您所在的位置: 上海有色 > 有色金属产品库 > 碲化铁 > 碲化铁百科

碲化铁百科

碲常识

2019-03-14 09:02:01

碲  碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。  碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。  碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

碲知识

2019-03-08 09:05:26

碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

粗铋的碱性碲渣回收碲

2019-01-31 11:06:04

粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。 一、工艺流程 出产碲的流程如图1。图1  碲出产工艺流程图 二、首要技能条件 (一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。 (二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为: Na2PbO2+Na2S+2H2O=PbS↓+4NaOH 参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为: Na2SiO8+CaCl2=CaSiO8↓+2NaCl 操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。 (三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为: Na2TeO3+H2SO4=TeO2+Na2SO4+H2O 鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。 (四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。 (五)造液。TeO2能溶于NaOH溶液,反应为: TeO2+2NaOH=Na2TeO3+H2O 每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。 (六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。 通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。 (七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。 三、首要设备 (一)球磨机。φ600×1000毫米,转速45转/分。 (二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。 (三)真空泵。SZ-2二台。 (四)电解槽。六个,钢板衬胶,790×600×640毫米。 (五)硅整流器。GZH3-40型一台,100安,50伏。 四、产品用处 碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。 五、产品质量 一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。 六、其它办法收回碲 (一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。 (二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。

碲铜

2017-06-06 17:50:05

碲铜,即碲和铜的合金。    碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。    碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。    碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子 行业 中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。    以下是碲铜的产品标准、化学成分以及机械性能的指标:  

碲铜

2017-06-06 17:50:03

碲铜是碲和铜的合金。根据两种 金属 的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下: 

碲锭

2017-06-02 16:19:17

碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的 金属 外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作 电池 极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。   碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

碲铜 英文

2017-06-06 17:50:14

碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国   ASTM 中国   GB 日本   JIS 德国   DIN 英国   BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分   合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能   合 金 状态 抗拉强度   MPa 硬度   HV 延伸率   % 导电率   %IACS 车削性   %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、   汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡 金属 。 铜呈紫红色光泽的 金属 ,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的 金属 之一,也是最好的纯 金属 之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的 金属 之一。一般认为人类知道的第一种 金属 是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种 金属 ,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到 金属 铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的 金属 。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海 有色 网

碲化镉

2017-06-02 16:18:18

金属 碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质  棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。   密度:6.20   熔点:1041℃   碲化镉的用途   光谱分析。也用于制作太阳能 电池 ,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海 有色网www.smm.cn 。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

碲铜合金

2017-06-06 17:50:05

碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等 行业 。    目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个 行业 的发展带动了连接器的大量 市场 需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能 行业 的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。    碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。    在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。 

碲铜合金

2017-06-06 17:50:02

碲铜合金(DT)  该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等 行业 。    目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个 行业 的发展带动了连接器的大量 市场 需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能 行业 的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。     碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。     在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。 

矿物中提取氧化铁

2019-02-25 10:50:24

现在国内外首要选用化学法出产a-氧化铁,产品用于永磁和软磁铁氧体材料。在化学法出产中,因为含铁质料的来历不同,其杂质品种和含量则不同,在同一出产工艺的条件下,不免呈现氧化铁质量的差异,然后影响铁氧体器材的出产。而天然矿藏赤铁矿的晶体结构安稳,在同一矿床中矿石的化学组分、含杂质品种根本相同,因而从赤铁矿矿石中提取6t一氧化铁,有较好的安稳性和共同性。 1氧化铁的制备工艺 1.1 a-Fe203粗精矿的提取 经过调研,选定安徽某矿山的赤铁矿作为矿源产地,其首要矿藏为赤铁矿和石英。它们之间比重差较大,可选用重选别离。此外,该矿石中,强磁性矿藏较少(磁铁矿约占1~2),选用磁选丢掉部分尾矿,再进行重选,可削减铁矿藏在重选中的丢失。依据原矿石细度实验和不同磁场强度实验,宜选用磨细度~200目6O,磁场强度6.366×106A/m的产品进行摇床重选,可获得较佳的粗精矿。 1.2 a-Fe203粗精矿的深加工 流程所提取的氧化铁在纯度、杂质含量等方面尚不契合要求,为进一步下降Si、Mg等有害杂质,仅靠物理分选已很难到达,深加工考虑了运用挑选性溶解,使杂质元素得到有用消除。经过实验,发现选用含氟溶剂时,能明显地下降Si02而不损创伤a-Fe2o3。与此同时,在屡次洗刷倾析时,稀释的水溶液中还带走了部分被胶凝吸附的杂质,以及细微的飘浮物,使其它杂质含量如钙、镁等随之下降。因而,对挑选性溶解进行了相关扩展实验,断定工艺条件: 1.3制品制备 经过深加工的口-Fe203精矿,其纯度、杂质含量根本合格,但粒度须进一步细磨,经过多计划的比较,挑选Co6—1型砂磨机进行湿磨5h,再经离心机脱水甩干、烘干、破坏、包装,即制得制品氧化铁。 2产品质量 2.1产品杂质元素含量 经过对赤铁矿的分选工艺处理和终究粗精矿的深加工处理,得到了口-Fez含量达99.68%的产品,经检测其杂质元素含量。该纯度和杂质含量根本契合出产铁氧体器材所需氧化铁的要求。 3结语 因为天然矿藏赤铁矿在自然界散布广泛,储量较大,在相同地质条件下的矿藏理化性质比较共同,就可以用同一工艺大量出产安稳性、共同性较好的优质氧化铁,为铁氧体器材供给较为抱负的原材料。

金-碲矿石选矿技术

2019-02-12 10:07:54

金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。       金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。  图1  金-碲矿石优先浮选准则流程       另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。  图2  金-碲-黄铁矿矿石的混合-优先浮选流程       当时,金-碲矿石可用下列两种计划进行处理。       (1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。       (2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。       澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。  图3  澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程       所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。       该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。

金-碲矿石的处理

2019-02-14 10:39:49

金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划:    1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。    2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量                                          1为200~500克/吨)和化(用量为的—)等                                          3办法。

碲金矿的浮选和氰化

2019-02-19 10:03:20

恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1  恩佩罗尔矿业公司简明流程 工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。 二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。 处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2  恩佩罗尔矿业公司收回金属碲生产流程 洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。 矿石含碲12.2g∕t,碲的收回率约为88%。 浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。 浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。 药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。

碲金精矿的氧化焙烧

2019-02-20 14:07:07

碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧 Au2Te+O2 2Au+TeO2 使金复原呈金属状况,更易分化。 此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。

铋的碱性精炼除碲、锡

2019-01-07 17:37:58

一、碱性精炼机理 图1为Te-Bi系状态图。图1  Te-Bi系状态图 从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。 Sn-Bi系状态图如图2所示。图2  Sn-Bi系状态图 铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。 碱性精炼的目的是为了回收碲与锡。 碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。 已被压缩空气氧化之碲,反应为:              对尚未被压缩空气氧化之碲,其反应为:      由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。 在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:   分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。 某厂碱性精炼中碲、锡的去陈程度如图3所示。图3  碲、锡的去除程度 二、碱性精炼实践 为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。 将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。 捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。 某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。 表  碱性精炼渣成分(%)

碲的理化性质和用途

2019-03-07 10:03:00

一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。        二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。      三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

铅阳极泥的除硒、碲

2019-03-05 09:04:34

大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。 一、回转窑焙烧除硒碲。 该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。 焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。 二、马弗炉焙烧除硒碲。 阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。

碲化铋拓扑绝缘体应用前景广阔

2019-01-04 09:45:23

近年,拓扑绝缘体成为了物理学领域最为热门的话题之一,这些拓扑绝缘体材料可同时作为绝缘体和导体,因其内部结构阻止了电流通过,而其边缘以及表面却能保证电流运动。而最为重要的可能是拓扑绝缘体的表面可保证旋转极化电子运动,另外也防止了能量消耗时出现的电子分散情况。因这些种特性,未来拓扑绝缘体材料在晶体管、存储设备以及磁性传感器等能耗效率高的产品领域均有很大的应用前景。在《自然纳米科技》杂志上,来自加州大学洛杉矶分校(UCLA)的工程及应用科学院和澳洲昆士兰大学的材料研究所的研究员发表论文,展示了碲化铋拓扑绝缘子的表面传导渠道,说明了这些绝缘体的表面可以根据费密能级的位置来调节表面态的传导性能。USLA工程及应用科学院的教授Kang L. Wang说道:“我们的发现为新一代低功耗的纳米电子和自旋电子器件的研发创造了更大的空间。”碲化铋以其热电性能而出名,并因其独特的表面状态被推断为三位拓扑绝缘体。最近针对碲化铋散装材料开展的一些实验也说明了其表面态具有二位传导渠道。但是 这种能带隙小的半导体的热激发性以及纯度不够等原因造成的重要体散射也使得调整表面导电功能成为一项很大的挑战。而拓扑绝缘纳米技术的发展在这方面做出了补充。这些纳米材料绝大程度的夯实了表面条件,使得靠外力完全能控制表面状态。Wang和他的团队使用碲化铋纳米材料作为场效应晶体结构的传导渠道。这依赖于外部电场来控制费密能级,从而调控渠道的传导状态,最高传导率可达到51%。研究员们首次做到了展示调节拓扑绝缘体表面的可能性。中国小金属资源信息网

铋矿三氯化铁浸出-水解沉铋法

2019-01-31 11:06:04

此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉淀物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般控制在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋回收率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋回收率为60%~70%。

铋矿三氯化铁浸出-隔膜电积法

2019-01-31 11:06:04

为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:图1  铋锡中矿浸出-铁粉置换提铋工艺流程图 该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。 此工艺与-铁粉置换法比较,流程简略。但由于溶液中铁离子浓度较高,电积进程在电场力的效果下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。

铜阳极泥综合渣中碲的回收

2019-01-21 18:04:33

碲作为一种稀散元素,其应用领域越来越广泛。在自然界中独立碲矿床较少,碲常伴生于铜、铅、铋等矿中,在这些金属的冶炼副产中得以富集,人们一直都很重视从这些副产中分离提取碲。我国某铜冶厂铜电解阳极泥中含碲4.9%~9.3%,在碲的提取过程中产生的碱浸渣、净化渣、碲电积阳极泥中碲的含量高低不一,成分复杂,碲回收困难。本研究采取氧化酸浸的方法,从这些渣、泥的混合料中富集提取碲,取得了较好的结果。       一、试验原料       本试验所用原料为某铜冶炼厂铜阳极泥分铜渣回收碲过程中产生的碱浸渣、净化渣、碲电积阳极泥的混合渣料,其主要化学成分如表1所示。 表1  原料主要化学成分(%)成分NaSiCaCrFeCuSnTePbBiAs含量4.4425.1570.1290.2480.6514.5301.7825.19045.3006.2091.407       二、试验方法       取一定量的硫酸到1L的反应烧瓶中,在水浴上加热到一定温度,加入50g混合渣和一定量的氧化剂,到达预定的反应时间后,取样用原子吸收分光光度计分析浸出液中碲的浓度,计算碲的浸出率。       三、试验结果与讨论       (一)常规酸浸       在浸出温度为80℃、硫酸浓度为0.5mol/L、液固质量比为5:1的条件下,对50g物料直接用H2SO4浸出,结果如图1所示。    由图1可知,随着浸出时间的延长,碲和铜的浸出率均增大,但铜的浸出率较高,最高可达85.85%,而碲的浸出率较低,最高只有43.91%,说明在不加氧化剂的条件下直接酸浸,混合渣中的碲无法彻底溶出。因此,以下试验采用氧化酸浸方法。      (二)氧化酸浸       1、氧化剂的选择       在浸出温度为80℃、硫酸浓度为3.6mol/L、液固质量比为5:1、浸出时间为5h的条件下,分别以Fe2(SO4)3、KMnO4、H2O2和空气为氧化剂对50g物料进行氧化酸浸,考察氧化剂种类对碲浸出率的影响。试验中Fe2(SO4)3、KMnO4加入量为10g,H2O2加入量为10mL,空气流量为10L/min。试验结果如图2所示。◆-空气;■-Fe2(SO4)3;▲-H2O2;□-KMnO4       由图2可知,采用不同的氧化剂,碲的浸出率差别较大。采用空气作为氧化剂时,碲的浸出率只能达到54.91%;采用Fe2(SO4)3和H2O2作为氧化剂时,碲的浸出率同样较低,最高不过65.59%。因此,碲混合渣的氧化浸出不宜采用以上3种物质作为氧化剂。而当采用氧化性更强的KMnO4时,碲的浸出率急剧上升,可高达90.75%,说明对碲混合渣进行酸浸时KMnO4是有效的氧化剂。根据这一试验结果,确定后续试验中的氧化剂采用KMnO4。       2、KMnO4用量对碲浸出率的影响       在浸出温度为80℃、硫酸浓度为3.6mol/L、液固质量比为5:1、浸出时间为5h的条件下,改变KMnO4用量对50g物料进行氧化酸浸,碲浸出率的变化如图3所示。      由图3可知,随着KMnO4用量的增加,碲的浸出率先快速上升,然后缓慢下降,在KMnO4加入量为0.4g时碲的浸出率达到最大值91.7%。因此确定,对于50g物料,氧化剂KMnO4的用量为0.4g。    3、硫酸浓度对碲浸出率的影响       在浸出温度为80℃、液固质量比为5:1、KMnO4用量为0.4g、浸出时间为5h的条件下,改变硫酸浓度对50g物料进行氧化酸浸,碲浸出率的变化如图4所示。    由图4可知,随着硫酸浓度的提高,碲的浸出率逐渐上升,当硫酸浓度从0.9mol/L提高到3.6mol/L时,碲的浸出率从83.71%上升到91.7%,但当硫酸浓度继续提高到4.5mol/L时,碲的浸出率仅上升了0.4百分点,为92.1%,而且硫酸浓度过高对后续工艺不利,因此选定硫酸浓度为3.6mol/L。       4、浸出时间对碲浸出率的影响       在浸出温度为80℃、硫酸浓度3.6mol/L、液固质量比为5:1、KMnO4用量为0.4g的条件下,改变浸出时间对50g物料进行氧化酸浸,碲浸出率的变化如图5所示。      由图5可知,随着浸出时间的延长,碲的浸出率提高,当浸出时间为5h时,碲的浸出率达到91.7%,此后再延长浸出时间对碲的浸出率没有大的影响。因此选定浸出时间为5h。       5、浸出温度对碲浸出率的影响       在硫酸浓度3.6mol/L、液固质量比为5:1、KMnO4用量为0.4g、浸出时间为5h的条件下,改变浸出温度对50g物料进行氧化酸浸,碲浸出率的变化如图5所示。      由图6可知,当浸出温度从40℃升高到80℃时,碲的浸出率从55.0%升高到91.7%,继续升高温度到90℃,碲的浸出率仅仅升高到92.1%。因此选定浸出温度为80℃。    (三)扩大试验       通过上述试验,确定了碲混合渣氧化酸浸的适宜条件为浸出温度80℃、液固质量比5:1、KMnO4用量0.008g/g(对原料)、硫酸浓度3.6mol/L、浸出时间5h。在此条件下对500g物料进行扩大氧化酸浸试验,结果如表2所示。   表2  氧化酸浸扩大试验结果浸出液含Te /(g/L)浸出液含Cu /(g/L)Te浸出率Cu浸出率9.358.8690.0997.81       由表2可知,在所确定的适宜浸出条件下,扩大试验碲的浸出率达到90.09%,证明氧化酸浸法能有效浸出碲混合渣中的碲,同时还可使97.81%铜被浸出。       四、结论       采用氧化酸浸法可以有效浸出某铜冶铁厂铜阳极泥综合渣中的碲。在浸出温度为80℃、液固质量比为5:1、KMnO4用量为0.008g/g(对原料)、硫酸浓度为3.6mol/L、浸出时间为5h的适宜条件下,碲的浸出率达到90.09%,同时铜的浸出率达到97.81%。浸出液可进一步提取碲和铜。

水氯化法提金—氯化铁溶液浸出工艺

2019-02-14 10:39:39

桂林冶金地质学院分析了FeC13溶液浸出金的热力学。浸出金是氧化复原反响进程。因为反响:                                    Fe3+ + e-====Fe2+的标准复原电极电位E1ө =0.771 V。而                                   Au3+ + 3e- ==== Au的E2ө=1.420 V。因而,用Fe3+不能将Au氧化为Au3+。假如溶液中存在C1-,C1-可与Au3+络合生成AuC14-:                                 AuCl4-+3e- ==== Au+4C1-E3ө=0.994 V,因而在氯离子存在的条件下,Fe3+将Au氧化为AuC14-就较简单了。经过操控系统中参与反响有关物质的浓度,就能使浸出金得以完结,浸出反响为:                              Au+3Fe3++40- ==== AuC14-+3Fe2+    该反响对应的原电池电动势为:                                              RT         α(AuC14-)·  α3(Fe3+)         E = Eө(Fe3+/Fe2+)-Eө(AuC14-/Au)- ——In ———————————                                                                                3F            α4(Cl-)·α3(Fe3+)要使该反响从左向右自发进行,E有必要大于零。若取a (AuC14-)=10-2, a (Cl-)=10,不难算出,当a(Fe 3+)/a(Fe2+)>101.80时,E大于零。    在实际操作进程中这些条件是不难满意的,比方,在298 K下,当参加FeCl3使[Fe3+]=3 mol/L,调理[Cl-]=10 mol/L(FeC13电离C1-,浓度缺乏部分参加HCl或NaCl )。溶液中AuC14-浓度可达10-2.28mol/L。在整个反响进程中[Fe3+ ]/「Fe2+]>102.80。这样的成果关于工业生产是有价值的。热力学分析标明,只需操控必定的热力学条件,坚持满足的Fe3+和C1-浓度,在常温(25℃)下,pH为1.0时,即可用FeCl3溶液来浸出金。    相同,某些金属(Fe, Sn, Pb, Cu, Ag)硫化物、砷化物均可与反响,耗费FeC13,一起生成的S附在矿粒表面,构成一层硫膜,阻止浸出反响。再者,有机物质和粘土的存在对浸出也是晦气的。    近年来,美国呈现了200t/d规划的堆浸场,其工艺办法十分简洁,只需在地上挖一些平行的槽坑,堆一层矿石,喷一层浸出溶液,再堆一层矿石,喷一层浸出溶液,如此循环往复,直至堆淋作业完结,最终从槽中取出富液并从中收回金。这种办法适于处理低档次的金矿,但因为矿粉空隙小,渗透性差,因而金的浸出率不高。    别的,湖南有色金属研究所对龙山砷锑金矿渣焙砂选用FeCl3浸出,金浸出率达98%-99%。电堆积率为98% -99%,金总的收回率达96.54%。与化法比较,浸出率高出4%-6%,总收回率高出5.34%,浸渣中的含金量也从3-5g/t降至0.75-1.5g/t。

某低品位弱磁性氧化铁矿选矿试验研究

2019-01-21 18:04:28

在我国已探明的铁矿资源中,弱磁性铁矿约占铁矿总储量的 65% ,其中鞍山式贫赤铁矿占弱磁性矿的一半以上。随着钢铁工业的发展,富矿日益枯竭,贫矿入选比例逐年增大。因此,该类型矿床的开发利用对我国钢铁工业的发展具有十分重要的意义。本文所研究的氧化铁矿原矿品位仅为28.34%,通过对全磁选流程以及磁选 —阶段磨矿—反浮选流程的探索性实验 ,最终取得了较为理想的选别指标。 一、矿石性质 该矿床类型为鞍山式沉积变质铁矿床,矿石类型以石英型镜铁矿、磁铁矿为主。 矿石中金属矿物主要有镜铁矿,磁铁矿、赤铁矿,其中TFe/FeO比值为6.23,属于氧化程度较深的贫铁矿石。脉石矿物主要为石英,呈条纹、带状构造为主,分布较均匀,仅局部夹杂少量云母闪石类矿物。矿石的多元素及铁物相分析见表 1、表 2。二、全磁选流程试验 (一)磨矿粒度试验 将原矿分别磨到-200目占80%、85%、90%,然后进行弱磁选、弱磁尾矿强磁选试验,弱磁选场强为0.2T,强磁选试验采用Slon-100周期式脉动高梯度磁选机,背景场强为0.5T。其试验结果见表3。从表3可以看出,当磨矿粒度为-200目80%~90%时,强磁精矿的品位为49.67%~54.28%,若将该精矿和弱磁精矿一起作为产品,将影响产品的最终品位。若进一步增加磨矿细度,不但会大幅度增加磨矿成本,还会造成磁铁矿的过磨,产品的最终回收率也得不到保证。综合考虑,确定磨矿粒度为-200目 85%。 (二)强磁尾矿扫选试验 根据以往经验,当磨矿粒度控制在-200目占85%左右时,有必要对强磁尾矿进行一次扫选以提高综合回收率。为此 ,进行了强磁尾矿扫选试验,其结果见表4。表4中,强磁精矿指强磁粗选和强磁扫选的混合矿样。(三)强磁精矿精选和再磨再选试验 将磨矿粒度为 -200目占 85%左右的强磁精矿(见表4)分别进行精选和再磨再选,其试验结果见表 5、表 6。注:强磁精矿再磨至-200目含量为95%。 从表5和表6可以看出,强磁精矿进行再选或再磨再选时,精矿品位虽有提高,但“跑尾 ”严重,尾矿品位偏高,金属损失量大,表明全磁选流程对该矿的选别有一定的局限性。 三、强磁精矿再磨-反浮选试验 (一)再磨粒度试验 参考国内处理“鞍山式”贫红铁矿石的经验 ,将强磁精矿进行再磨 —反浮选作业 ,其试验流程见图1,药剂制度为:MH850g/t、NaOH1250g/t,玉米淀粉1000g/ t、CaO500g/ t,矿浆温度 30℃。试验结果见表 7。从再磨粒度试验来看,随着磨矿细度的增加 ,浮选精矿的品位也有所提高,但回收率得不到保证;同时磨矿细度的增加 ,也会加大选矿成本。综合考虑这几方面的因素,磨矿粒度取-200目占95%较为合理。 (二)反浮选闭路试验 在再磨粒度为-200目占95%的条件下,对强磁精矿进行了反浮选闭路试验,其流程见图2,试验结果见表8。四、综合流程试验 对比考虑全磁选和强磁精矿再磨-反浮选流程的选别效果,确定采用弱磁-强磁-阶段磨矿-反浮选联合工艺对该低品位弱磁性氧化铁矿进行选别,其数质量流程如图3所示。五、结语 (一)品位为28. 34%的氧化铁矿,通过弱磁—强磁选作业,只能得到品位为51. 82%~58. 00%的铁精矿,回收率为60.15% ~73. 70%;该产品再通过强磁或再磨—强磁选作业后,精矿品位提高幅度不大,产品回收率不足60%,表明全磁选流程对该矿的选别不理想。 (二)对弱磁尾矿采用“强磁—再磨—反浮选”工艺,不但将反浮选的入选品位提高了 28个百分点,并且抛弃了大约85%的尾矿,降低了再磨作业的处理量,大幅度降低了磨矿成本。SLon立环脉动高梯度磁选机对贫弱磁性氧化铁矿反浮选前的预磁抛尾处理的功效又一次得到了验证。 (三)近些年来反浮选药剂不断涌现出新品种,选别的针对性也越来越强。本文在反浮选药剂的选择和用量上,都是借鉴前人的经验,如果在这两方面开展进一步研究,选矿指标有望进一步提高。

主要硫化铜,硫化铁矿物及其可浮性

2019-02-12 10:08:06

自然界中含铜矿藏品种较多,已知的达170多种,但有工业价值的仅十几种。浮选处理的常见硫化铜矿藏列于表1。                 表1   常见硫化铜矿藏一览表  序号矿藏称号分子式含铜量(%)比重硬度1 2 3 4 5 6 7黄 铜 矿 辉 铜 矿 斑 铜 矿 铜    蓝 黝 铜 矿 砷黝铜矿 斜方硫砷铜矿CuFeS2 Cu2S Cu5FeS4 CuS 4Cu2S·Sh2S2 4Cu2S·AS2S3 3Cu2S·AS2S.334.5 79.8 63.3 66.4 52.1 57.5 48.34.1~4.3 5.5~5.8 4.9~5.4 4.6~ 6 4.4~5.1 4.4~4.5 4.4~4.53.5~4 2.5~3 3 1.5~2 3~4.5 3~4 3~3.5           简直一切的硫化铜矿石中都含有铁的硫化物,常见的硫化铁矿藏有黄铁矿和磁黄铁矿等。硫化铜矿石浮选的首要任务是将硫化铜矿藏与硫化铁和脉石别离。当矿石伴生有金、银等元素时,有必要考虑它们的概括收回。     首要硫化剂、铁矿藏的可浮性如下。     黄铜矿(CuFeS2)是我国最常见的铜矿藏,含铜34.57%。有原生的也有次生的,可浮性较好,在中性及弱碱性矿浆中,能较长时刻坚持其天然可浮性,但在强碱性(PH>11.5)介质中,因为表面结构受OH- 腐蚀,构成亲水性的氢氧化铁薄膜,会使可浮性变差。     浮选黄铜矿最常用的捕收剂是黄药和黑药,而硫氮类及硫酯类更具选择性。     黄铜矿在碱性矿浆中易受及氧化剂的按捺,过量的石灰或也可按捺黄铜矿。被按捺的黄铜矿可用硫酸铜活化。     辉铜矿(Cu2S)。含铜79.8%,是最常见的此生硫化铜矿藏,性脆易泥化,在酸性和碱性矿浆中都有较好的可浮性。比黄铜矿易氧化,氧化后有较多的铜离子进入矿浆,会活化其他矿藏或耗费药剂,构成分选困难。     辉铜矿的捕收剂首要是黄药。按捺剂是铁,在铜钼别离中国外常用氧化剂,矿浆加温及低温焙烧等工艺来按捺辉铜矿浮选辉钼矿。在铜铅别离中常用和锌铬合物混用按捺辉铜矿。对辉铜矿的按捺效果较弱,这是因为辉铜矿表面铜离子不断溶解并与效果,生成络离子下降了的按捺效果。[next]     斑铜矿(Cu3FeS4)。有原生和次生两种,因为斑铜矿中常含有黄铜矿,辉铜矿等固溶包体,其化学成分改变较大,Cu可为52%~65%。     斑铜矿的表面性质及可浮性,介于辉铜矿和黄铜矿之间,用黄药作捕收剂时,酸性及弱碱性介质中均可浮,当PH>10今后,其可浮性下降,在强酸性介质中,其可浮性也明显变坏。简单受按捺。     铜蓝(CuS)首要产于含铜硫化物的氧化矿石中,自然界散布少。在铜蓝的晶格结构中,Cu有Cu+和Cu2+两种,S也有单硫离子[S2]2-两种,所以铜蓝分子式合理的写法应是Cu2S·CuS。铜蓝的可浮性与辉铜矿类似。     砷黝铜矿(4Cu2S·AS2S2)属原生铜矿藏,硬度小脆性高,简单泥化和氧化。     用丁黄药浮选砷黝铜矿时,最适合的PH值11~12,介质调整剂用碳酸钠比用石灰好,因为当游离CaO高于400g/m时,对砷黝铜矿有按捺效果。     依据上面的分析,对硫化铜矿藏的可浮性,可用概括出如下几条规则:     (1)但凡含铁的铜矿藏,如黄铜矿、斑铜矿等,可浮性类似,在碱性矿浆中易受和石灰按捺,所以铜硫别离较难,要求严格控制和石灰的用量。     (2)但凡不含铁的铜矿藏,如辉铜矿、铜蓝,可浮性类似,、石灰对它们的按捺效果较弱,所以在铜硫别离时可用参加很多石灰去按捺黄铁矿,而不至于严重影响铜矿藏的可浮性。     (3)硫化铜矿藏的可浮性,遭到结晶粒度、嵌布粒度和原生次生等要素的影响。结晶及嵌布过细的,比较难浮。次生硫化铜矿简单氧化,氧化后比原生铜矿难浮。     (4)黄药类捕收剂阴离子,首要与矿藏表面的Cu2+发作化学吸附,铜含量高的矿藏,其表面含Cu2+亦多,易与黄药效果。可浮性好,而且较易取得高品尝的精矿。常见的硫化铜矿藏可浮性次第为:辉铜矿>斑铜矿>黄铜矿。     黄铁矿(FeS2)含S53.45%,是散布最广的一种硫化物,简直各类矿床中都有。因为黄铁矿是制硫酸的首要原料,习惯上把黄铁矿精矿称为硫精矿。     黄铁矿的可浮性随其结晶结构,化学组成及表面氧化程度的不同而改变,不同类型矿床的黄铁矿因成矿条件不同其可浮性有时差异也较大。研讨指出:呈八面体结构的黄铁矿比呈六面体结构的更易浮:化学组成中S/Fe挨近2时,在酸性介质中易浮,而在强碱性介质中易受石灰按捺,当S/Fe违背2(小于2)、结构不完整时,在酸性介质中可浮性变坏,而在碱性介质中不易受石灰按捺,中等氧化程度的黄铁矿,其可浮性随氧化速度添加而增大,这与表面氧化而生成元素硫有关,过度氧化时,则可浮性下降。[next]     黄铁矿的表面状况还与矿浆PH有关,在强酸性介质中,它的表面易氧化生成元素硫,(有人认为是缺金属的硫化物),提高了其表面的疏水性。在石灰构成的强碱性介质中,黄铁矿表面掩盖有FeO(OH),使其可浮性遭到按捺。     黄铁矿在酸性、中性及弱碱性矿浆中都可以用黄药捕收。它的有用按捺剂是、石灰以及石灰+盐等。黄铜矿、闪锌矿与黄铁矿的别离,首要是用石灰作黄铁矿的按捺剂,关于细苦难选的铜—锌矿或铜—铅—锌矿用硫酸钙抑黄铁矿比石灰更有用,被按捺的黄铁矿,可用硫酸、碳酸钠和二氧化碳活化,活化经常加硫酸铜。     磁黄铁矿(Fe1-xS),其化学组成不固定,因为晶格中有一部分Fe2+被Fe3+所替代,为了坚持晶格中的静电平衡,故结构中Fe2+的方位上有一部分构成空缺,化学式便变成Fe1-xS,x=0.1~0.2。磁黄铁矿简单氧化和泥化,可浮性差,是简单被按捺、难浮的一种硫化矿藏。它在酸性介质中,用高档黄药捕收能很好浮游,而在碱性介质中要先用硫酸铜或少数活化后,再用高档黄药捕收才干浮游。     磁黄铁矿的按捺剂有石灰、、及其盐等。活化磁黄铁矿用钠与硫酸配用比单用硫酸更有用。     磁黄铁矿易氧化,在矿浆中氧化时,会耗费矿浆中的氧。对其他硫化矿藏的浮游晦气,因而,含有磁黄铁矿的硫化矿浮选时,应留意矿浆拌和充气的调理。     我国的矽卡岩型铜故中,含硫矿藏有很大一部分是磁黄铁矿。因为磁黄铁矿不易浮又兼有磁性,搀杂于磁选铁精矿中,所以它常常是构成铁精矿中含硫高的首要原因。

氧化铁皮的综合利用:可用于制取还原铁粉等

2019-02-26 11:04:26

轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。 (1)用于出产海绵铁或制取复原铁粉。 海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。 氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C 氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。 (2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。 氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。 别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。 (3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。 钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。 电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。

碲的资源、用途与提取分离技术研究现状

2019-02-22 12:01:55

碲是1782年赖兴施泰因在含金的矿石中发现的L1J,也有说法是1798年M.H.克拉普罗兹在一种白色金属中首要发现了碲。碲及硒、铼等一般被称作“稀有元素”、“涣散元素”或“稀散金属”。 它在地壳中均匀丰度值很低(6×10-5),碲与镉、锗、镓、硒、铟、、钪、铼等均属涣散元素。在天然界,碲矿藏除了天然碲外,首要是与Au、Ag和铂族元素以及Pb、Bi、Cu、Fe、Zn、Ni等金属元素构成碲化物、碲硫(硒)化物以及碲的氧化物和含氧盐等矿藏品种L2J。现在,稀有元素碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重。 1、碲的资源 因为在上个世纪90年代曾经,人们普遍以为国际大部分可收回的碲都伴生于铜矿床中,所以美国矿业局就以铜资源为根底,按每吨铜可收回0.065kg碲核算,计算出全球碲储量在22000t左右,储量根底38000t,首要散布在美国、加拿大、秘鲁、智利、赞比亚、扎伊尔、菲律宾、澳大利亚、日本、欧洲等国家和地区[3]3。可是,近年来国内外一系列重要的碲化物型金银矿床的发现和地质勘查研讨标明,涣散元素碲的地球化学性状远比传统知道的要活泼得多,它能够大规模富集、矿化构成具有经济价值的独立的矿床或工业矿体,如四川石棉大水沟碲铋金矿床HJ、山东归来庄碲金矿床 5、河南北岭碲化物型金矿[6]等。这使得人类不得不对碲资源的散布有了从头的知道。我国现已探明伴生碲储量在国际处于第三位。伴生碲矿资源较为丰厚,全国已发现伴生碲矿产地约30处,保有储量近14000t,碲矿区散布于全国16个省(区),但储量首要会集于广东(占全国总量的42%)、江西(41%)和甘肃(11%)三省。我国的碲矿也首要伴生于铜、铅锌等金属矿产中,据主矿产储量计算,我国还有未计人储量的 碲矿资源约10000t[47|。一直以来我国碲矿资源会集在热液型多金属矿床、矽卡岩型铜矿床和岩浆铜镍硫化物型矿床中,它们别离占我国伴生碲储量的44.77%、43.89%和11.34%。广东曲江大宝山、江西九江城门由铜矿(占全国伴生碲储量的23.6%,碲矿石档次为0.0028%)、甘肃金JII自家嘴子为我国三个大型一特大型伴生碲矿床,三者储量之和为全国伴生碲储量的94%E7]。1991年8月,全球榜首例独立碲矿床在我国四川I省石棉县大水沟发现,然后彻底打破了涣散元素碲“能构成独立矿藏,但没有可挖掘的独立矿床[7],’的传统知道,填补了矿床学理论上的一项空白,并将改动对稀有元素成矿才干的知道,一同也必将改动现有的只能从其它矿种中提取伴生碲的现状,改动碲资源的散布格式并有或许使我国成为一个碲矿资源大国。除了到达工业档次的已查明的铜矿床中所含的很多副产品碲储量根底以外,还有一些副产品碲之来历:铅矿床储量根底中所含的碲是工业铜矿床中碲的25%,但现在很少用电解法提炼铅,而只有用这种办法才干趁便收回碲;从金碲化物矿石中也能收回少数碲,未开发的、不行工业档次的或没有发现的铜及其它金属资源中所含碲的数量是已查明工业铜矿中碲的数倍,据估计,煤矿中均匀含碲0.015×10-4%,即煤矿中所含的碲是工业铜矿床中碲的4倍,但在近期内从煤中收回碲仍是不或许的。 2、碲的用处 稀散元素碲被誉为“现代工业、国防与顶级技能的维生素,发明人世奇观的桥梁”,“是今世高技能新材料的支撑材料”。这是因为跟着宇航、原子能、电子工业等范畴对包含碲在内的稀散金属的需求日积月累,使得碲已经成为电子核算机、通讯及宇航开发、动力、医药卫生所需新材料的支撑材料。 2.1碲在冶金职业中的运用 工业纯的碲(99%)广泛用作合金增加剂,以改进钢和钢的机械加工功能。只是增加少数的碲就能改进低碳钢、不锈钢的切削及加工功能;能够增加切削东西寿数并取得优秀的光洁度。在铸造进程中,增加小于0.1%分量的碲能够用来操控冷却结晶深度,向铅(锡或铝)合金中增加碲可进步其抗疲劳及抗腐蚀功能,并可进步其硬度与弹性。 2.2碲在化工职业中的运用 在化学工业中,碲首要用作石油裂解催化剂的增加剂、橡胶的二次催化剂及制取乙醇的催化剂,碲的化合物还能够制成各种触媒,用于医药(作为茵剂)、玻璃着色剂、陶瓷、塑料、印染、油漆、护肤药品及珐琅职业等。 2.3碲在电子职业中的运用 较高质量的碲(99.99%或更高)能够运用在各种电子学中。例如,化合物半导体碲化铋可同碲化锑一同用在温差电器材中。碲化铋在温差致冷中是重要的材料,因为它是具有高电子搬迁率的“多谷”半导体,具有高的导电率和能发生高温差功率的高有用质量。因而具有杰出致冷功能的碲化铋可替代氟里昂并成为削减大气污染与环境的抱负材料。碲及其化合物的其他电子运用是红外探测器和发射器、太阳能电池及静电印刷术。少数的碲可用作器材的电子施主掺杂剂。 3 、碲的别离提取技能 现在碲的首要来历仍是铜精粹厂的阳极泥,含碲高达9%。其它或许来历是硫酸厂的泥浆以及硫酸厂和冶炼厂的静电集尘器中的尘土。因而,获取碲的途径仍是首要从阳极泥中提取,本文将侧重介绍几种提取碲的办法: 3.1纯碱焙烧法 将碳酸钠和水与阳极泥充沛混合构成一种浓膏,在530~650℃的温度下进行焙烧,在不考虑碲蒸发的状况将其彻底转化为六价状况。焙烧过的球粒或团块经磨细后,用水浸出,因为阳极泥中的另一种元素硒在此进程已构成钠,一同因为碲酸钠极难溶解于此种强碱性溶液而残留在渣中。此刻脱硒的纯碱浸出渣用稀硫酸处理会使不溶解的碲酸钠转化为可溶解的碲酸: Na2Te04(不溶)+H2S04=HzTe04(可溶)+Na2S04碲酸复原为碲可用和二氧化硫处理来完结: H2Te04+2HCl=H2Te03+H20+C12H2Te03+HzO+2S02=2H2S04+Te在必定的酸性条件下,碲酸用钠复原成二氧化碲,可从热的溶液中收回得到细密的、浅黄色的固体。H2Te04+Na2S03=TeOz+Na2S04+H20转化为金属碲最好的办法使在中溶解,用电解碲酸钠的办法来完结:Na2Te03+H20+4e一=Te+2Na20H+02再生的碱可返回到溶解二氧化碲的进程中再使用。工业上常用氧化加压或氯化加压的办法完结碱性浸出,首要用的几种氧化浸出工艺是用氧或氯的压力浸出或许用氯载体浸出(例如),也能够把几个进程组合,促进反响敏捷进行。因为和碲化物的反响速度比和硒的反响速度更快些,所以要当心操控,避免不溶性的六价碲化合物把四价硒别离为可溶性化合物[8]。加压浸出工艺的长处在于能够确保碲悉数转化为六价形状,完结其在碱性浸出液中的彻底不溶解。别的,还能够使介质无腐蚀性,硒无蒸发丢失,无洗刷或气体净化工序,而且基本上可定量完结碲的提取。可是,其不足之处也很明显,就是整个工艺耗费的氧气和的量较大。氧化进程不只要考虑碲的氧化,还要考虑硒的氧化以及精粹铜的进程中运用附加物作为成长调节剂而引人的有机物的氧化19J。 3.2硫酸化焙烧 硫酸化焙烧技能是依据硒和碲的四价氧化物在焙烧温度500~600℃度下其蒸发性不同。从阳性泥中选择性提取硒后,因为可溶解六价和四价碲,所以直接从剩下的焙渣顶用浸出的办法可收回碲。酸性焙烧是运用硫酸作为氧化剂使硒或硒化物和碲或碲化物转化成他们各自的四价氧化物。其间碲的氧化反响是:Cu2Te+6H2S04=2CuS04J+Te02 l+4S02 f+6H20t工业出产中并不引荐此工艺,这是因为,浸出会导致阳极泥中的银转化为极难溶的氯化银,使今后的银的收回愈加困难,一同如果有六价碲存在,它能够氧化而释放出,接着它又会溶解阳极泥中的金,这就会在后续碲和金的别离方面发生一些实质性的问题L9J。据工业出产的实践数据标明,包含碱性氧化物压力浸出和含铜、镍、贵金属、硒和碲阳极泥压力硫化效果在内的彻底湿法冶金的工艺进程能够使悉数组分杰出分出。别离出的硒和碲的纯度能够达90%以上哺J。 3.3液膜别离法 液膜别离物质是一种高效、快速、节能的新式高技能别离办法,2003年由王献科[10]提出用伯胺N192,制备乳状液膜,能敏捷地搬迁富集碲,在收回、处理提取及分析测定微量碲方面,具有很好的运用远景,也为进一步从杂乱组分的料液或低档次碲矿中富集碲的开发使用奠定了根底。液膜富集Te4+是经过活动载体N1923来完结的。依据别离进程和溶剂萃取的原理,N1923以RN表明,用离子缔合原理萃取元素。首要是在膜相外界外相中HCl生成RNH+C1,而外相中Te4+以TeBr62一方式与膜相中RNH+C1反响生成[RNH]22十[TeBr6]2-,溶于有机膜,并穿过液膜分散内相界面于NaOH水溶液效果、离解,Te.Br62一和H+迁入内相,这是因为Cl一和TeBr6卜与N1923相互竞赛缔和的成果。用乳状液膜别离富集碲的研讨,断定了膜相由7%N1923(伯胺)、4%Lll3B和89%火油(包含正辛醇)组成,内相为0.3mol/LNaOH水溶液,外相酸度为5mol/LHCl介质,R。l为1:1,R。。为20:50~20:100,室温(15~36℃)条件下,碲的收回率为99.5%~100%,内相富集了较高浓度的碲。一般常见的阳阴离子,都不被搬迁富集,选择性适当高。但此法在工业上还未能得到推行。 3.4微生物法 生物冶金以其成本低、无污染,对低档次、难选冶的矿产资源的开发使用有着宽广的工业运用远景。廖梦霞等人[11】在2004年提出在我国首例独立碲矿床资源的开发战略上走生物冶金的路途。其实在2003年Rajwade等[12]曾运用微生物的接连拌和,提出了含碲贵液的生物复原工艺,即对含碲lOmg/L的溶液中,pH操控在5.5~8.5,温度在25~45℃,用微生物吸附一复原沉积元素碲,可有用替代强复原剂,然后进步功率下降出产成本。这一理论创始了生物冶金在碲的提取工艺上运用的先河。廖梦霞等人L11J以为石棉大水沟独立碲铋矿床碲铋含量0.00X一0.0X%,金银含量0.X—Xg/t的硫化矿贫矿储量大,传统工艺很难有用到达经济开发使用的意图,因而提出微生物提取碲的办法,并总结了国内外针对硫化矿生物氧化的研讨,首要有浸矿细菌的别离和判定、细菌的培育条件和细菌氧化工艺条件研讨、细菌浸出硫化精矿粉进程中细菌浸出的物理要素和化学要素以及细菌浸出的浸出动力学和浸出机理研讨。在面临生物冶金的杰出问题生物(氧化周期长导致出产功率低)上,其课题组使用金属离子、表面活化剂催化、磁化强化等办法加速细菌氧化反响速率,使这一问题的处理有了一些新的思路。 4 、结 论 稀散金属碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重,运用规模也越来越广。可是因为碲从发现至今时刻较短,一同独立碲矿的开发也只是是近几年的工作,大多数工艺技能仍处于实验研讨阶段,这使得咱们很难断语何种工艺为最佳。但跟着人们对稀散元素知道的加深以及碲在各个范畴运用的广泛,咱们信任碲的开发将会得到进一步的开展,研讨和开发碲的别离提取的新工艺也愈加具有现实意义。

氧化铁红粉磨机细度最高可达到多少?

2019-01-03 09:37:11

氧化铁红粉磨机是科利瑞克专为磨氧化铁红,氧化铁红等用户设计研发而成的新型磨粉机,除了氧化铁红外,该粉磨机还可以加工包括重晶石、方解石、钾长石、滑石、大理石、石灰石、白云石、莹石、石灰、活性白土、活性炭、膨润土、高岭土、水泥、磷矿石、石膏等莫氏硬度不大于6.5级,湿度在6%以下的非易燃易爆的矿产、化工、建筑等行业多种物料的高细制粉加工。 磨氧化铁红的粉磨机的工作原理:工作时,将需要粉碎的物料从机罩壳侧面的进料斗加入机内,依靠悬挂在主机梅花架上的磨辊装置,绕着垂直轴线公转,同时本身自转,由于旋转时离心力的作用,磨辊向外摆动,紧压于磨环,使铲刀铲起物料送到磨辊与磨环之间,因磨辊的滚动碾压而达到粉碎物料的目的。 风选过程:物料研磨后,风机将风吹入主机壳内,吹起粉末,经置于研磨室上方的分析器进行分选,细度过粗的物料又落入研磨室重磨,细度合乎规格的随风流进入旋风收集器,收集后经出粉口排出,即为成品。风流由大旋风收集器上端的回风管回入风机,风路是循环的,并且在负压状态下流动,循环风路的风量增加部分经风机与主机中间的废气管道排出,进入小旋风收集器,进行净化处理。 氧化铁红粉磨机又叫氧化铁红粉磨机,是适应大中小矿山、化工、建材、冶金等行业的高效闭路循环的髙细制粉设备。磨粉机所磨制的各种粉子成品细度均匀性,能达到所需细度的95%通过,即为通筛可达95%,同时R型氧化铁红粉磨机整体为立式结构、成套性强,从快料至粉碎到成品粉子、包装,能独立自成一个生产体系。 氧化铁红粉磨机采用同类产品的先进结构,并在大型氧化铁红粉磨机的基础上更新改进设计而成。该设备比球粉磨机的机效高、电耗低、占地面积小,一次性投资少。磨辊在离心力的作用下紧紧的滚压在磨环上,因此当磨辊、磨环磨损到一定的厚度时也不影响成品的产量及细度。可见磨环、磨辊更换周期长,从而踢出了离心粉碎机易损件更换周期短的弊玻氧化铁红粉磨机的风速气流是在风机-磨壳-旋风分离器-风机内循环流动作业的,所以离心粉碎机尘少,操作车间清洁、环境无污染,完全可达国家粉尘排放的标准。

三氯化铁浸出-二氯化铅融盐电解

2019-02-14 10:39:59

方铅矿在酸性的饱满食盐水中浸出,生成二氯化铅和元素硫,二氯化铅溶于热的食盐水中,趁热过滤,滤液冷却后得到二氯化铅结晶;二氯化铅再进行融盐电解,得到金属铅和;用于氧化二,使之变成,循环运用。首要反响如下:    浸出:PbS+2FeC13 ==== PbCl2+2FeCl2+So    电解:负极:PbCl2+2e ==== Pb↓+2Cl-           正极:2Cl- -2e ==== Cl2    再生:2FeC12+Cl2 ==== 2FeC13    M. M. Wong 1980年报导了美国矿务局雷诺冶金研究中心进行的方铅矿浸出-二氯化铅融盐电解扩展实验的有关细节[1],此扩展实验规划为每次处理铅精矿50kg,连续操作,浸出槽是带有聚氯二乙烯面料和钛加热管的钢桶,容积为1.5m3。浸出液含73g/L的FeC13,254g/L的NaCl、pH=3。温度约100`C,反响30min,铅的浸出率达98%,铜和银的浸出率达80%,锌浸出率约为70%。    电解槽内壁用石英砖砌成,尺度为865mm x 635 mm x457mm,阴极为石墨板,阳极为石墨棒,下图为电解槽的示意图。    电解液由25% LiCl、32% KCl和45% PbCl2组成,电解时通入3000A电流,电解温度450℃,电解产出的液态金属铅用虹吸管放入置于真空室的铸模内,分出的C12经过纤维强化塑料管引至氯化塔底部,使FeCl2氧化为FeCl3,循环运用。此电解槽日产金属铅226.8 kg,电耗为每吨铅1168kW·h。此进程每吨铅的生产成本(包括除矿石外的食盐、、、石灰等原材料、人工、修理、税、稳妥、折旧等费用)为108美元,与火法附近。    此进程的长处是:完成了湿法炼铅,基本解决火法炼铅中的环境污染和铅中毒问题;可收回大部分伴生金属和硫;生产规划可大可小。    此进程的缺陷是:选用氯化物系统浸出和电解,对设备原料要求高PbCl2简单结晶,给矿浆运送、过滤等作业添加困难;电解温度450℃,又要发生,存在不安全要素;电解槽结构比较复杂;矿石中的金不能收回。    参考文献:    1  M. M. Wong,Paper Presented at the 109th AIME Annual Meeting at Lasvegas,Nevada,Feb. 24-28,1980