碲的理化性质和用途
2019-03-07 10:03:00
一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。
二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。 三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提
电解二氧化锰
2017-06-06 17:50:07
电解二氧化锰是什么?电解二氧化锰是优良的电池的去极化剂,它与天然放电二氧化锰生产的干电池相比,具有放电容量大、活性强、体积小、寿命长等特点,掺用 20-30%EMD 做成的干电池比全用天然 MnO2 做成的干电池其放电容量可提高 50-100% ,在高性能氯化锌电池中掺用 50-70%EMD ,其放电容量可提高 2-3 倍,全部用 EMD 做成的碱锰电池,其放电容量可提高 5-7 倍,因此电解二氧化锰成为电池工业的一种非常重要的原料。电解二氧化锰适用范围1、碱锰型适用于碱性锌锰电池类; 2、无汞碱锰型适用于碱性锌一二氧化锰电池。电解二氧化锰的主要用途:主要用途:物理状态电解二氧化锰除作为电池的主要原料外,其它领域也得到广泛应用,如:精细化工生产过程中作氧化剂、锰锌铁氧体软磁材料中的原料。电解二氧化锰由于具有很强的催化、氧化 / 还原,离子交换和吸附能力,在经处理与成型后,是一种性能全面的优良净水滤料,与平常用的活性碳、沸石等净水滤料相比,具有更强的脱色和去除
金属
的能力。二氧化锰分类 电解二氧化锰分为:(1)普通型;(2)碱锰型;(3)无汞碱锰型;(4)普通型适用于锌锰电池类;电解二氧化锰生产工艺 生产工艺:电解二氧化锰生产的整个工艺流程可分为制液、电解、成品处理三大部分。具体分为:浸出、氧化除铁、中和、固液分离、硫化除重
金属
、电解、剥离、粉碎、漂洗脱酸、干燥、计量包装。 更多电解二氧化锰信息请详见于上海
有色
网
二氧化锰
2017-06-06 17:50:07
什么是二氧化锰?二氧化锰是(自然界以软锰矿形式存在),物理性状:黑色无定形粉末,或黑色斜方晶体,溶解性: 难溶于水、弱酸、弱碱;不溶于水、硝酸、冷硫酸,溶于热浓盐酸而产生氯气。氧化性 一种两性氧化物: 遇还原剂时,表现为氧化性。如将二氧化锰放到氢气流中加热至1400K得到一氧化锰;将二氧化锰放在氨气流中加热,得到棕黑色的三氧化二锰;将二氧化锰跟浓盐酸反应,则得到l氯化锰、氯气和水。 遇强氧化剂时,还表现为还原性。如将二氧化锰,碳酸钾和硝酸钾或氯酸钾混合熔融,可得到暗绿色熔体,将熔体溶于水冷却可得六价锰的化合物锰酸钾。在酸件介质中是一种强氧化剂。 强氧化剂,本身不燃烧,但助燃,不要和易燃物放置一起。二氧化锰的用途是:二氧化锰在干电池中作消极剂;在
有色金属
湿法冶金、氢醌(对苯二酸)生产、铀的提炼上作氧化剂;在陶瓷和搪瓷生产中作氧化剂和釉色;在玻璃生产中用于消除杂色和制作装饰玻璃。化学工业上生产硫酸锰、高锰酸钾、碳酸锰、氯化锰、硝酸锰、一氧化锰等,是化学试剂、医药、焊接、油漆、合成工业等的重要原料。 在实验室常利用它的氧化性,与浓盐酸(HCl)混合加热制备氯气(Cl?): MnO?+ 4HCl(浓) ==Δ== MnCl?+ Cl?↑ + 2H?O 另也可作为催化剂与过氧化氢、氯酸钾等反应产生氧气。 通过加热高锰酸钾可以制得。 做催化剂与氯酸钾反应时并不是单纯的催化,而是会与原物质反应,最后又生成了二氧化锰。反应过程中可能生成了高锰酸钾和氯气 二氧化锰不能和稀盐酸反应.浓盐酸中H+和Cl-的浓度大,还原性强,在加热条件下能被MnO?氧化,生成Cl?;随反应进行,H+和Cl-的浓度逐渐减小,还原性逐渐减弱,当达到一定程度时,MnO?就不可以氧化Cl-了。因此二氧化锰和稀盐酸不会反应。在热浓硫酸中放出氧而成硫酸锰。与苛性钠和氧化剂共熔生成锰酸盐。能溶于丙酮.二氧化锰的分子结构 是[MnO?]八面体, 氧原子在八面体角顶上, 锰原子在八面体中, [MnO?]八面体共棱连接形成单链或双链, 这些链和其它链共顶,形成空隙的隧道结构, 八面体或成六方密堆积, 或成立方密堆积。二氧化锰的其他用途:二氧化锰亦可以用做过氧化氢(H?O?)的分解。其催化效果如下: 2H?O?==MnO?== 2H?O + O?↑ 2MnO?==== 2MnO?+ O?↑ 二氧化锰也被用作颜料、
有色
玻璃等。 层状二氧化锰(δ-MnO?)的每个正八面体整齐的排列在层板上的结构,其分子组成具有如下通式:AxMn2+y(H?O)z[2] 。由于晶层内的八面体片有广泛的类质同象替代, 从而使晶层带净负电荷。因此,水合阳离 子(Na + 、K+ 、Ca2 + 、Mg2 + ) 可以占据层间域以补偿这种负电荷。 二氧化锰的性质 ;与浓硫酸反应有氧气生成;与浓盐酸反应有氯气生成。二氧化锰与熔融苛性钾在空气中反应生成锰酸钾(K?MnO?)。二氧化锰用于干电池、玻璃和陶瓷的着色剂、制锰等。毒性 急性毒性、慢性中毒、诱变性、致癌性、致畸性 二氧化锰粉尘可引起人的锰尘肺。高价锰氧化物,不论侵入机体的途径,其毒性作用对大脑有损伤。防护措施 二氧化锰在手上可以用草酸清洗,但要浓度小的 在烧瓶可以用热的浓盐酸 反应方程式为: MnO?+ 4HCl(浓) ==Δ== MnCl?+ Cl?↑+ 2H?O 因为残渣毕竟是少量的 产生的少量Cl?对环境危害不大更多有关二氧化锰信息请详见于上海
有色
网
活性二氧化锰
2017-06-06 17:50:07
活性二氧化锰制造方法 一种用于电池填充料的活性二氧化锰制造方法,它是将含MnO↓[2]70-72%的天然锰矿粉与谷壳催化剂混合配料,制浆时加入MnSO↓[4]·H↓[2]O增锰制浆,岐化氧化反应采用分次加料3-4次进行,洗涤时先用H↓[2]SO↓[4]溶液进行酸洗,中和反应加NH↓[4]HCO↓[3],采用本方法具有不增加设备,可降低原料品位和生产成本5%,缩短工时,提高工效一倍以上,产品MnO↓[2]含量稳定大于75%,视比重达1.8-2.1克/cm↑[3],放电性能好,间歇放电和连续放电均达到或超过电解二氧化锰标准。 一种用合成碳酸锰为原料热解制取二氧化锰的方法和设备,碳酸锰在回转窑中的热解氧化反应采用间接加热连续焙烧,参与反应的物料和气体以及加热介质三者均同向流动,控制入窑物料水分,使其在窑中预热段产生蒸汽,同时调节入窑空气量,以形成含湿含氧的反应气体,无须按一般方法通入蒸汽和氧气,所设计的回转窑是双层夹套结构的筒体,以通过夹套中的热空气为焙烧加热介质,采用密闭循环低温加热方式,因此热效率高,能耗低,设备简单,所制得活性好的γ型二氧化锰,其转化率达80~85%. 一种利用制药
行业
废锰渣生产活性二氧化锰 的方法,它涉及化工废渣利用领域。其特征在于它以制药
行业
的废锰渣及酸和水为原料,通过焙烧、酸化、分离、活化、粉碎等六道工序制得活性二氧化锰。$该方法变废为宝,保护环境;成本低,利润高,有竞争能力。更多有关活性二氧化锰信息请详见上海
有色
网
碲常识
2019-03-14 09:02:01
碲 碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
碲知识
2019-03-08 09:05:26
碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。
碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。
碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
粗铋的碱性碲渣回收碲
2019-01-31 11:06:04
粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。
一、工艺流程
出产碲的流程如图1。图1 碲出产工艺流程图
二、首要技能条件
(一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。
(二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为:
Na2PbO2+Na2S+2H2O=PbS↓+4NaOH
参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为:
Na2SiO8+CaCl2=CaSiO8↓+2NaCl
操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。
(三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为:
Na2TeO3+H2SO4=TeO2+Na2SO4+H2O
鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。
(四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。
(五)造液。TeO2能溶于NaOH溶液,反应为:
TeO2+2NaOH=Na2TeO3+H2O
每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。
(六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。
通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。
(七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。
三、首要设备
(一)球磨机。φ600×1000毫米,转速45转/分。
(二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。
(三)真空泵。SZ-2二台。
(四)电解槽。六个,钢板衬胶,790×600×640毫米。
(五)硅整流器。GZH3-40型一台,100安,50伏。
四、产品用处
碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。
五、产品质量
一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。
六、其它办法收回碲
(一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。
(二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。
碲铜
2017-06-06 17:50:05
碲铜,即碲和铜的合金。 碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。 碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。 碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子
行业
中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。 以下是碲铜的产品标准、化学成分以及机械性能的指标:
低品位锰矿制取优质二氧化锰
2019-02-21 11:21:37
前语
尽管许多区域的软锰矿和高档次锰矿已面对干涸,但各种中,低档次锰矿资源依然可资使用。但出产电池级二氧化锰或其它锰的化学试剂,要用低铁高锰质料,这就要求对现有炼锰技能进行改造以习惯开发低档次锰矿的需求。假如物理办法在技能上既不可行,在经济上也不适宜时,一般选用化学办法。处理低档次锰矿的化学办法有Nossen硝酸循环法、处理法及硫酸处理法。许多研讨人员对锰矿和其它含有色金属的物料进行过硫酸化焙烧,作用较好。试验过的硫酸化试剂有硫酸、硫酸铵、硫酸钠及。然后用传统的电解技能即可从上述办法制得的侵出液中出产出电池级二氧化锰产品。
本文考察了加硫酸铵进行低档次锰矿的硫酸化焙烧、评论了不必电解法而选用煅烧技能从浸出的锰化合物出产二氧化锰的办法。
一、低档次锰矿的处理
化学分析标明,埃及西奈低档次锰矿样品的化学成分为;23.43%Mn,36.16% MnO2,33.77%Fe (48.25% Fe2O3),3.97% SiO2和2.4% Al2O3,其他为P2O5,CaO,MgO,CO2及H2O。X射线衍射分析和物相检测标明矿石中首要矿藏为软锰矿,赤铁矿和针铁矿。使用Netzsch Gerateball,GmbHSTA409仪器进行了热重分析和差热分析。
操控不同时刻、温度及硫酸铵/矿分量比,将矿石在校正过的马弗炉中进行了硫酸化焙烧。然后用水浸出焙砂。
表1列出不同硫酸铵/矿(-200目)分量比的物料于400℃焙烧3h后,铁、锰的浸出率。氧化铁和氧化锰均转化为可溶性硫酸盐。锰的浸出率随硫酸铵份额的进步而添加,铁的浸出率则随硫酸铵份额的进步而下降。
表1硫酸铵/矿分量比时铁锰浸出率的影响在温度为400℃,硫酸铵/矿分量比为7,焙烧时刻分别为1,2和3h的条件下、研讨了焙烧时刻对铁、锰浸出率的影响。成果(参见表2)标明:在400℃时反响时刻由1h添加到3h,铁和锰转化为可溶性盐的转化率也相应添加。
表2 焙烧时刻对铁、锰浸出率的影响表3列出硫酸铵/矿分量比为7,焙烧3h的条件下,焙烧温度对铁、锰浸出率的影响。成果标明:当焙烧温度从400℃升高到700℃时,锰的浸出率略有下降,而铁却不同,焙烧温度升高到500℃时,其浸出率随温度的升高而添加,但在700℃焙烧3h时,其浸出率却显着下降。
表3 焙烧温度时铁、锰浸出率的影响二、焙烧进程的机理
为了测定各个温度区域的分化产品,将纯硫酸铵试样从20℃加热到500℃,进行差热和热重分析。其成果如图1和图2所示。图1 纯硫酸铵热重分析图2 纯硫酸铵差热分析
试验成果标明,硫酸铵失重分两步完结。第一步为280℃~340℃,其失重相当于硫酸铵分化为的分量丢失。其化学反响如下:第二步为340℃~420℃之间。按下式发作彻底分化:正如差热分析曲线所标明,两步分化反响是吸热反响(随同有吸热峰呈现)。
众所周知,当温度≥500℃时,二氧化锰分化为Mn2O3。因而,在不同试验温度下,可能发作如下反响:当温度≥400℃时,可能发作如下反响:当温度低于400℃时,氧化铁可能发作如下反响:以上一切铁和锰的化合物均为X射线衍射分析所证明。
当温度≥500℃时,硫酸铁复盐分化为硫酸亚铁和硫酸铁。这两种化合物均比其复盐更易溶解。因而能够解说在该温度下铁浸出率高的试验成果。X射线衍射分析证明,在该温度下,只要这两种化合物。
温度进一步升高,硫酸亚铁将按下式被氧化,并发作分化:X射线衍射分析标明,在700℃时,硫酸铁的分化产品首要是三氧化二铁。
值得注意的是将矿石中的锰和铁转化为相应的硫酸盐(方程式3和6),需求近3倍的硫酸铵。这意味着试验测得浸出率较好时,其硫酸铵/矿分量比(表1)均为理论量的2倍。
温度升高铁的浸出率下降(表3),能够认为是硫酸亚铁被氧化及硫酸铁分化为氧化铁。这已为X射线衍射分析成果所证明,众所周知,关于硫酸锰而言,直到700℃它依然是安稳的。
温度达700℃时,锰的浸出率略有下降,这或许与硫酸化试剂分化速度快有关,由于二氧化锰与硫酸化试剂的分化产品之间的反响,相对的来说没有满足的时刻来完结。
依据这些数据,将锰矿试样在400℃下,选用最佳硫酸化配比7,与硫酸铵一同焙烧3h,然后升温到700℃持续焙烧1h,再浸出该混合物。锰和铁的浸出率分别为92%和5%左右。
三、二氧化锰的出产
通过硫酸化焙烧的锰矿在70℃下浸出,即可取得含可溶性锰盐为15%~20%的溶液。其间少数的硫酸亚铁,可通过参加过量锰矿粉将其氧化,并用调理pH到6.5,过滤除掉铁、磷和其它杂质而得纯锰溶液。将碳酸铵参加溶液中,直到pH为8.5,在此条件下,溶液中的锰转化为碳酸盐。所得碳酸锰在300℃下枯燥5h后,与理论所需量硝酸混合,在200℃下熔解直到除掉一切的氧化氮停止。
在20~400℃范围内对进行了热重分析(图3)。在304℃开端失重,到340℃时失重完毕。总失重率为51%。图3 的热重分析
这与下式所示的分化为相应的二氧化锰的失重率(51.40%)十分符合:在320℃下将煅烧3h,并对煅烧产品进行化学分析和X射线衍射分析。分析成果标明,产品为r-MnO2,化学成分合格。
有关所得二氧化锰的阴极行为及其对干电池的习惯性,将持续进行研讨。
电解二氧化锰主要用途及主要生产工艺
2019-01-03 09:37:01
电解二氧化锰是优良的电池的去极化剂,它与天然放电二氧化锰生产的干电池相比,具有放电容量大、活性强、体积小、寿命长等特点,掺用 20-30%EMD做成的干电池比全用天然 MnO2 做成的干电池其放电容量可提高 50-100% ,在高性能氯化锌电池中掺用 50-70%EMD ,其放电容量可提高 2-3倍,全部用 EMD 做成的碱锰电池,其放电容量可提高 5-7 倍,因此电解二氧化锰成为电池工业的一种非常重要的原料。
电解二氧化锰除作为电池的主要原料外,其它领域也得到广泛应用,如:精细化工生产过程中作氧化剂、锰锌铁氧体软磁材料中的原料。电解二氧化锰由于具有很强的催化、氧化/ 还原,离子交换和吸附能力,在经处理与成型后,是一种性能全面的优良净水滤料,与平常用的活性碳、沸石等净水滤料相比,具有更强的脱色和去除金属的能力。
电解二氧化锰生产的整个工艺流程可分为制液、电解、成品处理三大部分。具体分为:浸出、氧化除铁、中和、固液分离、硫化除重金属、电解、剥离、粉碎、漂洗脱酸、干燥、计量包装。
氮化锰铁
2017-06-06 17:50:00
氮化锰铁主要用作炼钢生产中氮的添加剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。氮化锰铁是生产特殊合金钢、不锈钢、耐热钢必不可缺的合金剂, 通常都是以中、低碳锰铁充氮而获得的。氮化锰铁特点:氮化锰铁主元素含量高、磷等危害性杂质含量低、加入熔体后氮的利用率高、加入量少。氮能提高钢的强度和塑性,扩大奥氏体区,细化晶粒,改善其加工性能。氮化金属锰能代替部分镍从而降低成本。氮化锰用途氮化锰铁作为氮和锰的合金添加剂主要用于生产高强度钢、合金钢、不锈钢以及汽车、造船、航空工业材料。氮化锰铁有两种制取方法:(1)液态氮化法:它是在密闭的容器中向液态的中、低碳锰铁中鼓入氮气,使合金被气态或固态含氮组分所饱和。所得的氮化锰铁具有密度大、强度高、用于炼钢时氮的利用率高等优点。但由于含氮较低,往往满足不了炼钢的要求。 (2)固态氮化法:它是在密闭的容器中加热处于固态的中、低碳锰铁粉末,并与氮气充分接触渗氮。固态粉末的中、低碳锰铁与氮气或氨气分解出来的氮,互相作用会生成一系列含氮的化合物,且这些氮化物的稳定性随温度的升高而降低直至分解,故此法应控制合适的氮化温度,一股情况下把60目以下的中、低碳锰铁粉末在密闭容器内,在氮气和650℃-1120℃的温度下氮化4h-8h,可得含氮4-6%的氮化锰铁。由干其含氮量随含锰量的增加而增加,随碳化锰含量的减少而增加,故含Mn高的低碳锰铁比含Mn低的中碳锰铁的氮含量略高。所得的氮化铁产品密度小,若将其熔化密度增加,但会使产品含氮量明显降低。现该专业人才比较多集中在钢铁英才网。制取1t氮化锰铁约需1t中、低碳锰铁和1500kwh的电。
碲铜
2017-06-06 17:50:03
碲铜是碲和铜的合金。根据两种
金属
的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下:
碲锭
2017-06-02 16:19:17
碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的
金属
外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作
电池
极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。 碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲的资源、用途与提取分离技术研究现状
2019-02-22 12:01:55
碲是1782年赖兴施泰因在含金的矿石中发现的L1J,也有说法是1798年M.H.克拉普罗兹在一种白色金属中首要发现了碲。碲及硒、铼等一般被称作“稀有元素”、“涣散元素”或“稀散金属”。
它在地壳中均匀丰度值很低(6×10-5),碲与镉、锗、镓、硒、铟、、钪、铼等均属涣散元素。在天然界,碲矿藏除了天然碲外,首要是与Au、Ag和铂族元素以及Pb、Bi、Cu、Fe、Zn、Ni等金属元素构成碲化物、碲硫(硒)化物以及碲的氧化物和含氧盐等矿藏品种L2J。现在,稀有元素碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重。
1、碲的资源
因为在上个世纪90年代曾经,人们普遍以为国际大部分可收回的碲都伴生于铜矿床中,所以美国矿业局就以铜资源为根底,按每吨铜可收回0.065kg碲核算,计算出全球碲储量在22000t左右,储量根底38000t,首要散布在美国、加拿大、秘鲁、智利、赞比亚、扎伊尔、菲律宾、澳大利亚、日本、欧洲等国家和地区[3]3。可是,近年来国内外一系列重要的碲化物型金银矿床的发现和地质勘查研讨标明,涣散元素碲的地球化学性状远比传统知道的要活泼得多,它能够大规模富集、矿化构成具有经济价值的独立的矿床或工业矿体,如四川石棉大水沟碲铋金矿床HJ、山东归来庄碲金矿床 5、河南北岭碲化物型金矿[6]等。这使得人类不得不对碲资源的散布有了从头的知道。我国现已探明伴生碲储量在国际处于第三位。伴生碲矿资源较为丰厚,全国已发现伴生碲矿产地约30处,保有储量近14000t,碲矿区散布于全国16个省(区),但储量首要会集于广东(占全国总量的42%)、江西(41%)和甘肃(11%)三省。我国的碲矿也首要伴生于铜、铅锌等金属矿产中,据主矿产储量计算,我国还有未计人储量的
碲矿资源约10000t[47|。一直以来我国碲矿资源会集在热液型多金属矿床、矽卡岩型铜矿床和岩浆铜镍硫化物型矿床中,它们别离占我国伴生碲储量的44.77%、43.89%和11.34%。广东曲江大宝山、江西九江城门由铜矿(占全国伴生碲储量的23.6%,碲矿石档次为0.0028%)、甘肃金JII自家嘴子为我国三个大型一特大型伴生碲矿床,三者储量之和为全国伴生碲储量的94%E7]。1991年8月,全球榜首例独立碲矿床在我国四川I省石棉县大水沟发现,然后彻底打破了涣散元素碲“能构成独立矿藏,但没有可挖掘的独立矿床[7],’的传统知道,填补了矿床学理论上的一项空白,并将改动对稀有元素成矿才干的知道,一同也必将改动现有的只能从其它矿种中提取伴生碲的现状,改动碲资源的散布格式并有或许使我国成为一个碲矿资源大国。除了到达工业档次的已查明的铜矿床中所含的很多副产品碲储量根底以外,还有一些副产品碲之来历:铅矿床储量根底中所含的碲是工业铜矿床中碲的25%,但现在很少用电解法提炼铅,而只有用这种办法才干趁便收回碲;从金碲化物矿石中也能收回少数碲,未开发的、不行工业档次的或没有发现的铜及其它金属资源中所含碲的数量是已查明工业铜矿中碲的数倍,据估计,煤矿中均匀含碲0.015×10-4%,即煤矿中所含的碲是工业铜矿床中碲的4倍,但在近期内从煤中收回碲仍是不或许的。
2、碲的用处
稀散元素碲被誉为“现代工业、国防与顶级技能的维生素,发明人世奇观的桥梁”,“是今世高技能新材料的支撑材料”。这是因为跟着宇航、原子能、电子工业等范畴对包含碲在内的稀散金属的需求日积月累,使得碲已经成为电子核算机、通讯及宇航开发、动力、医药卫生所需新材料的支撑材料。
2.1碲在冶金职业中的运用
工业纯的碲(99%)广泛用作合金增加剂,以改进钢和钢的机械加工功能。只是增加少数的碲就能改进低碳钢、不锈钢的切削及加工功能;能够增加切削东西寿数并取得优秀的光洁度。在铸造进程中,增加小于0.1%分量的碲能够用来操控冷却结晶深度,向铅(锡或铝)合金中增加碲可进步其抗疲劳及抗腐蚀功能,并可进步其硬度与弹性。
2.2碲在化工职业中的运用
在化学工业中,碲首要用作石油裂解催化剂的增加剂、橡胶的二次催化剂及制取乙醇的催化剂,碲的化合物还能够制成各种触媒,用于医药(作为茵剂)、玻璃着色剂、陶瓷、塑料、印染、油漆、护肤药品及珐琅职业等。
2.3碲在电子职业中的运用
较高质量的碲(99.99%或更高)能够运用在各种电子学中。例如,化合物半导体碲化铋可同碲化锑一同用在温差电器材中。碲化铋在温差致冷中是重要的材料,因为它是具有高电子搬迁率的“多谷”半导体,具有高的导电率和能发生高温差功率的高有用质量。因而具有杰出致冷功能的碲化铋可替代氟里昂并成为削减大气污染与环境的抱负材料。碲及其化合物的其他电子运用是红外探测器和发射器、太阳能电池及静电印刷术。少数的碲可用作器材的电子施主掺杂剂。
3 、碲的别离提取技能
现在碲的首要来历仍是铜精粹厂的阳极泥,含碲高达9%。其它或许来历是硫酸厂的泥浆以及硫酸厂和冶炼厂的静电集尘器中的尘土。因而,获取碲的途径仍是首要从阳极泥中提取,本文将侧重介绍几种提取碲的办法:
3.1纯碱焙烧法
将碳酸钠和水与阳极泥充沛混合构成一种浓膏,在530~650℃的温度下进行焙烧,在不考虑碲蒸发的状况将其彻底转化为六价状况。焙烧过的球粒或团块经磨细后,用水浸出,因为阳极泥中的另一种元素硒在此进程已构成钠,一同因为碲酸钠极难溶解于此种强碱性溶液而残留在渣中。此刻脱硒的纯碱浸出渣用稀硫酸处理会使不溶解的碲酸钠转化为可溶解的碲酸:
Na2Te04(不溶)+H2S04=HzTe04(可溶)+Na2S04碲酸复原为碲可用和二氧化硫处理来完结:
H2Te04+2HCl=H2Te03+H20+C12H2Te03+HzO+2S02=2H2S04+Te在必定的酸性条件下,碲酸用钠复原成二氧化碲,可从热的溶液中收回得到细密的、浅黄色的固体。H2Te04+Na2S03=TeOz+Na2S04+H20转化为金属碲最好的办法使在中溶解,用电解碲酸钠的办法来完结:Na2Te03+H20+4e一=Te+2Na20H+02再生的碱可返回到溶解二氧化碲的进程中再使用。工业上常用氧化加压或氯化加压的办法完结碱性浸出,首要用的几种氧化浸出工艺是用氧或氯的压力浸出或许用氯载体浸出(例如),也能够把几个进程组合,促进反响敏捷进行。因为和碲化物的反响速度比和硒的反响速度更快些,所以要当心操控,避免不溶性的六价碲化合物把四价硒别离为可溶性化合物[8]。加压浸出工艺的长处在于能够确保碲悉数转化为六价形状,完结其在碱性浸出液中的彻底不溶解。别的,还能够使介质无腐蚀性,硒无蒸发丢失,无洗刷或气体净化工序,而且基本上可定量完结碲的提取。可是,其不足之处也很明显,就是整个工艺耗费的氧气和的量较大。氧化进程不只要考虑碲的氧化,还要考虑硒的氧化以及精粹铜的进程中运用附加物作为成长调节剂而引人的有机物的氧化19J。
3.2硫酸化焙烧
硫酸化焙烧技能是依据硒和碲的四价氧化物在焙烧温度500~600℃度下其蒸发性不同。从阳性泥中选择性提取硒后,因为可溶解六价和四价碲,所以直接从剩下的焙渣顶用浸出的办法可收回碲。酸性焙烧是运用硫酸作为氧化剂使硒或硒化物和碲或碲化物转化成他们各自的四价氧化物。其间碲的氧化反响是:Cu2Te+6H2S04=2CuS04J+Te02 l+4S02 f+6H20t工业出产中并不引荐此工艺,这是因为,浸出会导致阳极泥中的银转化为极难溶的氯化银,使今后的银的收回愈加困难,一同如果有六价碲存在,它能够氧化而释放出,接着它又会溶解阳极泥中的金,这就会在后续碲和金的别离方面发生一些实质性的问题L9J。据工业出产的实践数据标明,包含碱性氧化物压力浸出和含铜、镍、贵金属、硒和碲阳极泥压力硫化效果在内的彻底湿法冶金的工艺进程能够使悉数组分杰出分出。别离出的硒和碲的纯度能够达90%以上哺J。
3.3液膜别离法
液膜别离物质是一种高效、快速、节能的新式高技能别离办法,2003年由王献科[10]提出用伯胺N192,制备乳状液膜,能敏捷地搬迁富集碲,在收回、处理提取及分析测定微量碲方面,具有很好的运用远景,也为进一步从杂乱组分的料液或低档次碲矿中富集碲的开发使用奠定了根底。液膜富集Te4+是经过活动载体N1923来完结的。依据别离进程和溶剂萃取的原理,N1923以RN表明,用离子缔合原理萃取元素。首要是在膜相外界外相中HCl生成RNH+C1,而外相中Te4+以TeBr62一方式与膜相中RNH+C1反响生成[RNH]22十[TeBr6]2-,溶于有机膜,并穿过液膜分散内相界面于NaOH水溶液效果、离解,Te.Br62一和H+迁入内相,这是因为Cl一和TeBr6卜与N1923相互竞赛缔和的成果。用乳状液膜别离富集碲的研讨,断定了膜相由7%N1923(伯胺)、4%Lll3B和89%火油(包含正辛醇)组成,内相为0.3mol/LNaOH水溶液,外相酸度为5mol/LHCl介质,R。l为1:1,R。。为20:50~20:100,室温(15~36℃)条件下,碲的收回率为99.5%~100%,内相富集了较高浓度的碲。一般常见的阳阴离子,都不被搬迁富集,选择性适当高。但此法在工业上还未能得到推行。
3.4微生物法
生物冶金以其成本低、无污染,对低档次、难选冶的矿产资源的开发使用有着宽广的工业运用远景。廖梦霞等人[11】在2004年提出在我国首例独立碲矿床资源的开发战略上走生物冶金的路途。其实在2003年Rajwade等[12]曾运用微生物的接连拌和,提出了含碲贵液的生物复原工艺,即对含碲lOmg/L的溶液中,pH操控在5.5~8.5,温度在25~45℃,用微生物吸附一复原沉积元素碲,可有用替代强复原剂,然后进步功率下降出产成本。这一理论创始了生物冶金在碲的提取工艺上运用的先河。廖梦霞等人L11J以为石棉大水沟独立碲铋矿床碲铋含量0.00X一0.0X%,金银含量0.X—Xg/t的硫化矿贫矿储量大,传统工艺很难有用到达经济开发使用的意图,因而提出微生物提取碲的办法,并总结了国内外针对硫化矿生物氧化的研讨,首要有浸矿细菌的别离和判定、细菌的培育条件和细菌氧化工艺条件研讨、细菌浸出硫化精矿粉进程中细菌浸出的物理要素和化学要素以及细菌浸出的浸出动力学和浸出机理研讨。在面临生物冶金的杰出问题生物(氧化周期长导致出产功率低)上,其课题组使用金属离子、表面活化剂催化、磁化强化等办法加速细菌氧化反响速率,使这一问题的处理有了一些新的思路。
4 、结 论
稀散金属碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重,运用规模也越来越广。可是因为碲从发现至今时刻较短,一同独立碲矿的开发也只是是近几年的工作,大多数工艺技能仍处于实验研讨阶段,这使得咱们很难断语何种工艺为最佳。但跟着人们对稀散元素知道的加深以及碲在各个范畴运用的广泛,咱们信任碲的开发将会得到进一步的开展,研讨和开发碲的别离提取的新工艺也愈加具有现实意义。
氧化锰矿的选矿方法与用途
2019-01-18 09:30:20
二次风化矿矿床主要含有氧化锰,矿石中一些沉积和热液矿床矿石中含有氧化锰。锰矿物主要有硬锰矿,软锰矿和锰氧化物。
氧化锰矿选矿方法以重选为主。耐候型锰氧化物矿泥含有大量煤泥和细矿,使用的洗选方法是重选法。原矿经过洗选脱泥,有的需要使用振动筛跳汰机及重选等方法。洗选流程有时需要重洗或强磁选和其他方法来进一步选别。
铁氧化锰矿石,铁、锰,很难重新选出,使用浮选或强磁选,磁选需要还原焙烧方法。矿碳酸锰通过一洗一重选作业。
沉积碳酸盐锰矿石,脉石矿物的硅酸盐和碳酸盐,往往伴随着杂质如硫和铁。矿石一般比较复杂,复杂的嵌入式薄布锰几个微米粒径,分离并不容易,往往很难得到较高的精矿品位碳酸锰矿石选矿生产、研究等方法实践较少,一般采用浮选选矿和强磁选,重选。一些热液碳酸盐锰矿石含有铅,锌,用强磁场浮选工艺。一些含硫丰富的锰矿,焙烧方法可用于除硫。一些碳酸盐丰富的锰矿的焙烧生产方法,采用消除挥发性成分来提炼矿石。
氧化锰和碳酸锰矿石,难以包含选择,即锰,铁,磷,或煤矸石密切共生,嵌布粒度非常细,是很难进行排序,对冶炼方法可考虑电解。
氧化锰是用作生产铁氧体的原料、涂料和清漆的干燥剂、戊醇制造的催化剂、饲料辅助剂、微量元素肥料等。也用于医药、冶炼、焊接、织物还原印染、玻璃着色、油脂漂白、陶瓷窑业及干电池的制造等。
碲铜 英文
2017-06-06 17:50:14
碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国 ASTM 中国 GB 日本 JIS 德国 DIN 英国 BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分 合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能 合 金 状态 抗拉强度 MPa 硬度 HV 延伸率 % 导电率 %IACS 车削性 %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、 汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡
金属
。 铜呈紫红色光泽的
金属
,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的
金属
之一,也是最好的纯
金属
之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的
金属
之一。一般认为人类知道的第一种
金属
是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种
金属
,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到
金属
铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的
金属
。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海
有色
网
碲化镉
2017-06-02 16:18:18
金属
碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质 棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。 密度:6.20 熔点:1041℃ 碲化镉的用途 光谱分析。也用于制作太阳能
电池
,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海
有色网www.smm.cn
。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲铜合金
2017-06-06 17:50:05
碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。
碲铜合金
2017-06-06 17:50:02
碲铜合金(DT) 该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。
氧化锰粉
2017-06-06 17:50:07
氧化锰粉二氧化锰含量在45到70之间.铁小于10,低磷或双零,是生产硫酸锰,除铁用的理想原材料!二氧化锰(自然界以软锰矿形式存在),物理性状:黑色无定形粉末,或黑色斜方晶体,溶解性: 难溶于水、弱酸、弱碱;不溶于水、硝酸、冷硫酸,溶于热浓盐酸而产生氯气。分子结构 是[MnO2]八面体, 氧原子在八面体角顶上, 锰原子在八面体中, [MnO2]八面体共棱连接形成单链或双链, 这些链和其它链共顶,形成空隙的隧道结构, 八面体或成六方密堆积, 或成立方密堆积.有机物的合成 二氧化锰在有机化学之中十分有用。被用于氧化物的二氧化锰的形态不一,因为二氧化锰有多个结晶形态,化学式方面可以写成MnO2-x(H2O)n,其中x介乎0至0.5之间,而n可以大于0。二氧化锰可在不同pH下的高锰酸钾(KMnO2)和硫酸锰(MnSO2)的反应之中产生。啡色的二氧化锰沈淀物很干和很活跃。最有效的有机溶剂包括芳香性物质、氯化碳、醚、四氢呋喃和酯类等。其中一个二氧化锰专用的化学反应是将醇类转化为酮类。即使该醇类中有双键,也不会被二氧化锰所氧化:cis-RCH=CHCH2OH + MnO2 → cis-RCH=CHCHO + H2O + MnO 当中的产物即使有多活跃也不会再被氧化。二醇类可被二氧化锰氧化为二酮。其他二氧化锰的反应极之多,可用在氧化出胺、芳香物和三醇等。氧化锰用途 二氧化锰在干电池中作消极剂;在
有色金属
湿法冶金、氢醌(对苯二酸)生产、铀的提炼上作氧化剂;在陶瓷和搪瓷生产中作氧化剂和釉色;在玻璃生产中用于消除杂色和制作装饰玻璃。化学工业上生产硫酸锰、高锰酸钾、碳酸锰、氯化锰、硝酸锰、一氧化锰等,是化学试剂、医药、焊接、油漆、合成工业等的重要原料。氧化性 一种两性氧化物:遇还原剂时,表现为氧化性。如将二氧化锰放到氢气流中加热至1400K得到一氧化锰;将二氧化锰放在氨气流中加热,得到棕黑色的三氧化二锰;将二氧化锰跟浓盐酸反应,则得到l氯化锰、氯气和水。 遇强氧化剂时,还表现为还原性。如将二氧化锰,碳酸钾和硝酸钾或氯酸钾混合熔融,可得到暗绿色熔体,将熔体溶于水冷却可得六价锰的化合物锰酸钾。在酸件介质中是一种强氧化剂。强氧化剂,本身不燃烧,但助燃,不要和易燃物放置一起。更多氧化锰信息请详见于上海
有色
网
钴的相关知识(二)-性质,用途,冶炼
2019-03-14 10:38:21
钴 cobalt 元素符号Co,银白色铁磁性金属,表面抛光后有淡蓝光泽,在周期表中属Ⅷ族,原子序数27,原子量58.9332,密排六方晶体,常见化合价为+2、+3。 1735年瑞典化学家布兰特(G.Brandt)制出金属钴。1780年瑞典化学家伯格曼(T. Bergman)断定钴为元素。长期以来钴的矿藏或钴的化合物一向用作陶瓷、玻璃、珐琅的釉料。到20世纪,钴及其合金在电机、机械、化工、航空和航天等工业部分得到广泛的使用,并成为一种重要的战略金属,消费量逐年添加。我国于50年代开端从钴土矿、镍矿和含钴黄铁矿中提钴。 资源 已知的含钴矿藏约100种。首要的钴矿藏为:硫钴矿(Co3S4)、纤维基石(CuCo2S4)、辉砷钴矿(CoAsS)、砷钴矿(CoAs2)、钴华(3CoO·As2O5·8H2O)等。国际上的首要钴矿有四种类型:①铜钴矿,以扎伊尔、赞比亚储量为最大,扎伊尔的产钴量占全国际产值的一半以上;②镍钴矿,包含硫化矿和氧化矿;③砷钴矿;④含钴黄铁矿。这些钴矿含钴均较低。海底锰结核是钴的重要前景资源。从含钴废猜中收回钴也日益遭到人们的注重。1979年国际(我国在外)矿山产钴量和钴储量见表。
我国已探明的钴储量最大的是甘肃金川硫化镍矿中伴生的钴。云南的硅酸镍矿以及四川、山东、湖北、山西、广东等地的黄铁矿中也含有钴。 性质和用处 在常温下,细密金属钴在空气和水中安稳,高于300℃时,钴在空气中开端氧化。赤热的钴能分化水放出氢。氢复原法制备的细金属钴粉在空气中能自燃生成氧化钴。
含钴高温合金在 900~1000℃下仍有很高的强度和抗蠕变功能,多用于制造喷气发动机的耐高温部件。钴能进步铁基、铝镍基和稀土金属合金的磁饱满强度和居里点,使其具有高矫顽力,是电气工业中的优秀磁性材料。钴是硬质合金的粘合剂。金属部件用钴合金涂层和表面硬化后,其机械功能明显进步。钴的氧化物是陶瓷制品的脱色剂和颜料;珐琅中的含钴釉料可使珐琅同钢更好地粘结在一同。钴的有机化合物在油漆中作催干剂。钴还在化工出产中用于碳氢化合物的水合、脱硫、氧化、复原等方面。60Co是γ射线源,用于物理、化学、生物研讨和医疗部分。 冶炼 钴矿藏的赋存状况杂乱,矿石档次低,所以提取办法许多并且工艺杂乱,收回率低。一般先用火法将钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,终究得到钴化合物或金属钴。首要提钴工艺流程见图
硫化镍矿提钴 硫化镍精矿一般含镍4~5%,含钴0.1~0.3%。镍的火法熔炼过程中,因为钴对氧和硫的亲合力介于铁镍之间(见氧势图),在转炉吹炼高冰镍时,可控制冰镍中铁的氧化程度,使钴富集于高冰镍或富集于转炉渣,分别用下述办法提取:①富集于高冰镍中的钴,在镍电解精粹过程中,钴和镍一同进入阳极液。在净液除钴过程中,钴以高价氢氧化钴的形状进入钴渣,钴渣含钴6~7%,含镍25~30%。从此种钴渣提钴的一种办法是:将钴渣参加硫酸溶液中,通二氧化硫使之溶解,制得含硫酸镍、硫酸钴和少数铜、铁、砷、锑等杂质的溶液;再用活性镍粉置换除掉铜;通空气,氧化水解除掉铁,通氧化,加苏打中和沉积钴,若所得氢氧化钴含镍较高,可再次溶解、沉积别离钴镍,使其含镍小于1%;经煅烧制得氧化钴出售,也可将氧化钴制成粗金属钴,经电解精粹得电解钴。加拿大和苏联的镍厂都用此法收回钴。我国的工厂也有相似作法。从钴渣提钴的另一种办法是以钠作复原剂,将钴渣溶解于硫酸溶液中,得到含硫酸镍、硫酸钴和少数铜、铁、锰、锌等杂质的溶液,而后用黄钠铁矾法除掉溶液中的铁(见锌),用烷基磷酸类如:二-2-乙基己基磷酸(D-2-EHPA)或其他烷基磷酸酯类萃取剂萃取其间的铜、铁、锰、锌等,并别离钴镍。萃取过程中取得的氯化钴溶液,用除钙、镁后,再用草酸铵沉积钴。所得草酸钴在450℃下煅烧,得到的氧化钴粉,可作为终究产品,也可用氢复原法制取金属钴粉。②富集于炼镍转炉渣中的钴,在复原硫化熔炼过程中,与镍一同转入钴冰铜(见锍)。转炉渣成分一般为:钴0.25~0.35%,镍1~1.5%;钴冰铜成分一般为:钴1~1.5%,镍5~13%。钴冰铜能够直接浸取(常压或加压酸浸),也能够将钴冰铜焙烧成可溶性化合物后再酸浸。浸出液可按钴渣提钴工艺流程处理。 加拿大舍利特高尔顿公司(Sherritt Gordon MinesLtd.)用高压浸法处理硫化镍精矿和高冰镍时,钴留于镍的氢复原尾液中,通于尾液,得硫化钴和硫化镍的混合沉积物。此混合物用硫酸高压浸出、净化除杂质后,通氧、加、加压,使二价钴氧化成可溶性的[Co(NH3)5·H2O]2(SO4)3,而镍则以镍铵硫酸盐形状沉积出来,完成镍钴别离,溶液用高压氢复原产出钴粉,也可用萃取法净液、别离出镍后电积得电钴。 含钴黄铁矿提钴 国际上从含钴黄铁矿中提钴较有代表性的工厂是芬兰科科拉钴厂( Kok-kola Cobalt Plant),精矿焙烧脱硫后,再配以部分精矿在流态化炉内进行硫酸化焙烧,再经浸出、稠密、洗刷,浸出液通使钴呈硫化钴沉积。再利用上述舍利特高尔顿的高压浸出法和高压氢复原法出产钴粉。我国含钴黄铁矿的钴档次较低,仅为0.02~0.09%。浮选产出的钴硫精矿含钴0.3~0.5%,硫30~35%,铁35~40%。钴硫精矿在流态化焙烧炉内于580~620℃下进行硫酸化焙烧,使钴、镍、铜等金属转化为可溶性的盐类。焙砂用水或稀硫酸浸出,用将浸出液中的铁氧化成高价铁后,用脂肪酸钠顺次萃取铁和铜。然后,通入使钴氧化,加碱水解生成高价氢氧化钴沉积,而与镍别离。在反射炉内使氢氧化钴脱水、烧结,烧结块配以石油焦和石灰石在三相电弧炉内复原熔炼成粗金属钴。粗钴浇铸成阳极,进行隔阂电解,得到纯度较高的金属钴。钴硫精矿也可先经900~950℃氧化焙烧,再配以氯化钠或氯化钙以及少数的钴硫精矿于 680℃下进行硫酸化氯化焙烧。焙砂按上述流程提钴。 砷钴矿提钴 砷钴矿经选矿得到含钴10~20%的精矿,其间含砷20~50%。处理砷钴矿的办法首要有两种,一种是先用火法熔炼产出砷冰钴,再用湿法提钴。另一种是用加压浸出法制得含钴溶液,再从中提取钴。我国选用前者:将精矿配以焦炭和熔剂在反射炉或电炉内熔炼,使部分砷呈蒸发,产出砷冰钴(旧称黄渣)。如质料含硫高,还产出部分钴冰铜。砷冰钴和钴冰铜磨细后焙烧,进一步脱砷和硫;焙砂用稀硫酸浸出,用次氧化浸出液中的铁,再用苏打调整pH为3~3.5,使铁成为氧化铁和铁沉积。滤液用铁屑置换除铜后,用次使钴氧化,加碱水解生成高价氢氧化钴沉积而与镍别离。所得氢氧化钴在反射炉内于1000~1200℃下煅烧,取得氧化钴,并使其间的碱式硫酸盐分化,将硫除掉。然后配入木炭,在反转窑内于1000℃左右复原成金属钴粉。也可将氢氧化钴熔炼成粗金属钴,再进行电解得电钴。焙砂的浸出液也可和前述硫化镍矿提钴相同,选用萃取法净液别离提钴。 加压酸浸法处理砷钴精矿是将精矿用稀硫酸浆化,用高压釜浸出,操作压力35公斤力/厘米2,温度190℃,浸出时刻3~4小时,钴的浸出率95~97%。浸出液除砷、铁、铜、钙等杂质后,参加液,使钴构成钴络合物,在高压釜内,用氢复原得到钴粉,操作压力50~55公斤力/厘米2,温度190℃。此法流程简略,收回率高,劳动条件好。 铜钴矿提钴 扎伊尔的卢伊卢厂 ( Luilu CobaltPlant)是国际上处理铜钴矿最大的钴厂。铜钴矿经选矿取得氧化精矿和硫化精矿。氧化精矿档次为:铜25%,钴1.5%;硫化精矿档次为:铜45%,钴2.5%。首先将硫化精矿在流态化焙烧炉内进行硫酸化焙烧,然后将焙砂和氧化精矿一同用铜电解废液浸出。氧化精矿中的钴首要呈三价氧化物形状,在硫酸中溶解度很小,但在铜电解废液中可由其间的亚铁离子将钴复原,溶于电解废液中,Co3+(不溶性)+Fe2+ ─→Co2+ (可溶性)+Fe3+。 钴的浸出率可达95~96%。含钴和铜的浸出液用电解法分出铜,而钴和其他金属杂质留在溶液中。除杂质后,将溶液中的钴用石灰乳沉积为氢氧化钴,再溶于硫酸中,得到高浓度的硫酸钴溶液,终究用不溶阳极电积金属钴(见水溶液电解)。
金-碲矿石选矿技术
2019-02-12 10:07:54
金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。
金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。
图1 金-碲矿石优先浮选准则流程
另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。
图2 金-碲-黄铁矿矿石的混合-优先浮选流程
当时,金-碲矿石可用下列两种计划进行处理。
(1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。
(2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。
澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。
图3 澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程
所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。
该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。
金-碲矿石的处理
2019-02-14 10:39:49
金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划: 1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。 2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量 1为200~500克/吨)和化(用量为的—)等 3办法。
碲金矿的浮选和氰化
2019-02-19 10:03:20
恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1 恩佩罗尔矿业公司简明流程
工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。
二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。
处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2 恩佩罗尔矿业公司收回金属碲生产流程
洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。
矿石含碲12.2g∕t,碲的收回率约为88%。
浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。
浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。
药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。
二次铝合金锭的用途
2018-12-28 15:58:41
世界最初采用废铝料为原料生产铝合金锭是在1904年美国U.S.Reduction Co.其后西欧及日本各国亦陆续兴起此项工业。当时之产设备只采用铁坩锅熔制,不但回收率低劣,亦无规格标准可供遵循,故品质参差极大,只限于家庭器具使用。直至1946年二次大战后,拜军需航器开发之赐,铝合金技术无论在熔炼炉之改进以及熔制技术产品质之提升上,均有长足之进步,二次铝合金锭也因此为业界广泛使用,举凡:汽机车、电器、电脑、机械、家庭五金 … 等,目前均大量使用二次铝合金锭来作为原材料。在此世界资源逐渐稀少,能 源日渐耗竭的时代,因铝有极容易的再生性,故使用二次铝合金锭,不仅节约 能源亦形成良好的资源再回收链,是既环保又经济的选择。
碲金精矿的氧化焙烧
2019-02-20 14:07:07
碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧
Au2Te+O2 2Au+TeO2
使金复原呈金属状况,更易分化。
此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。
氮化锰铁
2017-06-06 17:50:07
什么是氮化锰铁什么是氮化锰铁?氮化锰铁就是氮化锰铁主要用作炼钢生产中氮的添加剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。 氮化锰铁的用途是氮化锰铁作为氮和锰的合金添加剂主要用于生产用于生产高强度钢、合金钢、不锈钢以及汽车、造船、航空工业材料。 氮化锰铁的主要特点是氮化锰铁主要元素含量高、磷等危害性杂质含量低、加入熔体后氮的利用率高、加入量少。氮能提高钢的强度和塑性,扩大奥氏体区,细化晶粒,改善其加工性能。氮化
金属
锰能代替部分镍从而降低成本。氮化锰铁化学成分 氮化锰铁的技术条件,目前尚无国家标准,生产企业自行制定的标准中化学成分牌号 化学成分/%汉字 代号 Mn N C Si P S不小于 不大于氮锰1 Nmn1 75 4 0.5 3.5 0.3 0.02氮锰2 NMn2 73 4 1.0 3.5 0.3 0.02氮化锰铁中氮、锰的鉴定方法 氮化锰铁中氮可用强碱蒸馏分离-氨磺酸滴定法测定。该方法操作简便,分析结果可靠。氮化锰铁中锰可有电位滴定法、硝酸铵氧化滴定法及高氯酸氧化滴定法测定。影响硅锰合金中锰含量测定的各因素的主次关系是:加热温度>冒烟时间>高氯酸的用量>磷酸的用量.氮化锰铁的制作方法 氮化锰铁有两种制取方法:(1)液态氮化法:它是在密闭的容器中向液态的中、低碳锰铁中鼓入氮气,使合金被气态或固态含氮组分所饱和。所得的氮化锰铁具有密度大、强度高、用于炼钢时氮的利用率高等优点。但由于含氮较低,往往满足不了炼钢的要求。 (2)固态氮化法:它是在密闭的容器中加热处于固态的中、低碳锰铁粉末,并与氮气充分接触渗氮。固态粉末的中、低碳锰铁与氮气或氨气分解出来的氮,互相作用会生成一系列含氮的化合物,且这些氮化物的稳定性随温度的升高而降低直至分解,故此法应控制合适的氮化温度,一股情况下把60目以下的中、低碳锰铁粉末在密闭容器内,在氮气和650℃-1120℃的温度下氮化4h-8h,可得含氮4-6%的氮化锰铁。由干其含氮量随含锰量的增加而增加,随碳化锰含量的减少而增加,故含Mn高的低碳锰铁比含Mn低的中碳锰铁的氮含量略高。所得的氮化铁产品密度小,若将其熔化密度增加,但会使产品含氮量明显降低。现该专业人才比较多集中在钢铁英才网。制取1t氮化锰铁约需1t中、低碳锰铁和1500kwh的电。 更多氮化锰铁信息请详见于上海
有色
网
铋的碱性精炼除碲、锡
2019-01-07 17:37:58
一、碱性精炼机理
图1为Te-Bi系状态图。图1 Te-Bi系状态图
从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。
Sn-Bi系状态图如图2所示。图2 Sn-Bi系状态图
铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。
碱性精炼的目的是为了回收碲与锡。
碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。
已被压缩空气氧化之碲,反应为:
对尚未被压缩空气氧化之碲,其反应为:
由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。
在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:
分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。
某厂碱性精炼中碲、锡的去陈程度如图3所示。图3 碲、锡的去除程度
二、碱性精炼实践
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
氧化锰价格
2017-06-06 17:49:52
氧化锰价格,氧化锰最近价格行情,由于锰价格的上涨,带动锰“家族”全体“升值”,可谓是“一人得道,鸡犬升天。”对锰行业影响比较大,总体相对来说氧化锰价格还是比较稳定的。氧化锰价格,氧化锰可由氢气还原锰的高价氧化物得到,如:MnO2 + H2 → MnO + H2O 商业上用氢气、一氧化碳或甲烷还原二氧化锰制得:MnO2 + CO → MnO + CO2 一氧化锰也可由碳酸锰的热分解制得:MnCO3 → MnO + CO2↑一氧化锰一氧化锰不溶于,是一种碱性氧化物,溶于酸形成锰(II)盐。氧化锰有着与氯化钠晶体相同的结构。一氧化锰的组成可由MnO变化到MnO1.045。118 K以下时一氧化锰具有反铁磁性。 一氧化锰是一种在1951年被发现由其中子衍射决定其磁性的物质。 用途:用作生产铁氧体的原料、涂料和清漆的干燥剂、戊醇制造的催化剂、饲料辅助剂、微量元素肥料等。也用于医药、冶炼、焊接、织物还原印染、玻璃着色、油脂漂白、陶瓷窑业及干电池的制造等。 性质:分子量:70.94。草绿或灰绿色立方晶系粉末或八面体结晶。相对密度5.43~5.46。溶点1650℃。3400℃时解离升华。不溶于水,溶于酸和氯化铵。在热浓氯化铵溶液中,形成氯化锰及氨。在空气中加热易转变为其他高价氧化锰,如四氧化三锰、二氧化锰、三氧化锰等,较难还原,1200℃时不为氢气还原,1100~1200℃时可被碳还原。在赤热的水蒸气中生成氢气及二氧化锰。与硫共热,生成二氧化硫及硫氧化物。在惰性气体中熔融不分解。浸入岩石形成的假化石的原因 一氧化锰同霜花的形成还是有相似的地方的,是富含锰铁矿物的水溶液沿着岩层裂缝冷凝形成的。对于六角形片状冰晶来说,由于它面上、边上和角上的弯曲程度不同,相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。在实有水汽压相同的情况下,由于冰晶的面、边、角上的饱和水汽压不同,其凝华增长的情况也不相同。如果云中水汽不太丰富,实有水汽压仅大于平面的饱和水汽压,水汽只在面上凝华,这时形成的是柱状雪花;如果水汽稍多,实有水汽压大于边上的饱和水汽压,水汽在边上和面上都会发生凝华,由于凝华的速度还与弯曲程度有关,弯曲程度大的地方凝华较快,所以在冰晶边上凝华比面上快,这时多形成片状雪花;如果云中水汽非常丰富,实有水汽压大于角上的饱和水汽压,这样在面上、边上、角上都有水汽凝华,但尖角处位置突出,水汽供应最充分,凝华增长得最快,所以多形成枝状或星状雪花。”(以下是3月份的报价) 产品 牌号 报价(元/吨) 成交价(元/吨) 地区 备注 氧化 锰矿 mn35% 1000-1050 930-970 广西 矿山不含税价 氧化锰矿 mn30%fe<10 750-800 700-750 广西 矿山不含税价 氧化锰矿 mn28%fe10(烧结) 850-860 800-830 广西 矿山不含税价<
氧化锰的选矿
2019-01-25 10:19:16
以风化矿床的次生氧化锰矿石为主,还有某些沉积型和热液型矿床的原生和次生氧化锰矿石。矿石中锰矿物主要是硬锰矿、软锰矿和水锰矿等;脉石主要是硅酸盐矿物,也有碳酸盐矿物,常伴生铁、磷和镍、钴等成分。 氧化锰矿石的选矿方法以重选为主。风化型氧化锰矿石常含大量矿泥和粉矿,生产上采用洗矿—重选方法。原矿经洗矿除去矿泥,所得的净矿,有的可作为成品矿石,有的需要用跳汰和摇床等再选。洗矿溢流有时也需要用重选或强磁选等方法进一步回收。有的沉积型原生氧化锰矿石,由于开采贫化,生产上采用了重介质和跳汰重选剔除脉石,得到块状精矿。 含铁氧化锰矿石中,铁矿物主要是褐铁矿。铁和锰难以用重选、浮选或强磁选分离,需要采用还原焙烧磁选方法。工业上已采用了洗矿—还原焙烧磁选—重选流程。