿法冶金工艺提取其中的钼。原矿直接经氧化焙烧后,用碳酸钠溶液高温高压浸取,再用氯化铵析出浸取液中的钼,制备钼酸铵产品。原则工艺流程为:原矿→破碎→磨矿→氧化焙烧→碳酸钠溶液浸取→氯化铵析出→过滤洗涤→干燥→钼酸铵产品。    文献介绍了用低品位钼精矿制备钼酸铵的工艺路线,制备工艺在常压下进行且为结晶完好的辉钼矿原料。在文献的基础上,研究碳酸钠用量、浸取反应时间、浸取温度(压力)对浸出率的影响,并据此确定最佳浸取工艺条件,以及研究了用氯化铵制备钼酸铵的工艺技术指标。[next]    3  试验结果及分析    3.1  碳酸钠溶液浸取试验    试验仪器:l 000 W可调电炉;调速电动搅拌机;200 mL不锈钢反应釜,自制;调温烘箱。    试剂:碳酸钠,化学纯。    主要反应:    2MoS2+7O2=2MoO3+4SO2 ↑    MoO3+Na2CO2=Na2MoO4+CO2  ↑    3.1.1  碳酸钠用量试验    试验条件为:液固质量比2:1,温度100℃,时间1 h。取100g焙烧后的样品,磨至52 µm,加入不同量的碳酸钠,加人量为与固体原矿的质量比,两级浸取,第一次与第二次加入的量相同,加200 mL水,加热到100℃,搅拌反应l h,冷却后过滤洗涤,渣烘干后分析钼含量。浸取焙烧后的样品钼含量为4.07%(质量分数),试验结果见表1。从表l看出,当每次碳酸钠用量为50%时,浸出率相对较突出,但用量过高,不经济。总的来看,常压下浸取效果并不理想,但为高温高压浸取试验提供了一定的参考依据。表l  碳酸钠用量试验结果(质量分数)  %碳酸钠用量一次浸出渣钼含量二次浸出渣钼含量总浸出率103.793.0226.8203.521.7656.8301.471.2669401.41.0973.2501.481.5187.5[next]     3.1.2  浸取时间试验    试验条件:液固质量比2:l,碳酸钠用量40%,温度100℃。浸取时间分别为1 h、2 h、3 h、4h时,一次浸出渣钼含量(质量分数)分别为1.40%、1.6l%、1.54%、1.68%。结果表明,浸取时间对浸取效果无显著影响,以1 h为宜。    3.1.3  浸取温度(压力)试验    试验条件:液固质量比2:l,浸取时间l h,碳酸钠用量30%,结果见表2。结果显示,在碳酸钠用量相同的情况下,160℃时的密闭静态浸出率远高于常压下动态浸出率,超过了90%的预期指标。考虑到温度过高,反应时状态的平衡压力也随之增高,对设备的要求更加严格,反应温度以160℃较为适宜,此时状态的压力约606 kPa。表2  浸取温度(压力)试验结果浸取温度/℃一次浸出渣钼质量分数/%二次浸出渣钼质量分数/%总浸出率/%室温3.262.6933.91001.471.26691601.380.2691.2

烷基芳基磺酸钠浮选铁矿

2019-01-16 17:42:23

烷基磺酸钠、烷基芳基磺酸钠、烷基硫酸钠与 脂肪酸的捕收性能大致相似,故用脂肪酸作捕收剂 的浮选,都可用这些捕收剂代替,下面是一些应用 实例。(1)浮选氧化铁矿 用十二烷基磺酸钠,十二烷基 硫酸钠、月桂酸钠作捕收剂浮选褐铁矿时,三种捕 收剂的R基碳原子数相同,捕收能力大体相同,脂肪 酸稍强。

硅氟酸钠在浮选中有哪些作用

2019-02-25 09:35:32

钠对硅酸盐脉石矿藏发生的按捺效果,主要是水解后发生的水化二氧化硅所起的效果,其机理与水玻璃类似。它对石英的按捺力比水玻璃强,仅次于六偏磷酸钠。 钠(Na2SiF6)是白色晶体,微溶于水,与强碱效果分解为硅酸和,若碱过量则生成硅酸盐,常用来按捺石英、长石、蛇纹石等硅酸盐矿藏。用油酸浮选时,它能够按捺石榴石、独居石、电气石等;胺类作捕收剂时,少数的钠可使石英、长石、钽铌铁矿活化,多量则使它们被按捺;在硫化矿的浮选中,钠能活化被石灰按捺过的黄铁矿;它还能够作为磷灰石的按捺剂。 钠对硅酸盐脉石矿藏发生的按捺效果,主要是水解后发生的水化二氧化硅所起的效果,其机理与水玻璃类似。它对石英的按捺力比水玻璃强,仅次于六偏磷酸钠。  钠关于被石灰按捺过的黄铁矿的活化效果是因为它水解后解离出的F一沉积了对黄铁矿起按捺效果的Ca2+,然后活化了黄铁矿。

硅氟酸钠在浮选中有哪些作用?

2019-02-25 10:50:24

钠对硅酸盐脉石矿藏发生的按捺效果,主要是水解后发生的水化二氧化硅所起的效果,其机理与水玻璃类似。它对石英的按捺力比水玻璃强,仅次于六偏磷酸钠。 钠(Na2SiF6)是白色晶体,微溶于水,与强碱效果分解为硅酸和,若碱过量则生成硅酸盐,常用来按捺石英、长石、蛇纹石等硅酸盐矿藏。用油酸浮选时,它能够按捺石榴石、独居石、电气石等;胺类作捕收剂时,少数的钠可使石英、长石、钽铌铁矿活化,多量则使它们被按捺;在硫化矿的浮选中,钠能活化被石灰按捺过的黄铁矿;它还能够作为磷灰石的按捺剂。 钠对硅酸盐脉石矿藏发生的按捺效果,主要是水解后发生的水化二氧化硅所起的效果,其机理与水玻璃类似。它对石英的按捺力比水玻璃强,仅次于六偏磷酸钠。 钠关于被石灰按捺过的黄铁矿的活化效果是因为它水解后解离出的F一沉积了对黄铁矿起按捺效果的Ca2+,然后活化了黄铁矿。

钼酸铵热解生产三氧化钼

2019-01-29 10:09:51

工业仲钼酸铵是一系列钼的同多酸铵盐的混合物,它主要包括有:钼酸铵,四钼酸铵与仲钼酸铵。     下表列出了常见几种钼酸铵盐。   表  常见几种钼酸铵盐  名称分子式脱水温度(℃)转化温度(℃)转化产品仲钼酸铵(NH4)6Mo7O24·4H2O90°脱一个结晶水230四钼酸铵四钼酸铵(NH4)2MoO13130°脱其余结晶水315三氧化钼钼酸铵(NH4)2MoO4·2H2O120 三氧化钼       仲钼酸铵热离解反应及条件如下:  (NH4)6Mo7O24·4H2O90~130℃(NH4)6Mo7O24·4H2O+4H2O↑→    (NH4)6Mo7O24150~250℃(NH4)2Mo4O13+NH3↑+2H2O↑→    (NH4)2Mo4O13280~380℃4MoO3+2NH3↑+H2O↑→         工业生产中,这一系列反应在同1台回转炉内进行。炉温保持在450~500℃。炉温偏低,仲钼酸铵等热解离不彻底;炉温偏高,解离后的三氧化钼蒸汽压上升,会因升华而损失。回转炉的加热通常由炉外缠绕的电阻丝来实现。     由仲钼酸铵热解离生产的三氧化钼呈极淡的黄绿色,基本可满足高纯三氧化钼的要求。此工艺对原料——仲钼酸铵的质量要求较高,原料中的杂质往往进入焙烧后钼砂——高纯三氧化钼的产品中。所以,当原料含杂质较高时,必须先经除杂纯化,直至达到要求之后,再进入热解离段工艺。

铜阳极泥氯酸钠氧化除铜、硒

2019-03-05 10:21:23

某厂处理铜阳极泥的工业实验流程包含氧化浸出铜、硒,浸出渣浮选富集贵金属精矿,精矿的火法熔炼和电解提纯。 实验用铜阳极泥的首要组分为(%):金0.038、银13.13、铜14.00、硒2.85、铅5.00等。 浸出除铜、硒,是在稀硫酸溶液中参加固体作氧化剂进行的。在硫酸的效果下,放出和活性氧。后者首要氧化阳极泥中的铜,跟着分化硒化物。当绝大部分铜、硒被氧化进入溶液后,如持续参加,就会发作很多游离氯,而开端金的氧化溶解。故金开端氧化进入溶液即为氧化除铜、硒作业的结尾, 浸出作业于1.5m3珐琅反响罐中进行。固液比1∶2,开端液硫酸浓度350~450g∕L,液温80℃。参加后发作强烈反响放出很多的热,会使矿浆处于欢腾状况。故应严格控制的参加速度,避免矿浆外溢而形成丢失。当阳极泥中的铜、硒被彻底氧化进入溶液后,浸出渣色彩即变白。为了尽可能多地除掉阳极泥中的铜和硒,氧化浸出到溶液中含金略大于10mg∕L时停止。溶液中的含金量甩快速比色法测定。然后参加少数生阳极泥置换金,到溶液中含金约3mg∕L时出槽,经真空泵抽滤别离固液,1台1.5m3珐琅反响罐,可日处理湿阳极泥600kg。每吨阳极泥耗费100kg,硫酸800kg。 浸出后,均匀有92%的铜和86%的硒被除掉,并有0.4%的银和约3%的金丢失于浸出液中。但当用二氧化硫从浸出液中复原硒时,丢失的金、银均进入粗硒产品中得到收回。经浸出后的渣首要组分为(%):银17.40,金0.052、铜1.60、硒0.55、铅7.60等。浸出液含银0.17g∕L、金0.0055g∕L、硒7.45g∕L。 实验时,发现浸出液中的硒部分呈正(H2SeO4)状况存在,不易被二氧化硫复原,且亚的复原速度也较慢,即便通复原24h,溶液中含硒仍选1~2g∕L。为了强化硒的复原,先将含硒液调整至含硫酸300g∕L,并参加适量铁屑,拌和2h,使溶液中80%的硒复原呈元素硒沉积。此刻未发作沉积的硒亦被复原为贱价硒,再参加少数氧钠以复原其他的硒。选用此法处理,整个作业进程只需进行3h,就可从含硒13g∕L的浸出液中复原96%的硒,残液含硒可降至0.5g∕L左右。

钨矿物原料的分解—碳酸钠高压浸取法

2019-02-13 10:12:38

A  基本原理    a 首要反响及其热力学条件    白钨矿白钨矿碳酸钠浸出的反响为:                       CaW04(s)+Na2C03(aq) ==== Na2W04(aq)+CaC03(s)            (1)    依据测定,反响式(1)的浓度平衡常数Kc和活度平衡常数Ka见表1,从表可知,反响的Kc值随苏打用量的增加而减小。黑钨矿黑钨矿碳酸钠浸取的反响为: 表1        反响式(1)的浓度平衡常数和活度平衡常数温度/℃90175200225250275300碳酸钠用量(理论量的倍数)1.01.01.01.52.02.50.751.01.52.01.01.52.01.01.0Kc(п.M.佩尔洛夫)(1958)0.461.211.451.190.960.671.561.521.490.991.851.610.97  T.щ.阿格诺夫(1986)  0.97    1.46  1.521.370.991.631.57Ka(阿格诺夫)   1.151.341.511.66              (Fe,Mn)W04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)(或MnC03(s))                      或FeW04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)                        MnW04(s)+Na2C03(aq)Na2W04(aq)+MnC03(s)                         FeC03(s)+2H20 Fe(OH)2(s)+H2 C03(aq)                            He(OH)2(s)Fe3 04(s)+2H20+H2                        MnC03(s)+2H20 Mn(OH)2(s)+H2C03(aq)    T. III.阿格诺夫测定了人工合成的FeW04、MnW04与Na2C03的反响,发现在200~275℃下,反响生成的FeC03简直悉数水解,渣中含很多Fe304,而生成的MnC03只要3%~11%水解成Mn(OH)2。一起测定了FeW04及MnW04与Na2C03反响的浓度平衡常数Kc(见表2)。 表2     FeWO4、MnWO4、(Fe,Mn)WO4与Na2CO3反响的Kc值(T.щ.阿格诺夫)物料碳酸钠用量:理论量1倍碳酸钠用量为理论量2倍200℃225℃250℃275℃225℃FeWO41.101.512.253.000.80MnWO41.391.511.561.530.94人工合成(Fe,Mn)WO4,Fe:Mn=1:1(摩尔比) 约1.3   天然黑钨矿 1.1   [next]     b  进程的动力学及影响浸取率的要素    反响的机理许多作者都倾向于以为在155℃以上且拌和速度足够快时,进程为化学反响操控,因此升高温度可大大加速反响速度,缩短反响时刻。T.班.阿格诺夫指出天然钨锰矿的浸出速度显着低于天然钨铁矿,对钨铁矿(含16.14% FeO和6.49% MnO)而言,其开始浸出速度与温度的联系在225~250℃范围内契合反响操控的规则,表观活化能为100kJ/mol,温度高于250℃则契合扩散操控规则,表观活化能为25 kJ/mol。对钨锰矿(含13.75%MnO、4. 89 % FeO)而言,在225~ 300℃范围内均为反响操控,表观活化能为100kJ/mol。对上述两种矿而言,在必定温度下跟着反响的进行,因为生成物膜增厚,逐渐过渡到扩散操控。    影响浸取率的要素:    (1)温度II. M.佩尔洛夫在处理含25.1% W03的白钨精矿时,当温度为280℃,即便碳酸钠用量仅为理论量的2.25倍,则15 min内渣含W03亦可降至0.048%。因此佩尔洛夫等以为进步温度以下降碳酸钠用量、进步浸出率是当时碳酸钠高压浸出尽力方向之一。但与此一起,杂质的浸出率亦进步。P. B.奎缪亦得出相似成果。    (2)碳酸钠用量及碳酸钠开始浓度当开始浓度必守时,碳酸钠用量增加浸出率增加;当碳酸钠用量必守时,开始浓度下降浸出率增加。因此一般以为Na2C03开始浓度以70~200g/L为宜。残渣的显微镜调查和化学分析标明,当Na2C03浓度超越230g/L时,残渣中还存在成分近似为Na2C03·CaC03的复盐和微量Na2C03·2CaC03。    碳酸钠高压浸取进程的强化:    (I)机械活化A. H.泽里克曼等进行了很多研讨,标明钨矿预先进行机械活化后,浸取率显着进步。例如,含7.4% W03的白钨精矿,在相同的条件下,当预先在离心式磨机中活化,则浸取率达96.9%,而不予活化则浸取率仅84.9%。    实验也标明,机械活化使白钨矿与Na2C03反响的表观活化能由54.78kJ/mol降为12.71 kJ/mol,浸出钨锰矿时表观活化能由46kJ/mol降为20kJ/mol。    (2)热活化将矿在高温下锻烧,并进行淬火,在急冷急热的情况下,矿藏中存在热应力或坚持其高温相,因此处于较高的能位状况,一起淬火进程中因为热应力而在矿藏中发作裂纹,这些都有利于进步浸出速度。T. ILK.阿格诺夫将含33.32% W03、2.3% Mo、30.35% Ca0、3.75% Si02、0.5%有机物的白钨矿进行热活化处理,然后在225℃、碳酸钠用量为理论量2.5倍的条件下进行浸出,则W03浸出率可进步1~2个百分点。    (3)超声波活化H. H.哈伏斯基(XaBCKHri )等在容量为210L的设备中的实验标明,在5-lOkHz的超声波效果下,当碳酸钠用量为理论量的3倍,工作压力为0.7MPa,固/液比为1/4的条件下,白钨矿的浸出率较无超声波效果高3%~7%,A. A.别尔欣茨基等亦指出,在有超声波效果下,即便碳酸钠用量仅理论量的1.6~1.8倍,在2.5 h内,浸出率达86%~88%,比没有超声波效果时成倍增加。    c 碳酸钠高压浸取进程中杂质的行为及杂质的按捺    碳酸钠高压浸取进程华夏猜中的磷灰石、砷黄铁矿、臭葱石、萤石、磷灰石、硅酸盐、铝酸钙矿等都能部分与碳酸钠反响生成磷酸氢钠、氢钠、等进入溶液,但除钼酸钙矿的浸取率达80%~90%以外,其他杂质的浸出率都很低,一般磷、砷、硅的浸取率都为5%以下,在没有氧化剂存在的条件下,硫化矿如辉钼矿、辉锑矿等基本上都不发作浸取反响。    实验证明碳酸钠高压浸取进程中增加A12 03或镁化合物都有利于按捺Si02及部分磷、砷的浸取,例如含12.75%W03、13.7% Si02、0.407% P、O. 019% As的白钨中矿的浸取进程中,当不增加A12 03,则终究浸出液中含Si,P及As别离为0.86g/L、O.013g/L及0.O11g/L,参加A1203时,终究浸出液中含Si、P和As别离降为0. 0092g/L、O.006g/L和0.0065g/L,对含31.7% WO3、1.08% SiO2的白钨中矿进行高压浸出时,参加矿量5.2%的镁盐,则浸出液中Si02含量降至(1~5)、10-4 g/L。    B  工业实践    a  设备    高压釜有立式及卧式两种。立式釜容积一般为3~5m3。卧式釜的釜体由低合金钢焊成,直径约1.5~1.8m,长10~15m,壁厚25~30mm,一般转速为2~3 r/min,釜内装球,在旋转进程中能铲除釜壁上的结垢,蒸汽及料浆别离经过蒸汽管及料浆管通人釜内。    b  工艺进程    工艺进程分接连作业和接连作业两种。澳大利亚金岛白钨公司化学处理厂用立式釜接连高压浸出的设备流程见下图。接连作业便于机械化和自动化,一起蒸汽用量均匀,能耗低,设备生产能力高。前苏联某厂将接连作业改成直接蒸汽加热接连操作后,生产能力进步1倍。[next]    c  技能条件及技能经济目标    某些工厂的技能条件及技能经济目标见表3。 碳酸钠高压浸取法处理钨质料的技能条件及目标质料工艺条件浸出成果补白Na2CO3用量(理论量的倍数)液/固温度/℃时刻/h浸出率/%渣含WO3/%低档次白钨中矿,含10%~25%WO3约5 190~2001.5~2980.2~0.6由中矿至APT的收回率为95%低档次白钨矿中含8%~15%WO34~5,另加理论量0.5倍的NaOH矿浆密度1.7g/cm380497.5~98.7约0.1浸出母液成分/(g·L-1):45WO3,2F,1Si钨中矿含45%~50%WO3,5%~6%Mo3.5~4,当用两段浸出时刻为2.5~3~3  99 浸出母液成分/(g·L-1):100~130WO3,5~8Mo,80~90Na2CO3,1.5~2SiO2,3~4F钨细泥含12.6%WO3其间白钨与黑钨各占50%左右:0.019%As,0.14%Mo,0.49%P,13.7%SiO23.85,另加矿量3%的NaOH1.3~1.52102~398.060.3两段错流浸出3.85,另加矿量5%的Al2O3   97.610.35两段错流浸出钨细泥含:28.86%WO3,其间黑钨占总钨的39.2%4.5,另加矿重5%的NaOH2.8210~2202~396~980.6~0.8浸出液成分/(g·L-1):86WO3;0.135SiO2;0.1P;0.05As是非钨混合钨精矿2.2,另加理论量0.2倍NaOH 230299  钨细泥含16.5%WO3,21%SiO23.0,另加2%NaOH,3%Al2O3 185~195298~990.15~0.2浸出液成分/(g·L-1):0~80WO3,0.005As,0.01P,0.02Si,1~2F     d  碳酸钠收回    因为压煮中碳酸钠用量达理论量2.5~5倍,故母液中残留很多Na2CO3,其间Na2CO3/WO3达0.8~1.6(质量比)。从母液中收回碳酸钠的办法繁复,但都未见其工业化的报导,具体见参考文献[1]的72~77页。    参考文献:    1.李洪桂主编.有色金属提取冶金手册:稀有高熔点金属卷(上).北京:冶金工业出版社,1999

用离子交换法分离钼酸铵溶液中的钒

2019-02-21 11:21:37

跟着现代工业的飞速发展,钼的用量不断添加,其报价也继续上涨,但优质钼矿资源越来越少。在各种类型的钼矿藏和钼系废催化剂中都含有一定量的钒酸根,钒酸根是钼产品的有害杂质,因此,需求经过除钒酸根来制备纯钼化合物。 钼酸根、钒酸根在水溶液中的性质十分类似,别离很困难。已有的一些钼酸根、钒酸根别离办法有铵盐沉淀法、溶剂萃取法、电化学离子交流法、电化学复原反萃取法、螯合树脂吸附法等。铵盐沉淀法和溶剂萃取法对钼酸根、钒酸根别离不完全,后3种办法可使钼酸铵产品中钒酸根质量分数小于0. 0015%,可是电化学离子交流法和电化学复原反萃取法操作工艺杂乱,而螯合树脂吸附容量低,工业运用不抱负。实验研讨了用强碱性阴离子交流树脂从钼酸铵溶液中去除钒酸根。 一、实验部分 (一)实验仪器、试剂和分析办法 强碱性阴离子交流树脂D231-Ⅱ,浙江争气实业股份有限公司产品。 实验料液由钼酸铵、和去离子水制造而成,钼质量浓度62.36gL,钒质量浓度0.52gL,pH为6.5~7.5。 、、钼酸铵、均为分析纯。 溶液中钼质量浓度用铜离子催化硫酸盐法在722S型分光光度计上测定,钒酸根质量浓度用硫酸亚铁铵滴定测定,氯离子质量浓度用滴定测定,溶液pH值用pHS-25数显pH计测定。 离子交流柱:Ф2.5 cm×200 cm。 (二)实验办法 树脂先用去离子水浸泡24 h,充沛溶胀后再用去离子水洗至无杂质;用40gL溶液和40 gL溶液替换处理2次,每次用2倍树脂体积的用量浸泡8h并用去离子水洗至中性;最后用4倍树脂体积的40 gL溶液转为氯型,再用去离子水洗至中性,备用。 取200 mL处理好的D231-Ⅱ树脂装填在交流柱中,室温下,将制造好的料液从上向下经过树脂层,操控流速为200 mL/h,每2h取交流柱流出液一次,检测钼和钒的质量浓度。 交流柱流出液中钒酸根质量浓度达0.02 g/L时中止吸附。当树脂吸附饱满后,用4倍树脂体积的50 g/L溶液(或50gL溶液)解吸,用去离子水洗至pH=8,再用4倍树脂体积的50g/L溶液转为氯型,用去离子水洗至pH值为中性后,进行下一个周期的吸附。 二、实验成果与评论 (一)吸附 3个周期的吸附实验曲线如图1~3所示。图1  第1周期树脂对钒酸根的吸附曲线图2  第2周期树脂对钒酸根的吸附曲线图3  第3周期树脂对钒酸根的吸附曲线 从图1~3看出:D231-Ⅱ树脂对料液中的钼酸根和钒酸根都有吸附作用,当流出液体积为1倍树脂体积时,钼酸根开端穿透,随后流出液中钼酸根质量浓度敏捷升高;当流出液体积为8倍树脂体积时,流出液中钼酸根质量浓度与进料液中的根本共同,而钒酸根根本检测不出;当流出液体积为20倍树脂体积时,流出液中检测出有微量的钒酸根。若以钒酸根质量浓度0.02g/L为失效结尾,则树脂对钒酸根的吸附容量约为16.0g/L,处理料液量为26倍树脂体积。 (二)解吸 选用强碱性阴离子交流树脂D231-Ⅱ去除钼酸铵溶液中的钒酸根作用很好。流出液中钒酸根质量浓度达0.02g/L为吸附结尾,此刻对树脂进行解吸处理。负载树脂先用清水淋洗,去除残留的吸附原液,然后用4倍树脂体积的50 g/L溶液进行解吸,再用去离子水洗至pH=8。3个周期的解析实验曲线如图4~6所示。树脂吸附容量、洗脱量和洗脱率见表1。图4  第1周期树脂对钼酸根和钒酸根的解析曲线图5  第2周期树脂对钼酸根和钒酸根的解析曲线图6  第3周期树脂对钼酸根和钒酸根的解析曲线 表1  D231-Ⅱ树脂3个周期的吸附参数从表1看出:3个周期的解析成果根本共同,钒酸根洗脱率均在99%以上,阐明D231-Ⅱ树脂吸附钒酸根的重复性好、洗脱率高。D231-Ⅱ树脂作为一种大孔强碱性阴离子交流树脂,具有特殊的孔结构和比表面积,在pH为6.5~7.5范围内,对钒酸根的吸附选择性大于对钼酸根的吸附选择性。一起,树脂的抗污染才能强,具有很高的吸附才能、耐温性、稳定性和机械强度,十分合适从实践溶液中吸附别离钒酸根。 三、定论 实验成果表明:D231-Ⅱ树脂可用于从钼酸铵溶液中别离钒酸根;溶液pH为6.5~7.5时,D231-Ⅱ树脂对钒酸根的吸附选择性很高,吸附率大于99%;负载树脂用稀(稀碱液)脱附,钒酸根洗脱率在99%以上。D231-Ⅱ树脂有较高的耐氧化、耐酸碱、耐有机溶剂的功能,机械强度大,正常情况下,年损耗率小于5%。选用D231-Ⅱ树脂从钼酸铵溶液中吸附钒酸根,工艺简略,别离作用好,不需求特殊设备,技能简单把握,可完成自动化。

铜阳极泥的氯酸钠浸出金

2019-03-05 09:04:34

浸出金也归于水溶化法的领域,该法是根据在溶液平分解出的活性氯使金氯化而进入溶液。浸出法较之通氯氧化法具有浸出时间短、氯利用率高级长处。 因为的报价高,所以用它来处理含有很多重金属杂质的物料是不经济的,并且还因为浸出液的组分杂乱,而直接影响复原沉积的金纯度。如此法用于图1的流程中,即阳极泥经预先除掉铜、硒、铅,浸出渣的产出率小于阳极泥分量的40%后,再用浸出浸渣中的金,则具有必定的优越性。图1  氯化-全湿法流程 浸出金是在1mol/L的液中,固液比1∶3,参加渣重20%的食盐,经拌和和加热至80℃后,分次参加占渣重5%的固体NaClO3,拌和浸出1h。金的浸出率大于99%,渣含金20~30g∕t。 复原浸出液中的金,有三种办法: 一、加热浸出液后,通二氧化硫并操控必定的复原电位,可获得纯度99.9%的金粉。复原液经回来运用至铂、钯富集到必定浓度后,进去收回铂和钯等。 二、加热浸出液后,先通入少数二氧化硫复原锡等高价氧化物,避免水解生成胶状物。然后用萃取法别离金,并用草酸复原。此法可获得较高纯度的金。 三、加热浸出液除氯后,用硫酸亚铁复原金,残液经锌置换收回铂族金属。复原的金粉经酸洗除掉杂质后其纯度大于99.9%。但此法复原后的溶液因含有硫酸根而不能回来运用,硫酸亚铁的消耗量也大。

钨矿物碳酸钠高压浸取法的工业实践

2019-01-07 07:51:26

一、设备 高压釜有立式及卧式两种。立式釜容积通常为3~5m3。卧式釜的釜体由低合金钢焊成,直径约1.5~1.8m,长10~15m,壁厚25~30mm,一般转速为2~3r∕min,釜内装球,在旋转过程中能清除釜壁上的结垢,蒸汽及料浆分别通过蒸汽管及料浆管通入釜内。 二、工艺过程 工艺过程分连续作业和间断作业两种。澳大利亚金岛白钨公司化学处理厂用立式釜连续高压浸出的设备流程见图1。连续作业便于机械化和自动化,同时蒸汽用量均匀,能耗低,设备生产能力高。前苏联某厂将间断作业改成直接蒸汽加热连续操作后,生产能力提高1倍。图1  金岛白钨公司化学处理厂的设备流程图 三、技术条件及技术经济指标 某些工厂的技术条件及技术经济指标见表1。 表1  碳酸钠高压浸取法处理钨原料的技术条件及指标原料工艺条件浸出结果备注Na2CO3用量(理论量的倍数)液∕固温度 ∕℃时间 ∕h浸出率 ∕%渣含WO3 ∕%低品位白钨中矿,含10%~25%WO3约5190~2001.5~2980.2~0.6由中矿至APT的回收率为95%低品位白钨中矿含8%~15%WO34~5,另加理论量0.5倍的NaOH矿浆密度1.7g∕cm3180497.5~98.7约0.1浸出母液成分∕(g·L-1);45WO3,2F,1Si钨中矿含45%~50%WO3,5%~6%Mo3.5~4,当用两段浸出时为2.5~3~399浸出母液成分∕(g·L-1);100~130WO3,5~8Mo,80~90Na2CO3,1.5~2SiO2,3~4F钨细泥含12.6%WO3其中白钨与黑钨各占50%左右;0.019% As,0.14% Mo,0.49% P,13.7% SiO23.85另加矿量3%的NaOH1.3~1.52102~398.060.3两段错流浸出3.85另加矿量5%的Al2O397.610.35两段错流浸出钨细泥含:28.86%WO3,其中黑钨占总钨的39.2%4.5另加矿重5%的NaOH2.8210~2202~396~980.6~0.8浸出液成分∕(g·L-1):86WO3;0.135SiO2;0.4P;0.05As黑白钨混合钨矿2.2,另加理论量0.2倍NaOH230299钨细泥含16.5%WO3,21%SiO23.0,另加2%NaOH,3%Al2O3185~195298~990.15~0.2浸出液成分∕(g·L-1);70~80WO3,0.005~8As,0.01P,0.02Si,1~2F 四、碳酸钠回收 由于压煮中碳酸钠用量达理论量2.5~5倍,故母液中残留大量Na2CO3,其中Na2CO3∕WO3达0.8~1.6(质量比)。从母液中回收碳酸钠的方法繁多,但都来见其工业化的报道。