您所在的位置: 上海有色 > 有色金属产品库 > 二碲化锰厂家

二碲化锰厂家

抱歉!您想要的信息未找到。

二碲化锰厂家百科

更多

二氧化锰

2017-06-06 17:50:07

什么是二氧化锰?二氧化锰是(自然界以软锰矿形式存在),物理性状:黑色无定形粉末,或黑色斜方晶体,溶解性: 难溶于水、弱酸、弱碱;不溶于水、硝酸、冷硫酸,溶于热浓盐酸而产生氯气。氧化性  一种两性氧化物:  遇还原剂时,表现为氧化性。如将二氧化锰放到氢气流中加热至1400K得到一氧化锰;将二氧化锰放在氨气流中加热,得到棕黑色的三氧化二锰;将二氧化锰跟浓盐酸反应,则得到l氯化锰、氯气和水。 遇强氧化剂时,还表现为还原性。如将二氧化锰,碳酸钾和硝酸钾或氯酸钾混合熔融,可得到暗绿色熔体,将熔体溶于水冷却可得六价锰的化合物锰酸钾。在酸件介质中是一种强氧化剂。 强氧化剂,本身不燃烧,但助燃,不要和易燃物放置一起。二氧化锰的用途是:二氧化锰在干电池中作消极剂;在 有色金属 湿法冶金、氢醌(对苯二酸)生产、铀的提炼上作氧化剂;在陶瓷和搪瓷生产中作氧化剂和釉色;在玻璃生产中用于消除杂色和制作装饰玻璃。化学工业上生产硫酸锰、高锰酸钾、碳酸锰、氯化锰、硝酸锰、一氧化锰等,是化学试剂、医药、焊接、油漆、合成工业等的重要原料。 在实验室常利用它的氧化性,与浓盐酸(HCl)混合加热制备氯气(Cl?): MnO?+ 4HCl(浓) ==Δ== MnCl?+ Cl?↑ + 2H?O 另也可作为催化剂与过氧化氢、氯酸钾等反应产生氧气。 通过加热高锰酸钾可以制得。 做催化剂与氯酸钾反应时并不是单纯的催化,而是会与原物质反应,最后又生成了二氧化锰。反应过程中可能生成了高锰酸钾和氯气 二氧化锰不能和稀盐酸反应.浓盐酸中H+和Cl-的浓度大,还原性强,在加热条件下能被MnO?氧化,生成Cl?;随反应进行,H+和Cl-的浓度逐渐减小,还原性逐渐减弱,当达到一定程度时,MnO?就不可以氧化Cl-了。因此二氧化锰和稀盐酸不会反应。在热浓硫酸中放出氧而成硫酸锰。与苛性钠和氧化剂共熔生成锰酸盐。能溶于丙酮.二氧化锰的分子结构 是[MnO?]八面体, 氧原子在八面体角顶上, 锰原子在八面体中, [MnO?]八面体共棱连接形成单链或双链, 这些链和其它链共顶,形成空隙的隧道结构, 八面体或成六方密堆积, 或成立方密堆积。二氧化锰的其他用途:二氧化锰亦可以用做过氧化氢(H?O?)的分解。其催化效果如下:  2H?O?==MnO?== 2H?O + O?↑  2MnO?==== 2MnO?+ O?↑ 二氧化锰也被用作颜料、 有色 玻璃等。 层状二氧化锰(δ-MnO?)的每个正八面体整齐的排列在层板上的结构,其分子组成具有如下通式:AxMn2+y(H?O)z[2] 。由于晶层内的八面体片有广泛的类质同象替代, 从而使晶层带净负电荷。因此,水合阳离 子(Na + 、K+ 、Ca2 + 、Mg2 + ) 可以占据层间域以补偿这种负电荷。 二氧化锰的性质 ;与浓硫酸反应有氧气生成;与浓盐酸反应有氯气生成。二氧化锰与熔融苛性钾在空气中反应生成锰酸钾(K?MnO?)。二氧化锰用于干电池、玻璃和陶瓷的着色剂、制锰等。毒性 急性毒性、慢性中毒、诱变性、致癌性、致畸性 二氧化锰粉尘可引起人的锰尘肺。高价锰氧化物,不论侵入机体的途径,其毒性作用对大脑有损伤。防护措施 二氧化锰在手上可以用草酸清洗,但要浓度小的 在烧瓶可以用热的浓盐酸 反应方程式为: MnO?+ 4HCl(浓) ==Δ== MnCl?+ Cl?↑+ 2H?O 因为残渣毕竟是少量的 产生的少量Cl?对环境危害不大更多有关二氧化锰信息请详见于上海 有色 网

电解二氧化锰

2017-06-06 17:50:07

电解二氧化锰是什么?电解二氧化锰是优良的电池的去极化剂,它与天然放电二氧化锰生产的干电池相比,具有放电容量大、活性强、体积小、寿命长等特点,掺用 20-30%EMD 做成的干电池比全用天然 MnO2 做成的干电池其放电容量可提高 50-100% ,在高性能氯化锌电池中掺用 50-70%EMD ,其放电容量可提高 2-3 倍,全部用 EMD 做成的碱锰电池,其放电容量可提高 5-7 倍,因此电解二氧化锰成为电池工业的一种非常重要的原料。电解二氧化锰适用范围1、碱锰型适用于碱性锌锰电池类;  2、无汞碱锰型适用于碱性锌一二氧化锰电池。电解二氧化锰的主要用途:主要用途:物理状态电解二氧化锰除作为电池的主要原料外,其它领域也得到广泛应用,如:精细化工生产过程中作氧化剂、锰锌铁氧体软磁材料中的原料。电解二氧化锰由于具有很强的催化、氧化 / 还原,离子交换和吸附能力,在经处理与成型后,是一种性能全面的优良净水滤料,与平常用的活性碳、沸石等净水滤料相比,具有更强的脱色和去除 金属 的能力。二氧化锰分类 电解二氧化锰分为:(1)普通型;(2)碱锰型;(3)无汞碱锰型;(4)普通型适用于锌锰电池类;电解二氧化锰生产工艺 生产工艺:电解二氧化锰生产的整个工艺流程可分为制液、电解、成品处理三大部分。具体分为:浸出、氧化除铁、中和、固液分离、硫化除重 金属 、电解、剥离、粉碎、漂洗脱酸、干燥、计量包装。  更多电解二氧化锰信息请详见于上海 有色 网

活性二氧化锰

2017-06-06 17:50:07

活性二氧化锰制造方法  一种用于电池填充料的活性二氧化锰制造方法,它是将含MnO↓[2]70-72%的天然锰矿粉与谷壳催化剂混合配料,制浆时加入MnSO↓[4]·H↓[2]O增锰制浆,岐化氧化反应采用分次加料3-4次进行,洗涤时先用H↓[2]SO↓[4]溶液进行酸洗,中和反应加NH↓[4]HCO↓[3],采用本方法具有不增加设备,可降低原料品位和生产成本5%,缩短工时,提高工效一倍以上,产品MnO↓[2]含量稳定大于75%,视比重达1.8-2.1克/cm↑[3],放电性能好,间歇放电和连续放电均达到或超过电解二氧化锰标准。  一种用合成碳酸锰为原料热解制取二氧化锰的方法和设备,碳酸锰在回转窑中的热解氧化反应采用间接加热连续焙烧,参与反应的物料和气体以及加热介质三者均同向流动,控制入窑物料水分,使其在窑中预热段产生蒸汽,同时调节入窑空气量,以形成含湿含氧的反应气体,无须按一般方法通入蒸汽和氧气,所设计的回转窑是双层夹套结构的筒体,以通过夹套中的热空气为焙烧加热介质,采用密闭循环低温加热方式,因此热效率高,能耗低,设备简单,所制得活性好的γ型二氧化锰,其转化率达80~85%.  一种利用制药 行业 废锰渣生产活性二氧化锰 的方法,它涉及化工废渣利用领域。其特征在于它以制药 行业 的废锰渣及酸和水为原料,通过焙烧、酸化、分离、活化、粉碎等六道工序制得活性二氧化锰。$该方法变废为宝,保护环境;成本低,利润高,有竞争能力。更多有关活性二氧化锰信息请详见上海 有色 网

碲常识

2019-03-14 09:02:01

碲  碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。  碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。  碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

碲知识

2019-03-08 09:05:26

碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

粗铋的碱性碲渣回收碲

2019-01-31 11:06:04

粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。 一、工艺流程 出产碲的流程如图1。图1  碲出产工艺流程图 二、首要技能条件 (一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。 (二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为: Na2PbO2+Na2S+2H2O=PbS↓+4NaOH 参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为: Na2SiO8+CaCl2=CaSiO8↓+2NaCl 操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。 (三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为: Na2TeO3+H2SO4=TeO2+Na2SO4+H2O 鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。 (四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。 (五)造液。TeO2能溶于NaOH溶液,反应为: TeO2+2NaOH=Na2TeO3+H2O 每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。 (六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。 通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。 (七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。 三、首要设备 (一)球磨机。φ600×1000毫米,转速45转/分。 (二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。 (三)真空泵。SZ-2二台。 (四)电解槽。六个,钢板衬胶,790×600×640毫米。 (五)硅整流器。GZH3-40型一台,100安,50伏。 四、产品用处 碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。 五、产品质量 一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。 六、其它办法收回碲 (一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。 (二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。

碲铜

2017-06-06 17:50:05

碲铜,即碲和铜的合金。    碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。    碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。    碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子 行业 中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。    以下是碲铜的产品标准、化学成分以及机械性能的指标:  

低品位锰矿制取优质二氧化锰

2019-02-21 11:21:37

前语 尽管许多区域的软锰矿和高档次锰矿已面对干涸,但各种中,低档次锰矿资源依然可资使用。但出产电池级二氧化锰或其它锰的化学试剂,要用低铁高锰质料,这就要求对现有炼锰技能进行改造以习惯开发低档次锰矿的需求。假如物理办法在技能上既不可行,在经济上也不适宜时,一般选用化学办法。处理低档次锰矿的化学办法有Nossen硝酸循环法、处理法及硫酸处理法。许多研讨人员对锰矿和其它含有色金属的物料进行过硫酸化焙烧,作用较好。试验过的硫酸化试剂有硫酸、硫酸铵、硫酸钠及。然后用传统的电解技能即可从上述办法制得的侵出液中出产出电池级二氧化锰产品。 本文考察了加硫酸铵进行低档次锰矿的硫酸化焙烧、评论了不必电解法而选用煅烧技能从浸出的锰化合物出产二氧化锰的办法。 一、低档次锰矿的处理 化学分析标明,埃及西奈低档次锰矿样品的化学成分为;23.43%Mn,36.16% MnO2,33.77%Fe (48.25% Fe2O3),3.97% SiO2和2.4% Al2O3,其他为P2O5,CaO,MgO,CO2及H2O。X射线衍射分析和物相检测标明矿石中首要矿藏为软锰矿,赤铁矿和针铁矿。使用Netzsch Gerateball,GmbHSTA409仪器进行了热重分析和差热分析。 操控不同时刻、温度及硫酸铵/矿分量比,将矿石在校正过的马弗炉中进行了硫酸化焙烧。然后用水浸出焙砂。 表1列出不同硫酸铵/矿(-200目)分量比的物料于400℃焙烧3h后,铁、锰的浸出率。氧化铁和氧化锰均转化为可溶性硫酸盐。锰的浸出率随硫酸铵份额的进步而添加,铁的浸出率则随硫酸铵份额的进步而下降。 表1硫酸铵/矿分量比时铁锰浸出率的影响在温度为400℃,硫酸铵/矿分量比为7,焙烧时刻分别为1,2和3h的条件下、研讨了焙烧时刻对铁、锰浸出率的影响。成果(参见表2)标明:在400℃时反响时刻由1h添加到3h,铁和锰转化为可溶性盐的转化率也相应添加。 表2  焙烧时刻对铁、锰浸出率的影响表3列出硫酸铵/矿分量比为7,焙烧3h的条件下,焙烧温度对铁、锰浸出率的影响。成果标明:当焙烧温度从400℃升高到700℃时,锰的浸出率略有下降,而铁却不同,焙烧温度升高到500℃时,其浸出率随温度的升高而添加,但在700℃焙烧3h时,其浸出率却显着下降。 表3  焙烧温度时铁、锰浸出率的影响二、焙烧进程的机理 为了测定各个温度区域的分化产品,将纯硫酸铵试样从20℃加热到500℃,进行差热和热重分析。其成果如图1和图2所示。图1  纯硫酸铵热重分析图2  纯硫酸铵差热分析 试验成果标明,硫酸铵失重分两步完结。第一步为280℃~340℃,其失重相当于硫酸铵分化为的分量丢失。其化学反响如下:第二步为340℃~420℃之间。按下式发作彻底分化:正如差热分析曲线所标明,两步分化反响是吸热反响(随同有吸热峰呈现)。 众所周知,当温度≥500℃时,二氧化锰分化为Mn2O3。因而,在不同试验温度下,可能发作如下反响:当温度≥400℃时,可能发作如下反响:当温度低于400℃时,氧化铁可能发作如下反响:以上一切铁和锰的化合物均为X射线衍射分析所证明。 当温度≥500℃时,硫酸铁复盐分化为硫酸亚铁和硫酸铁。这两种化合物均比其复盐更易溶解。因而能够解说在该温度下铁浸出率高的试验成果。X射线衍射分析证明,在该温度下,只要这两种化合物。 温度进一步升高,硫酸亚铁将按下式被氧化,并发作分化:X射线衍射分析标明,在700℃时,硫酸铁的分化产品首要是三氧化二铁。 值得注意的是将矿石中的锰和铁转化为相应的硫酸盐(方程式3和6),需求近3倍的硫酸铵。这意味着试验测得浸出率较好时,其硫酸铵/矿分量比(表1)均为理论量的2倍。 温度升高铁的浸出率下降(表3),能够认为是硫酸亚铁被氧化及硫酸铁分化为氧化铁。这已为X射线衍射分析成果所证明,众所周知,关于硫酸锰而言,直到700℃它依然是安稳的。 温度达700℃时,锰的浸出率略有下降,这或许与硫酸化试剂分化速度快有关,由于二氧化锰与硫酸化试剂的分化产品之间的反响,相对的来说没有满足的时刻来完结。 依据这些数据,将锰矿试样在400℃下,选用最佳硫酸化配比7,与硫酸铵一同焙烧3h,然后升温到700℃持续焙烧1h,再浸出该混合物。锰和铁的浸出率分别为92%和5%左右。 三、二氧化锰的出产 通过硫酸化焙烧的锰矿在70℃下浸出,即可取得含可溶性锰盐为15%~20%的溶液。其间少数的硫酸亚铁,可通过参加过量锰矿粉将其氧化,并用调理pH到6.5,过滤除掉铁、磷和其它杂质而得纯锰溶液。将碳酸铵参加溶液中,直到pH为8.5,在此条件下,溶液中的锰转化为碳酸盐。所得碳酸锰在300℃下枯燥5h后,与理论所需量硝酸混合,在200℃下熔解直到除掉一切的氧化氮停止。 在20~400℃范围内对进行了热重分析(图3)。在304℃开端失重,到340℃时失重完毕。总失重率为51%。图3  的热重分析 这与下式所示的分化为相应的二氧化锰的失重率(51.40%)十分符合:在320℃下将煅烧3h,并对煅烧产品进行化学分析和X射线衍射分析。分析成果标明,产品为r-MnO2,化学成分合格。 有关所得二氧化锰的阴极行为及其对干电池的习惯性,将持续进行研讨。

氮化锰铁

2017-06-06 17:50:00

氮化锰铁主要用作炼钢生产中氮的添加剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。氮化锰铁是生产特殊合金钢、不锈钢、耐热钢必不可缺的合金剂, 通常都是以中、低碳锰铁充氮而获得的。氮化锰铁特点:氮化锰铁主元素含量高、磷等危害性杂质含量低、加入熔体后氮的利用率高、加入量少。氮能提高钢的强度和塑性,扩大奥氏体区,细化晶粒,改善其加工性能。氮化金属锰能代替部分镍从而降低成本。氮化锰用途氮化锰铁作为氮和锰的合金添加剂主要用于生产高强度钢、合金钢、不锈钢以及汽车、造船、航空工业材料。氮化锰铁有两种制取方法:(1)液态氮化法:它是在密闭的容器中向液态的中、低碳锰铁中鼓入氮气,使合金被气态或固态含氮组分所饱和。所得的氮化锰铁具有密度大、强度高、用于炼钢时氮的利用率高等优点。但由于含氮较低,往往满足不了炼钢的要求。   (2)固态氮化法:它是在密闭的容器中加热处于固态的中、低碳锰铁粉末,并与氮气充分接触渗氮。固态粉末的中、低碳锰铁与氮气或氨气分解出来的氮,互相作用会生成一系列含氮的化合物,且这些氮化物的稳定性随温度的升高而降低直至分解,故此法应控制合适的氮化温度,一股情况下把60目以下的中、低碳锰铁粉末在密闭容器内,在氮气和650℃-1120℃的温度下氮化4h-8h,可得含氮4-6%的氮化锰铁。由干其含氮量随含锰量的增加而增加,随碳化锰含量的减少而增加,故含Mn高的低碳锰铁比含Mn低的中碳锰铁的氮含量略高。所得的氮化铁产品密度小,若将其熔化密度增加,但会使产品含氮量明显降低。现该专业人才比较多集中在钢铁英才网。制取1t氮化锰铁约需1t中、低碳锰铁和1500kwh的电。 

碲铜

2017-06-06 17:50:03

碲铜是碲和铜的合金。根据两种 金属 的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下: