您所在的位置:
上海有色 >
有色金属产品库 >
工业氧化钼价格
工业氧化钼价格
氧化钼块
2019-02-12 10:08:00
同钼铁相同,氧化钼块常被用作钢铁的钼合金添加剂.它用钼焙砂作质料,只需成型加工即可用之出产,比钼铁的钼回收率高、加工费低。在西方国家,它已逐步替代钼铁,比钼铁使用更广泛,所占份额也更大。见表1。
表1 美国氧化钼和钼铁产值及份额
年份(年)
类别19801981198219831984氧化钼产值(t)1636616393806979187361钼铁产值(t)36083304170115431169氧化钼产值/钼铁产值(倍)4.55.04.75.16.3
钼铁与氧化钼在各种使用领域内份额见表2及表3。
表2 1974年美国氧化钼与钼铁分配状况
名 称
耗费(%)
品 名合金钢低合金高强度钢不锈钢工具钢铸铁高温特殊合金其他合金产品金属钼化学品其他工业氧化钼90.785.479.373.323.736.96.0 66.071.2钼 铁8.513.719.625.273.818.976.2 17.0其 它0.80.91.11.52.544.217.8100.034.011.8合 计100.1100.0100.0100.0100.0100.0100.0100.0100.0100.0
表3 日本10个厂商出产钼和氧化钼的状况
年度工厂
品名日重化学工业太阳矿工日本钢管炒中矿业电工日本新金属票村金属工业日本电工钢峙产品华夏工业算计钼铁(%)氧化钼(%)1973钼铁566..0465.0307831379 557211 331020.41氧化钼2129300513902021446210324497613902741291379.591974钼铁4875331371047373 675218 348922.71氧化钼1893300611442131114490112056964112841187577.29
我国却仍以钼铁为主,氧化钼用量很少(表4)。
作为钢铁添加剂的氧化钼往往被制作成钼压块后使用。其产品标准见表5。
我国从1983年到1985年出产钼压块约2500t,首要出产供应商有锦州铁合金厂和上海铁合金厂,还有栾川钼业公司。
表4 我国氧化钼与钼铁产值与份额
年份(年)
品种19831984氧化钼产值(t)738762钼铁产值(t)47085585氧化钼与钼铁产值比(倍)0.160.14
[next]
表5 氧化钼合金添加剂标准
国家与标准等级Mo含量(%)①≥杂质含量(%)<或≤②包装CuSPCFeOPbAsSnH2O美国ASTMA146A55.01.00.25 0.05 桶装或压块,10或1kg/块B57.01.00.10 英国55.0~60.00.30.10 1~3 压块日本低碳55.0~61.00.10.05 0.05 压块0.5kg/块25kg/箱高碳53.0~54.00.10.05 8~10 前西德60.0~62.00.20.03~0.090.2~0.04 桶装前苏联KMo-1550.60.150.070.08 桶装10~40kgKMo-2531.20.180.070.10 0.070.07 KMo-3502.40.200.070.12 瑞典57~630.50.010.05 罐装10kg我国YMo-48481.00.100.040.20 0.04 0.050.5压块,桶装。5kg/块30kg/桶YMo-45451.00.150.040.20 0.06 0.070.5YMo-40402.00.800.040.20 0.10 0.100.5
①前苏联为“≥”,其他为“>”;②我国为“≤”,其他为“<”。
从钼焙砂到钼压块是一个单纯压力成型的进程。其出产工艺见下图。
粘结剂一般为沥青,用量很少,不少工艺在选用高压力成型机后只加水甚至不添粘结剂。加水量切忌过大,以焙砂略发潮为限,拌和均匀后成型。
图 钼压块出产流程
压块可大可小,0.5~5kg均有。形状有方有圆,常见多为圆柱体,如日本为¢65 ×60mm圆柱体,重0.5kg,密度2.7g/cm3。国内栾川为lkg重的圆锥台体。
什么是氧化钼铜
2018-12-13 15:20:55
氧化钼铜 CAS号: 13767-34-5 英文名称: COPPER MOLYBDATE 分子式: CuMoO4 分子量: 223.48 MOL File: 13767-34-5.mol 熔点 : 500°C 密度 : 3.4以上信息仅供参考.
氧化钼的基本知识
2018-12-12 09:37:10
(1)用途适用于炼钢和铸铁作为钼元素添加剂。(2)牌号和化学成分见表2-18。氧化钼块的牌号和化学成分牌 号化学成分(质量分数)(%)MoSCuPCSnSbIⅡ≥≤YM055.0一A55.O0.1O.15O.250.040.1O.050.04
YMD52.0一A52O.10O.150.250.050.150.070.06
YM055.0一B55O.100.15O.40O.04O.100.05O.04
YM052.0一B52.OO.15O.25O.50O.D5O.15O.07O.06
YM050.0500.150.25O.50O.05O.15O.07O.06
YM048.048.OO.25O.30O.80O.07O.15O.07O.06注:氧化钼块产品以圆柱形或其他块状交货。每块质量1.0---5.0kg,密度不小于2.5g/cm3,水分不大于0.5%。
氧化钼选矿试验方案选择
2019-02-20 11:03:19
氧化钼矿藏中具有一些价值的仅只有钼钙矿、铁钼华和彩钼铅矿。
一、钼钙矿的选别
钼钙矿浮选工艺分作别离浮选与混合浮选两种。
别离浮选是从辉钼矿浮选尾矿中收回钼钙矿的工艺。1950年前苏联И·A·思特里金特等人首要研讨并初次用于巴尔哈什选矿厂,以东科恩拉德硫化钼浮选尾矿中收回钼钙矿。
钼钙矿捕收剂一般用油酸(约100g/t),为一起收回辉钼矿,还须参加火油(200g/t),起泡剂选用二。浮选出产工艺包含粗选、扫选、粗精矿参加水玻璃(1300g/t),经蒸吹(温度85℃下处理30~40min),再过滤、脱药,并用新鲜水调浆后进行四次精选。火油、油酸捕收力较弱,选择性较差,所以泡沫产品中钼钙矿的档次和收回率都较低,无法产出合格的钼精矿,只能获取含钼7.5%~15%、铜2%~3%、钙30%~35%、铁3%~8%、硫4%~6%的钼中矿。该中矿还须经焙烧-浸出提取工艺制成钼酸钙(CaMoO4)后使用。
前苏联矿业研讨所研讨了用烷基硫酸钠作油酸、火油的分散剂。作用见图1及图2。
图1 乳化剂(烷基硫酸钠)对钼钙矿浮选影响
图2 有无分散剂对钼钙矿浮选影响
明显,参加少数分散剂烷基硫酸钠能够进步钼钙矿的收回率和浮游速度。
“别离”浮选无法获合格钼精矿,并且浮选设备增加。为此,前苏联矿业研讨所研讨了“混合”捕收硫化钼与氧化钼的工艺。
“别离”浮选与“混合”浮选动力学曲线比照,如图3及图4。
图3 氧化钼的浮选动力学曲线
图4 全钼浮选动力学曲线
从图可见,“混合”与“别离”浮选工艺目标相同,但浮选速度加速,浮选时刻缩短。明显,硫化钼和氧化钼矿藏可混合浮选而不下降精矿质量。
辉钼矿、钼钙矿混合浮选在1963年进行工业实验。实验在原硫化矿浮选系列上进行,球磨机增加苏打(600g/t)、火油(200g/t),扫选参加油酸钠(100g/t)与硫酸烷酯(10g/t)混合液,粗选、扫选还补加了火油,因油酸钠与硫酸烷酯也具有起泡性,起泡剂二用量减少了50%。蒸吹、精选工艺改变不大。实验证明,混合浮选比“别离”浮选,钼收回率均匀进步5%。
对是否选用混合浮选,首要要看能否获取合格的混合钼精矿,“别离”浮选产出的钼钙矿精矿含钼7.5%~20%,按此核算,混合精矿中钼钙矿部分不能超过钼总量的13%~18%。也就是原矿石中钼钙矿份额不能太高,不然,混合精矿就难以保证质量。
钼矿床中的钼钙矿主要为钼类质同象替代白钨矿(CaWO4)中钨的产品,很少见不含钨的纯钼钙矿。钼进入钨矿藏晶格替代钨,随替代量的增加,构成白钨矿、钨钼矿、钼钨矿、钼钙矿。其晶形与白钨矿、钼钙故相同;浮游功能也与白钨矿、钼钙矿类似。含钼钙矿的钨矿石在浮选中,钼钙矿与白钨矿无法别离,一起进入钨精矿,再经浸出-提取工艺以别离,提纯出钼产品。
二、铁钼华的选别
铁钼华矿石浮选是一个十分复杂的问题。
矿石中,铁钼华与褐铁矿、铁赭石关系密切,呈微粒状浸染。克莱麦克斯的氧化钼就主要与针铁矿,其次为黄钾铁钒共生。这些矿藏性脆,磨矿中易泥化,浸染粒度极细,索尔斯克氧化钼矿石不同粒度铁钼华的散布见图5。
图5 索尔斯克各粒级钼含量
因而,铁钼华选别比钼钙矿还困难,富矿比更小,只能产出低档次中矿,再经浸出-提取工艺制取钼制品。
铁钼华的浮选是在苏打(Na2CO3)介质顶用油酸作捕收剂选别,为收回硫化钼,还要一起增加火油。
前苏联稀有金属科学研讨所索尔库茨克分所提出选别索尔斯克氧化钼的工艺:选用6000g/t苏打、1500g/t油酸、1500g/t火油、100g/t,经一次粗选、一次扫选,成果如下表1所列。
表1 索尔斯克浮选氧化钼成果原矿档次
(%)精 矿尾矿档次
(%)产率(%)档次(%)收回率(%)0.048200.17710.017
油酸的用量(1500g/t)和报价都很高,所以г·A·哈罗和A·Й·扎拉哈尼引荐用氧化白腊作油酸代用品,并在索尔斯克得以使用。
工业实验用粗选、扫选、两次精选工艺增加苏打(2200~3000g/t)、氧化白腊皂(2000~3000g/t)、火油(1500~2250g/t)。对选别含氧化态钼档次≥0.045%的矿石,可获收回率65%~80%、含全钼0.32%~0.52%、含氧化态钼0.3%~0.5%的钼中矿。对选其他含氧化态钼档次<0.045%的矿石,可获收回率51%~61%、含全钼0.22%~0.28%、或含氧化态钼0.21%~0.27%的钼中矿。
因为铁钼华易泥化、难选,所以浮选的富矿比很低,浮选产品必需再经浸出-提取工艺加工。
对辉钼矿矿床中部分富集的铁钼华富矿,可考虑别离挖掘,直接浸出-提取。克莱麦克斯即对矿床中富氧化钼矿直接浸出出产化工品。栾川三道童钼矿床也有部分富铁钼华产出,尚待研讨开发。
氧化钼利用最新技术
2019-02-11 14:05:38
将氧化钼用于如35CrMoA、R102之类的含钼低合金钢冶炼已获得成功,并取得了显着经济效益。
为了进一步探索氧化钼在高合金钢冶炼中的运用可能性,咱们进行了氧化钼用于低碳和超低碳不锈钢冶炼的实验研究工作。
一、氧化钼的物化特性
咱们运用的氧化钼有两种牌号:YMo50和YMo54。这两种牌号的氧化钼含钼量别离为50%和54%,每块分量在1.0~5.0kg之间,比重不小于2.5g/cm2,水分不大于0.5%。
二、氧化钼的热力学分析
就电炉-钢包精粹炉双联工艺而言,冶炼不锈钢的炉料组成一般为钢种回来料、高碳铬铁、低磷回来钢和所需的合金料等。因而,炉猜中有必定量的碳、硅、铁、铬和锰。例如,关于00Cr17Ni14Mo2钢种。其熔清成分要求如表1所示。
表1 00Cr17Ni14Mo2铜部分元素熔清含量要求元素CMnSiCr要求含量(%)0.70~1.50≤1.00~0.4016.50~18.50
氧化钼的主要成分是二氧化钼。当二氧化钼与[Si]、[Mn]、Fe(1)、[C]、[Cr]触摸时所发生的反响及其标准。
自在能改变为:
[Si]+MoO2(s)=[Mo]+SiO2(1)………………………………①
△G10=-39814-1.02T
2[Mn]+MoO2(s)=2(MnO)+[Mo]………………………………②
△G20=-35814-4.06T
3Fe(1)+MoO2(s)=[Mo]+2FeO(1)…………………………③
△G30=23186-22.88T
2[C]+MoO(s)=[Mo]+2CO…………………………………………④
△G40=70386-66.24T
4/3[Cr]+MoO2(s)=[Mo]+2/3(Cr2O3)…………………………⑤
△G50=79508-103.88T
别离核算上述五个反响在1400℃、1500℃、1600℃、1700℃、1800℃下的△G°,其成果如表2所示。由表2可知,在炼钢温度下,[Si]、[Mn]、Fe(1)、[C]、[Cr]都能复原氧化钼。跟着温度的进步,这五种元素与氧化钼的反响可能性按下列程序逐渐增大:[Mn]、Fe(1)、[Si]、[C]、[Cr]。
表2 五个反响在不同温度下的△G°值温度(K)16731773187319732073-△G10(4.1868J)
-△G20(4.1868J)
-△G30(4.1868J)
-△G40(4.1868J)
-△G50(4.1868J)41520
29022
15092
40434
9428341622
28616
17380
47058
10467141724
28210
19668
53682
11505941826
27804
21956
60306
12544741928
27398
24244
66930
135835
实验在30t电炉和40t钢包炉上进行。
三、实验钢种与实验工艺
(一)实验钢种包含:0Cr18Mo2、0Cr18Mo2Ca、00Cr17Ni14Mo2、00Cr17Ni14Mo2管。这四个钢种的制品Mo规格要求见表3所示。
表3 四个钢种的制品钼规格要求钢 种0Cr18Mo120Cr18Mo2Ca00Cr17Ni14Mo200Cr17Ni14Mo2管制品Mo规模(%)1.00~2.002.00~2.802.00~3.001.80~2.50 (二)实验工艺
对四个钢种,都选用原有的电炉初炼、钢包炉精粹的双联工艺。而且,依据以往的实验经历,在电炉复原期不添加任何复原剂数量。
1、氧化钼参加办法 氧化钼随炉料一同装入料斗。依据炉料的含钼量,总的配钼量在钢种制品规格要求的中限左右。
2、电炉初炼工艺关键 溶化期不得吹氧助溶或长期割料。溶化后期加石灰400kg。炉料全溶后敞开电磁拌和10min,然后取样分析。温度在1600℃以上,双管吹氧脱碳。当碳在0.30%~0.40%之间时,加3~4kg/t及适量C粉、Si-Fe粉进行复原。复原渣转色后取样全分析两次。按分析成果,用Mo-Fe和有关合金调整Mo及有关元素。成份、温度和渣况契合要求后出钢。
3、钢包炉精粹工艺关键 钢包除渣后加石灰200kg,并取样测温。钢液温度1560℃以上时进真空位吹氧精粹。当氧浓差电势和废气温度下降时,参阅总耗氧量决议停氧,并坚持67Pa 5min以上。然后,参加合金和脱氧剂及适量石灰。待钢渣拌和杰出后破真空。在座包位取样分析和测温,并加适量的铝粉或硅-铁粉使炉渣具有杰出的复原性。依据钢种和分析成果,进行成份微调。温度契合要求后吊包浇注。
四、实验成果与评论
(一)实验成果
实验的8炉钢的成果如表4所示。
表4 八炉钢的实验成果初炼炉号精粹炉号钢 种氧化钼参加量(kg)氧化钼理论含钼量(%)实践钢液量(t)制品钼(%)氧化钼的钼回收率(%)电炉内参加钼-铁量(kg)86-1562851-18120Cr18Mo26301.1830.01.2794.29-86-1701851-19550Cr18Ma2Ca9001.6927.622.221006086-1941851-22790Cr18Mo26001.1329.821.38100-87-1903851-23240Cr18Mo25000.9428.821.3795.974206-456051-51500Cr17Ni14Mo2管7001.3529.622.1686.9110006-444051-5020Cr18Mo2Ca9001.7627.922.1483.507006-537051-60800Cr17Ni14Mo211002.1630.122.1380.815006-495051-55100Cr17Ni14Mo212002.3527.622.3597.92-
(二)实验成果的评论
1、氧化钼的钼回收率 由表4可知,随炉料一同装入料斗的氧化钼的钼回收率在80.8%~100%之间,均匀为92.3%。略高于运用钼铁的钼回收率。表5是相同工艺、同一类钢种、选用钼铁配钼的钼回收率统计数据。由表5可得,其钼的回收率在80.16%~100%之间,均匀为91.32%。
表5 运用钼铁的钼回收率(10炉)初炼炉号精粹炉号钢 种钼铁参加量(kg)钼铁理论含钼量(%)实践钢液量(t)制品钼(%)钼铁回收率(%)97-1608951-20230Cr18Mo25001.1128.621.5210095-1523951-18200Cr18Ma2Ca8501.8829.122.892.8096-1339951-15650Cr18Mo24000.8929.921.4310097-676951-8630Cr18Mo2Ca9002.0328.622.2790.8597-669951-8570Cr18Mo24000.9027.621.1482.9396-634951-7430Cr18Mo25001.1829.621.8283.5996-557951-6560Cr18Mo25001.1128.921.3690.9497-436951-5740Cr18Mo26001.4427.621.3180.1696-419951-5070Cr18Mo2Ca9002.0329.122.1691.9296-258951-33000Cr17Ni14Mo25001.1130.122.00100
从表4也可看出,在冶炼进程中不追加钼铁的炉号的氧化钼钼回收率均在94%以上。这说明,氧化钼的钼回收率是比较安稳的。
2、氧化钼的复原 不锈钢炉猜中的铬、硅、碳等元素的很多存在,使得氧化钼在炉料的不断熔化和氧化期温度的不断进步中得到根本复原,这一点从实验炉号的全熔分析和氧化钼分析的成果得到证明,见表6所示。
表6 氧化钼在电炉熔化期和氧化期的复原炉号钢种氧化钼配入量(%)熔清钼(%)氧化钼期钼(%)炉猜中钼钢含钼量(%)86-15620Cr18Mo21.181.321.390.2986-17010Cr18Mo2Ca1.682.102.280.3386-19410Cr18Mo21.131.441.510.3387-19030Cr18Mo20.941.451.510.8006-45600Cr17Ni14Mo2管1.352.162.110.9006-4440Cr18Mo2Ca1.762.242.260.5306-53700Cr17Ni14Mo22.161.891.980.2206-49500Cr17Ni14Mo2管2.352.662.550.06
在复原期,因为氧化钼的比重不小于2.5g/cm2,因而,它是在复原炉渣中或在炉渣表面上被进一步复原的。
3、氧化钼对铬的回收率的影响 钢液含铬量在17%左右和较高的钢液温度为反响⑤的向右进行发明晰很好的热力学和动力学条件。这使铬的回收率受到了必定影响,见表7。
表7 运用氧化钼与钼铁的不锈钢的铬回收率比较类型电炉运用氧化钼的铬回收率(7炉)电炉运用钼铁的铬回收率(10炉)铬回
收率
(%)平 均
最 高
最 低89.62
95.58
82.10平 均
最 高
最 低91.59
98.66
81.15
由表7可知,与钼铁比较,氧化钼的运用使电炉的铬回收率下降了1.97%。因而,加强复原期,特别是出钢前的炉渣的复原是很有必要的。
4、氧化钼中的钼在钢包炉精粹进程中的安稳性 氧化钼一经复原,进入钢液中的钼是适当安稳的。这一点已由钢包炉的精粹进程得到证明。表8是实验炉号的钢种钼在真空吹氧脱碳前后的改变。
表8 实验炉号的钢种钼在真空精粹进程中的改变炉号钢种真空钼含量(%)真空后钼含量(%)真空加合金量(t)851-18120Cr18Mo21.291.281.0851-19550Cr18Mo2Ca2.262.230.9851-22790Cr18Mo21.411.401.0851-23240Cr18Mo21.421.401.1051-51500Cr17Ni14Mo2管2.162.161.1051-5020Cr18Mo2Ca2.182.151.08051-60800Cr17Ni14Mo22.192.141.25051-55100Cr17Ni14Mo2管2.442.361.3
由表8可知,真空精粹前后的钼含量的改变主要是由合金参加引起的。
五、关于冶炼时刻、电耗和钢的含量
(一)实验钢种的冶时和电耗
由实验工艺可知,氧化钼的运用不会影响电炉的冶时和电耗。表9的数据也说明晰这一点。
表9 运用氧化钼与钼铁的电炉不锈钢冶时和电耗比较类 型运用氧化钼的冶时和电耗(7炉)运用钼铁的冶时和电耗(10炉)均匀电耗(KWh/t)
最高电耗(KWh/t)
最低电耗(KWh/t)
均匀冶时(min/炉)
最高冶时(min/炉)
最短冶时(min/炉)536.1
603
433
206.4
261
154588.5
661
482
232.3
283
195 (二)实验钢种的质量
实验钢种的制品化学成份除一炉因设备毛病而导致制品碳超越规格外(851-1812),悉数契合有关规定。
实验钢种的高倍、低倍查验、机械性能等目标悉数契合有关技能要求。
六、经济效益
依据本分厂供给的数据,氧化钼的单价为18706元/t,钼铁的单价为37400元/t(1989年)。
本次实验的钢液总吨位为:231.54t,实验共用去氧化钼6.53t,氧化钼的纯钼量为3.412t。3.421吨纯钼可替代含钼为62%的钼铁为5.577t。因而,本实验可使吨钢炼钢装料本钱下降373.28元/t。
七、结束语
(一)氧化钼在电炉-钢包炉双联工艺条件下,能用于低碳和超低碳不锈钢的冶炼。
(二)在本实验工艺条件下,氧化钼的钼回收率均匀可达92.30%,略高于钼铁的回收率,但使铬的回收率有所下降。有必要加强复原炉渣的复原性。
(三)将氧化钼用于低碳和超低碳不锈钢的冶炼,吨钢装料本钱下降373元,并不影响电炉的冶时和电耗。
含金氧化钼矿石选矿试验研究
2019-02-21 12:00:34
西北地区某钼矿为一中型规划储量的含金多金属钼矿床。矿石以氧化矿为主,氧化钼矿藏首要为钼钙矿,少数为钼华,矿石氧化率高达68.5%。硫化钼为辉钼矿。金首要赋存在石英脉矿石中,嵌布特征以微细粒金为主。
矿石组成成分相对简略,有价元素以钼为主,其它非钼硫化矿含量较低。钼矿藏嵌布粒度较粗,单体解离简单,可选性相对较好。矿石中影响金浸出的杂质矿藏含量较低。钼首要用于冶炼钼铁和出产钼化工产品,而这些出产工艺无法收回其间的黄金,并且在出售时钼精矿中的含金不计价[1],所以该类型矿石有必要在确保钼选别目标的前提下,处理钼矿石中金的归纳收回问题,以更好地使用矿产资源。
一、矿石性质
矿石首要矿藏组成及含量:辉钼矿0.32%、钼华0.13%/钼钙矿0.32%、白钨矿0.17%、黄铁矿0.24%、赤铁矿3.90%、石英57.5%、长石19.6%、方解石1.8%。矿石多项分析成果:Mo0.52%、WO0.08%、Cu0.01%、S 0.42%、TFe 2.12%、SiO271.5% 、A12O3 8.22%、CaO1.86%、MgO0.55%、As0.012%、C固定0.03%。
矿石中钼物相分析成果:硫化钼中钼31.50%,钼华中钼23.24%,钼钙矿中的钼占45.26% 。
辉钼矿首要与石英亲近共生,其他在黄铁矿中占1.82%,在赤铁矿中占0.55%。氧化钼矿藏首要散布在脉石裂隙中,呈浅黄色或土黄色集合体,大部分坚持辉钼矿晶体外形,呈风化状,易泥化。钼矿藏呈粗细不均匀嵌布,以细粒为主。金以显微金和次显微金为主,首要呈裂隙金和包裹金嵌布于石英脉中,罕见与铁矿藏呈共生联系。
二、选矿实验
实验选用的工艺流程:原矿破碎一棒磨一硫化钼浮选一氧化钼浮选一硫化矿精矿按捺辉钼矿一化浸出一活性炭吸咐。
矿石破碎、挑选性磨矿实验:浮选实验的首要意图是收回钼矿藏,由于矿石中氧化钼呈风化状,易泥化,有必要选用挑选性磨矿办法才尽可能地防止氧化钼矿藏因过磨而泥化丢失。选用惯例破碎设备将样品破坏至-2mm后,进行球磨机、棒磨机的挑选性磨矿比照实验。以0.074mm筛子筛析进行产品的粒度检测,显微镜检测矿藏单体解离度。-10μm粒级进行水力沉降分析,检测因破碎磨矿产生的次生矿泥量。
硫化矿钼金混浮流程实验:进行钼金混浮实验时既要确保硫化钼的的精矿档次,使钼精矿质量到达标准售出[2],一起又要尽可能地进步钼和伴生金的收回率。为此,进行了硫化矿捕收剂比照实验,以火油为首要捕收剂,辅佐丁基黄药、丁铵黑药等极性捕收剂进行辉钼矿浮选实验[3]。
氧化钼浮选实验:浮选实验断定以碳酸钠为pH值调整剂;改性水破璃为矿泥分散剂和脉石按捺剂,烃基铵RJT为捕收剂进行浮选实验[4]。
硫化钼脱药按捺辉钼矿实验:辉钼矿的天然可浮性非常好,特别是在矿藏表面吸咐捕收剂后可浮性添加,化浸出时彻底浮于矿浆表面。因而,不可能直接对硫化钼金混合精矿化浸出金,有必要脱药和将辉钼矿按捺后才干进行化浸出。化浸出——活性炭吸附:进行化浸出——活性炭吸附条件实验研讨,通过优化实验条件,使金得到较好地收回。
三、成果与评论
(一)破碎、磨矿
氧化钼矿呈土状、贝壳状,质地软、易泥化。实验发现用反击式破碎机粗碎、对辊破碎机细碎对晶体维护较好[4]。将样品破碎到-2mm,进行磨矿细度实验。磨矿细度过粗,有用矿藏解离不充分,导致氧化钼选别目标低,精矿中杂质含量也超支,晦气氧化钼粗精矿进一步化工处理。显微镜下检测成果表明,当磨矿细度到达-0.074mm占65%时,钼矿藏已有95%到达单体解离。实验中发现挑选棒磨机进行细磨,磨矿产品中-10μm次生矿泥量显着低于球磨产品,选矿技术目标显着好于球磨机磨矿。棒磨产品选别目标和球磨相比较,精矿氧化钼档次进步3.5%,钼收回率进步5%;在相同细度下,辉钼矿和金的选别目标相差不大。
(二)硫化矿浮选
选用火油、2#油作为辉钼矿的浮选药剂,用量分别为180 g/t和90g/t。因矿石中首要的硫化矿为辉钼矿,其他非钼硫化矿含量较低,所以能够辅佐用其它极性捕收剂强化辉钼矿和矿石中伴生金的捕收。选用一次粗选、三次扫选、六次精选的工艺流程,进行极性捕收剂的比照实验,实验成果见表1。从极性捕收剂的比照实验能够看出,不加极性捕收剂,钼的收回率较低,金的收回率最低,为了进步金的收回率有必要用辅佐极性捕收剂。在极性捕收剂中,丁基黄药效果较差,丁铵黑药和Y89效果适当,归纳考虑选取丁铵黑药为极性捕收剂,用量为15g/t。
(三)氧化矿浮选实验
以碳酸钠为pH值调整剂,用量为1500g/t;改性水玻璃为脉石矿藏的按捺剂,用量为800g/t;POT为捕收剂,用量为350g/t。选用一次粗选、三次扫选、三次精选、一次精扫选的工艺流程,进行氧化矿浮选实验,实验成果见表2。氧化矿浮选取得到的粗精矿钼档次较低,达不到钼精矿出售档次的最低质量要求,有必要通过化工处理。现一般选用酸法浸出一萃取一反萃一沉积或加碱焙烧水浸一离子交换一酸沉的工艺流程。取得的氧化钼粗精矿经上述两种办法处理,均能取得档次大于52%的钼化工产品。
(四)硫化钼精矿脱药按捺辉钼矿实验
辉钼矿具有天然的可浮性,钼精矿不可能直接进行化浸出,有必要脱药和将辉钼矿按捺后浸出进程才干顺利进行。钼精矿在550℃ 条件下,焙烧3h后能够取得满足的浸出效果 可是,辉钼矿焙烧设备较杂乱,对焙烧产品的质量要求也较严厉,因而在一般状况下不选用焙烧、浸出工艺流程收回金。实验研讨发现,选用、氧化剂等药剂对辉钼矿的脱药效果均较差,而活性炭脱药效果较好。选用颗粒活性炭作为脱药剂和金的吸附剂。脱药实验成果表明,辉钼矿经浮选后,惯例的糊精、木素磺酸钙、羧甲基纤维素等药剂按捺效果较差,在药剂用量较大的条件下,也不能将辉钼矿彻底按捺,总有部分硫化钼上浮悬浮在矿浆中,金浸出率较低。而选用改性淀粉PPG作为辉钼矿按捺剂具有药剂用量小,按捺效果好的特色。在药剂用量为1200g/t的条件下就能将辉钼矿彻底按捺。
(五)硫化钼精矿化浸出实验
辉钼矿选矿富集比较高,钼精矿中金档次较高,而金收回率较低。在将硫化钼精矿脱药及按捺辉钼矿后,进行了浸出条件实验。实验选用NaOH调理pH值为>12,用量为2.8kg/t,浸出时刻36h,液固比3:1,实验成果见表3。钼精矿经化浸出后,金的浸出率为93.2%,活性炭吸附率为97.6%,金浸出吸附率为91.0%,选冶金的总收回率为57.81% 。
四、结 语
(一)自然界中的钼以辉钼矿为主,首要为易选硫化矿。实验样品中的钼以氧化矿为主,钼是矿石收回的主元素。矿石中伴生的金档次较低,以显微金和次显微金为主。选用浮选办法将金富集在硫化钼精矿中,辉钼矿富集比大,钼精矿中金档次较高,但金的收回率偏低。
(二)矿石破碎、磨矿进程中,氧化钼矿应防止过破坏,不然氧化钼收回率会大幅度下降。氧化钼矿收回以浮选为主,所选用的浮选药剂有必要有较好的挑选性。氧化钼粗精矿通过化工处理后,才干取得合格的钼化工产品。
(三)硫化钼精矿因天然可浮性好,不能直接化浸出金,有必要脱药和将辉钼矿按捺后化浸出进程才干顺利进行。活性炭具有脱药和吸附的两层效果。钼精矿经预处理后,得到了较好的金化技术目标。
[参考文献]
[1] 林春元.钼矿选矿与深加工[M].北京:冶金工业出版社,l996.
[2] 任觉世.工业矿产资源开发使用手册[M].武汉:武汉工业大学出版社.1993.
[3] 王淀佐.浮选剂效果原理及使用[M].北京:冶金工业出版社,1982:222.
[4] 刘学胜,等.钼氧化矿藏浮选实验研讨[J].有色矿冶,2004(6):12—14.
提高氧化钼矿技术指标的选矿试验研究
2019-02-21 12:00:34
某储量规划中型的钼矿床,矿体上部以氧化矿为主,下部首要为硫化矿,矿山采矿选用露天结兼并下挖掘方法,现在人选矿石以氧化矿为主。
一、矿石性质
矿石组成成分相对简略,金属矿藏首要是辉钼矿、钼华、钼钙矿、磁铁矿,其次为白钨矿、黄铁矿、黄铜矿、钛铁矿;脉石矿藏首要是石英、长石、高岭石、角闪石,其次为方解石、绿泥石、白云母等;矿石中钼氧化率高,加之泥质矿藏和非钼有色金属矿藏对氧化钼浮选有较大的影响,该矿石属难选钼矿。
原矿多项分析成果(%)为:Mo 0.34、WO0.14、Cu 0.02、S 0.58、Fe 3.36、SiO2 66.8、Al2O311.91、CaO 2.40、MgO 0.61。矿石中首要矿藏组成及含量(%)为:辉钼矿0.18、钼华0.13、钼钙矿0.32、白钨矿0.17、黄铁矿0.42、赤铁矿3.90、石英57.5、长石9.6、方解石1.8。原矿钼物相分析成果见表1。矿石钼氧化率68.5%。首要矿藏嵌布特征为:辉钼矿首要与石英亲近共生,其它在黄铁矿中占1.82% ,在赤铁矿中占0.55% ;氧化钼首要散布在脉石裂隙中,呈浅黄色或土黄色集合体,大部分坚持辉钼矿晶体外形,呈风化状易泥化。矿藏呈粗细不均匀嵌布,以细粒为主;白钨矿与石英共生亲近,罕见与铁矿藏呈共生联系。
二、选矿实验
(一)磨矿细度实验
矿石中氧化钼极易泥化,应选用具有挑选性破磨效果的设备。经比照实验,对辊破碎和棒磨机有利于防止氧化钼泥化而丢失,因而选用挑选性破磨设备进行磨矿细度实验,流程见图1,成果见图2。图2 磨矿细度与硫化钼粗精矿档次、收回率联系图3 磨矿细度与氧化钼粗精矿档次、收回率联系
成果表明,跟着磨矿细度变细,硫化钼精矿档次和收回率升高,氧化钼精矿档次和收回率均有所下降,而磨矿粒度太粗,辉钼矿解离不充分,硫化钼收回率较低,故磨矿细度挑选-200目占70%为宜。
(一)硫化矿浮选
硫化钼浮选选用火油为捕收剂、2#油为起泡剂,经一次粗选二次扫选,粗精矿直接精选五次、中矿次序回来等惯例选钼药剂和工艺流程,成果见表2。(三)氧化钼浮选
以硫化钼浮选尾矿作为氧化钼的浮选给料进行浮选实验,氧化钼矿因可浮性差,与脉石矿藏浮选性质差异小,有必要经过增加选矿药剂改动其可浮性;因而氧化钼矿浮选捕收剂和调整剂的挑选是十分重要的,选用惯例的油酸、731的氧化矿捕收剂,因其捕收功能强,挑选性较差,药剂用量较大,生产成本较高[1];加之氧化钼矿藏的可浮性与其间的含钙脉石矿藏的可浮性差异小,得到的精矿档次十分低,因而有必要选用挑选性相对较好的氧化矿捕收剂。经过比照实验,挑选RT作为氧化钼矿捕收剂,该药剂用量、挑选性好。实验成果见图4。成果表明,捕收剂用量相对较小,而跟着药剂用量增大,收回率增加而精矿档次下降,因而捕收剂用量挑选500 g/t为宜。图4 捕收剂用量与氧化钼粗精矿档次、收回率联系
(四)按捺用量实验
因为氧化钼的可浮性与矿石中萤石、方解石等脉石矿藏的可浮性十分附近,因而有必要经过增加挑选性按捺剂按捺脉石矿藏[2],探究实验成果表明,选用惯例的水玻璃按捺剂对氧化钼矿藏也具有较强的按捺效果,而选用改性水玻璃能够下降对氧化钼的按捺效果,增强按捺剂的挑选性,然后有利于在捕收剂的合作下取得较高的精矿档次;实验挑选改性水玻璃作为氧化钼矿调整剂,实验成果见图5。成果表明,药剂挑选性较好。图5 按捺剂用量与氧化钼粗精矿档次、收回率联系
图5显现出了按捺剂用量对氧化钼精矿档次和收回率的影响。因为矿泥的影响,在药剂用量2500g/t的范围内,按捺剂用量与收回率呈正相关联系,跟着按捺剂用量增大,收回率下降而精矿档次增高,当按捺剂用量超越2000g/t后,钼收回率急剧下降,因而按捺剂用量挑选2000g/t较适合。
(五)精选实验
经粗选得到的氧化钼粗精矿中含有很多的方解石、萤石及少数的重晶石,这些脉石矿藏对氧化钼精矿后续加工带来较大的影响,有必要进行精选。精选选用粗精矿浓缩脱药,浓缩后矿浆加温至85℃,保温4 h,参加水玻璃5~8kg/t,然后浓度稀释至35%,经一次粗选四次精选二次扫选流程选别,精选中矿次序回来,得到产率0.79% 、氧化矿精矿档次27.65%、精选作业收回率87.83%的实验目标。
(六)归纳条件实验
挑选磨矿细度为-200目占70% ,硫化钼浮选选用火油为捕收剂、2#油为起泡剂,经一次粗选二次扫选,粗精矿直接精选五次、中矿次序回来等惯例选钼药剂和工艺流程;氧化矿选用lit为捕收剂用量500 g/t、按捺剂改性水玻璃用量超越2 000 g/t、粗精矿浓缩脱药、加温精选的工艺流程终究得到实验目标如表3所示。三、定论
(1)自然界中辉钼矿为易选硫化矿,但该矿区矿石钼以钼华和钼钙矿氧化矿为主,其可浮性下降[3],加之矿石中含有很多的矿泥,属难选矿石。
(2)氧化钼矿收回以浮选为主 [3,4],浮选药剂有必要有较好的挑选性;在挑选破坏工艺时应防止氧化钼过破坏,选矿目标也与浮选设备亲近相关。
(3)氧化钼矿精选很难到达满足的精矿档次,过高地寻求精矿档次对收回率影响较大。
(4)选矿得到的氧化钼精矿档次较低、杂质含量高。经化工处理后可得氧化钼产品,得到的氧化钼产品钼档次47.18% ,作业收回率可达81.82%。
参考文献:
[1]王淀佐.浮选剂效果原理及使用[M].北京:冶金工业出版社,1982.222.
[2]朱建光.浮选药剂[M].北京:冶金工业出版社,1993.140—141.
[3]林春元.钼矿选矿与深加工[M].北京:冶金工业出版社,1996.
[4]陈建华,冯其明.钼矿选矿现状[J].矿产维护与使用,1994,(6):26—28.
氧化钼矿石钼钙矿的选别
2019-02-21 13:56:29
钼钙矿(CaMoO4)与白钨矿晶型相同,见图1。
图1 钼钙矿的晶体结构
纯钼钙矿没有共同的工业价值。它往往与辉钼矿或白钨矿共生。在硫化钼或白钨矿选别时可考虑归纳收回。
在硫化钼矿床中的钼钙矿主要为辉钼矿氧化产品,往往散布在硫化钼矿床的氧化带内,与辉钼矿共生。
辉钼矿在气-水介质的氧化-复原相态转化参照图2及图3。在氧化灰件,辉钼矿首要氧化成MoO2·SO4络离子,它与重碳酸钙溶液触摸,会反响沉积出钼酸钙:
2MoS2 + 9O2 + 2H2O=2(MoO2SO4)+ 2H2SO4
MoO2SO4 + Ca(HCO3)2=CaMoO4↓+ H2SO4 + 2CO2
随辉钼矿氧化程度的不同,钼钙矿占总钼量的5%~40%不等。
图2 Mo—Fe—S—H2O系统Eh—PH图解
图3 水介质中钼随Eh—PH状况改变25℃,0.1MPa
钼钙矿系典型含氧酸盐,晶格内由强极性键严密键合,不具备天然可浮性。在烃油捕收辉钼矿时,单体的钼钙矿难以上浮,经尾矿而丢失。
钼矿石中,钼钙矿与辉钼矿共生关系密切,有时会呈皮膜状包裹在辉钼矿晶粒表面,构成表层钼钙矿化的辉钼矿而失掉浮游活性。
据测定,前苏联巴尔哈什选矿厂在处理东科恩拉德硫化钼矿石时,终究尾矿含钼约0.01%~0.02%,其间,60%左右的钼呈钼钙矿存在,其他的钼则以表面钼钙矿化了的辉钼矿、贫辉钼矿连生体、泥化了的辉钼矿存在。[next]
唐顺英测定,杨家杖子钼选厂在选别辉钼矿所产出终究尾矿里,一般含钼0.013%~0.015%,其间,60%左右也是钼钙矿或钼钙矿化了的辉钼矿。因为它们难上浮,约50%~55%在粗选尾就已丢失,别的5%~10%则在再磨精选后,由精尾遗出。按此核算,原矿钼含量的7.7%~11.3%是钼钙矿或钼钙矿化了的辉钼矿。给钼钙矿的收回带来必定困难的原因是:
(1)氧化带矿石受表生成矿作用,矿藏晶格遭到必定程度损坏,磨矿时易泥化。
(2)矿石一般伴生有其它含钙矿藏,如方解石(CaCO3)、萤石(CaF2)、磷灰石(Ca(PO4)2)等,它们与钼钙矿(CaMoO4)同为含相同阳离子(Ca2+)的含氧酸盐(CaF2破例,不含氧),浮游性质很挨近,使钼钙矿浮选时,难与含钙脉石别离。
收回钼钙矿的实践或研讨还不多见,仅见于前苏联矿业研讨所对东科恩拉德矿石的研讨,巴尔哈什选矿厂对钼钙矿收回实践,钼钙矿浮选工艺分作别离浮选与混合浮选两种。
别离浮选是从辉钼矿浮选尾矿中收回钼钙矿的工艺。1950年前苏联И·A·思特里金特等人首要研讨并初次用于巴尔哈什选矿厂,以东科恩拉德硫化钼浮选尾矿中收回钼钙矿。
钼钙矿捕收剂一般用油酸(约100g/t)为一起收回辉钼矿,还须参加火油(200g/t),起泡剂选用二。浮选生产工艺包含粗选、扫选,粗精矿加水玻璃(1300g/t),经蒸吹(温度85℃下处理30~40min),再过滤、脱药,并用新鲜水调浆后进行四次精选。火油、油酸捕收力较弱,选择性较差,所以泡沫产品中钼钙矿的档次和收回率都较低,无法产出合格的钼精矿,只能获取含钼7.5%~15%、铜2%~3%、钙30%~35%、铁3%~8%、硫4%~6%的钼中矿。该中矿还须经焙烧-浸出提取工艺制成钼酸钙(CaMoO4)后使用。
前苏联矿业研讨所研讨了用烷基硫酸钠作油酸、火油的分散剂。作用见图4及图5。
图4 乳化剂(烷基硫酸钠)对钼钙矿浮选影响
图5 有无分散剂对钼钙矿浮选影响
明显,参加少数分散剂烷基硫酸钠能够进步钼钙矿的收回率和浮游速度。
“别离”浮选无法获合格钼精矿,并且浮选设备添加。为此,前苏联矿业研讨所研讨了“混合”捕收硫化钼与氧化钼的工艺。[next]
“别离”浮选与“混合”浮选动力学曲线比照,如图6及图7。
图6 氧化钼的浮选动力学曲线
图7 全钼浮选动力学曲线
从图可见,“混合”与“别离”浮选工艺目标相同,但浮选速度加速,浮选时刻缩短。明显,硫化钼和氧化钼矿藏可混合浮选而不下降精矿质量。
辉钼矿、钼钙矿混合浮选在1963年进行工业实验。实验在原硫化矿浮选系列上进行,球磨机添加苏打(600g/t)、火油(200g/t),扫选参加油酸钠(l00g/t)与硫酸烷酯(10g/t)混合液,粗选、扫选还补加了火油,因油酸钠与硫酸烷酯也具起泡性,起泡剂二用量减少了50%。蒸吹、精选工艺改变不大。实验证明,混合浮选比“别离”浮选,钼收回率均匀进步5%。
对是否选用混合浮选,首要要看能否获取合格的混合钼精矿,“别离”浮选产出的钼钙矿精矿含钼7.5 %~20%,按此核算,混合精矿中钼钙矿部分不能超过钼总最的13%~18%。也就是原矿石中钼钙矿份额不能太高,不然,混合精矿就难以保证质量。
钼矿床中的钼钙矿主要为钼类质同象替代白钨矿(CaWO4)中钨的产品,很少见不含钨的纯钼钙矿。钼进入钨矿藏晶格替代钨,随替代量的添加,构成白钨矿、钨钼矿、钼钨矿、钼钙矿。其晶形与白钨矿、钼钙故相同;浮游功能也与白钨矿、钼钙矿类似。含钼钙矿的钨矿石在浮选中,钼钙矿与白钨矿无法别离,一起进入钨精矿,再经浸出-提取工艺以别离,提纯出钼产品。
氧化钼矿的浮选柱分选工艺技术
2019-01-24 09:35:03
河南某矿钼矿石为强矽卡岩化的蛇纹石化辉钼矿矿石、绿泥石化辉钼矿矿石、强褐铁矿化氧化贫矿石。有用成分主要是氧化程度较高的辉钼矿,矿物嵌布以微细粒嵌布为主;脉石矿物中绿泥石、蛇纹石、滑石等易泥化的矿物较多。大量原生及次生矿泥影响了钼的回收率,因此该钼矿为国内外极难选钼矿。
该矿现有1100t/d处理量的选矿厂,分为2个系列。一系列为500t/d的处理量,采用1次粗选、3次扫选、10次精选的流程;二系列规模为600t/d,采用1次粗选、4次扫选、10次精选的流程。
上述流程存在的主要问题是:①钼金属回收率低,仅有40.00%~50.00%;②钼精矿品位低,钼精矿品位仅为15.00%~20.00%,达不到钼精矿最低国家质量标准。
2006年3月该矿与中国矿业大学合作,采用柱式分选工艺分别进行了-20μm粒级细泥浮选柱半工业分流试验,随后进行了粒级半工业分流试验和精选分流试验,取得了满意的试验效果;2007年8月该厂安装了3台工业浮选柱,经过调试试验,系统稳定运行。
细泥部分是入浮原矿分流了一部分进行水力旋流器分级,-20μm粒级部分进入柱分选系统,经1次粗选、2次精选获得精矿产品和尾矿;全粒级分选是直接从入浮原矿分流进入柱分选系统进行分选;精选部分是直接引入浮选机粗选精矿经3次精选获得最终钼精矿产品。
细泥和全粒级分选流程见图1,精选流程见图2。图1 细泥/全粒级分流试验流程图2 浮选柱精选分流试验流程
细泥部分半工业分流试验结果见表1,全粒级半工业分流试验结果见表2,精选分流试验结果见表3。
表1 细粒级矿石半工业分流试验结果 %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1
2
3
4
平均0.169
0.198
0.180
0.210
0.18927.40
29.60
27.45
28.38
29.210.070
0.082
0.078
0.083
0.07858.73
58.75
56.83
60.65
58.740.186
0.195
0.217
0.204
0.20122.17
18.58
18.83
17.96
19.390.09
0.121
0.117
0.102
0.10851.82
37.95
46.37
50.29
46.61
从表1看出,对于细粒级钼矿的分选,柱式分选比浮选机流程有明显的优势,精矿品位提高了8.82个百分点,回收率提高了12.13个百分点。由于该矿石的高氧化部分大部分赋存于细粒级中,所以将细粒级分级出来采用柱式分选是有良好效果的。
表2 全粒级矿石稳定性试验结果 %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1
2
3
4
5
平均0.195
0.184
0.197
0.195
0.191
0.19229.49
26.47
31.89
30.71
30.54
29.820.102
0.063
0.093
0.097
0.100
0.09147.86
65.92
52.95
50.41
47.80
52.770.186
0.212
0.194
0.190
0.188
0.19419.67
17.85
18.11
16.38
18.20
18.040.108
0.111
0.0984
0.108
0.104
0.10642.17
47.94
49.55
43.16
44.94
45.63
从表2看出,全粒级钼矿分选,与细闰级比较,柱式分选精矿变化不大,但是尾矿稍微偏高。主要原因是矿石粒度变粗,未完全解离的部分增加;但是比同条件下浮选机流程的分选结果要好,在入料性相当的情况下,柱式分选的精矿品位提高了11.78个百分点,回收率提高7.14个百分点。
表3 浮选柱精选分流试验结果班次粗精浮选柱浮选机精矿精尾回收率精矿精尾回收率1
2
3
平均1.73
2.03
1.86
1.8738.74
37.52
39.29
38.520.235
0.284
0.319
0.27986.94
86.67
83.53
85.7019.89
17.35
19.26
18.500.798
0.672
0.653
0.70856.25
69.59
67.17
64.61
从表3看出,与浮选机10次精选结果相比,同等入料条件下,柱式分选两段精选的效果更好。精矿品位可以提高到38.52%,比浮选机提高了20.02个百分点,精选回收率提高 21.09个百分点。
氧化矿钼矿的半工业分流试验结果表明,柱式分选对于高氧化率钼矿石有着比普通浮选机流程更为高效的分选效率。由于矿石氧化程度较高,在现有药剂制度条件下,精矿品位很难提高到40.00%以上,回收率也很难提高到65.00%以上。
钼焙砂升华法生产三氧化钼
2019-02-12 10:08:00
三氧化钼的熔点,沸点均较低,其熔点为795℃沸点为1155℃。三氧化钼在熔化前就已开端提高,当温度达900~1100℃时,蒸腾已适当快。气相的三氧化钼是以重聚合分子(MoO3)3状况存在。纯三氧化钼随温度改变,其蒸汽压的改变见下表。
表 温度与三氧化钼蒸汽压联系
温度(℃)600610625650720750800蒸汽压(Pa)0.001.202.406.6779.99233.311346.55温度(℃)8509009501000105011001150蒸汽压(Pa)3119.747186.0614012.1426504.4138436.7363487.94101324.7
液态三氧化钼上面的蒸汽压与温度之间联系,可用如下方程式表明: LgP(MoO3)3=-1024580+1101.2T
式中P——(MoO3)3蒸汽压(Pa);T——标定温度(K)。
此刻,蒸腾热△H蒸=147KJ/mol,蒸腾熵△S蒸=103J/mol。
纯三氧化钼的蒸腾速度随气流温度,速度而改变。即与重聚分子(MoO3)3从液面迁移出的速度相关。当气流速度在0.2~0.3cm/s时,气流温度为900℃,纯三氧化钼蒸腾速度为12.3kg/(m2·h),气温升至1100℃后,蒸腾速度骤升至110kg/(m2·h)。
提高法出产高纯三氧化钼的质料是工业钼焙砂,其间含有不少杂质,它们混入液体三氧化钼内,将下降三氧化钼的蒸汽压,因此下降三氧化钼的蒸腾速度。杂质含量愈高,影响愈显着。同一质料随蒸腾的继续进行,剩余物中杂质比率也显着加大。所以,出产实践中三氧化钼蒸腾速度也在逐步下降。在1000℃和气流速度2.3cm/s条件下,三氧化钼从含MoO348%~50%的钼焙砂中蒸腾速度仅为10~20kg/ (m2·h)。
钼焙砂所含杂质都是随钼精矿带入的。它们包含:氧化钙、氧化镁、氧化铁、氧化铅、氧化铜、氧化锌及二氧化硅等。对三氧化钼蒸腾速度影响最大的是那些能生成安稳钼酸盐并在提高温度(950~1100℃)下也不分化的钙、镁、铅、铁的氧化物杂质。明显,这些钼酸盐中的钼是无法提高出三氧化钼。至于氧化铜、氧化锌与三氧化钼生成的CuMoO4、ZnMoO4在≥900℃后就已分化;二氧化硅与三氧化钼间不发生化学反响。而PbMoO4不只储留了MoO3并且由于它的沸点为1060℃与MoO3明显提高温度共同,在1000~1100℃时,蒸汽压也适当可观,会随三氧化钼一起蒸腾进人高纯三氧化钼产品。所以,对用于提高法出产高纯三氧化钼的钼焙砂含铅量要求较严。当含量较高时,应严格操控提高温度,不该高于1000℃。可是,不论是否参予三氧化钼的反响,一切杂质都会影响三氧化钼的提高速度。[next]
美国克莱迈克斯选用含Mo56%、Cu0.16%、Fe 0.38%、SiO24.5%、A13O3 0.28%、CaO0.06%、Pb0.04%高质量钼精矿,经焙烧成含三氧化钼约90%的钼焙砂作质料,用电炉加热到1100~1200℃,并不断送入空气,提高的三氧化钼由空气带入收尘体系搜集,所得产品纯度可达99.9%,乃至高达99.975%MoO3。松装密度约0.2g/cm3。但质料中三氧化钼提高率仅60%~65%,余下的炉渣往往还含20%~30%未提高的MoO3被送去由湿法收回或冶炼钼铁。
前苏联在提高工艺中操控气流中MoO3浓度≥0.05g/L,气流速度7~14cm/s,温度>690℃,出产出高松装密度0.8~1.2g/cm3的高纯三氧化钼。提高用电炉常有接连与间歇两种。
美国的一些厂商往往选用环形旋转炉底能接连出产的电炉,如下图。
图 电提高炉示意图
为防剩余物料烧结,炉底铺有一层石英砂。在炉上部径向摆放有硅碳加热电极。钼焙砂不断参加电炉炉底上,一边焙烧一边浸透石英层构成固定炉床,空气按要求的流速从炉底流过,带走已提高的三氧化钼,经过总集气管,表面冷凝体系,进入空气集尘器,高纯三氧化钼产品在此与空气别离。电炉由电极加热至1000~1100℃,并不断旋转。钼焙砂随电炉旋转一周后,其间三氧化钼已提高60%~65%,剩余炉料被螺旋耙料机从炉底卸出,并由给料器补加新的钼焙砂。被卸出的残渣还含有20%~30%的三氧化钼,往往经过浸收回,也有送去冶炼钼铁。此种电炉昼夜可出产3.75t高纯三氧化钼。
奥地利普兰杰厂出产规模较小,所以选用小型间歇式电炉提高三氧化钼。他们将钼焙砂与石英砂的混合物装入石英坩锅中,再放入与地表成35℃的旋转电炉内。歪斜增大了炉料的蒸腾面积,通入坩锅的空气将三氧化钼蒸汽带走。经电炉上通风罩由抽风机抽到带滤器中。
提高法出产高纯三氧化钼,工艺简略,产品纯度高。可是,对质料质量要求高,产品钼收回率低。