铜杆 英文
2017-06-06 17:50:14
铜杆 英文是什么?铜杆英文:copper rod最佳答案一、先进的构造(1) 把熔化炉膛设计成长方形,可以整块电解铜加料而不增加炉膛的散热面积.(2) 用连体炉取代了分体炉,在熔化炉和保温炉之间增设一个过渡仓,铜液从熔化炉经过渡仓流入保温炉时避免直接流入,这不仅有利于温度和液位的平稳,而且在过渡腔内使铜液得到更充分的还原,同时可以比较容易在过渡仓内清除渣质,使铜液的温度稳定均匀,液位平稳,铜液清洁,从而使铜杆质量稳定.(3) 采用W型熔沟,使铜液在熔沟内形成定向高速流动,有充分的热交换,使各种高熔点的氧化渣及已蚀损的石英砂随液流流出熔沟。加速熔铜内铜液的流动,这不仅可以缩短熔炼时间,提高电炉生产能力,而且降低了熔沟内的温度,避免熔渣堵塞,从而提高炉子的工作寿命。在能耗方面使原来每吨熔铜的耗电量由400KWh以上下降到350KWh以内,实现了节能降耗20%以上。(4) 在一般情况下,炉体的寿命是感应器寿命的2-5倍,而且熔化炉和保温炉的感应器寿命也不一样。设计成可拆卸式感应器是可以在某一感应器发生故障时,这样可以在某一感应体发生故障时,不需要拆除整个炉子,而只需拆下损坏的感应体重筑,从而节省停炉时间和生产投入。二、连铸牵引机是上引法的关键设备 (1)上引连铸是间歇向上牵引实现的,间歇牵引每次动作的升程的节距、间歇牵引的开停比例,牵引频率和节距都会影响铸杆的质量。采用伺服电机牵引系统,不仅满足了高频率的间歇牵引,节距可根据不同铸杆直径任意调节,而且不会打滑,运行稳定。(2) 结晶器是牵引机的重要部件,对铸杆的质量和上引速度起决定性的作用,尤其是一次冷却区的结构、材料的选用和加工精度,却直接影响到热传导的效果和结晶速度,结晶器二次冷却区的铜管内壁与铸杆间的间隙大小对铸杆冷却效果也有很大的影响。(3) 电控系统上引法连铸的工艺过程简单是它的特点之一,但是对工艺操作的要求却非常严格,铜液的温度、液位的高低、结晶器插入铜液的温度,牵引的节距、频率以及冷却水的压力、流量和温度等都必须控制在一定的范围内.更多有关铜杆 英文请详见于上海
有色
网
铜杆价格
2017-06-06 17:49:59
铜杆价格,隔夜美联储声明保持低利率水平并表示美国经济复苏正持续前进中,美元走软。今日亚洲交易时段在85.6-86震荡,徘徊于5日均线。LME电铜早市低开于6568美元,日内冲高6681美元,17:30最新价6614美元。伦铜6550-6650美元窄幅整理,空间愈加狭窄,KDJ三线粘连欲作突破性走势。沪期铜小幅高开并上冲30日均线未果,午后承压收报略有收窄日内升幅。主力1009合约开始于日内低点53130元,冲高53900元,日内多在日均线上方作强势整理,午后受A股受阻回落影响而小幅承压,收报53520元,上涨570元,升幅1.08%,成交量44.9万手,换手率258.65%,主力减仓5094手,可见短线空头减仓,1010合约大增13544手,可见多头建仓。期铜在20~30日均线区间震荡,一度上方突破30日均线,底部52500元获得企稳抬高,期铜在53500元一线作强势整理后,后市可看高一期。铜杆市场,日内成交主流价格多在53800~54050元区间,上午升水于 +80~+150元,下午由于期铜承压现货升水略提至+100~+200元,成交价格则维稳于54000元左右。江西一带发生雨水中断交通影响,市场忧虑贵溪铜后续货源,国产优质好铜以贵溪铜为代表报价较坚挺,进口铜供应商则因最近点价premium攀升而出货有限,今沪伦比值回升至8.05上方,进口铜流通量略有增加,下游消费逢低买盘仍较积极,冲高于54000元上方时则会表现犹豫与斟酌,与供应商产生拉锯。随着铜价的企稳、底部的抬高,目标上看55000元。但愈接近短期目标位,买盘积极成交踊跃的市况将受到抑制。
氧铜杆和无氧铜杆
2019-03-05 09:04:34
氧铜杆和无氧铜杆
硫化叶菌对镍钼硫化矿的浸出作用
2019-02-21 11:21:37
一、前语
生物冶金是树立环境友好型冶金形式的一个方向,但与传统湿法浸矿工艺比较,现行硫化矿细菌氧化浸出技能在处理硫化矿方面尚没有真实具有竞赛优势,首要原因是浸出速度慢、浸出周期长,然后使运营本钱偏高,运用仅局限于一些较高价值低档次硫化矿。耐温菌浸出技能的研讨与开展是进步反响速度的要害一步。
现在在生物冶金技能中大多选用氧化亚铁硫杆菌(Thiobacillus ferrooxidans)浸出有色金属,而对钼、镍等重要有色金属的生物浸出报导较少,且仅限于常温菌。一些研讨者选用常温菌浸出低档次钼矿,但浸出率均不抱负且浸出周期长,原因之一在于常温菌的抗钼才干很差。杨显万等用氧化亚铁硫杆菌处理一种含Cu和Mo 的低档次矿,在30℃条件下浸出60 d, Cu 浸出率为60%,而Mo 浸出率仅为0.34%。Donati 等发现氧化亚铁硫杆菌不被MoS3 表面吸附,原因是Mo 对细菌有毒性。Hammaini 等[8]的研讨标明,在9K 培育基顶用T.ferrooxidans 浸矿,1 mmol/L 钼对铁氧化已有按捺作用,2 mmol/L 则彻底按捺铁氧化。经过驯化能够大大进步细菌的耐钼才干,童雄等研讨标明,钼的硫化矿浸出有菌条件比无菌时浸出速度快5 倍。在细菌习惯矿藏前,只能得到15~25 mg/L 的钼浸出液,经过驯化培育,可进步到200 mg/L 以上。本作业选用金属硫叶菌(Sulfolobus metallicus)嗜热菌作为驯化浸矿菌种,对镍钼矿的浸出进行了体系研讨,并与常温菌浸矿才干作了比较。成果标明,古生嗜热菌的金属硫叶菌对镍钼矿的浸出能够战胜常温菌浸出周期长、浸出率低的缺点,尤其在耐钼安稳性上有严重改进。研讨成果有望为生物法提取镍钼等宝贵金属的工艺规划和运用供给重要依据,关于稀有金属生物浸出的菌种选育和拓宽具有重要意义。
二、试验
(一)材料、试剂及仪器
所用矿样为贵州镍钼硫化矿,其含镍矿藏首要为二硫镍矿(NiS2 )、辉镍矿(Ni3S4)和辉砷镍矿(NiAsS),少数或微量针镍矿(NiS)和紫硫镍铁矿(FeMnS4)、硫镍铁矿和含镍黄铁矿等,矿石均匀含钼达5%,其间的钼矿藏是一种胶状的集合体(胶硫钼矿,Jordisite),所以,X 衍射分析没有检测到硫化钼的存在。深化的矿藏学研讨标明,这种钼集合体除硫与钼外,碳也是首要元素,因而称为“碳硫钼矿”。由于碳的原子量较低,故光谱半定量分析未检出。矿藏的首要成分见表1 和图1。
表1 贵州镍钼硫化矿光谱半定量分析成果图1 矿藏X 射线衍射图谱
试验前矿样经烘干、细磨至需求粒径。
菌种:金属硫叶菌(Sulfolobus metallicus,购于日本菌种保藏中心)属古生菌,能够好氧成长,既能氧化S又能氧化Fe2+,最适温度为65℃,选用M174 培育基培育( 成分见表2)。氧化亚铁硫杆菌(Thiobacillus ferrooxidans)由中国科学院微生物研讨所供给,选用9K培育基(见表3)培育。
表2 金属硫叶菌的M174 培育基表3 9K 培育基试剂与仪器:硫酸铵,硼砂,钼酸钠,,酵母等;日立F-2500 型荧光分光光度计,XSP-24N-103型生物显微镜,TZL-16 高速离心机,THZ-82 恒温水浴振动器,PHS-29A 型数字pH 计,原子吸收仪。
(二)试验办法
1、细菌的驯化及无铁细胞悬浮液的制备
细菌驯化:浸出试验前,Sulfolobus metallicus 在相同的矿藏、矿浆浓度条件下进行驯化,使细菌习惯浸矿环境,并进步菌株的耐钼才干。驯化条件:在装有100mL 培育基的150 mL 三角瓶中参加粒径
终究以3000 r/min 离心除矿,以10000 r/min 离心搜集驯化后的细菌,作为浸矿菌种。若当即浸矿,则可接入浸矿液中,不然置入冰箱4℃保存。细胞计数选用血球计数板法。
无铁细胞悬浮液的制备:将培育好的菌液置于低速离心机中3000 r/min 离心10 min,以除掉菌液中的大颗粒沉积物,上清液用高速离心机进行细胞别离,10000r/min 离心30 min,细胞沉积物用pH 1.8 的无菌蒸馏水洗下,清洗数次后稀释至原体积,搜集的细胞当即运用或在4℃冰箱保存。
2、摇瓶浸出
不同条件浸样各重复3 次,取其均匀值。培育基100mL,接种量均为10%(φ),初始pH 为2(浸出进程始终坚持该值),温度65℃, 转速200 r/min,浸出时刻均为20 d.。浸前各摇瓶称重,定时取样,并弥补蒸腾的水分和取走的培育基。浸出率以浸出20 d 的渣样计。浸出20d 的矿渣经抽滤,浸渣用1%的稀洗刷数次后烘干,称重,检测其间Ni 和Mo 含量。
三、成果与分析
(一)无菌及驯化与非驯化条件下的细菌浸出成果
本试验将细菌浸出分为无菌组、以Fe2+为动力培育的驯化细菌浸出组、以Fe2+为动力培育的非驯化浸出组、以S0 为动力培育的驯化细菌浸出组、以S0 为动力培育的非驯化细菌浸出组,顺次编号为No.1~5。矿浆浓度为10 g/L,矿藏粒径
表4 不同培育条件下的浸出成果(二) Fe3+对细菌浸出作用及介质电位的影响
以有菌无铁、有菌有铁、无菌有铁和无菌无铁4 组共12 个浸出样进行摇瓶浸出,编号顺次为1~4。有铁组均参加0.5 g/L Fe3+,矿浆均为10 g/L,矿藏粒径
表5 有菌无铁、有菌有铁、无菌有铁和无菌无铁对细菌浸出的影响对加Fe3+和不加Fe3+的浸出液的总铁浓度和介质电位改动作了比较,总铁浓度成果见图2,可见未加Fe3+浸出时,前6 d 的介质总铁浓度和增加速度比参加0.5g/L Fe3+低许多,这标明加铁组在浸出开端就很快发动了对矿藏的浸出氧化,而对照组由于没有初始Fe3+的存在其浸出发动缓慢许多.图2 浸出初期加铁与不加铁介质中总铁浓度
外加0.5 g/L Fe3+也改动了浸出液的电位。依据伦斯特方程EFe3+/Fe2+=0.78+0.059lg([Fe3+]/[Fe2+]),介质电位取决于溶液中Fe3+的浓度。电位测定显现,有菌外加0.5g/L Fe3+与不加Fe3+的电位改动有差异,加Fe3+的电位比不加Fe3+高,两者在浸出进程中电位都先缓慢下降再缓慢上升(图3)。由于浸出开端一周左右,65℃下矿藏中的FeMoO4 开端水解开释Fe2+,使Fe2+浓度增大,而此刻浸出液中的细菌尚处于延滞期或习惯期,氧化Fe2+的才干极弱,因而外加Fe3+组的Fe3+/Fe2+比下降,而不加Fe3+组Fe3+/Fe2+极低,故两者的电位呈下降趋势。之后又缓慢上升是由于细菌由延滞期进入指数增加期和安稳时,氧化Fe2+的才干增强,浸出液Fe3+/Fe2+逐步增大,电位逐步上升,当至必定电位值后,Fe3+/Fe2+处于安稳状况,此刻浸出液中细菌氧化Fe2+生成Fe3+的量与矿藏中FeMoO4 水解开释的Fe2+量比安稳,浸出液电位在500mV 左右。到浸出后期,由于浸出液中的细菌数削减,氧化 Fe2+才干大大削弱,而矿藏中从FeMoO4 开释出的Fe2+浓度改动不大,且Fe3+作为氧化剂而耗费,Fe3+/Fe2+比下降(若发作铁钒沉积,Fe3+浓度会下降较多),导致浸出液电位下降,但不低于300 mV。总归,在镍钼硫化矿加铁和不加铁的细菌浸出中,浸出液中的电位上升幅度都不大,很或许是由于高温下矿藏中开释的Fe2+及细菌氧化Fe2+生成Fe3+的才干受钼浓度影响而构成Fe3+/Fe2+上升有限。这也是浸出液电位全体不高的原因之一。图 3 加Fe3+组与对照组电位改动
(三)矿浆浓度对细菌浸出的影响
矿藏粒径
表6 矿浆浓度对细菌浸出的影响(四)pH 对细菌浸出的影响
各浸样矿浆浓度均为10 g/L,矿藏粒径
表7 不同pH 条件下的浸出成果(五)矿藏粒径对细菌浸出的影响
每个浸样均参加0.5 g/L Fe3+,无菌组作对照。矿浆浓度10 g/L,接种量10%,温度65℃,浸出20 d。不同矿藏粒径的浸出成果如表8 所示。从表看出,有菌组
表8 矿藏粒径对细菌浸出的影响(六)浸出进程中无菌和有菌样浸出液的 pH 值改动从图4 看出,无菌组和有菌组在浸出进程中的pH改动趋势相反,前者pH 呈逐步上升趋势,然后者则先升高然后逐步下降。这是由于有菌组在浸出进程中开端遭到矿藏脉石的影响而使浸出液pH 上升,当浸出到第4 d 时,细菌不断将矿藏表面的S0氧化成H2SO4,使浸出液的pH 下降。图 4 有菌和无菌浸样在浸出进程中的pH 改动
(七)金属硫叶菌与氧化亚铁硫杆菌的浸出作用比较
在培育基体积(100 mL)、接种量(10%)、矿浆浓度(10g/L)、矿藏粒径(图5 金属硫叶菌与氧化亚铁硫杆菌对镍、钼浸出作用的比较
(八)浸出进程中 Cu,Zn,Fe 含量的改动
浸出进程中浸出液中的有价金属Cu, Zn, Fe 浓度改动如图6 所示。到219.5 h,浸出液中Cu, Zn 和Fe 的浓度别离到达11.07, 8.17 和267.6 mg/L。本研讨标明,当Cu2+浓度小于0.5 g/L 和Zn2+浓度小于1 g/L 时对细菌氧化Fe2+的才干没有影响。该浸矿菌能氧化30 g/L 乃至更高浓度的Fe2+,因而,浸出进程中这3 种金属离子对细菌的浸出不会构成影响。矿藏中其他金属离子对细菌浸矿的影响有待进一步研讨。图 6 浸出进程中Cu, Zn, Fe 浓度改动
(九)金属硫叶菌在浸出液中的增加与钼浓度的联系
挑选10 g/L 矿浆浓度,10%的接种量(接种浓度为4.4×107 mL−1),全程盯梢浸样中的细菌增加和被浸出钼浓度的改动,成果如表9。从表能够看出,经过驯化的金属硫叶菌有很强的耐钼才干。浸出14 d 浸出液中钼浓度达173.74 mg/L,游离细菌为2.54×107 mL−1;浸出20 d 浸出液中钼浓度达283.37 mg/L,游离细菌浓度为0.83×107 mL−1。经过盯梢记数和比较发现,浸出10~12 d时,浸出液中的游离细菌最多,之后逐步削减。因而,在10~12 d 时刻段镍和钼的浸出速率也应是最快的。
表9 浸出时刻、浸出钼浓度与浸出液中S.m 菌浓度的联系图7 浸出16 d 无菌和有菌浸出样的矿粒表面描摹
(十)浸出进程中矿粒表面描摹
浸出进程中矿粒表面的改动能够反映细菌与矿藏的作用方法。在浸出16 d 时,将有菌和无菌浸样中的矿粒别离进行电镜扫描调查,发现无菌样的矿粒表面很润滑,没有细菌与矿藏作用的任何迹象,而有菌样的矿藏表面则呈现很多的腐蚀坑,这显然是细菌附在矿粒表面不断氧化掩盖在矿藏表面的S0 发作硫酸留下的腐蚀痕迹,如图7 所示。(十一)细菌浸矿作用的机理分析
金属硫叶菌以直接作用方法分化二硫镍矿(NiS2)、辉镍矿(Ni3S4)、针镍矿(NiS)。硫化矿细菌浸出的作用机理一向存在着两种观念,即直接作用和直接作用。直接作用就是细菌与硫化矿直接触摸,经过排泄酶来分化矿藏,以浸出矿藏中的金属离子。而直接作用则是细菌经过溶液中的Fe3+和H+与矿藏作用,浸出金属离子。金属硫叶菌浸出NiS2的作用方法是直接作用,这能够从电镜调查及表4 和5 的试验成果得以证明。无菌组和增加Fe3+的浸出试验标明,在无菌无铁的浸出样中,Ni 浸出率达77.64%,这应该是酸性条件下H+与矿藏反响所造成的。有菌无铁和无菌有铁浸出的Ni 浸出率相差不大,标明浸出进程中有菌组经过细菌氧化Fe2+(矿藏中分化)发作Fe3+及细菌经过附在矿粒表面不断氧化浸出进程中发作的S0而发作硫酸,使浸出液坚持必定酸性环境,并在矿藏表面构成许多酸腐蚀坑。无菌有铁组则是经过Fe3+和H+的化学作用浸出,首要反响如下:金属硫叶菌对MoS2 的浸出作用也是直接作用,Fe3+是仅有的氧化剂。李宏煦等以为FeS2, MoS2, WS2氧化硫时是以S2O32−为中间进程而完结的,S2O32−终究氧化为SO42−,伴有部分S7 则被细菌进一步氧化为硫酸,其反响式为:Huang 等以为,在低pH 下,Fe3+经过σ键与黄铁矿表面键合,所构成的化学键有利于电子从黄铁矿中的硫转移到Fe3+,电子并非直接从硫的价带而是从黄铁矿与铁离子构成的t2g 轨迹转移到Fe3+。而Fowler 等以为,氧化进程中Fe3+等氧化剂向t2g 轨迹注入空穴,这些空穴可劈开水分子而构成OH−,而OH−具有强氧化性,可与硫反响,使黄铁矿中的S2−氧化。Silverman 等提出,黄铁矿表面构成的铁氢氧化物或氧化态物质经过从t2g 轨迹得电子而积累电荷,积累的电荷发作电子态改变发作正电位,然后使S2−氧化。同归于细菌直接氧化作用机理的辉钼矿,其氧化进程与黄铁矿相同。在无菌条件下钼的浸出为O2 氧化MoS2所造成的。由于在O2存在的条件下,一切安稳的硫化矿在任何pH 值下都是不安稳的,可被氧化成S, HSO4−, SO42−。而在高温条件下,从体系的热力学和动力学分析可知,高温有利于矿石浸出进程的进行,因而嗜热菌比常温菌的生物浸矿更具热力学和动力学优势。
四、定论
(一)比无菌组高许多,标明细菌浸出比简略的酸浸出作用更好,速度更快。
(二)驯化组比非驯化组的浸出率高。因而,在选用细菌浸出钼矿前,应对细菌进行驯化,使其习惯浸出进程中的物理和化学环境,如钼浓度和机械剪切力等。嗜热金属硫叶菌对矿中镍和钼的浸出率显着高于常温菌氧化亚铁硫杆菌。
(三)以S0培育的细菌浸出率略低于以Fe2+培育的细菌。尽管金属硫叶菌既能氧化S0又能氧化Fe2+,但以Fe2+培育的细菌在浸出时不只具有氧化S0的才干,并且氧化Fe2+的才干更强。
(四)5 g/L 的矿浆浓度比别的几组浓度浸出样的钼浸出率高许多。标明较高矿浆浓度的镍钼硫化矿不只具有较大的剪切力,还具有相对高的钼浓度,对金属硫叶菌的成长代谢有影响,对细菌的浸矿才干发作了必定的按捺作用。必定矿浆浓度对镍浸出率影响不显着。
钼常识
2019-03-14 09:02:01
钼是银灰色的难熔金属,密度10.2,熔点2610°C,沸点5560°C。钼在常温下很安稳,高于600℃时很快地被氧化成三氧化钼;温度高于700℃时,水蒸气能将钼氧化成二氧化钼;温度高于800℃,钼与碳及碳氢化物或生成碳化钼。钼可耐稀硫酸、、磷酸的腐蚀,但不耐硝酸、和氧化性熔盐的腐蚀。在常温下耐碱,但加热时则被碱腐蚀。金属钼在高温时也能坚持高强度和高硬度。 钼在地壳中的含量约为1×10-6,在岩浆岩中以花岗岩类含钼最高,达2×10-6。钼在地球化学分类中,归于过渡性的亲铁元素。在内生成矿作用中,钼首要与硫结合,生成辉钼矿。辉钼矿(MoS2)是自然界中已知的30余种含钼矿藏中散布最广并具有实际工业价值的钼矿藏。其他较常见的含钼矿藏还有铁钼华([Fe3+(MoO4)8•8H2O]),钼酸钙矿(CaMoO4),钼铅矿(PbMoO4),胶硫钼矿(MoS2),蓝钼矿(Mo3O8•nH2O)等。 钼首要用于钢铁工业,用作出产合金钢的添加剂,并能与钨、镍、钴、锆、钛、钒、钛、铼等组成高档合金,可进步其高温强度、耐磨性和抗腐蚀性,其间大部分是以工业氧化钼压块直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。不锈钢中参加钼能改进钢的耐腐蚀性。在铸铁中参加钼能进步铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制作航空和航天的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优秀催化剂。二硫化钼是一种重要的润滑剂。钼和钨、铬、钒的合金钢适用于制作高速切削的刃具、军舰的甲板、坦克、炮、火箭、卫星等的合金构件和零部件。金属钼很多用作高温电炉的发热材料和结构材料、真空管的大型电极和栅极、半导体及电光源材料,因钼的热中子浮获截面小及具有高强度,还可用作核反应堆的结构材料。钼的化合物在颜料、染料、涂料、陶瓷玻璃、农业肥料等方面也有广泛的用处。 我国钼矿资源比较丰富,已探明的钼矿区散布于全国29个省区,从钼矿散布区域来看,中南区域占全国钼储量的35.7%,居首位。其次是东北19.5%、西北14.9%、华东13.9%、华北12%,而西南区域仅占4%。河南储量最多,占全国钼矿总储量的29.9%,其次陕西占13.6%,吉林占13%。别的储量较多的省(区)还有山东占6.7%、河北占6.6%、江西占4%、辽宁占3.7%、内蒙古占3.6%,以上8个省区算计储量占全国钼矿总保有储量的81.1%。我国钼矿资源具有以下特色: (1)储量大,但档次与国际首要钼资源国美国和智利比较,明显偏低,多属低档次矿床。矿区均匀档次小于0.1%的低档次矿床,其储量占总储量的65%,其间小于0.05%的占10%。中等档次(0.1%-0.2%)矿床的储量占总储量的30%,档次较富的(0.2%-0.3%)矿床的储量占总储量的4%,而档次大于0.3%的富矿储量只占总储量的1%。 (2)档次低,但伴生有利组分多,经济价值高。据统计,钼作为单一矿产的矿床,其储量只占全国总储量的14%。作为主矿产,还伴生有其他有用组分的矿床,其储量占全国总储量的64%。与铜、钨、锡等金属共生和伴生的钼储量占全国钼储量的22%。 (3)规划大,并且多适合于露采。据统计,储量大于10万吨的大型钼矿,其储量占全国总储量的76%,储量在1-10万吨的中型矿床,其储量占全国总储量的20%。适合于露采的钼矿床储量占全国总储量的64%。大型矿床大都能够露采,并且辉钼矿的颗粒往往比较粗大,归于易采易选型。
钼历史
2018-12-10 09:44:08
3月21日消息:钼是18世纪后期才发现的,而且在自然条件下没有金属形态的钼存在。尽管如此,钼的主要矿物-辉钼矿在古代时就早已得到了应用,只是辉钼矿和铅、方铅矿及石墨都很相似,不易区分,"molybdos"这个词在希腊文里就是铅的意思。 曾在14世纪的一把日本武剑中发现含有钼 。直到1778年,瑞典科学家卡尔.威廉.谢勒(Carl Wilhelm Scheele)才证实了钼的存在。他将辉钼矿在空气中进行加热,从而产生了一种白色的氧化粉末。此后不久,到1782年,彼得. 雅各布.耶尔姆(Peter Jacob Hjelm)用碳成功地还原了这种氧化物,获得一种黑色金属粉末,他称这种金属粉末为“钼”。 19世纪钼基本上是作为实验品,后来才逐渐生产。1891年,法国的斯奈德Schneider)公司率先有钼作为合金元素生产了含钼装甲板,他们立刻发现,钼的密度仅是钨的一半,这样以来,在许多钢铁合金应用领域钼有效地取代了钨。 第一次世界大战的爆发,导致了钨需求的剧增和钨铁供应的极度紧张,钼在许多高硬度和耐冲击钢中取代了钨。结果钼需求的增长促使了对钼需求的进一步研究。这时,美国科罗拉多州的大型矿山克莱麦克斯(Climax)矿随之开发,并于1918年投产。 钼的原子量:95.95 g/g原子 钨的原子量:183.85 g/g原子 大约在1816年出现了"钼"这个词的英文"molybdenum",14世纪日本著名艺术家马萨穆内经过分析证实该武剑中含有钼(参考资料:Sutulov.A.著的"钼百科全书"
,智利,1978年) 第一次世界大战的结束导致了钼需求锐减,要解决这个问题就得开发钼在新的民用工业的应用,不久对许多用于汽车工业的新型低钼合金钢进行了试验并得到认可。30年代得出了这样一个观点,那就是锻造和热处理钼基高速钢必须要求适当的温度,这一观点的提出是 技术上的一个突破。从此,对钼作为合金元素在钢铁和其它领域的开发研究进入了一个新的阶段。20世纪30年代末,钼已经是广泛使用的工业原料。1945年第二次世界大战结束再一次刺激了钼在民用工业领域应用的开发与研究,加上战后重建给许多含钼工具钢的应用开辟了广阔的市场。 1945年以后的这些年中,钼、钼合金及钼化合物的应用领域大大拓宽,充足的资源供应与日益增长的需求相一致,随着工艺的改进,钼的回收率得到了很大的提高。 尽管钢和铸铁占领了巨大的市场份额,但由于钼有多种特性,因此,钼在超合金、镍基合金、润滑剂、化工、电子等领域的应用也日益广泛。 (miki)
再生铜杆行业发展简析
2018-12-07 10:47:19
导读:尽管近年来我国大力扶持循环产业,但国内再生铜的回收量仍处于较低水平,且这些再生铜的杂质含量要远超进口的再生铜。为此,目前国内再生铜杆企业的原料有90%以上是来自国外进口的废铜,使用国产再生铜的比例非常低。我们认为只有进一步完善国内再生铜的回收机制和升级优化再生铜的分拣步骤,国内再生铜才能被更多的再生铜杆厂所使用。
在我国铜产量中,再生铜占比约40%,对于电力电缆行业,再生铜使用比例约50%。在国家大力扶持循环产业的利好政策下,再生铜杆企业开始壮大,并对前景充满信心。
人们经常把那些富含贵重金属的电子产品的地区比作“城市矿山”。在资源越来越紧缺、越来越提倡循环经济的今天,金属的回收再利用也逐渐成为一个庞大的产业。
以铜矿资源来看,据中国有色金属工业协会再生金属分会副会长兼秘书长王吉位介绍,2014年,全国回收的铜产量就在300万吨左右。在过去的5年前,中国一共建立了50个城市矿山的项目。“回收铜资源对于我们的意义非常重大。因为中国已经是全球最大的机电产品制造国和家电生产大国,同时大量的基础设施正在建设,这些都需要大量的铜以及铜制品。
在铜回收产业里,电线电缆的回收又是其中重要的一部分,因为铜在电线电缆里使用的比例非常大,高达60%以上。
坚持可持续民企看好循环产业
富有的“城市矿山”也吸引着一些民营企业纷纷投向这个领域。记者在对天津某资源循环企业采访时发现,在国家大力扶持循环产业的利好政策下,众多从事多种内容的资源型再生企业开始发展壮大,而其中,废铜的精深加工均是这些企业的重要业务之一。
记者在采访中了解到,该企业作为园区里的一个小微企业,从1996年开始涉足再生铜产业,2008年该企业将业务拓展到真正的再生铜冶炼的项目。
据介绍,再生铜杆的发展在国内也还处于初期阶段。该企业制作再生铜杆的原料里有90%以上来自于国外进口的废铜,使用国内废铜比例还比较小。近几年,关于再生铜杆的质量问题也一直被提及。国内大大小小做再生铜杆的企业,技术水平也不尽一样,生产出的再生铜杆质量也有差别。该企业相关负责人在接受记者采访时表示,由于采用了意大利普洛佩兹和西班牙拉法格公司联合开发的废杂铜火法精炼工艺,该企业所生产的再生铜杆,无论是从伸长率、扭曲、电阻率,还是含氧量的这些指标,都可以达到国家标准。
从再生领域的“铜铝之争”
最近几年,电缆行业里“铜铝之争”的声音一直存在。而其中一个观点认为中国铜资源紧缺,而铝资源相对没那么紧张。但是如果从资源循环再生的角度来看,则不尽然。首先,铜本身的性能决定了它可以百分之百进行回收。我国铜产量中,再生铜占比约40%。我国铝产量中,再生铝仅占约20%。对于电力电缆行业,再生铜使用比例约50%,而再生铝使用基本为0。
该企业相关负责人对此也深有体会,在做再生铜杆之前,他有着20多年的做再生铝的经验。“我们现在市面用的稀土铝合金电缆线是不能用再生铝生产的。而原生铝要耗费大量的电能,所以并不能节约很多费用。说铝合金比较经济,并没有把资源再生的角度考虑进来。”
此外,专家认为,虽然现阶段国内铜供应不足,但从国际上能够获取足够的铜以满足国内经济发展的需求。而且铜的需求也不会无止境增长,国外的发展已经证明,随着经济发展到一定程度,人们对于铜资源的需求也会达到顶峰。
再生铜产业将会有快速发展
记者了解到,目前再生铜杆的比例还不算大,再生铜杆目前每年的产量也就在20万~30万吨之间,但是这个行业的未来发展前景不可估量。在欧洲,英国、法国、德国等发达国家再生铜的使用均超过40%,在意大利更是达到了几乎100%。“行业未来会有一个比较快速的增长。因为如果比较再生铜和原生铜的性能,根据目前技术所生产出的电工用铜杆,它的物理性能跟原生铜已经没有太大差别,唯一达不到的指标,是在杂质含量上。再生铜的杂质含量要超过原生铜,但是如果是用先熔炼成阳极板再通过电解的方式,再生铜的杂质含量可以降低到原生铜的标准,只是这样做的成本太高。而这个因素并不会对电工杆的使用造成实质的影响。现在随着整个国家经济的发展,再生材料的利用已经提到了国家的议程上来,再生铜杆的量会越来越多,会成为一个使用的亮点。”该企业相关负责人对再生铜杆的未来充满了信心。
铜线杆质量影响因素浅谈
2018-12-18 10:15:50
云南铜业铜材有限公司 和晓燕 从20世纪初开始,我国电线电缆行业迅速发展,铜线杆的需求急剧增长。而铜线杆质量的保证成了最为关键的因素,以下从铜线杆中杂质、氧成分、表面质量、稀土作用等方面进行铜线杆质量的影响因素讨论,从而找出可以改进的方法提高铜线杆质量。一、杂质元素的影响 杂质元素对铜线杆的影响很大,纯铜中的杂质元素大致可分为:固溶于铜的杂质元素、很少固溶于铜与铜形成低熔点共晶的杂质元素和几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素三类。固溶于铜的杂质元素。此类杂质元素在允许的含量范围内,能溶于铜中形成固溶体。主要有:铝、铁、镍、锡、锌、银、镉、磷等,以磷为例,该杂质元素在铜中的溶解度随温度的下降而降低,它对铜的机械性能特别是对铜的焊接性能有良好的影响,作为脱氧剂提高铜液的流动性,会降低铜的导电导热性,过量的磷会造成冷脆。总体而言这类杂质元素对金属加工性能无太大影响,能略微提高铜的硬度,但导电、导热性有所降低。很少固溶于铜与铜形成低熔点共晶的杂质元素。此类杂质元素与铜形成低熔点共晶或者与铜形成脆性化合物分布于晶界。主要有:铋、铅、硒、碲、锑,它们在冷凝时分布于晶界,使铜在热加工时产生严重的破裂,是铜线杆产生质量问题的主要原因。以铅、铋、硒、碲为例: 铅:在铜中的溶解度很小,在800℃时溶解0.04%,在300℃时溶解0.02%。铅呈黑色颗粒状分布在晶界上,热加工时铅先熔化,使金属颗粒之间的结合力受到破坏,造成“热脆”,从而在轧制和以后的拉伸过程中易产生裂纹和断裂。所以铅的质量分数控制在(50~500 )× 10-6。 硒:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Se,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。 碲:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Te,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。 铋、:在铜中溶解度很小,在800℃时溶解0.01 %,在300℃时仅融解0.000 1 %。在270℃时与铜生成低温共晶,呈连续网状分布在晶界上。当热加工温度大于其共晶熔点时,共晶膜熔化,使铜的晶粒与晶粒的结合力降低,从而发生晶间破裂,引起“热脆”。除了“热脆”之外,由于铋本身性脆,还会形成“冷脆”。从而在轧制和以后的拉伸过程中易产生裂纹和断裂。几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素。此类杂质元素对铜线杆生产过程有很大影响。从氧、硫、氢三种元素进行讨论。 氧:很少固溶于铜。氧含量对铜材的加工性能有很大的影响,与铜生成Cu2O,Cu2O硬而脆,使冷变形困难,致使金属发生“冷脆”。氧含量过高时,会因氢与氧反映产生不溶于铜的水蒸气,水蒸气又无法扩散,在铜中形成很高的压力,使铜遭到破坏。氧的质量分数达到5×10-5的铜,即出现“氢病”。所以纯铜的氧含量受到严格的限制。氧在与大部分杂质反应的过程中都起到了一个清除器的作用,而这些杂质当它们溶解在铜基质中时对其特性和退火反应都有巨大的影响作用。相反,当这些杂质与不可溶解的氧化物混合在一起的时候,这些坏作用就被抵消了。由此可见当铜中含氧的质量分数低于100×10-6时,氧含量过少,氢和某些不溶于铜的杂质会增多;当铜中氧的质量分数含量超过600×10-6时,过量的氧与铜形成过量的Cu2O,并在铜基体中形成不均匀分布,将导致裂纹的扩展,在铜材的深加工时易引起加工硬化和产生局部裂纹。综上可知,氧含量应控制在一个适当的范围内。 硫:与铜形成共晶,由于共晶温度较高,对铜热变形不明显,由于Cu2S硬而脆,致使金属发生“冷脆”,严重时,会使线杆发生裂纹乃至断裂。 氢:氢能溶于液态铜,且其溶解度随温度的升高而升高。若吸氢较多,过饱和氢会大量析出,在铸坯上出现微小气泡和微裂纹。另外一方面如上文所述形成水蒸气,产生极大内应力,引起所谓“氢脆”现象,严重影响铜的塑性加工性能。二、铜线杆的表面影响在外界温度下,铜线杆总是有一个残留的氧化膜,而这一氧化膜是当铜线进入热杆轧制阶段时从高温的、连续铸造的铜杆上形成的。现在在铜液中通过一种电量分析控制检测手段来测量残留的表面氧化膜的厚度已成为一种比较标准的作法。氧化膜可能会相当地有害,因为它们可能会在拉丝过程中引发许多缺陷、使拉丝膜过度磨损、可焊性变差、搪瓷膜和裸导体之间的附着力变弱。铜杆的缺陷之处往往是源于连续铸造过程和轧制过程,这包括:残渣、铜氧化夹杂物、热裂、裂块、铜杆表面氧化颗粒的形成。在这一系列的铜杆缺陷中:热裂,是在结晶过程中产生,多沿晶界裂开,裂纹曲折而不规则,有时还有分枝裂纹,裂纹多分布在铸锭最后凝固的区域或靠近这些区域。影响热裂纹的因素有:金属及合金本身的性质,如热脆性、收缩率的大小、在固液区内的抗拉强度及延伸率和杂质含量与分布情况;铸造工艺及设备、工具情况和冷却强度大小。 夹渣和夹杂,此缺陷破坏铜基体的连续性,降低铜的塑性。它产生的原因有内因,是铜中含有易氧化生渣的元素;还有外因,是生产中扒渣不净,润滑油或涂料过多,铸造温度低,炉料混杂等因素都可能造成夹渣和夹杂。大部分金属间化合的夹杂物都比较脆,因而都成为拉丝过程中裂纹发生和蔓延的场所。相对于缺陷而言,较细的磁线和成形线是最主要的生产产品。惟一最大的表面缺陷源于拉丝,往往是以拉模划痕、机械损伤、弧口凿或裂片的形式出现在裸导体的表面。因为拉丝问题而形成的裂片往往与所捕获的氧化物没有太大关系。表面损伤通常是由于拉丝机内移动线未对准或拉丝膜炉口内铜精炼的压制力太大则形成的。三、部分稀土元素的影响 在熔融铜中加人微量稀土生产光亮铜线杆的工业试验进行了几年的探索和研究,发现铜杆的各项性能指标得到很大的改善,稀土的作用明显,理论方面具体表现在:1. 在铜中的净化作用 脱氧和脱硫:从上文讨论可知,硫和过量的氧是光亮铜线杆的有害物质。硫与铜生成Cu2S降低铜的塑性,氧与铜生成Cu2O,降低了韧性,使热加工困难。稀土元素与氧、硫的结合能力很强,因此可代替铜,生成稀土氧化物和稀土硫化物,部分形成渣出去,部分将原来氧化物、硫化物的晶界网状分布转变成在熔体中弥散分布。 以脱硫为例举例讨论:稀土能把铜中少量硫除去:Cu2S + Ce = 2Cu +CeS 其标准生成自由焓 ΔGTo与温度T的关系式为:ΔGTo= ﹣192.360﹢9.271ogT一11.8T 在1400K下,ΔG14000= ﹣707.108J/mol 由此可见,在熔铜中,稀土元素脱硫反映的热力学势很大,有一定的能力除去硫杂质。 脱铅、秘等有害杂质:稀土的化学活性强,能与铜中的铅、秘等有害杂质发生作用,形成难熔的二元或多元化合物,与熔渣一起从液体铜中析出,从而达到净化铜液的作用。2. 在铜中的变质及微合金化作用 稀土在铜中的最主要变质作用是消除柱状晶区,急剧细化晶粒。稀土在铜中的固溶度极小,加人微量稀土大部分同其它元素化合生成高熔点化合物,这些化合物在熔体中悬浮和弥散分布,从而提高铜及其合金的塑性和强度,减少表面裂纹和缺陷。为研究稀土元素对铜线杆的作用,已进行了大量试验。其中结果较为明显的是加入富铈混合稀土 ( 组分为:铈:47%,镭:26%,钕:15% ) 的试验。试验结果看出:(1)稀土的加人使铜铸坯的组织改善,从铸坯的端面可看出,晶粒得到细化,柱状晶区域缩小,等轴晶扩大。表1 晶粒直径的比较试样编号 稀土加入质量分数(×10-6) 晶粒直径/(mm)样1 0 0.153样2 50 0.062样3 60 0.084从表1可知,稀土的质量分数在52.2×10-6时,明显细化了晶粒,但稀土含量超过一定范围,则晶粒有变大趋势,因此应在一定范围内加人稀土。(2)富铈稀土的加人对铜杆机械性能影响。按试验对铜杆试样进行了拉伸、扭转试验,延伸率和扭转性能有所提高。这说明稀土加入后有效地改变了铜杆的塑性,提高了铜的塑性变形能力。表2 拉伸率和扭转性能比较试样编号 稀土加入质量分数(×10-6) 伸长率 单向扭转试样1 0 40 45试样2 200 41 61试样3 400 40.5 52从表2可知,稀土元素的适当加人,延伸率略有提高,其扭转性能提高尤其明显。(3)富铈稀土的加人对铜线杆导电率的影响。表3 导电率比较试样编号 稀土加入质量分数(×10-6) 导电率(Ω/mm2 • m- )试样1 0 0.0170 0试样2 40 0.0169 8试样3 70 0.0169 8从表3可知铜杆试样的导电率经测试都在0.001 7Ω/mm2 • m-以下,其数值低于铜线杆一级杆导电率标准。(4)加入富铈稀土对铜液确实起到净化的作用,选取具有代表性的氧、硫、铅、铋作成分比较 。表4 加入富铈稀土度比较(质量分数)×10-6 稀土加入量 氧 硫 铅 铋0 347.0 13.0 2.9 8.040 237.4 11.0 2.8 7.0从表4可看出,稀土元素的加人对氧、硫的脱除能力较强,其他金属杂质随稀土加人也能部分除去,但炉内含金属氧化物较多时,由于稀土的亲和力比其他金属强,稀土将会使其他金属脱氧,还原进入铜熔体中,使铜杆杂质升高,性能变坏,因此必须严格控制金属氧化浮渣。从现今看,稀土运用于铜线杆还未成为产业化的过程,还需作进一步的摸索和探索性试验,但其作为铜晶粒细化剂已被开发投人市场,前景看好。.
废紫铜加工铜杆技术
2018-12-03 10:44:49
导读:废紫铜加工铜杆技术有哪些?废紫铜加工铜杆技术对废紫铜的要求?废紫铜虽然是废铜,但是废紫铜中的铜含量还是比较高的。废紫铜的回收利用可以减少坏境污染、降低生产成本、节约资源。废紫铜回收之后一般都是重熔的,之后在加工成铜杆。废紫铜加工铜杆技术有很多种类。随便科技的不断发展,废紫铜加工铜杆技术已经有了不重熔的方法。不重熔废紫铜加工铜杆技术比较重熔废紫铜加工铜杆技术有着更大的优势,小编介绍下“废紫铜加工铜杆技术”。 废紫铜加工铜杆技术? 1、废紫铜生产上引铸造无氧铜杆技术:无氧铜杆是生产优质电线电缆的基本材料之一。无氧铜杆以其性能优良而获得电线电缆行业的青睐。上引法连续铸造无氧铜杆由于投资少、上马快、生产灵活性大、无环境污染,因而近年来发展很迅速。为了充分利用资源,节材降耗,在上引法铸造无氧铜杆生产中,适当利用一定品位的废旧紫铜作原料,生产出符合国标要求的无氧铜杆,将有利于提高企业的经济效益。2、废紫铜连铸连轧低氧光亮铜杆技术:针对上述废紫铜综合利用的问题,提供一种利用废紫铜反射炉精炼工艺的废紫铜连铸连轧低氧光亮铜杆生产工艺。 废紫铜加工铜杆技术对废紫铜的要求?紫铜有很多牌号。这里我们主要讲解的是废紫铜加工无氧铜杆技术。在无氧铜生产中,能作炉料的紫铜主要包括导电铜材加工过程中的边角余料及废料,废品回收公司收购的紫铜废料,生产企业上引铸造及拉线过程中的废料等,要求品位在97%Cu以上。为了保证其质量,必须仔细分检,分检后附着有机物的料要进行焙烧,并去除尘土。所选铜料要在酸液槽内清洗,然后经碱水中和,最后用清水冲洗干净并放置干燥的地方自然风干,使用时直接利用上引连铸炉上口热量烘烤至500e后直接投料。上述铜料使用前还要人工扎成8kg左右的捆,对于质量较差、杂质元素较高的碎杂料,要经坩埚炉精炼后铸成条块状坯料,再作为上引铸造无氧铜杆炉料使用。 上引铸造铜杆缺陷?上引铸造无氧铜杆易出现铸造缺陷,特别是利用废旧紫杂铜作炉料时,更会加剧气孔、夹渣、晶粒组大缺陷。而且,带入的杂质元素会降低铜的导热性和导电性,降低抗拉强度,严重时造成上引过程中铸杆断裂,不利于进一步拉丝。本文所述的上引铸造无氧铜杆生产中,熔化设备为双室有心工频感应熔炼炉,通过流槽将熔化炉中熔化好的铜液导入保下图:上引铸造原理示意图温炉中。为防止氧化,保温炉一般具有很好的密封性,保温炉上口接带冷却水套的石墨结晶器。上引原理如下图所示,在一定牵引力作用下,铜液上引结晶凝固,金属自上而下凝固形成扁平的液穴,结晶前沿的气体过饱和度很高,当气体达到一定过饱和度时形核长大,分布于最后凝固的柱状晶和中心等轴晶交界处的环形区域内。由于保温炉密封,气体和夹渣主要来自熔炼炉。上引铸造过程中,溶于铜液的气体主要是O2,氧以Cu2O形式溶于铜液中,由于上引工艺中会带入水蒸汽,则发生如下反应产生H2而溶于铜液: C+2H2O(g)=CO2+2H2 C+H2O(g)=CO+H2 2Cu+H2O(g)=Cu2O+H2 当铜液中含氢达到一定浓度,就会与铜液中的氧发生水蒸汽反应生成气孔。应用废旧紫铜引杆时,因铜液中氧化物较多,更会加大气孔产生的趋势,同时也增加了氧化夹杂物的数量。另外,由于氧化夹渣较多,浸蚀石墨结晶器,使其下口增大,导致牵引受阻,而且铜杆易表面开裂,因此,引杆温度较使用电解铜炉料引杆高,又会造成晶粒粗大。 上引铸造原理示意图 废紫铜加工铜杆技术的现状及发展? 1、我国废铜的再生利用还存在不少问题,如企业规模小、工艺技术水平低下,废铜利用水平不高、产品质量不稳定,环保问题仍然严重,与发达国家相比还有较大差距。 2、废紫铜不熔再生成型工艺及配套设备,颠覆了废紫铜加工的传统技术,居国内、外领先水平。 2、废紫铜不重熔直接生产紫铜产品的加工技术项目,产业化后,是中国铜加工业发展的一条新路,将推动我国废铜再生工业的发展。 废紫铜加工铜杆技术之利用废旧紫铜的途径:针对上引连铸无氧铜杆缺陷特征和废旧紫铜质量与数量情况,为了达到符合应用要求的力学性能、电性能的无氧铜杆,可采取以下措施 1、对于质量较优,杂质少且废旧紫铜量较少的无氧铜杆生产厂家,可采用在电解铜中加入一定量的废旧紫铜,使用常用的P-Cu脱氧法生产。以生产51414mm无氧铜杆为例,当加10%废旧紫铜时,生产出的铜杆与用纯紫铜生产的无氧铜杆性能相近,如表所示。 从表中试验结果可以看出,添加10%以下优质废旧紫铜时,对无氧铜杆的性能影响不大,生产的铜杆符合使用要求。 2、对于上述类型废旧紫铜,当废旧紫铜量较大时,可全部采用废旧紫铜上引铸造无氧铜杆。但因废旧紫铜会带入氧化夹渣和少量夹杂元素,且上引铜杆因连续生产不便使用精炼熔剂精炼,否则会阻塞流槽或渣子过多地进入保温炉而不能被清除。试验发现,加入1%左右的RE-Cu中间合金具有好的效果,该中间合金含10%RE,其RE具有脱氧、精炼和变质细化晶粒作用,且熔炼方便,有利于提高RE的利用率。其作用机理122是,稀土与氧的亲和力远大于铜与氧的亲和力,且生成熔点比铜液高、密度小的稀土氧化物,收到良好的脱氧作用。稀土生成的呈弥散分布的难熔氧化物颗粒,起到非均质形核作用,从而细化了晶粒。又由于稀土能与Pb、Bi、P等低熔点杂质起反应,形成高熔点低密度化合物,从而清除了夹杂元素,提高了铜杆的导电性。下面分别为用P-Cu和RE-Cu处理铜液所铸造无氧铜杆的杂质分布及气孔分布状况,很明显,采用稀土处理铜液铸造无氧铜杆,夹杂减少、变细,铜杆的力学性能和电性能都达到了使用要求。3、对于杂质元素含量较高的碎杂紫铜,由于氧化夹杂及杂质元素多,铸造引出的铜杆发脆,无法拉拔,更谈不上性能达标,必须在坩埚炉内用Na2CO3、Na3AlF6、Na2B2O7、NaNO3、RE等组成的复合精炼剂精炼。在熔炼过程中,由于Al、Sn、Si等杂质比Cu活泼得多,熔炼中形成弥散分布的Al2O3、SiO2、SnO2等很难被排除,复合精炼剂的精炼机理132是: Al2O3+Na2CO3=Na2Al2O4+CO2{ SnO2+Na2CO3=Na2SnO4+CO{ SiO2+2Na2CO3=Na4SiO4+2CO2{ 因Na2Al2O4、Na2SnO4、Na4SiO4这些熔渣密度小,易于聚集上浮;另据精炼吸附理论142,上述反应生成CO2、CO气泡在上浮过程中会自动吸附合金中的气体,从而达到清除气体的目的。精炼剂中的Na3AlF6和Na2B2O7还分别具有熔剂和造渣作用,而NaNO3在渣层内放热,有利于渣层中铜豆重新熔化而进入合金液,使合金熔耗明显降低;RE的作用上面已论述过。 废紫铜连铸连轧低氧光亮铜杆技术流程:废紫铜-→反射炉熔炼-→吹氧-→精炼-→还原-→保温炉精炼-→浇铸-→滚剪边-→粗轧-→精轧-→冷却-→排线-→出料 废紫铜连铸连轧低氧光亮铜杆技术流程说明: 1、废紫铜: 用废紫铜冶炼生产铜杆原材料分为三个级别,一级废紫铜要求是由清洁的、不镀锡的、无包覆的和非合金化的铜线和电缆所组成,务必不要用烧过的线,这些废铜由标准含量为96%的非合金化的铜线组成。二级废铜是由小直径的、没有绝缘的,通常为电话线的铜线、铜管,带清漆或绝缘的铜排铜线以及干净紫铜棒所组成,最小含量为94%。三级废铜是由非合金化废铜的混合物,其标准含铜量为92%,为了获得最佳的材料组合,达到最理想的效果,加入炉内的材料组成比例一般为:一级废铜:30%;二级废铜:60%;三级废铜:10%。 2、反射炉熔炼: 废铜冶炼生产铜杆的关健是铜液成份的控制,其核心设备是精炼炉,精炼炉采用耐火材料砌成,炉子可倾斜,以利于除气、除碴和浇铸,该工序的控制也是整个生产线的关键所在,其工序包括:原料-→加料-→熔化-→氧化-→还原-→浇铸。首先应根据废铜的来源等级进行配料,再根据原料的配比添加反应剂。废铜在精炼炉内通过一次精炼,使铜快速熔化后,加入除碴剂,并使熔铜获得最好的均匀性,然后通过炉内通入富氧的空气,使其被氧化的杂质漂浮在熔池进行表面清碴处理。经过一次精炼的铜中主要的基本杂质是铅、锡、锌、铁、砷、锑和硫,这些元素对铜杆的加工工艺和导电率有很大的影响。在此种情况下,通常还需要进行二次精炼,以进一步除去杂质。最后的还原操作需要向熔炉中通入还原性气体,使铜的氧含量调整到200-350ppm的要求。(1)原料: 紫铜、废铜线、废铜管、锯屑、铣屑、废管头等等。 将原料打包成100-400Kg/捆,碎料单独加入。(2)加料: 加料炉温:1000℃左右; 加料用加料小车进行; 先加小料,后加大料; 原料分三批加入,第一批加60%,第二批加30%,第三批加入余量的料。 料离炉顶高度:300-400mm; 加料约8小时左右。(3)熔化 加完料后,应加大火提温,炉温保持在1300℃左右; 炉内保持氧化性气氛; 铜水表面激烈沸腾,即表示熔化结束; 铜料全部熔化后,马上扒去浮碴; 熔化时间约3。5小时。(4)氧化: 按紫杂铜杂质含量分为若干阶段:杂质主要为:Fe、Zn、Pb、Sn、Ni、As、Sb、Bi等; 氧化时,炉温:℃;铜水温度:1200-1250℃; 除杂质: 第一步:除Fe、Zn,炉温:1300℃; Zn+O2-→ZnO ZnO+C-→Zn↑+CO2 锌以挥发物除去 Fe+O2-→FeO FeO+SiO2-→FeO。SiO2 Fe与石英造渣除去。 第二步:除Pb、Sn,炉温:1250℃; Pb+O2-→PbO挥发除去; Pb+O2-→PbO2加石英造渣除去。 Sn与Pb基本一致,挥发或造渣除去。 第三步:除As、Sb、Bi、Ni,炉温:1200℃; 三价As、Sb挥发除去;五价As、Sb和Bi加石英造渣除去。 Ni基本造渣除去,若形成镍云母则反复精炼除去。 (5)还原: 当铜水O量达到1.4%左右时,进行还原; 还原时铜水温度控制在1200℃以上; 还原时铜水表面铺上100mm左右厚的木炭; 还原采用插木和炭还原剂。 (6)浇铸: 还原结束时,Cu:99.7%-99.9%; O:200-450ppm。 然后进行浇铸,锭送连轧机,生产光亮圆铜杆。 3、保温炉精炼: 保温炉精炼使铜熔液在高温静置中,非铜夹杂物与铜熔体比重不同,因而产生上浮或下沉,使铜液达到进一步净化的目的,确保铜线坯的化学成份满标准的要求。4、浇铸: 浇铸采用五轮钢带式连铸机连铸,五轮钢带式连铸机由结晶轮、两个压轮、张紧轮、惰轮和钢带组成,结晶轮上的凹槽和压紧的钢带形成铜液的浇注腔,铸轮和钢带配有冷却系统、吹扫系统、喷碳系统并配有浇包预热装置。5、滚剪边: 将铸坯的预处理包括夹送、剪切、铣棱,连铸机导出的铸坯由夹送辊送到剪切机切头或将不合格产品切除,再经过铣棱去棱角。6、粗轧和精轧: 铜杆连轧机为二辊悬臂式轧机,分粗轧和精轧两套机组。粗轧和精轧的轧辊平、立交替布置。粗轧机采用较大压力下量压下,起到细化晶粒的作用。精轧以保证铜杆的尺寸精度和表面光洁度。7、冷却: 出连轧机的铜杆,进入一个约20米长,向上倾斜的冷却管中,铜杆在冷却管中受到微酸性的酒精溶液冷却、清洗去氧化皮并避免再次氧化。8、排线和出料: 经过冷却清洗的铜杆由曲线辊道将铜杆从轧制线的水平位置换成与绕杆机垂直的位置,然后进入铜杆的后处理装置和绕杆机。
锌锭作用
2017-06-06 17:49:55
进入新世纪以后,锌锭作用越来越多的被生产商所开发出来.而最普遍的锌锭作用就是铸造锌合金.锌锭主要为压铸件,用于汽车、轻工等行业。许多锌合金的加工性能都比较优良,道次加工率可达60%-80%。中压性能优越,可进行深拉延,并具有自润滑性,延长了模具寿命,可用钎焊或电阻焊或电弧焊(需在氦气中)进行焊接,表面可进行电镀、涂漆处理,切削加工性能良好。在一定条件下具有优越的超塑性能。锌合金是以锌为基加入其他元素组成的合金。常加的合金元素有铝、铜、镁、镉、铅、钛等低温锌合金。锌合金熔点低,流动性好,易熔焊,钎焊和塑性加工,在大气中耐腐蚀,残废料便于回收和重熔;但蠕变强度低,易发生自然时效引起尺寸变化。熔融法制备,压铸或压力加工成材。按制造工艺可分为铸造锌合金和变形锌合金。锌合金压铸件不宜在高温和低温(0℃以下)的工作环境下使用。锌合金在常温下有较好的机械性能。但在高温下抗拉强度和低温下冲击性能都显著下降。锌锭的价格也随着锌锭作用面的越来越广而提高.笔者认为,在未来的十年内,锌锭将成为中国有色金属业的主力军.