碲化镉
2017-06-02 16:18:18
金属
碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质 棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。 密度:6.20 熔点:1041℃ 碲化镉的用途 光谱分析。也用于制作太阳能
电池
,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海
有色网www.smm.cn
。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
锆的性质和用途
2019-02-19 09:09:04
锆是现代工业的重要金属质料。
锆(包含铪)具有杰出的可塑性;抗蚀功能超越钛,在100℃以下能反抗各种浓度、硝酸以及50%以下浓度硫酸的腐蚀。锆和铪还有特殊的核功能,耐辐照性很好。在高温下锆具有杰出的吸气性。锆广泛用于原子能、电子、冶金、化工、医疗及制革等工业部门。
碲的理化性质和用途
2019-03-07 10:03:00
一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。
二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。 三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提
锆铁的性质及用途
2019-01-04 09:45:23
锆铁是由锆与铁及硅、铝等元素组成的铁合金。炼钢用的锆铁是锆硅铁,含Zr15%~45%,Si30%~65%。用铝热法生产的则因含铝故称锆铝铁,含Zr>15%。1789年德国克拉普罗特(M.H.Klaproth)发现了一种新的氧化物,取名叫“Zircomia’。1824年瑞典贝采利厄斯(J.J.Berzelius)用钾还原K2ZrF6的方法,首次制出锆。1923年美国钢厂首次进行了用锆硅铁做脱氧剂的试验,取得良好效果。之后开始用金属热法生产出锆硅铁和锆铝铁。中国南京特殊合金厂,于1987年试制出锆硅铁,含Zr20%~40%,Si45%~55%;用作炼钢脱氧剂。性质锆的原子量为91.22。外层电子结构为ztdz5s。。熔点1852℃。沸点4400℃。密度6.49g/cm3(20℃)。锆铁系相图见一FN。锆与铁生成稳定的化合物FeZr2(45.1%zr),熔点1650℃,Fe—Zr系内有两个共晶体。在16%Zr时共晶熔点为1330℃;在84%Zr时共晶熔点约为940℃。锆与硅生成多种硅化锆。有Zr:Si(Si13.65%),ZrSi3(Si15.55%),ZrSi(Si23.55%)和ZrSi2(si38.12%)等。商品锆硅铁的密度约3.5g/cm3,熔化温度范围为1260~1345℃。用途锆是稀有金属。它是碳化物形成元素。在炼钢过程中,锆是强有力的脱氧和脱氮元素。锆能细化钢的奥氏体晶粒。它和硫能化合成硫化锆,因此能防止钢的热脆性。锆还有降低钢的应变时效现象和提高钢的低温韧性等优点。
锆在铸铁中的作用类似钛。可形成碳化锆,与硫结合形成硫化物。在冷却时促进石墨的生成。少量的锆即有利于白口铸铁的石墨化,使白口铁灰口化。在生产韧性铸铁时缩短退火时间。锆资源含锆矿石有十几种。而在工业上可用的只有锆英石(zircon)和斜锆石(baddeleyite)两种。锆英石也叫锆石,是分布最广的锆矿物。主要产地为美国、巴西、印度、澳大利亚、中国和独联体等国。其主要组成为ZrO2•SiO2。理论成分为:ZrO267.01%和SiO233.99%。锆英石矿石中各种杂质含量为:Fe2O3)0.5%~5.0%和少量CaO、.MgO、TiO2等。斜锆石主要产地在巴西和斯里兰卡。中国储量不大。其主要成分是ZrO2。工业斜锆石含ZrO275%~85%,主要杂质为Fe2O3 2%~5%,SiO2 10%~20%及少量A1203和TiO2。矿物密度为5.7g/cm3莫氏硬度6.5。
碲常识
2019-03-14 09:02:01
碲 碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
碲知识
2019-03-08 09:05:26
碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。
碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。
碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
氧化锆的表面粗化和改性
2019-03-06 10:10:51
氧化锆陶瓷是近年来引进口腔范畴的新式修正材料,具有杰出的机械强度,可用于制造三、四单位的后牙长桥以及更杂乱的修正体。修正体与粘接剂间的粘接强度对修正的胜败关系密切,尤其是在修正体的机械固位较弱时,粘接固位力更是至关重要;因此,进步氧化锆与树脂粘接剂的粘接强度成为近年来修正范畴研讨的热门,首要分为表面粗化和表面改性两个方面。
氧化锆表面粗化
氧化锆表面喷砂
喷砂能使氧化锆表面粗糙不规则,然后与树脂发生微机械嵌合作用,增大粘接面积,进步其表面能和可潮湿性,以便树脂进入。Kern等人的成果显现,只要喷砂后运用含有磷酸酯单体的树脂水门汀才能使氧化锆发生最大的抗拉伸强度和最耐久的粘接。
Aboushelib等发现,MDP运用于未经处理的氧化锆表面几乎没有粘接力,阐明喷砂发生的微固位才是粘接力的最首要来历;可是,以含不同成分的处理剂喷砂往后的氧化锆可发生差异性的粘接强度,即处理剂成分和氧化锆之间的确存在化学反应,处理剂成分首要为含磷酸酯单体,可构成P—O—Zr功能键。
氧化锆表面的选择性浸透蚀刻
有学者做了多项关于SIE处理后的氧化锆表面与树脂粘接强度的研讨,成果表明,经SIE处理过的氧化锆表面与树脂粘接的微拉伸粘接强度(MTBS)在人工老化(AA)进程前后,皆能够保持在40~50MPa以上,经喷砂处理后的MTBS可到达35 MPa左右,其在人工老化进程后则有显着的下降。
Nobel Bond表面处理
一种称为Nobelbond的表面处理办法,近年被用于氧化锆表面的粘接。这种办法对氧化锆功能没有危害,并且供应商现已将其用于氧化锆修正体的制造。Phark等比较了氧化锆经过Nobelbond和喷砂处理后的抗剪切强度,成果表明,前者在热循环老化前后均具有较高的抗剪切强度,后者则在人工热循环老化后抗剪切强度大幅度下降。
表面改性
内涂层技能
Kitayama等运用内涂层技能(INT)处理切削过的氧化锆修正体,能够减小修正体边际及内面存在的空隙,一起极大地进步氧化锆的粘接强度。可是该试验数据为体外试验获得,并没有临床试验数据,故INT仍需更多的研讨。
硅涂层技能
硅涂层处理是一种添加氧化锆表面硅元素含量的技能,即运用硅烷偶联剂添加氧化锆与树脂的粘接强度。
化学冲突法
化学冲突法结合运用含MDP的硅烷偶联剂处理,能够获得较高的粘接强度;但值得注意的是,此办法所制得的硅涂层结合强度存在争议,化学冲突硅涂层后应该当心用水冲刷,不能运用超声清洗,由于其会削减约30%质量分数的硅质量,影响粘接作用。
热分解法
热分解法是以和四乙氧基硅烷混合物经过便携式喷火器把焚烧火焰喷向氧化锆表面,高温使四乙氧基硅烷分解成有机硅片段并构成厚度为0.1~1μm的硅涂层。经过运用硅烷偶联剂处理,能够有用进步氧化锆表面与树脂的粘接强度。
溶胶-凝胶法
王瑜等在用溶胶-凝胶法在氧化锆基体材料上制备硅膜时发现,溶胶-凝胶法可在氧化锆修正体表面制备超薄硅涂层,联合硅烷偶联剂可增强氧化锆修正体与树脂粘接剂的粘接强度。
SiCl4蒸汽硅涂层
Piascik等用SiCl4和水蒸汽处理氧化锆表面约15min,在氧化锆表面构成超薄的SixOy种子层。这种二氧化硅样表面层运用传统的硅烷偶联剂和树脂水门汀粘接获得的前期粘接强度与玻璃瓷粘接强度附近,2.6nm厚度的硅涂层的粘接强度最高,以混合损坏为主。
纳米氧化锆-氧化硅涂层技能
Chen等将混有二氧化硅和氧化锆纳米填料的活动树脂涂塑在氧化锆表面烧结,然后构成结实的氧化锆-氧化硅涂层。纳米氧化锆-氧化硅涂层技能联合硅烷偶联剂和含MDP的树脂水门汀,可显着改进氧化锆的粘接强度,但该办法并没有供给涂层烧结后详细的晶相结构。
小结
表面粗化研讨环绕添加其表面粗糙度和表面孔隙率,然后添加其机械嵌合力。表面改性则添加表面硅元素含量,然后进步其化学结合力。尽管国内外学者做了许多关于氧化锆材料表面处理研讨,但均存在着氧化锆的机械功能下降,技能杂乱,设备贵重等缺乏,因此氧化锆修正材料的粘接面处理仍有待于进一步探究。
粗铋的碱性碲渣回收碲
2019-01-31 11:06:04
粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。
一、工艺流程
出产碲的流程如图1。图1 碲出产工艺流程图
二、首要技能条件
(一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。
(二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为:
Na2PbO2+Na2S+2H2O=PbS↓+4NaOH
参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为:
Na2SiO8+CaCl2=CaSiO8↓+2NaCl
操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。
(三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为:
Na2TeO3+H2SO4=TeO2+Na2SO4+H2O
鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。
(四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。
(五)造液。TeO2能溶于NaOH溶液,反应为:
TeO2+2NaOH=Na2TeO3+H2O
每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。
(六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。
通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。
(七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。
三、首要设备
(一)球磨机。φ600×1000毫米,转速45转/分。
(二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。
(三)真空泵。SZ-2二台。
(四)电解槽。六个,钢板衬胶,790×600×640毫米。
(五)硅整流器。GZH3-40型一台,100安,50伏。
四、产品用处
碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。
五、产品质量
一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。
六、其它办法收回碲
(一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。
(二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。
碲铜
2017-06-06 17:50:05
碲铜,即碲和铜的合金。 碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。 碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。 碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子
行业
中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。 以下是碲铜的产品标准、化学成分以及机械性能的指标:
碲铜
2017-06-06 17:50:03
碲铜是碲和铜的合金。根据两种
金属
的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下:
碲锭
2017-06-02 16:19:17
碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的
金属
外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作
电池
极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。 碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲的资源、用途与提取分离技术研究现状
2019-02-22 12:01:55
碲是1782年赖兴施泰因在含金的矿石中发现的L1J,也有说法是1798年M.H.克拉普罗兹在一种白色金属中首要发现了碲。碲及硒、铼等一般被称作“稀有元素”、“涣散元素”或“稀散金属”。
它在地壳中均匀丰度值很低(6×10-5),碲与镉、锗、镓、硒、铟、、钪、铼等均属涣散元素。在天然界,碲矿藏除了天然碲外,首要是与Au、Ag和铂族元素以及Pb、Bi、Cu、Fe、Zn、Ni等金属元素构成碲化物、碲硫(硒)化物以及碲的氧化物和含氧盐等矿藏品种L2J。现在,稀有元素碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重。
1、碲的资源
因为在上个世纪90年代曾经,人们普遍以为国际大部分可收回的碲都伴生于铜矿床中,所以美国矿业局就以铜资源为根底,按每吨铜可收回0.065kg碲核算,计算出全球碲储量在22000t左右,储量根底38000t,首要散布在美国、加拿大、秘鲁、智利、赞比亚、扎伊尔、菲律宾、澳大利亚、日本、欧洲等国家和地区[3]3。可是,近年来国内外一系列重要的碲化物型金银矿床的发现和地质勘查研讨标明,涣散元素碲的地球化学性状远比传统知道的要活泼得多,它能够大规模富集、矿化构成具有经济价值的独立的矿床或工业矿体,如四川石棉大水沟碲铋金矿床HJ、山东归来庄碲金矿床 5、河南北岭碲化物型金矿[6]等。这使得人类不得不对碲资源的散布有了从头的知道。我国现已探明伴生碲储量在国际处于第三位。伴生碲矿资源较为丰厚,全国已发现伴生碲矿产地约30处,保有储量近14000t,碲矿区散布于全国16个省(区),但储量首要会集于广东(占全国总量的42%)、江西(41%)和甘肃(11%)三省。我国的碲矿也首要伴生于铜、铅锌等金属矿产中,据主矿产储量计算,我国还有未计人储量的
碲矿资源约10000t[47|。一直以来我国碲矿资源会集在热液型多金属矿床、矽卡岩型铜矿床和岩浆铜镍硫化物型矿床中,它们别离占我国伴生碲储量的44.77%、43.89%和11.34%。广东曲江大宝山、江西九江城门由铜矿(占全国伴生碲储量的23.6%,碲矿石档次为0.0028%)、甘肃金JII自家嘴子为我国三个大型一特大型伴生碲矿床,三者储量之和为全国伴生碲储量的94%E7]。1991年8月,全球榜首例独立碲矿床在我国四川I省石棉县大水沟发现,然后彻底打破了涣散元素碲“能构成独立矿藏,但没有可挖掘的独立矿床[7],’的传统知道,填补了矿床学理论上的一项空白,并将改动对稀有元素成矿才干的知道,一同也必将改动现有的只能从其它矿种中提取伴生碲的现状,改动碲资源的散布格式并有或许使我国成为一个碲矿资源大国。除了到达工业档次的已查明的铜矿床中所含的很多副产品碲储量根底以外,还有一些副产品碲之来历:铅矿床储量根底中所含的碲是工业铜矿床中碲的25%,但现在很少用电解法提炼铅,而只有用这种办法才干趁便收回碲;从金碲化物矿石中也能收回少数碲,未开发的、不行工业档次的或没有发现的铜及其它金属资源中所含碲的数量是已查明工业铜矿中碲的数倍,据估计,煤矿中均匀含碲0.015×10-4%,即煤矿中所含的碲是工业铜矿床中碲的4倍,但在近期内从煤中收回碲仍是不或许的。
2、碲的用处
稀散元素碲被誉为“现代工业、国防与顶级技能的维生素,发明人世奇观的桥梁”,“是今世高技能新材料的支撑材料”。这是因为跟着宇航、原子能、电子工业等范畴对包含碲在内的稀散金属的需求日积月累,使得碲已经成为电子核算机、通讯及宇航开发、动力、医药卫生所需新材料的支撑材料。
2.1碲在冶金职业中的运用
工业纯的碲(99%)广泛用作合金增加剂,以改进钢和钢的机械加工功能。只是增加少数的碲就能改进低碳钢、不锈钢的切削及加工功能;能够增加切削东西寿数并取得优秀的光洁度。在铸造进程中,增加小于0.1%分量的碲能够用来操控冷却结晶深度,向铅(锡或铝)合金中增加碲可进步其抗疲劳及抗腐蚀功能,并可进步其硬度与弹性。
2.2碲在化工职业中的运用
在化学工业中,碲首要用作石油裂解催化剂的增加剂、橡胶的二次催化剂及制取乙醇的催化剂,碲的化合物还能够制成各种触媒,用于医药(作为茵剂)、玻璃着色剂、陶瓷、塑料、印染、油漆、护肤药品及珐琅职业等。
2.3碲在电子职业中的运用
较高质量的碲(99.99%或更高)能够运用在各种电子学中。例如,化合物半导体碲化铋可同碲化锑一同用在温差电器材中。碲化铋在温差致冷中是重要的材料,因为它是具有高电子搬迁率的“多谷”半导体,具有高的导电率和能发生高温差功率的高有用质量。因而具有杰出致冷功能的碲化铋可替代氟里昂并成为削减大气污染与环境的抱负材料。碲及其化合物的其他电子运用是红外探测器和发射器、太阳能电池及静电印刷术。少数的碲可用作器材的电子施主掺杂剂。
3 、碲的别离提取技能
现在碲的首要来历仍是铜精粹厂的阳极泥,含碲高达9%。其它或许来历是硫酸厂的泥浆以及硫酸厂和冶炼厂的静电集尘器中的尘土。因而,获取碲的途径仍是首要从阳极泥中提取,本文将侧重介绍几种提取碲的办法:
3.1纯碱焙烧法
将碳酸钠和水与阳极泥充沛混合构成一种浓膏,在530~650℃的温度下进行焙烧,在不考虑碲蒸发的状况将其彻底转化为六价状况。焙烧过的球粒或团块经磨细后,用水浸出,因为阳极泥中的另一种元素硒在此进程已构成钠,一同因为碲酸钠极难溶解于此种强碱性溶液而残留在渣中。此刻脱硒的纯碱浸出渣用稀硫酸处理会使不溶解的碲酸钠转化为可溶解的碲酸:
Na2Te04(不溶)+H2S04=HzTe04(可溶)+Na2S04碲酸复原为碲可用和二氧化硫处理来完结:
H2Te04+2HCl=H2Te03+H20+C12H2Te03+HzO+2S02=2H2S04+Te在必定的酸性条件下,碲酸用钠复原成二氧化碲,可从热的溶液中收回得到细密的、浅黄色的固体。H2Te04+Na2S03=TeOz+Na2S04+H20转化为金属碲最好的办法使在中溶解,用电解碲酸钠的办法来完结:Na2Te03+H20+4e一=Te+2Na20H+02再生的碱可返回到溶解二氧化碲的进程中再使用。工业上常用氧化加压或氯化加压的办法完结碱性浸出,首要用的几种氧化浸出工艺是用氧或氯的压力浸出或许用氯载体浸出(例如),也能够把几个进程组合,促进反响敏捷进行。因为和碲化物的反响速度比和硒的反响速度更快些,所以要当心操控,避免不溶性的六价碲化合物把四价硒别离为可溶性化合物[8]。加压浸出工艺的长处在于能够确保碲悉数转化为六价形状,完结其在碱性浸出液中的彻底不溶解。别的,还能够使介质无腐蚀性,硒无蒸发丢失,无洗刷或气体净化工序,而且基本上可定量完结碲的提取。可是,其不足之处也很明显,就是整个工艺耗费的氧气和的量较大。氧化进程不只要考虑碲的氧化,还要考虑硒的氧化以及精粹铜的进程中运用附加物作为成长调节剂而引人的有机物的氧化19J。
3.2硫酸化焙烧
硫酸化焙烧技能是依据硒和碲的四价氧化物在焙烧温度500~600℃度下其蒸发性不同。从阳性泥中选择性提取硒后,因为可溶解六价和四价碲,所以直接从剩下的焙渣顶用浸出的办法可收回碲。酸性焙烧是运用硫酸作为氧化剂使硒或硒化物和碲或碲化物转化成他们各自的四价氧化物。其间碲的氧化反响是:Cu2Te+6H2S04=2CuS04J+Te02 l+4S02 f+6H20t工业出产中并不引荐此工艺,这是因为,浸出会导致阳极泥中的银转化为极难溶的氯化银,使今后的银的收回愈加困难,一同如果有六价碲存在,它能够氧化而释放出,接着它又会溶解阳极泥中的金,这就会在后续碲和金的别离方面发生一些实质性的问题L9J。据工业出产的实践数据标明,包含碱性氧化物压力浸出和含铜、镍、贵金属、硒和碲阳极泥压力硫化效果在内的彻底湿法冶金的工艺进程能够使悉数组分杰出分出。别离出的硒和碲的纯度能够达90%以上哺J。
3.3液膜别离法
液膜别离物质是一种高效、快速、节能的新式高技能别离办法,2003年由王献科[10]提出用伯胺N192,制备乳状液膜,能敏捷地搬迁富集碲,在收回、处理提取及分析测定微量碲方面,具有很好的运用远景,也为进一步从杂乱组分的料液或低档次碲矿中富集碲的开发使用奠定了根底。液膜富集Te4+是经过活动载体N1923来完结的。依据别离进程和溶剂萃取的原理,N1923以RN表明,用离子缔合原理萃取元素。首要是在膜相外界外相中HCl生成RNH+C1,而外相中Te4+以TeBr62一方式与膜相中RNH+C1反响生成[RNH]22十[TeBr6]2-,溶于有机膜,并穿过液膜分散内相界面于NaOH水溶液效果、离解,Te.Br62一和H+迁入内相,这是因为Cl一和TeBr6卜与N1923相互竞赛缔和的成果。用乳状液膜别离富集碲的研讨,断定了膜相由7%N1923(伯胺)、4%Lll3B和89%火油(包含正辛醇)组成,内相为0.3mol/LNaOH水溶液,外相酸度为5mol/LHCl介质,R。l为1:1,R。。为20:50~20:100,室温(15~36℃)条件下,碲的收回率为99.5%~100%,内相富集了较高浓度的碲。一般常见的阳阴离子,都不被搬迁富集,选择性适当高。但此法在工业上还未能得到推行。
3.4微生物法
生物冶金以其成本低、无污染,对低档次、难选冶的矿产资源的开发使用有着宽广的工业运用远景。廖梦霞等人[11】在2004年提出在我国首例独立碲矿床资源的开发战略上走生物冶金的路途。其实在2003年Rajwade等[12]曾运用微生物的接连拌和,提出了含碲贵液的生物复原工艺,即对含碲lOmg/L的溶液中,pH操控在5.5~8.5,温度在25~45℃,用微生物吸附一复原沉积元素碲,可有用替代强复原剂,然后进步功率下降出产成本。这一理论创始了生物冶金在碲的提取工艺上运用的先河。廖梦霞等人L11J以为石棉大水沟独立碲铋矿床碲铋含量0.00X一0.0X%,金银含量0.X—Xg/t的硫化矿贫矿储量大,传统工艺很难有用到达经济开发使用的意图,因而提出微生物提取碲的办法,并总结了国内外针对硫化矿生物氧化的研讨,首要有浸矿细菌的别离和判定、细菌的培育条件和细菌氧化工艺条件研讨、细菌浸出硫化精矿粉进程中细菌浸出的物理要素和化学要素以及细菌浸出的浸出动力学和浸出机理研讨。在面临生物冶金的杰出问题生物(氧化周期长导致出产功率低)上,其课题组使用金属离子、表面活化剂催化、磁化强化等办法加速细菌氧化反响速率,使这一问题的处理有了一些新的思路。
4 、结 论
稀散金属碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重,运用规模也越来越广。可是因为碲从发现至今时刻较短,一同独立碲矿的开发也只是是近几年的工作,大多数工艺技能仍处于实验研讨阶段,这使得咱们很难断语何种工艺为最佳。但跟着人们对稀散元素知道的加深以及碲在各个范畴运用的广泛,咱们信任碲的开发将会得到进一步的开展,研讨和开发碲的别离提取的新工艺也愈加具有现实意义。
碲铜 英文
2017-06-06 17:50:14
碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国 ASTM 中国 GB 日本 JIS 德国 DIN 英国 BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分 合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能 合 金 状态 抗拉强度 MPa 硬度 HV 延伸率 % 导电率 %IACS 车削性 %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、 汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡
金属
。 铜呈紫红色光泽的
金属
,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的
金属
之一,也是最好的纯
金属
之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的
金属
之一。一般认为人类知道的第一种
金属
是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种
金属
,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到
金属
铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的
金属
。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海
有色
网
碲铜合金
2017-06-06 17:50:05
碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。
碲铜合金
2017-06-06 17:50:02
碲铜合金(DT) 该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。
锆知识
2019-03-08 11:19:22
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。
锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。
锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。
ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。
锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。
近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。
制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。
锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。
锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
锆矿物
2019-01-30 10:26:34
已发现含锆矿物有30多种,其中具有工业价值的主要有锆英石和斜锆矿两种。锆和铪由于化学性质、离子及原子半径非常相近,因此在自然界中锆与铪均呈共生状态存在。铪本身无独立矿物,均以类质同像赋存于变种锆英石中,含铪较高的变种锆英石矿物有:曲晶石、苗木石、水锆石等。主要锆、铪矿物见下表。
表 锆铪矿物表矿物化学式ZrO2%HfO2%密度g∕cm3硬度颜色斜锆矿(baddeleyfie)ZrO280~980.5~26.5~66~6.5白、红、黄锆英石(zircon)ZrSiO461~671~1.84.2~4.97.5无色、黄、绿、褐、黑等钛锆钍矿(zirkelite)(Ca,Fe,Ti,Zr,Th)2O3521~2.74.75.5黑色、深棕色曲晶石(cyitolite)变种锆石含
TR、U、Th等52.405.5~174.16褐色水锆石(malacone)变种锆石含Al、Ta、Nb、Th、U、H2O53.2~65.13.7~4.63.89~3.936无色苗木石(nacgitc)变种锆石含TR、Ta、Nb、Th、U等49.83.5~74.17.5绿、褐色
锆常识
2019-03-14 09:02:01
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。 锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。 锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。 ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和 ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。 锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。 近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为 950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。 制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。 锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。 锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
锆矿
2019-02-11 14:05:30
锆是一种化学元素,它的化学符号是Zr,原子序数为40,是一种银白色的过渡金属。锆的表面易构成一层氧化膜,具有光泽,故外观与钢类似。有耐腐蚀性,不溶于和;高温时,可与非金属元素和许多金属元素反响,生成固体溶液化合物。锆的可塑性好,易于加工成板、丝等。锆在加热时能大量地吸收氧、氢、氮等气体,可用作贮氢材料。锆的耐蚀性比钛好,挨近铌、钽。锆与铪是化学性质历史学类似、又共生在一起的两个金属,且含有放射性物质。地壳中锆的含量居第20位,简直与铬持平。自然界中具有工业价值的含锆矿藏,首要有锆英石及斜锆石。一、锆的性质
的外表象钢,常温下表面被细密的氧化物层掩盖,但仍有金属光泽。粉状锆为暗灰色。的熔点为1852℃,密度为6.49克厘米3。其可塑性好,易于加工成板、丝等。锆在加热时能大量地吸收氧、氢、氮等气体,可用作贮氢材料。锆的耐蚀性比钛好,挨近铌、钽。锆与铪是化学性质非常类似、又共生在一起的两个金属,且含有放射性物质。地壳中锆的含量居第20位,简直与铬持平。
二、锆的用处
锆中的热中子抓获截面小,有杰出的核功能,是开展原子能工业不行短少的材料,可作反响堆芯结构材料。在空气中易焚烧,可作引爆及无烟。锆可用于优质钢脱氧去硫的添加剂,也是装甲钢、大炮用钢、不绣钢及耐热钢的组元。锆是镁合金的重要合金元素,能进步镁合金抗拉强度和加工功能。锆仍是铝镁合金的蜕变剂,能细化晶粒。二氧化锆和锆英石是耐火材料中最有价值的化合物。二氧化锆是新式陶瓷的首要材料,还可用作抗高温氧化的加热材料。二氧化锆可作耐酸珐琅、玻璃的添加剂,能明显进步玻璃的弹性、化学安稳性及耐热性。锆英石的光反射功能强、热安稳性好,在陶瓷和玻璃中可作遮光剂运用。锆在加热时能大量地吸收氧、氢、氮等气体,是抱负的吸气剂,如电子管顶用作除气剂,用锆丝锆片作栅极支架、阳极支架等。
三、氧化锆陶瓷
氧化锆精细陶瓷具有电绝缘性、压电性、耐热性、硬度高和耐磨损等特色,可用作电器陶瓷,制造作人工骨、人工齿和固定化触媒载体,所以是材料宗族中的新秀。氧化锆耐性陶瓷,其抗变强度可与高强度的合金钢比美,可作陶瓷鎯头、剪刀和菜刀。陶瓷剪刀。陶瓷剪刀非常尖利,不带磁性,适于剪接录音、录相带。陶瓷菜刀适于切熟食,不会在食物上留下铁腥味。部分安稳的二氧化锆陶瓷,具有高硬度特色,可用于制造耐磨部件,如喷嘴、螺纹导管、揉捏和线材拉模等。
四、锆矿之国——澳大利亚澳大利亚矿产资源丰富。其间,锆英石储量居国际第一位,其产值约占国际总产值的80%。锆英石开采业在该国采矿工业中占有重要位置,首要会集在新南威尔士、西澳大利亚和昆士兰三个州。澳大利亚是国际上锆的最大的直销国。交易目标首要是英国、美国、日本、德国和加拿大。
金-碲矿石选矿技术
2019-02-12 10:07:54
金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。
金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。
图1 金-碲矿石优先浮选准则流程
另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。
图2 金-碲-黄铁矿矿石的混合-优先浮选流程
当时,金-碲矿石可用下列两种计划进行处理。
(1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。
(2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。
澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。
图3 澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程
所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。
该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。
金-碲矿石的处理
2019-02-14 10:39:49
金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划: 1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。 2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量 1为200~500克/吨)和化(用量为的—)等 3办法。
碲金矿的浮选和氰化
2019-02-19 10:03:20
恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1 恩佩罗尔矿业公司简明流程
工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。
二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。
处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2 恩佩罗尔矿业公司收回金属碲生产流程
洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。
矿石含碲12.2g∕t,碲的收回率约为88%。
浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。
浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。
药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。
铜锆合金
2017-06-06 17:50:08
铬铜锆合金型号:X2-13#Aer-B;杂质含量:《0.5 铜含量:97 ﹪ 合金牌号导热率W-m.k密度g/cm3导电率IACS(%)硬度HV用途X2-13#Aer-B3308.9≥75110~145用做焊接材料及放电电极产品特性:铬铜加入锆元素,具有高热传导性,耐腐耐磨性。硬度高不必再另行热处理,主要用于焊接用电极,电极材料,连接器等。特点:耐磨抗爆,耐腐蚀强焊接时损耗少,速度快,成本低。 用途:用做放电材料及放电电极 德国莱布尼茨固态与材料研究所15日发表公报说,该所研究人员成功改造了一种非晶体
金属
材料,使其既保持了原本的优点,又具有较强的可延展性。 金属
通常是晶体。如果使
金属
熔体在瞬间冷凝,使
金属
原子来不及排列整齐就被“冻结”,就能产生具有玻璃性质的非晶体
金属
,俗称“
金属
玻璃”。这种材料具有玻璃耐锈、耐腐蚀的特点,强度可与陶瓷媲美,其较轻的质量更令其在航空等领域具有优势。但是
金属
玻璃较脆,无法承受拉伸负荷。 研究人员以铜锆合金作为研究对象。这种合金具有特殊的“记忆”特性,即在外力下产生形变后,在特定温度下又会恢复到原来形状。研究人员对非晶体铜锆合金进行改造,使其更坚固、可塑性更强。
锆铜合金
2017-06-06 17:50:05
锆铜合金 铬锆铜产品特性:导电,导热性良好,高硬度,高耐磨,抗爆,抗裂性能好以及软化温度,损耗少,焊接成本低。 铬锆铜产品应用:应用于熔接,焊接机点焊,碰焊电极及连接器和有关零配件铜套,结晶器。可作为点焊或焊接不锈钢板或镀锌板,低碳钢板的焊接材料。 铬锆铜技术参数: 密度 硬度 软化温度 导电率 G/cm3 HB 摄氏度 (20)IACS(%) C18200铬锆铜的主要化学成份:Cr铬 P磷 Mn锰 As砷 Si硅 Fe铁 Mg镁 Sn锡 Al铝 Bi铋1.00.002 0.0005 0.0002 0.001 0.045 0.0006 0.0065 0.0010 <0.0001技术参数: 电导率%IACS 密度g/cm3 软化温度℃ 抗拉强度Mpa 硬度HRB 热导率w(m.k)20℃≥808.6≥50046070-80≥115C18150铬锆铜主要化学成份%名称铝镁铬锆铁硅磷杂质总和铬锆铜0.1-0.250.1-0.250.4-0.80.3-0.80.050.050.010.5主要性能指标:材料硬度导电率软化温度用途HRBHBIACS%Ms/m铬锆铜78-88137-17076-8244-48550点焊、对焊、凸焊、缝焊电极,电极握杆,电极臂,轴等导电导热元件。 铬锆铜特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。广毅荣供应进口铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。广毅荣铬锆铜应用:此产品广泛应用于汽车、摩托车、制桶(罐)等机械制造工业的焊接、导电嘴、开关触头、模具块、焊机辅助装置用各种物料。 铬锆铜与铍铜相比具有以下特点: 1、抗应力松弛性能高,热稳定性好,时效范围宽,成品率高,可在高温下长期使用(100 ℃-250 ℃)。直立性能尤佳。 2、导电性能好,电导率 ≥80%IACS 3、良好的耐蚀性能。 4、电镀性能好。 5、无毒性,适用于卫生洁具模、食品模。应用例:模芯、食品模、卫生洁具模、注塑机注塑嘴 等。 铬锆铜电阻焊电极: 铬锆铜通过热处理与冷加工相结合的方法来保证性能,它可以获得最佳的力学性能和物理性能,所以用来 做一般用途的电阻焊电极,主要作为点焊或缝焊低碳钢、镀层钢板的电极,也可以作为焊低碳钢时的电极 握杆、轴和衬垫材料,或作为焊低碳钢时的电极握杆、轴和衬垫材料,或作为凸焊机的大型模具、夹具、 不锈钢及耐热钢用模具或镶嵌电极。 ●电火花电极:铬铜的导电导热性能好、硬度高、耐磨抗爆,用作电火花电极具有直立性好、打薄片不弯曲、光洁度高等优点。 ●模具母材:铬铜的导电导热性能、硬度、耐磨抗爆、
价格
比铍铜模具材料优越等特点,已经开始在模具
行业
代替铍铜作为一般模具材料。比如鞋底模具、水暖模具、一般要求光洁高的塑胶模具、等
铬锆铜
2017-06-06 17:50:05
铬锆铜( Cr:0.25-0.65, Zr:0.08-0.20)。 硬度:HRB78-83,导电率:43ms/m,软化温度:550℃。铬锆铜具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。 铬锆铜的品质要求: 1.电导率测量用涡流电导仪,测三点取平均值 ≥44MS/M; 2.硬度以洛氏硬度标准, 取三点取平均值 ≥78HRB; 3.软化温度实验,炉温 550℃ 保持两小时后,淬水冷却后与原始硬度比较不能降低15%以上。 对铬锆铜化学成分和机械性能的分析:
铬锆铜
2017-06-06 17:49:59
铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬 度(HRB78-83)导电率 43ms/m 软化温度 550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。 铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。 应用:此产品广泛应用于汽车、摩托车、制桶(罐)等机械制造工业的焊接、导电嘴、开关触头、模具块、焊机辅助装置用各种物料。 规格:棒材、板材规格齐全,并可根据客户要求定制。 品质要求: 1.电导率测量用涡流电导仪,测三点取平均值 ≥44MS/M 2.硬度以洛氏硬度标准, 取三点取平均值 ≥78HRB 3.软化温度实验,炉温 550℃ 保持两小时后,淬水冷却后与原始硬度比较不能降低15%以上 物理指标:硬度: >75HRB,导电率:>75%IACS,软化温度:550℃硬度:具有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接成本低,适合作为熔接焊机的电极及有关管件,由于直立性比较好,也常作为花机打薄片用。
碲金精矿的氧化焙烧
2019-02-20 14:07:07
碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧
Au2Te+O2 2Au+TeO2
使金复原呈金属状况,更易分化。
此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。
铬锆铜
2017-06-06 17:50:12
铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬 度(HRB7883)导电率 43ms/m 软化温度 550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。 铬锆铜特点具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。广毅荣供应进口铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。铬锆铜的应用:此产品广泛应用于汽车、摩托车、制桶(罐)等机械制造工业的焊接、导电嘴、开关触头、模具块、焊机辅助装置用各种物料。 想要了解更多关于铬锆铜的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
铋的碱性精炼除碲、锡
2019-01-07 17:37:58
一、碱性精炼机理
图1为Te-Bi系状态图。图1 Te-Bi系状态图
从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。
Sn-Bi系状态图如图2所示。图2 Sn-Bi系状态图
铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。
碱性精炼的目的是为了回收碲与锡。
碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。
已被压缩空气氧化之碲,反应为:
对尚未被压缩空气氧化之碲,其反应为:
由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。
在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:
分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。
某厂碱性精炼中碲、锡的去陈程度如图3所示。图3 碲、锡的去除程度
二、碱性精炼实践
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
锆资源及产量
2019-01-30 10:26:34
世界锆储量主要赋存于海滨砂矿矿床中,只有少部分赋存于残积砂矿和原生矿中,工业价值不大。锆资源中主要矿物是锆英石及斜锆矿,它们多与钛铁矿、独居石、金红石、磷钇矿、锡石等矿物共生,呈综合性砂矿床产出。澳大利亚锆资源及产量均居首位,其次为美国、南非等国,国外锆资源见表1、产量见表2。
表1 世界各国锆英石资源即,kt锆国名储量其他资源总计美国362827216349加拿大-907907巴西9072271134苏联272118144535马尔加什9191182南非544227218163塞拉利昂45413611815印度302818145442马来西亚和泰国9191182斯里兰卡9074541361澳大利亚725627219977总计251251492240047
表2 世界主要锆英石生产国产是表,t国别179198019811982澳大利亚447000459000420000420000南非88000103000110000130000美国80000800009000090000其他800080001000010000合计621000650000630000650000