二硫化钼粉的胶体化
2019-01-29 10:09:51
作为固体润滑剂,不仅要求纯度,而且对产品细度要求也很严格(见表1及表2)。
表1 国际二硫化钼粒度标准
标 准等级粒径(μm)筛析(目)+30-20
+20-20
+10-10
+5-5
+2-2+100-100
+200-200
+325-325国际贸易标准非微粉50201783.81.2052075微粉 204733 克莱麦克斯
1971年标准非微粉 2 051085微粉平均粒度0.55~0.85μm(产品为0.70μm)
表2a 国产MoS2粒度标准
粒径
含量(%)
产品标准粒 径(μm)<2<4<7.5<10>325目沪Q/HG0050#≥955 ≤0.51# ≥955 ≤0.52# ≥95≤0.5西北有色金属研究院微粉≥80 平均<0.5μm超<1μm平均<0.3μm微粉≥97μm
表2b 国产MoS2粒度标准
粒径
含量(%)
产品标准粒 径(μm)<1<23~56~7>7沪Q240/80080107.0301 907.220.82 5525155
要达到平均粒度为1μm左右,常规胶体磨已难完成此重任。通常要采用超音速气流式粉碎机。它的工作过程是:由空压机产生的0.8~1.2MPa气流由喷嘴送入破碎腔,由高速气流按射流原理将二硫化钼粉由给料口吸入,送进破碎腔。在Laval喷嘴口,气流流速已达2~3马赫(约2.625~780m/s),二硫化钼颗粒在喷嘴口、破碎腔里受到撞击、剪切、摩擦、压缩等作用而粉碎。粉碎后产品在分级腔分级。不合格粗颗粒自动返回喷嘴及破碎腔。磨成胶体的合格产品随气流排出粉碎机,经多级旋风收尘器和布袋收尘器分离,几乎不含固体粉末的废气排空,收集到的固体已分级成不同细度的二硫化钼胶体。气流粉碎是一种新兴技术,除了二硫化钼的胶体化,在石墨等要求加工成极细粒径产品时也不失为一种最佳选择。只是系统的密封、收尘要千万注意。
卫生级不锈钢管标准
2019-03-18 11:00:17
卫生级(食品级)无缝不锈钢管的生产与应用 (2004-5-31) 内容摘要: 随着国民经济建设不断地发展,各工业行业使用卫生级(食品级)无缝不锈钢管越来越广。通过对不锈表面钝化层耐腐蚀能力分析,并结合本公司生产小型卫生级无缝不锈钢管的工艺与设备应用,生产出高质量的钢管,满足工业流体管的需求,填补国内空白,替代进口。 关键词:表面钝化层耐腐蚀能力生产工艺与设备管内外表面光洁度 卫生级(食品级)无缝不锈钢管在制药、食品、啤酒、饮用水、生物工程、化学工程、空气净化、航空、核工业等国民经济建设多领域多行业上广泛地应用,每年有大量的进口。这里介绍本厂生产卫生级(食品级)无缝不锈钢管的工艺与设备、管的性能与质量。此管属于国内最先进最精密水平已广泛应用,并出口国外。 一、不锈钢的表面分析 俄歇电了能谱(AES)法和X射线光能谱(SPS)法都可用于不锈钢表面分析,从而确定不锈钢管内外表面耐腐蚀能力。AES法的分析直径非常小,可以小于20nm,它的最初功能是作为元素的辨认。XPS法的分析直么大约10μm,主要用于确定临近表面元素的化学状态。 用AES和XPS探测仪对机械抛光的已暴露在大气中316不锈钢表面进行扫描的结果表明,对不锈钢金刚表面分析总深度最典型的为15nm,并且提供了有关钝化层的成分、厚度及它的耐腐蚀能力等。 根据定义,奥氏体不锈钢含有高铬和镍,有的含钼(如316L00Cr17Ni14Mo2)、钛等,一般含有10.5%的铬以上具有较好耐腐蚀能力。耐腐蚀是因为富铬钝化层具有保护性能的结果,钝化层通常为3-5nm厚,或相当于15层原子那样厚。钝化层是在铬和铁被氧化的氧化-还原反应过程中形成的,如果钝化层遭破坏,又会迅速形成新的钝化层和/紧随着发生电化学腐蚀,会出现不锈钢深层点蚀及晶间腐蚀。钝化层耐腐蚀能力与不锈钢中所含化学成分含量有关,如高铬、加镍与钼等都能提高钝 化层结合能电势,加强钝化层耐腐蚀能力;并与不锈钢管内表面处理及使用流体介质有关。 二、不锈钢管表面腐蚀情况 1、在含Ci-介质中不锈钢表面钝化层容易被破坏,这是因为Ci-氧化电势能较大。如果钝化层印化层仅仅在金属就将继续腐蚀下去。在很多情况下,钝 化层仅仅在金属表面的局部地方被破坏,腐蚀的作用在于形成细小的孔或凹坑,在材料表面产生无规律分布的小坑状腐蚀称为点蚀。点蚀速率随温度升高而增加,随浓度增加而增加。解决方法是用超低或低碳不锈钢(如用316L 304L) 2、奥氏体不锈金刚在制造和焊接时不锈钢表面钝经层容易被破坏。制造和焊接时加热温度和加热速度在不锈钢敏化温度区域(约425-815℃)时,材料中过饱和碳就会在晶粒边界首先析出,并与铬结合形成碳化铬Cr23C6,此时碳在奥氏体内的扩散速度比铬扩散速度大,铬来不及补充晶界由于形成碳化铬而损失的铬,结果晶界的铬含量就就随碳化铬的不断析出而不断降低,形成所谓的贫铬区,使电垫能减弱,钝化层耐腐蚀能力下降。当与介质中Ci-等腐蚀介质接触时,就会引起微电池腐蚀。虽然腐蚀仅在晶粒表面,但却迅速深入内部形成晶间腐蚀。特别不锈钢管在焊接处理部位较为明显。 3、应力腐蚀裂纹:是静应力和导致裂纹与金属脆化的腐蚀共同的作用。产生应力腐蚀裂纹破破坏的环境通常是相当复杂的。不仅是拉伸应力,而这种应力和由于制作、焊接、或热处理在金属中产生的残余应力的组合。 三、不锈钢管内外表面处理与耐腐蚀关系 不锈钢管内外表面(特别如电解抛光、机械抛光后)具有良好的钝化层,耐腐蚀能力较强。内外表面光洁度高,介质粘附很少有利于耐腐蚀。管内表面光洁度高液体介质滞留越少,有利于冲洗,特别在制药行业。 1、管内表面电解抛光(电化学抛光):电解抛光液是磷酸、硫酸、铬酐、明胶、重等。不锈钢管内表面在阳极上,抛光液在和内流动通以低电压大电流而进行电解抛光处理。这时管内表面同时进行着两个相互矛盾的过程,即金属表面钝化层(含稠性粘膜)生成与溶解。由于表面微观的凸起部分和凹进部分成膜进入钝化的条件是不同的,又由于阳极溶解。由于表面微观凸起部分和凹进部分成膜进入钝 化的条件是不同的,又由于阳极溶解,阳极区金属盐浓度不断增加,在表面形成一种高电阻的稠性粘膜。该膜在凹凸处厚度不同导致阳极表面电流密度大,尖端放电溶解速度快,在短时间内达到削平突出的微观部分的目的,能达到很高的光洁度Ra≤0.2-0.4μm。并在这种作用下,管内表增加了铬含量,增加了金属表面钝化层的耐腐蚀能力。 如何掌握抛光的质量要与电解液配方、浓度、温度、通电时间、电流密度、电极状况、管表面处理程度等有关。技术掌握不好反而会破坏管表面光洁度,电解程度过大会出现更多更大的凹凸面,甚至条管报废,真正制作好质量需要一定技术,费用成本较高。 2、管内表面机械抛光:有旋转与直线抛光。这里以旋转机械抛光为例:机械抛光设备较为简单,动力与抛光盘、高级抛光设备较为简单,动力与抛光盘、高级抛光蜡。采用逐级细砂粒作的布盘与布盘在管内外表面上来回多次多道进行抛光处理,光洁度能达到Ra≤0.2-0.4μm。 机械抛光与电解抛光相比较具有设备简单、技术含量低容易掌握,费用成本也低,不会破坏管而造成报废,因此广泛地应用。但表面印化层耐腐蚀能力电解抛光要好的多。 四、卫生级无缝不锈钢管生产工艺 炼钢--轧制圆钢--穿孔--冷拔--冷轧--光亮退火--内表面抛光--外表面抛光--检测验收--包装入库。 本厂生产卫生级无缝不锈钢管是从冷拔开始。 在生中几个关键设备: 1、冷拔管机:圆钢穿孔后称荒管,一般荒管为Ф65*5mm或Ф100*7mm。一般工业用的卫生级不锈钢管从Ф14*1mm至Ф200*3mm,这样需要扩管与拉小管,要有冷拔管机来进行。有时需要几次扩管或拉小管,而又退火(热处理)与酸洗循环进行。 冷拔管机种类、规格,芯棒种类、规格很多不作描述。 冷拔的主要优点是:生产效率较高;生产中变更产品规格比较方便,灵活性大;工具的设备和制作以及设备的结构维护比较简单。 冷拔的主要缺点是:道次变形量小,因此加工道次多,生产周期长;金属消耗大。管内外表面光洁度差(谈不上洁度)。 2、多辊式冷轧管机:是国内制造卫生级无缝不锈钢管关键设备。以冷拔后钢管为坯料,冷轧后管内外径与壁厚尺寸正负小于0.02-0.05mm,管内外表面光洁度Ra≤0.8μm,并可制作到壁厚0.5mm。再经抛光处理管内外表面光洁度可达Ra≤0.2-0.4μm(如镜面)。 多辊式冷轧管机种类、规格,芯棒种类、钢管规格很多不作描述。 冷轧后管最大的缺点是硬态,也即屈强系数较大,不宜扩口、弯曲,严格地说还是不符合国家标准,因此要进行热固熔处理(退火)。 一般情况不锈钢管经普通热固熔处理炉(奶火炉)处理后,管内外表面出现氧化皮需要酸洗,这样又破坏了原来冷轧后管的内外表面光洁度,出现微小凹凸不平,达不到卫生级管表面光洁度标准。因此要选择气体保护光亮退火炉。 3、气体保护光亮退火炉:有两部分组成,光亮退火炉炉体与分解成套装置。 光亮退火炉炉体:主要结构由圆形截面马弗罐,采用两侧和底部部布置高温发热丝的加热方法,分解气作为保护气体和循环冷却气。结构紧凑,操作安全,控制可靠和维修方便,炉温均匀(温度可达1150℃),通源损耗低,能充分利用保护气,冷却速度快,保证了防止碳化铬的重新沉淀析出,使所有碳化铬完全固溶入奥氏体基体内,改变了原有冷轧后管的硬态与金相组织,真正达到固溶处理的目的。 分解成套装置:利用纯净分解成70%与30%气,填充入炉体内驱跑空气(氧气),尽可能空气越小。 经气体保护光亮退火炉处理后不锈钢管已是软态,内外表面少有氧化皮,不需要酸洗处理,并保持冷轧后的管内外表面光洁度。 4、管内表面机械抛光机:上已叙述。 5、管外表面机械抛光机:上已叙述。 五、卫生级无缝不锈钢管的选购 不锈钢是少含有50%的铁和10.5%的铬,并还加入如镍、钛、钼等,根据含有休学成分的不同,金属内部的金相组织也不同,这就有马氏体型、铁素体型、奥氏体型、双相、沉淀硬化型不锈钢等。卫生级无缝不锈钢管也有不同的材质。 一般工业常用用管奥氏体型不锈钢材质较多;0Cr19Ni9(USU304)、00Cr19Ni11(USU 304L)、0Cr17Ni12Mo2(USU 316)、00Cr17Ni14Mo2(USU 316L)、1Cr18Ni9Ti(SUS 321)等。要符合GB/T14976-94《流体输送用不锈钢无缝钢管》的标准,还有对钢管内外表面光洁度的要求。 选购卫生级无缝不锈钢管与流体介质的种类、浓度、温度、压力、流动速度、以及其他因素有关。
钼粉的生产
2019-02-18 10:47:01
仲钼酸铵或经煅烧成的MoO3是制取金属钼粉的质料。在工业出产中,纯仲钼酸铵可直接于炉中复原成金属钼粉,也可将它在550~650℃温度下煅烧成MoO3,然后再复原成金属钼粉。 用粉末冶金出产钼制品中,要求钼粉纯度高,含氧量低,粉末的颗粒度细且均匀。钼粉的出产是在圆管或马弗管电炉或许回转炉顶用氢经二次复原MoO3或仲钼酸铵复原成MoO2,第2次复原是在较高的温度下,将MoO2复原成金属钼粉。各种复原工艺参数列于表1和表2中。现在有的出产供应商选用仲钼酸铵直接氢复原办法出产,其减少了煅烧工序,且避免了因为煅烧而带进的杂质。为确保钼粉质量,除复原温度之外,的流量和湿度,料层的厚度和推速,以及质料粒度等都是影响钼粉粒度的要素。一般H2流量大,露点低复原的粉末细,反之粉末则粗。因此在出产过程中有必要严格控制这些要素,才干取得合格的粉末。 表1 仲钼酸铵进行一次复原的主要参数设 备投料量kg/h 流量m3/h炉管倾角 (o) 各 带 温 度,℃12345回转炉φ400/384mm60~8020~30 3~5 360~380420~440500~540550~580550~580四管马弗炉260*60mm 5kg/舟 舟/60min7m3/h·管 440440500500440表2 管式炉中钼的复原工艺参数 复原阶段设备舟皿尺度mm装料量g/舟推速 min/舟各区炉温 , ℃流量m3/h 露点℃12345第一阶段4管炉300*60*65250~280 200.2~0.3 500~550 11管炉250*40*35 150~18020 350450520540520第二阶段11管炉250*40*35 200~22015 85092092092088013管炉250*40*35 250200.8~1.0750850920920880
钼粉生产工艺简介
2019-02-12 10:08:00
用氢、碳及含碳气体以及硅、铝等都可以将三氧化钼复原为钼。仅仅其他办法难取得纯度高的金属钼。氢复原所生成钼法纯度高,适于出产钼材或钼基合金。
氢复原高纯三氧化钼的化学反响式为:
MoO3+H2450~650℃MoO2+H2O↑ △H°298=-85kJ→
MoO3+H2→Mo+2H2O↑ △H°298=105kJ
反响条件下MoO3与MoO2还或许反响,生成中间氧化物(如Mo4O11等)。
氢复原三氧化钼的标准工艺分作三阶段:
(1)三氧化钼被复原成二氧化钼:
MoO3+H2←→MoO2+H2O
这是一个放热反响。在400~600℃时平衡条件为PH2O/PH2=5.0×107~1.7×106。盛有MoO3粉的镍舟在四管马弗炉内缓慢前移,炉温从400℃上升,在550℃前反响完毕,加温至650℃。排出MoO2粉。若550℃时反响未完毕,易熔中间氧化物会在550~600℃熔化,使炉料烧结,复原不充沛。
(2)二氧化钼被复原成钼粉:这是个吸热反响,盛MoO2的镍舟在13管炉内缓慢前移,炉温延炉管从650℃上升到950℃,反响MoO2+2H2←→Mo + 2H2O平衡中,PH2O/PH2 很小; 645℃为0.234,800℃为0.398,927℃为0.55。所以所通入要充沛枯燥、露点-40~50℃作复原剂。
(3)弥补复原:为下降第二段产出钼粉中含氧量。还要在1000~1100℃下对它弥补复原。此种温度,对榜首、二段所用镍铬管和加热器在空气中化学稳定性下降。第三段是在充溢,设密闭炉壳的管状炉中进行。至此,钼粉中氧含量仅0.25%~0.3%。
这三段工艺在出产施行中,又简化成:(1)没有第三段弥补氧化。(2)将榜首段、第二段在同1台十三管炉内进行。(3)将榜首段与仲钼酸铵分化合在一道工序完结,向仲钼酸铵分化转炉通入,此两反响温度挨近,经此工艺后,不是产出MoO3,而是直接产出MoO2。不管怎么改变,都离不了上述化学反响的几个阶段。
经过复原产出的钼粉,可经过粉冶成型,或电弧炉熔株、电子束熔炼等办法成型。
金属钼粉的制取
2019-02-15 14:21:16
根本原理 与钼粉出产类似,钼粉的制取首要也是用氧化物氢复原法,进程的热力学与动力学原理在有关的教科书及专著中都有介绍,钼粉出产中要害目标是其粒度的操控,Mo03氢复原进程中粒度改变的机理及影响要素与W03氢复原迥然不同,但超越873K时Mo03开端明显提高,其蒸气压在1424K时抵达0.1 MPa,比WO3的蒸气压大得多。因而,复原进程中更有利于化学气相搬迁,应该得到比钨粉更粗的粉末颗粒。但实践得到的钼粉往往比钨粉更细。原因有二:首要,Mo03的化学稳定性小,在复原炉的低温区,即在Mo03蒸气压还不大的温度范围内就能敏捷复原成蒸气压很低的难熔的Mo02。其次,铝的中间氧化物在773~973K能与Mo02构成易熔共晶。为了防止这种共晶混合物的熔化,实践出产中要求第一阶段的复原缓慢升温。这也削减了Mo03进人其明显蒸腾的温度范围内的可能性。实践出产中得到的钼粉的均匀粒度一般为0.5~3.5μm。 工业实践 金属钼粉的出产工艺、设备以及质量操控办法与出产金属钨粉的需求根本类似。 钼粉复原工艺有一阶段、两阶段和三阶段复原法。大都工厂选用两阶段复原法。 两阶段复原工艺由Mo03复原至Mo02和由Mo02复原至金属钼两个阶段组成。第一阶段复原在723~823K下进行,比三氧化钨第一阶段复原的温度(W03 →WO2为923~1073K)低。第二阶段复原则在1123~1223K条件下进行,比三氧化钨第二阶段复原的温度(W03 →W为1053~1153K)还高。一般选用四管马弗炉或多管复原炉作为一阶段复原用,多管复原炉作二阶段复原用。为了防止生成中间氧化物的共熔体,在第一阶段复原烧舟沿炉管推动的进程中,要确保MoO2的生成进程在温度抵达823~873K前根本完毕。 选用上述第二阶段复原时,为了确保复原完全,有必要慢速推舟和较高的干氢耗费。为了削减耗费,在出产实践中,往往将此复原阶段再分为两个阶段,即第二阶段复原在1093~1163K条件下进行(此刻所得钼粉尚含氧2%~3%),第三阶段复原则在1223~1373K条件下在钼丝炉中进行。
钼粉的特性和用途
2019-03-08 11:19:22
钼粉是一种重要的无机矿藏。从地质学视点来看,钼粉就是地球外壳的天然矿藏。钼粉矿床有3种类型:石灰石、白垩和大理石。钼粉
散布
据有关部门研讨,国际碳酸岩(包含钼粉和白云石)的散布面积达534万平方公里,占地球陆地表面积的4%。我国碳酸岩散布面积为344万平方公里,占国际的64%。
特性
钼粉分轻质钼粉(PCC)和钼粉(GCC)两种。钼粉的特性是能够人工调控色泽、粒径、表面特性、分散度、流变性、触变性以及晶型等,并且钼粉化学纯度高,化学慵懒强,热稳定性好,在400摄氏度以下不会分化。别的,钼粉还具有吸油率低、硬度低、磨耗值小、无毒、无臭、无味,分散性好等长处。
用处
由于上述特殊功能,钼粉的使用开展较快,现在已广泛地使用于工农业范畴,如橡胶、塑料、造纸、涂料、油漆、油墨、电缆、制药、化肥、饲料、食物、制糖、纺织、玻璃、陶瓷、卫生用品、密封剂、胶粘剂、虫剂和农药载体以及烟道除硫、水处理等环保方面。轻质钼粉用处与钼粉有堆叠也有不同,首要用于造纸、塑料、人造橡胶、食物、食用色料、医药、黏结剂和卫生用品等范畴。近年来,由于有资料谈及轻质钼粉可增强某些材料的功能,所以它的使用范围有所增加
国内液压与气动标准大全(二)
2019-01-15 09:49:29
GB/T 15242.1-1994(2001)液压缸活塞和活塞杆动密封装置用同轴密封件尺寸系列和公差
GB/T 15242.2-1994(2001)液压缸活塞和活塞杆动密封装置用支承环尺寸系列和公差
GB/T 15242.3-1994(2001) 液压缸活塞和活塞杆动密封装置用同轴密封
neq ISO 7425-1:1988ISO 7425-2:1989 件安装沟槽尺寸和公差
GB/T 15242.4-1994(2001) 液压缸活塞活塞杆动密封装置用支承环安装沟槽尺寸和公差
GB/T 15622-1995(2001) 液压缸试验方法
neq JIS B 8354-1985
GB/T 15623.1-2003 液压传动 电调制液压控制阀 第1部分:
ISO 10770-1:1998,MOD 四通方向流量控制阀试验方法
GB/T 15623.2-2003 液压传动 电调制液压控制阀 第1部分:
ISO 10770-2:1998,MOD 三通方向流量控制阀试验方法
GB/T 17446-1998 流体传动系统及元件 术语
idt ISO 5598:1985
GB/T 17483-1998 液压泵空气传声噪声级测定规范
eqv ISO 4412-1:1991
GB/T 17484-1998 液压油液取样容器 净化方法的鉴定和控制
idt ISO 3722:1976
GB/T 17485-1998 液压泵、马达和整体传动装置参数定义和字母符号
idt ISO 4391:1983
GB/T 17486-1998 液压过滤器 压降流量特性的评定
idt ISO 3968:1981
GB/T 17487-1998 四油口和五油口液压伺服阀 安装面
idt ISO 10372:1992
GB/T 17488-1998 液压滤芯 流动疲劳特性的验证
idt ISO 3724:1976
GB/T 17489-1998 液压颗粒污染分析 从工作系统管路中提取液样
idt ISO 4021:1992
GB/T 17490-1998 液压控制阀 油口、底板、控制装置和电磁铁的标识
idt ISO 9461:1992
GB/T 17491-1998 液压泵、马达和整体传动装置稳态性能的测定
idt ISO 4409:1986
GB/T 18853-2002 液压传动过滤器 评定滤芯过滤性能的多次通过方法
ISO 16889:1999,MOD
GB/T 18854-2002 液压传动 液体自动颗粒计数器的校准
ISO 11171:1999,MOD
三、行业标准
JB/T 2184-1977 液压元件型号编制方法
JB/T 5120-2000 摆线转阀式全液压转向器
JB/T 5919-1991(2001) 曲轴连杆径向柱塞液压马达安装法兰与轴伸尺寸和标记(一)
JB/T 5920.1-1991(2001) 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 靠前部分 20~25MPa的轴转马达
JB/T 5921-1991(2001) 液压系统用冷却器基本参数
JB/T 5922-1991 液压二通插装阀图形符号
JB/T 5923-1997 气动 气缸技术条件
neq JIS B83771991
JB/T 5924-1991参照NFPA/T2.6.1M-1974 液压元件压力容腔体的额定疲劳压力和额定静态压力验证方法
JB/T 5963-1991 二通、三通、四通螺纹式插装阀阀孔尺寸
JB/T 5967-1991(2001) 气动元件及系统用空气介质质量等级
JB/T 6375-1992(2001) 气动阀用橡胶密封圈 尺寸系列和公差
JB/T 6376-1992(2001) 气动阀用橡胶密封圈 沟槽尺寸和公差
JB/T 6377-1992(2001) 气动气口连接螺纹 型式和尺寸
JB/T 6378-1992(2001) 气动换向阀 技术条件
JB/T 6379-1992(2001)参照ISO 6431:1992 缸内径32~320mm的可拆式单杆气缸 安装尺寸
JB/T 6656-1993(2001) 气缸用密封圈安装沟槽型式、尺寸和公差
JB/T 6657-1993(2001) 气缸用密封圈尺寸系列和公差
JB/T 6658-1993(2001) 气动用O形橡胶密封圈沟槽尺寸和公差
JB/T 6659-1993(2001) 气动用O形橡胶密封圈尺寸系列和公差
JB/T 6660-1993(2001) 气动用橡胶密封圈 通用技术条件
JB/T 7033-1993(2001)参照ISO 9110-1: 1990 液压测量技术通则
JB/T 7034-1993 液压隔膜式蓄能器型式和尺寸
JB/T 7035.1-1993 液压囊式蓄能器型式和尺寸 A型
JB/T 7035.2-1993 液压囊式蓄能器型式和尺寸 AB型
JB/T 7036-1993 液压隔离式蓄能器 技术条件
JB/T 7037-1993 液压隔离式蓄能器 试验方法
JB/T 7038-1993 液压隔离式蓄能器 壳体技术条件
JB/T 7039-1993 液压叶片泵 技术条件
JB/T 7040-1993 液压叶片泵 试验方法
JB/T 7041-1993 液压齿轮泵 技术条件
JB/T 7042-1993 液压齿轮泵 试验方法
JB/T 7043-1993 液压轴向柱塞泵 技术条件
JB/T 7044-1993 液压轴向柱塞泵 试验方法
JB/T 7046-1993(2001)参照NFPA/T3.4.7M-1975 液压蓄能器压力容腔体的额定疲劳压力和额定静态压力验证方法
JB/T 7056-1993(2001) 气动管接头 通用技术条件
JB/T 7057-1993(2001) 调速式气动管接头 技术条件
JB/T 7058-1993(2001) 快换式气动管接头 技术条件
JB/T 7373-1994(2001) 齿轮齿条摆动气缸
JB/T 7374-1994 气动空气过滤器 技术条件
JB/T 7375-1994 气动油雾器 技术条件
JB/T 7376-1994 气动空气减压阀 技术条件
JB/T 7377-1994(2001) 缸内径32~250mm整体式单杆气缸安装尺寸
eqv ISO 6430:1992
JB/T 7857-1995(2001) 液压阀污染敏感度评定方法
JB/T 7858-1995(2001) 液压元件清洁度评定方法及液压元件清洁度指标
JB/T 7938-1999 液压泵站油箱公称容量系列
JB/T 7939-1999 单活塞杆液压缸两腔面积比
eqv ISO 7181:1991
JB/T 8727-1998 液压软管总成
JB/T 8728-1998 低速大扭矩液压马达
JB/T 8729.1-1998 液压多路换向阀 技术条件
JB/T 8729.2-1998 液压多路换向阀 试验方法
JB/T 8884-1999**(JB/Z 347-89) 气动元件产品型号编制方法
JB/T 8885-1999**(ZBJ 22008-88) 液压软管总成技术条件
JB/T 9157-1999 液压气动用球涨式堵头 安装尺寸
JB/T 10205-2000 液压缸 技术条件
JB/T 10206-2000 摆线液压马达
JB/T 10364-2002 液压单项阀
JB/T 10365-2002 液压电磁换向阀
JB/T 10366-2002 液压调速阀
JB/T 10367-2002 液压减压阀
JB/T 10368-2002 液压节流阀
JB/T 10369-2002 液压手动及滚轮换向阀
JB/T 10370-2002 液压顺序阀
JB/T 10371-2002 液压卸荷溢流阀
JB/T 10372-2002 液压压力继电器
JB/T 10373-2002 液压电液动换向阀和液动换向阀
JB/T 10374-2002 液压溢流阀
a级电解铜
2017-06-06 17:49:55
a级电解铜是高纯阴极铜,高纯阴极铜符合国标GB/T467-1997规定,纯度可达99.9935%。。 按照上海期货交易所交割制度的规定,注册铜分为标准品和替代品两种不同的交割等级。前者为标准阴极铜,后者包括高纯阴极铜和LME注册阴极铜。其中达到高纯阴极铜标准并经交易所认定的注册铜实行升水交割,升水幅度为110元,俗称“升水铜”;其他国产品牌和进口LME注册铜则按标准级交割,不享受升水,习惯称作“平水铜”。目前,在所有注册品牌中,仅有下列五个品牌享有升水:江西铜业的“贵冶”牌、铜陵有色的“铜冠”牌、云南铜业的“铁峰”牌、金隆铜业的“金豚”牌,以及张家港联合铜业的“铜鼎”牌,其中前四个品牌已在LME注册。升水铜尽管牌号不多,但都属于国内大型铜厂所有,且占国内总产量的一半以上。 国内铜厂因所采用的工艺设备和技术不同,所产铜的品级和质量也存在差异。一些国营大厂的产品能达到较高品级,即符合国标GB/T467-1997高级阴极铜规定,纯度可达99.9935%;而一些中小厂家的产品仅能达到国标GB/T467-1997标准阴极铜规定,铜加银含量不小于99.95%。 电解铜即铜的电解提纯:将粗铜(含铜99%)预先制成厚板作为阳极,纯铜制成薄片作阴极,以硫酸(H2SO4)和硫酸铜(CuSO4)的混和液作为电解液。通电后,铜从阳极溶解成铜离子(Cu)向阴极移动,到达阴极后获得电子而在阴极析出纯铜(亦称电解铜)。粗铜中杂质如比铜活泼的铁和锌等会随铜一起溶解为离子(Zn和Fe)。由于这些离子与铜离子相比不易析出,所以电解时只要适当调节电位差即可避免这些离子在阳极上析出。比铜不活泼的杂质如金和银等沉积在电解槽的底部。 这样生产出来的铜板,称为“电解铜”,质量极高,可以用来制作电气产品。沉淀在电解槽底部的称为“阳极泥”,里面富含金银,是十分贵重的,取出再加工有极高的经济价值。 更多关于a级电解铜的资讯,请登录上海有色网查询。
五氧化二钒国家标准
2019-01-03 14:43:41
本标准适用于钒渣或其他含钒矿物经焙饶、浸出、沉淀、分解、熔化制得的冶金、化工等用的片状或粉状五氧化二钒。
1 技术要求
1.1 牌号和化学成分
1.1.1 产品按用途和五氧化二钒品位分为三个牌号,其化学成分应符合下表的规定:
适用范围牌 号化学成分,%物理状态
V2O5SiFePSAsNa2O+K2OV2O4
不小于不大于
冶金V2O599990.150.20.030.010.011-片状
V2O598980.250.30.050.030.021.5-
化工V2O597970.250.30.050.10.0212.5粉状
1.1.2 需方如有特殊要求,可协商供应杂质含量更低的产品。
1.1.3 需方要求时,可协商提供表列以外其他元素的实测数据。
1.2 物理状态
冶金用五氧化二钒以片状交货,片径不大于55×55mm,厚度不大于5mm;化工用五氧化二钒以分解后自然粉状交货。
2 试验方法
2.1 取样
化学分析用试洋的采取按附录A所规定的方法进行。
2.2 制样
化学分析用试样的制取按附录B所规定的方法进行。
2.3 化学分析
五氧化二钒的分析暂按各生产厂现行分析方法进行,如有异议,通过协商解决。
3 检验规则
3.1 产品质量的检查和验收,由供方技术监督部门进行,需方有权按规定对产品质量进行复验。如有异
议,应在到货后30天内提出。
3.2 同一牌号的产品可以归为—‘批交货,其批量—般在4—10t之间,或由供需双方商定。
4 包装、标志、储运和质量证明书
4.1 包装
产品采用铁桶包装,桶内壁须刷一层防护漆。每桶净重一般不大于250kg,或由供需双方商定。
4.2 标志、储运和质量证明书
产品标志、储运和质量证明书应符合GB 3650-83《铁台金验收、包装、储运、标志和质量证明书的—般规定》的要求。
钢管的钢级
2019-03-15 09:13:19
什么是钢管的钢级 钢的化学成份不同,化学成份不同,也就造成的了钢管的力学指标不同。 一、二、三级钢是国家根据社会生产需要而制订出的材料标准,它的屈服强度、极限强度、延伸率、冷弯、及可焊性均有很大的不同,不同级别的钢使用位置也有很大的一同。 一级钢屈服强度235MPa ,极限强度310MPa。 二级钢屈服强度335MPa ,极限强度510MPa。 三级钢屈服强度400MPa,极限强度600MPa 另外Q235是一级钢.HRB335是二级钢.HRB400是三级钢 按照化水成分分类,分为非合金钢、低合金钢、合金钢。 油套管钢级共有H40,J55,K55,M65,N80,L80,C90,T95,C95,P110,Q125 二十个不同钢级,类型的油套管,为区分不同的钢级强度,螺纹类型,分别用不同色标和符号代表油,套管的钢级和螺纹。色标和英文字母后面的二为或三位数字表示油,套管的钢级的最低屈服强度,如J55表示其最低屈服强度为55000磅/英寸2(379Mpa)最高为80000磅/英寸2 (552Mpa),P110最低屈服强度为110000磅/英寸2(758Mpa)最高为140000磅/英寸2(965Mpa)。H,J,K,N代表一般强度油套管,C,L,M,T代表限定屈服强度油套管,具有一定的抗硫腐蚀性能。
钢管的钢级 油套管的钢级指材料的屈服强度,如H40表示强度为40*1000/145MPa=275.86MPa
本地一般表层套管用J55,油层套管用N80,有高压层用P110,或者井比较深,上部用P110。油套管钢级共有H40,J55,K55,M65,N80,L80,C90,T95,C95,P110,Q125 二十个不同钢级,类型的油套管,为区分不同的钢级强度,螺纹类型,分别用不同色标和符号代表油,套管的钢级和螺纹。色标和英文字母后面的二为或三位数字表示油,套管的钢级的最低屈服强度,如J55表示其最低屈服强度为55000磅/英寸2(379Mpa)最高为80000磅/英寸2 (552Mpa),P110最低屈服强度为110000磅/英寸2(758Mpa)最高为140000磅/英寸2(965Mpa)。H,J,K,N代表一般强度油套管,C,L,M,T代表限定屈服强度油套管,具有一定的抗硫腐蚀性能。
钢管的钢级 管道介质的输送压力有逐渐增高的趋势,在输气管线上尤为明显。这是因为在一定范围内提高输送压力会增加经济效益,以输气管线为例,在输量不变的条件下,随着输送压力的提高气体的密度增加而流速减小,从而使摩阻下降。 在一条输气管线的站间距内由进站到出战压力逐渐下降,而流速逐渐增加,随之摩阻也逐渐增加,故离进站口 3 / 4 长度消耗生出站压差△ p 的一半,而后 1 / 4 长度消耗另一半。输气管线与输油管线最大的差别是由进站到出站流速是逐渐增加的,这是介质的可压缩性造成的。而油基本上是不可压缩的,虽然输送压力沿管程逐步下降,但流速是不变的,摩阻也是前后相同的。由此看出对于输气管线压力的提高可使摩阻下降,而输送能耗下降。 还应指出,输气管线的能耗远比输油为大,仅以西气东输管线为例,该管线输送压力 p : 10MPa ,输量为 120 亿 m3 /年,管线长度为 4000KM ,粗略按经验估计能耗大致为 12 亿 m3 /年,而输量的。 1/10 作为沿途的能源消耗掉了。 由于对降低能耗的关切,输送压力有逐步增加的趋势。早期我国四川省的天然气管线输送压力为 2.5MPa ,以后增加到 4MPa ,陕京线提升为 6MPa ,西气东输增至 10MPa ,国 外经济发达国家近十气输气管线多选取 12MPa 。 在输气管线上压比亦有逐渐下降的趋势。所谓压比指进站压力与出站压力之比,压比减少意味着全线均在较高的压力下运行,这样也可使能耗减小。早期压力多为 1.6 ,后来降至 1.4 ,近年国外有些输气管线取压比为 1.25 。当然,压比减小,压缩机站数要增加,从而投资会增加。对于管径、压力、压比均需进行优化计算和比选。
当输量确定,通过优化确定管径、压力、压比以后,如选取较高压力而钢材强度等级太低,则会造成壁厚过大,这给制管、现场焊接以及运输等诸多环节带来困难,甚至难以实现。生产的需求促进了钢材等级的提高。 API 于 1926 年发布 APl5L 标准,最初只包括 A25 、 A 、 B 三种钢级,最小屈服值分别为 172 、 207 、 251MPa 。 API 于 1947 年发布 APl5LX 标准,该标准中增加了 X42 , X46 , X52 三种钢级,其最小屈服值分别为 289 、 317 、 358MPa 。 1966 年开始,先后发布了 X56 、 X60 、 X65 、 X70 四种钢级,其最小屈服值分别为 386 、 413 、 448 、 482MPa 。 1972 年 API 发布 U80 、 U100 标准,其最小屈服值分别为 551 、 691Mpa ,以后 API 又将 U80 、 U100 改为 X80 、 X100 。 粗略统计,全世界 2000 年以前 X70 用量在 40 %左右, X65 、 X60 均在 30 %左右徘徊,小口径成品油管线也有相当数量选用 X52 钢级,且多为 ERW 钢管。
关于 X80 钢级,国内、外议论很多,国际上曾对 X80 研制已耗巨额投资的钢铁巨头更是积极宣传 X80 ,甚至 X100 ,但时至今日 X80 只处于 " 试验段阶段,总长仅 400KM 左右。目前正在建设中的管线尚无采用 X80 钢级的,计划中或正在准备中兴建的管线尚无下定决心采用 X80 者,对此笔者曾与国外多家管道工程公司 ( 负责管道设计 ) 的技术人员交换过意见,大家看法基本相同,钢管的钢级 大致可归纳如下: 1 、 X80 钢级随着操作压力的提高及准备工作的完善将来必定会得到发展; 2 、当前大石油业主不愿意首先选用 X80 大致出于以下原因: (1) 某一种新钢级 ( 包括炼钢、轧制、制管 ) 由开始生产至熟练的生产要有一个不合格率由高至低的过程,用同样的检验手段其出厂的不合格率也会有一个由低至高的过程,首先采用者要承担此风险; (2) 在现场焊接过程中,包括预热温度、层间温度、热入量等对新钢级要有一个探索过程,在此期间不合格率也有一个由高至低的过程,首先采用者更多地承担此风险;
(3) 采用 X80 后,现场使用的冷弯机、焊丝、环缝自动焊机、热弯头工艺等可能需要改变,重新购置或研制,从而增加了工程费用; (4) 采用 X80 后,同样直径,当操作压 力不够高的情况下,钢材强度等级的提高意味着厚度的减薄,亦即厚度直径比 (t / D) 的减小,这也就意味着管线刚性的降低。从事故分析及风险分析看,管线的第三方破坏通常占破坏原因的 40 %以上,而管线抵抗第三方破坏能力仅与 t / D 比有关而与强度等级无关。
从我国国情看,我国虽然经济近十多年迅速发展,但仍属发展中国家,笔者建议在采用 X80 问题上我们不做 " 第一个吃螃蟹 " 的人,采取 " 韬光养晦 " 的策略,这对业主单位有利对我国冶金行业也有利。
我国冶金行业在近十余年来为发展管道钢付出了极大的辛劳,取得可喜的业绩,目前正在全力攻关 X70 宽板 ( 做直缝埋弧焊焊管用 ) 并积极为能稳定 X70 热轧卷板的质量做努力,如当前决定大量采用 X80 钢级,因我国冶金业对此既无经验又无业绩而难与国外冶金行业竞争,笔者对我国冶金业不仅有深厚的感情,也深信我国冶金业的能力,但不宜操之过急,当然目前抽出少量的力量对 X80 进行探索还是必要的,但必须抓住主要矛盾。