您所在的位置: 上海有色 > 有色金属产品库 > 氧化碲制备 > 氧化碲制备百科

氧化碲制备百科

碲金精矿的氧化焙烧

2019-02-20 14:07:07

碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧 Au2Te+O2 2Au+TeO2 使金复原呈金属状况,更易分化。 此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。

制备氧化铜

2017-06-06 17:50:02

氧化铜是初中化学课本中一种普遍的化学药品,氧化铜的性质稳定,用途广泛,在化学试验中利用率高。那当我们在使用氧化铜药品时,除了购买后直接使用之外,有什么办法可以直接制备氧化铜呢?制备氧化铜需要的实验用品: 金属 铜粉、氧气、酒精灯灼热的 金属 铜和氧气反应,就会生成氧化铜。2Cu+O2 =灼热= 2CuO  这个就是实验室制备氧化铜的方法。

碲常识

2019-03-14 09:02:01

碲  碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。  碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。  碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

碲知识

2019-03-08 09:05:26

碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

粗铋的碱性碲渣回收碲

2019-01-31 11:06:04

粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。 一、工艺流程 出产碲的流程如图1。图1  碲出产工艺流程图 二、首要技能条件 (一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。 (二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为: Na2PbO2+Na2S+2H2O=PbS↓+4NaOH 参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为: Na2SiO8+CaCl2=CaSiO8↓+2NaCl 操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。 (三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为: Na2TeO3+H2SO4=TeO2+Na2SO4+H2O 鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。 (四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。 (五)造液。TeO2能溶于NaOH溶液,反应为: TeO2+2NaOH=Na2TeO3+H2O 每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。 (六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。 通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。 (七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。 三、首要设备 (一)球磨机。φ600×1000毫米,转速45转/分。 (二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。 (三)真空泵。SZ-2二台。 (四)电解槽。六个,钢板衬胶,790×600×640毫米。 (五)硅整流器。GZH3-40型一台,100安,50伏。 四、产品用处 碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。 五、产品质量 一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。 六、其它办法收回碲 (一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。 (二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。

碲铜

2017-06-06 17:50:05

碲铜,即碲和铜的合金。    碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。    碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。    碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子 行业 中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。    以下是碲铜的产品标准、化学成分以及机械性能的指标:  

碲铜

2017-06-06 17:50:03

碲铜是碲和铜的合金。根据两种 金属 的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下: 

碲锭

2017-06-02 16:19:17

碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的 金属 外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作 电池 极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。   碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

碲铜 英文

2017-06-06 17:50:14

碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国   ASTM 中国   GB 日本   JIS 德国   DIN 英国   BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分   合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能   合 金 状态 抗拉强度   MPa 硬度   HV 延伸率   % 导电率   %IACS 车削性   %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、   汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡 金属 。 铜呈紫红色光泽的 金属 ,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的 金属 之一,也是最好的纯 金属 之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的 金属 之一。一般认为人类知道的第一种 金属 是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种 金属 ,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到 金属 铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的 金属 。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海 有色 网

碲化镉

2017-06-02 16:18:18

金属 碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质  棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。   密度:6.20   熔点:1041℃   碲化镉的用途   光谱分析。也用于制作太阳能 电池 ,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海 有色网www.smm.cn 。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

碲铜合金

2017-06-06 17:50:05

碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等 行业 。    目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个 行业 的发展带动了连接器的大量 市场 需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能 行业 的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。    碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。    在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。 

碲铜合金

2017-06-06 17:50:02

碲铜合金(DT)  该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等 行业 。    目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个 行业 的发展带动了连接器的大量 市场 需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能 行业 的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。     碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。     在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。 

阳极氧化法制备彩色铝粉

2019-03-11 11:09:41

铝粉的阳极氧化是通过电解液的阳极反响而生成氧化铝膜的电化学进程。这个氧化膜吸附有机染料、无机颜料的色彩而上色。将铝粉置于硫酸电解液中,并不断地加以拌和,使铝粉呈漂浮和半漂浮状况,边活动边随时触摸阳极,并坚持不触摸阳极状况,从而在铝粉表面生成易于上色的氧化铝膜。阳极反响是阳极分出的初生态氧与铝粉表面的铝原子化组成氧化铝的反响,其间部分氧化铝立刻与水化组成水合氧化铝,这就是氧化铝膜的构成进程。一起氧化铝膜可被硫酸电解液溶解,所以阳极氧化进程一起存在成膜反响和溶膜反响,因而有必要操控适合的条件,才干构成必定厚度的氧化铝膜。阴极反响中发生,故使构成的氧化铝膜具有多孔疏松的特色,有利于吸附才能的增强。  铝粉上色是一个物理化学进程,将经阳极氧化处理过的铝粉置于有机染色液中浸泡,使铝粉表面氧化膜吸附有机染料分子,一起氧化铝膜中的氧化铝分子可与有机染料分子以共价键、配位键或氢键等方式结合生成合作物,从而使氧化膜上色。   阳极氧化在铝粉粒子表面构成氧化铝膜的进程中,影响成膜的要素较多,一起不同的上色液导致不同的上色作用,因而应该考虑电解液浓度、反响时刻、温度、上色液等要素的影响。研讨结果标明:(1)硫酸电解液的浓度对氧化膜的生成具有显着的影响。硫酸浓度过低,电解液的导电性不强,氧化铝的成膜速度慢,硫酸浓度过高,生成的氧化膜又溶解,最佳的试验条件:硫酸电解液的浓度应为5-10%。(2)阳极电流密度与氧化铝膜生成速度成正比,因为铝粉在某一瞬间触摸阳极,因而阳极电流密度越大,越有利于铝粉在阳极放电,阳极电流密度越大,生成的氧化铝膜越疏松,有利于上色。试验标明,在7%硫酸电解液中进行阳极氧化,一般操控电流密度为5安/分米2以上,电压不该小于40伏。(3)在阳极氧化进程中,只要通过必定的时刻后,才干使铝粉与阳极充沛触摸,试验标明,氧化时刻以60-90分钟为宜,一起氧化时温度也要坚持在25-35°C为宜。(4)在氧化铝膜上上色,其上色的难易程度与氧化膜的厚度及上色液的浓度有关,氧化膜越厚,越易上色;上色液的浓度越大,越易上色,且色彩越深[4]。因而在上色进程中,一般选用较浓的上色液。试验标明:依据所需色彩的深浅,对上色液浓度加以调整。一起上色液温度为50-60°C,上色时刻为20-40分钟,pH为4.5-6.0为宜。

金-碲矿石选矿技术

2019-02-12 10:07:54

金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。       金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。  图1  金-碲矿石优先浮选准则流程       另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。  图2  金-碲-黄铁矿矿石的混合-优先浮选流程       当时,金-碲矿石可用下列两种计划进行处理。       (1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。       (2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。       澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。  图3  澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程       所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。       该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。

金-碲矿石的处理

2019-02-14 10:39:49

金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划:    1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。    2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量                                          1为200~500克/吨)和化(用量为的—)等                                          3办法。

碲金矿的浮选和氰化

2019-02-19 10:03:20

恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1  恩佩罗尔矿业公司简明流程 工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。 二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。 处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2  恩佩罗尔矿业公司收回金属碲生产流程 洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。 矿石含碲12.2g∕t,碲的收回率约为88%。 浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。 浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。 药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

铋的碱性精炼除碲、锡

2019-01-07 17:37:58

一、碱性精炼机理 图1为Te-Bi系状态图。图1  Te-Bi系状态图 从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。 Sn-Bi系状态图如图2所示。图2  Sn-Bi系状态图 铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。 碱性精炼的目的是为了回收碲与锡。 碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。 已被压缩空气氧化之碲,反应为:              对尚未被压缩空气氧化之碲,其反应为:      由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。 在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:   分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。 某厂碱性精炼中碲、锡的去陈程度如图3所示。图3  碲、锡的去除程度 二、碱性精炼实践 为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。 将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。 捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。 某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。 表  碱性精炼渣成分(%)

碲的理化性质和用途

2019-03-07 10:03:00

一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。        二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。      三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提

铱铝高温抗氧化涂层的制备方法

2019-03-01 09:02:05

1、修正工艺    分化清洗后,对一切零件都进行严厉查看,发现形成柱塞泵内漏的首要原因是:柱塞与柱塞孔磨损后合作空隙过大,缸体球面与配流盘的合作面都磨损不均匀。因而,处理内漏的关键是有必要使柱塞与柱塞孔的合作空隙恢康复标准,缸体球面与配流盘的合作面可用研磨法使其到达合作要求。柱塞孔的圆柱度和圆度差错可在内圆磨床上进行修正,柱塞可用刷镀法康复尺度。具体方法如下:    (1)柱塞表面的除油、除锈和加工处理    a.刷镀表面除油可用有机溶剂、常用金属清洗剂和汲取,亦可将油擦洗掉。    b.若柱塞偏磨严峻,应磨削整形,消除偏疼。    c.若柱塞表面有划痕、沟槽和凹坑,应进行整形加工。    (2)柱塞表面的电化学净化和活化处理    a.电净:柱塞接电源负极,镀笔"target=_blank>镀笔接正极,电压8-15V,时刻60-90s,用一号电净液在刷镀表面上重复刷抹,相对速度为4-8m/min。电净处理要完全,一般需处理两遍,以取得较好的结合强度。电净后的柱塞表面应有一层接连的电净液膜存在,且电净液膜不会聚集成小液滴而呈现干斑。电净后使用清水清洗,完全清除电净液和其他"target=_blank>其他污物。    b.表面活化处理:活化时镀件有必要接电源正极,镀笔接负极,电压8-15V,时刻60-90s。活化液"target=_blank>活化液先选用2号,再用3号,处理两遍。2号活化液用电压10-12V,时刻60-90s;3号的用电压16-20V,时刻50-90s。活化的标准为柱塞表面呈现出均匀的银灰色,活化后用清水洗净。

用含锌铅烟灰制备氧化锌的技术

2019-02-21 11:21:37

氧化锌广泛应用于橡胶、涂料、陶瓷、化工、医药、玻璃和电子等职业,跟着工业的飞速发展,国内对氧化锌的需求量日益添加。用低档次含锌物料出产活性氧化锌,既可充分利用锌资源,又可下降出产本钱,因而,现在该研讨范畴反常活泼,归纳利用低档次氧化矿、次氧化矿、锌渣、烟灰等的研讨逐步引起厂商注重。烟灰是铅、锌冶金进程的一种中间产品,是由回转窑蒸发、贫化处理铅鼓风炉渣等含锌物料发作的,其成分杂乱,除含锌、铅外还含有较多的砷、锑等杂质。因为其处理难度大,本钱高,不能直接作为湿法炼锌的质料。但因为其锌含量高,且易于浸出进人溶液,因而,可用作制取氧化锌粉末产品。     处理烟灰现有的办法有酸浸法和配合法两种。酸浸法是以粗氧化锌或锌矿砂为质料,与稀酸混合反响后,经除杂、中和、枯燥和煅烧制得氧化锌。该法除杂量大,工艺杂乱,本钱高,并且废水量大,处理困难,对环境有污染。配合法是以粗氧化锌或脱硫用过的锌触媒焙烧物为质料,用-碳酸氢铵溶液作浸出剂,经浸出、除杂净化、蒸沉锌、洗刷枯燥和煅烧等工艺进程制得活性氧化锌。该法设备出资少,杂质少,可是流程长,并且只适应于富含ZnO的物料,若物料中含有必定量的ZnS,则该法不能直接选用,需用氧化剂先预处理烟灰,将硫化锌转化为氧化锌。因而,实验研讨了用预处理烟灰,然后用溶液浸出,终究制得得氧化锌粉末产品。     一、实验部分     (一)实验质料     实验用烟灰取自广西某工厂,其粒度为65~76μm,首要化学成分见表1。 表1  烟灰的化学成分%ZnPbFeAsCdSbSiS49.8626.890.750.800.030.110.51.81     (二)实验办法     先用水将干烟灰调制成液固体积质量比为1∶1的烟灰浆,然后用3%预处理一段时刻,再在必定温度下参加必定量溶液拌和浸出,然后离心过滤,滤液恰当稀释并拌和一段时刻后再离心过滤,二次滤液作为浸出剂回来浸出,滤饼为氢氧化锌,洗刷、烘干、锻烧后得纯洁的氧化锌粉末。     二、成果与评论     (一)体积分数及预处理温度对锌浸出率的影响     在不同温度下,往100g烟灰浆(液固体积质量比1∶1)中参加必定量,拌和60min后,在60℃温度下,参加3mol/L溶液浸出2h,调查体积分数及预处理温度对烟灰中锌浸出率的影响,成果见表2。 表2  体积分数及预处理温度对锌浸出率的影响实验编号体积分数/%预处理温度/℃锌浸出率/%112538.24232555.67352556.71414040.33534060.01654061.24     从表2能够看出:体积分数增大,锌浸出率升高;在25℃下,当体积分数从1%添加到3%时,锌浸出率进步17%;体积分数从3%增大至5%时,锌浸出率仅进步1%;当温度升高至40℃时,体积分数从1%增大至3%,锌浸出率进步近20%,并且氧化锌吸附的SO2被氧化成硫酸锌,对环境不形成污染。能够以为:温度对锌浸出率影响不明显,体积分数为3%比较适合。     (二)温度对锌浸出率的影响     在25℃下,用3%预处理烟灰,然后用3mol/L溶液在不同温度下浸出1.5h。实验成果如图1所示。图1  浸出温度对烟灰中锌漫出率形晌     从图1看出:随浸出温度升高,锌浸出率呈线性升高。室温下,锌浸出率只要30.22%,而当温度升高到95℃时,锌浸出率到达89.31%。归纳考虑,浸出温度以85℃为宜。     (三)浓度对锌浸出率的影晌     在25℃下,用3%预处理烟灰,然后在85℃下,用不同浓度的溶液浸出1.5h。实验成果如图2所示。图2  浓度对锌浸出率的影响     从图2看出:随浓度增大,锌浸出率进步,特别是浓度从2mol/L增大至5mol/L,锌浸出率进步了46.54%,到达97%。这是因为烟灰中锌与碱发作反响,生成锌酸钠进入溶液: 2NaOH+ZnO=Na2ZnO2+H2O。     可是,当浓度增大至6mol/L后,锌浸出率仅添加0.52%,不能到达100%,这可能是烟灰中的锌被包裹起来而无法与碱触摸的原因。     (四)浸出时刻对锌浸出率的影响     在25℃下,用3%预处理烟灰,然后在85℃下用3mol/L溶液浸出,调查浸出时刻对锌浸出率的影响。成果如图3所示。图3  浸出时刻对锌浸出率的影响     从图3可知:随反响时刻添加,锌浸出率进步。浸出0.5~1.5h,锌浸出率从73.81%进步至96.92%;但浸出1.5h之后,锌浸出率进步缓慢。所以,浸出时刻以1.5h为最佳。     (五)验证实验     在25℃下,用3%预处理烟灰,然后在85℃下用5mol/L溶液浸出1.5h, 锌浸出率和浸出渣中锌和铅的质量分数见表3。 表3  碱浸出烟灰验证实验成果实验编号锌浸出率/%浸出渣中ωB/%ZnPbAs196.923.9145.330.02297.033.4245.20<0.01396.984.0145.280.01497.133.6646.21<0.01     从表3可知:归纳实验条件下,锌浸出率在97%左右,浸出渣中锌质量分数在3%~4%之间,铅质量分数45%左右,简直不含As。浸出渣可进入铅体系提取铅,完成资源归纳利用。     (六)氧化锌的制备     将上述碱浸出液降温至25℃、稀释1倍,拌和0.5h后离心过滤,滤饼烘干,氢氧化锌沉积率为72.3%。沉积物的XRD分析成果表明其物相组成首要为ZnO;化学分析成果表明,ZnO质量分数为99.58%,Pb0质量分数为0.12%,基本上到达直接法一级品要求。     三、定论     含锌烟灰经在常温下预氧化处理后用溶液浸出,可将其间的97%的锌转入溶液,然后经沉积、过滤、烘干,可制得氧化锌粉末。该办法所得ZnO粉末纯度较高,为充分利用含锌烟灰供给了一条有效途径。

利用油页岩渣制备氧化铝和白炭黑

2019-02-20 11:03:19

油页岩是一种重要的煤、石油及天然气代替资源,其资源储量巨大,若将油页岩折算成页岩油,世界上能够到达4000多亿t,相当于石油资源可挖掘储量的5.4倍。因而开发油页岩具有重要的战略含义。我国油页岩探明储量为329.89亿t,首要散布在吉林桦甸、农安,广东茂名,辽宁抚顺,其间辽宁抚顺也是我国闻名的油页岩加工基地。       油页岩具有很重要的经济价值,现在油页岩首要使用办法是提炼页岩油、制煤气及直接焚烧发电,但因为油页岩中大部分为无机矿物质,使用后会发生很多的灰渣和有害物质,存在着较大的环境问题。国内外关于油页岩固体抛弃物的归纳使用进行了研讨,例如,用油页岩脱油残渣制备白炭黑,油页岩灰用作吸附剂等。       因为我国油页岩的无机矿物质首要为硅铝酸盐,SiO2和Al2O3的含量占绝大部分。因而提取这两种有价元素,制备白炭黑和Al2O3是一项可行的办法。A12O3是一种重要的工业质料,使用高铝固体抛弃       物-粉煤灰、煤矸石等制备A12O3的研讨较多,并现已进入了工业化阶段,而从油页岩渣制备A12O3的研讨还未见报导。白炭黑又称为水合二氧化硅,是橡胶、塑料不行短少的补强剂,也是一种重要的化工质料,近年来以非金属矿为质料的工艺研讨较为活泼。因而本文以油页岩渣为质料,首要选用酸浸法制备A12O3,然后将剩余物用碱溶法制备白炭黑。既进步了油页岩渣的归纳使用程度,又处理了环境污染问题,到达了生态化使用油页岩资源的意图。       一、试验       (一)试验质料与仪器       油页岩渣来源于抚顺页岩油厂,首要组成如表1所示,从表中能够看出油页岩渣中SiO2和A12O3的含量占85%以上,归于高硅铝固体抛弃物。   表1  油页岩渣的化学组成(质量分数)/%SiO2Al2O3Fe2O3K2OMgOTiO2Na2OCaO64.820.68.201.261.090.9620.9340.777       试验仪器有:PW3040/60型X射线衍射仪(荷兰PANALYTICAL公司),S3400型扫描电子显微镜(日本日立公司),ZXS100e型X射线荧光光谱仪(日本理学公司),Nicolet 380型傅立叶改换红外光谱仪(美国TA公司),H800型透射电子显微镜(日本日立公司)。       (二)试验进程       1、A12O3的提取  将油页岩渣破坏后,过筛搜集粒径小于0.15mm的部分。首要,取15.0g油页岩渣、必定量的浓和100mL水参加至三口烧瓶中,加热至设定温度并恒温反响必定时刻。然后,天然降温至60℃过滤,得到滤液与滤饼。经过滴加10mol/L的NaOH溶液,将滤液调整到pH=5,再次过滤后,将滤饼放入烧杯用30.0mL 10.0mol/L NaOH溶液溶解,过滤除去不溶物,得到纯洁的偏铝酸钠溶液。最后用HCl将溶液滴定到pH=8~9时中止,静置顷刻后过滤、洗刷,即得到Al(OH)3,然后在梯度炉中灼烧到800℃即得到γ-Al2O3。       2、白炭黑的提取  称取10g提取Al2O3后的滤饼参加到三口烧瓶中,并参加100mL水和必定量的NaOH溶液,开端拌和并加热到设定温度,保温反响必定时刻后过滤得到Na2SiO3滤液。将滤液静置必定时刻后,缓慢滴加HCl进行酸化处理,至pH值为8~9时中止,得到白色沉积,经过滤、枯燥后即得到白炭黑产品。       二、成果与评论       (一)油页岩渣提取氧化铝试验部分       1、焙烧活化对Al2O3的提取率的影响  从一般高铝固体抛弃物,尤其是从粉煤灰提取Al2O3的工艺中,因为Al2O3首要存在于结构较为安稳的莫来石或许玻璃相中,以Si-Al-O空间网络结构的方式存在,以至于活性较低。因而提取Al2O3有必要经过焙烧活化,使莫来石结构转变为活性较大的霞石结构后,才能用酸浸的办法提取出Al2O3。       但油页岩渣却是在510~550℃下干馏后的残余物,组成颗粒细微,而且具有多孔结构,与经过高温煅烧的粉煤灰结构不同,具有很大的活性。为了分析油页岩渣的活性,经过1000℃焙烧活化得到油页岩灰,比照两者的结构,如图1所示。    图1  油页岩渣和油页岩灰的XRD图       从图1中能够看出,焙烧活化前后油页岩渣结构中都没有莫来石晶相呈现。在油页岩渣结构中,Al2O3首要以高岭石和霞石的方式存在。油页岩渣中的高岭石经过干馏活化,具有较高的化学反响活性;而霞石是一种能够溶于酸的物质,因而有利于Al2O3的提取。经过高温活化之后,油页岩渣变成油页岩灰,Al2O3首要以高岭石的方式存在,可是高岭石含量下降,霞石晶相消失,赤铁矿高温氧化生成氧化铁,这标明油页岩灰的活性尽管存在,但有所下降。比照两者结构,能够阐明选用酸浸法从油页岩灰或油页岩渣中提取出Al2O3都是可行的,可是直接从油页岩渣中制备Al2O3更为适合。       2、酸浸温度对Al2O3提取率的影响  考察了不同温度下Al2O3的提取率,其它条件别离为:15.0g油页岩渣,40.0mL,2.0h的酸浸时刻,试验成果如图2所示。    图2  酸浸温度与Al2O3提取率的联系       由图2可知,温度关于提取率的影响十分显着,升高反响温度能够大起伏添加提取率。但当酸浸温度到达100℃以上,提取率随温度的改动不再显着,因而最佳的酸浸温度为100℃,Al2O3的提取率到达90.6%。       3、用量对Al2O3提取率的影响  取15.0g油页岩渣试样4份,别离参加不同的浓,100℃处理2h,试验成果如图3所示。    图3  用量与Al2O3提取率的联系       由图3所示,跟着用量的添加Al2O3的提取率也逐步添加。当用量添加到40mL时,活性Al2O3反响根本彻底,因而,选用用量为40mL。       4、酸浸时刻对Al2O3提取率的影响  取15.0g油页岩渣试样5份,于100℃40mL的浓中,别离选用不同的酸浸时刻处理,试验成果如图4所示。    图4  酸浸时刻与Al2O3提取率的联系       由图4能够看到,开端阶段,因为浓度较大,活性Al2O3溶解的速度较快,然后提取率添加快速,但跟着酸浸时刻的延伸,浓度下降,化学反响速率下降Al2O3的提取率也随之减缓,当酸浸时刻到达2.0h后,Al2O3的提取率的几乎没有增大,因而适合酸浸时刻为2.0h。       5、Al2O3检测分析经过酸浸法制备的Al2O3 的XRD图谱如图5所示,图中呈现显着的γ-Al2O3衍射峰,因而能够证明本产品为γ-Al2O3此外因为洗刷Al(OH)3絮凝沉积时,未彻底除去杂质,灼烧制备γ-Al2O3后,混有少数的NaCl晶体。    图5  Al2O3的XRD图       经过X射线荧光光谱法测定γ-Al2O3粗产品的纯度到达91.7%。试验标明能够选用重结晶的办法,取得更高纯度的γ-Al2O3,但此办法存在能耗大,工艺繁琐等问题,所以有待于进一步研讨改善。       图6为γ-Al2O3的SEM图,由图中清晰可见γ-Al2O3为立方严密堆积晶体,均匀粒度在2μm左右。    图6  Al2O3的SEM图       (二)油页岩渣提取白炭黑试验部分       油页岩渣在酸浸法制备Al2O3的进程中,Fe2O3等其它物质也在酸浸进程中溶解了,油页岩渣剩余物的首要成分发生了改动,其间SiO2的含量到达90%以上。因而将剩余物用碱溶法处理,制备纯度较高的白炭黑产品,会大大进步油页岩渣的归纳使用价值。       1、反响温度对白炭黑提取率的影响  固定反响时刻为6.0h,碱浓度为6.0mo1/L,别离考察了不同温度下白炭黑的提取率,试验成果如图7所示。    图7  反响温度与白炭黑提取率的联系       由图7可知,跟着反响温度的升高,产品的提取率进步。但当反响温度到达100℃以上,提取率进步起伏较小。因而最佳的反响温度为100℃,白炭黑的提取率到达80.5%。       2、反响时刻时白炭黑提取率的影响  固定反响温度为100℃,碱浓度为6mol/L,别离选用不同的反响时刻处理,试验成果如图8所示。    图8  酸浸时刻与白炭黑提取率的联系       由图岂能够看出,跟着碱处理时刻的延伸,白炭黑的提取率添加。当反响时刻小于6.0h时,白炭黑添加较快。但当反响时刻超越6.0h时,白炭黑提取率添加缓慢。因而适合的碱处理时刻为6.0h。       3、碱浓度对白炭黑提取率的影响  固定反响温度为100℃,反响时刻为6.0h,别离选用不同的碱浓度进行处理,试验成果如图9所示。    图9  碱浓度与白炭黑提取率的联系       由图9可知,白炭黑的提取率随碱浓度的增大而增大。当碱浓度低时,产率低,无实践出产含义;当浓度到达6mol/L后,提取率改动不大。因而从经济方面考虑,选用碱浓度为6mol/L。       4、白炭黑检测分析经过碱溶法制备的白炭黑的XRD图谱如图10所示,图中未呈现尖利的晶体衍射峰,而只在衍射角(2θ)15°~40°区间内呈现非晶峰,产品为无定型非晶体结构,不含其他结晶相。    图10  白炭黑的XRD图       图11为白炭黑产品的红外光谱图,图中的3450cm-1是SiO-H和物理吸附水中HO-H键的弹性振荡吸收,1635 cm-1是物理吸附水的曲折振荡吸收,1090 cm-1为Si-O-Si键的反对称弹性振荡吸收,在968 cm-1呈现一个较弱的吸收峰,是Si-OH的弹性振荡吸收;796 cm-1为-OH的曲折振荡吸收,467 cm-1为Si-O键的弹性振荡吸收;因而能够断定该产品为水合二氧化硅。    图11  白炭黑的FT-IR图       图12为白炭黑的TEM图,从图中能够清楚看出,白炭黑颗粒呈近似球形,大多数颗粒粒径在50nm以下。用BET法测定白炭黑的比表面积为110.5m2/g。经过X射线荧光光谱法测定白炭黑产品中SiO2含量为95.9%。    图12  白炭黑的TEM图       白炭黑的行业标准HG/T3061-1999(橡胶配合剂、沉积水合二氧化硅技能条件)以及其它理化目标的检测成果如表2所示。选用沉积法从油页岩渣制备白炭黑产品契合行业标准HG/T061-1999的要求。   表2  白炭黑理化功能测定成果项目HG/T3061-1999测定成果比表面积(BET法)/(m2·g-1) SiO2纯度/% 加热减量/% 1000℃灼烧减量/% pH70~200 ≥90 4.0~8.0 ≤7.0 5.0~8.0110.5 95.9 5.15 5.78 5.5~6.0       使用油页岩渣制备氧化铝和白炭黑后,灰渣剩余量不到本来的5%,到达了抛弃物的环保处理和归纳使用的意图。       三、定论       (一)油页岩渣不需高温焙烧活化效果,可直接选用酸浸法制备出纯度较高的γ-Al2O3,产品并经XRD、SEM和X射线荧光分析等验证。       (二)制备γ-Al2O3后的残渣,选用碱处理的办法制备出了白炭黑,产品并经XRD、TEM、FT-IR和X射线荧光分析等验证,白炭黑产品契合HG/T061-1999标准。       (三)使用油页岩渣制备氧化铝和白炭黑后,灰渣剩余量不到本来的5%,到达了抛弃物的环保处理和归纳使用的意图。

二氧化锆的相变及其制备

2019-03-08 11:19:22

物理性质 纯洁的ZrO2为白色粉末,含有杂质时略带黄色或灰色,增加显色剂还可显现各种其它色彩。一般含有少数的氧化铪,难以别离,可是对氧化锆的功能没有显着的影响。二氧化锆的相变 氧化锆是一种特殊的材料,增韧的办法,首要是使用氧化锆的相变才干到达的!氧化锆有三种晶相,分别为单斜晶相、四方晶相和立方晶相,三者之间的改变联系如下:因为在单斜相向四方相改变的时分会发作较大的体积改变,冷却的时分又会向相反的方向发作较大的体积改变,简略构成产品的开裂,约束了纯氧化锆在高温范畴的使用。 可是增加安稳剂今后,四方相能够在常温下安稳,因此在加热今后不会发作体积的骤变,大大拓宽了氧化锆的使用规模。市场上用来做安稳剂的质料首要是氧化钇。 二氧化体的首要制备办法 1.中和沉淀法长处:设备工艺简略,出产本钱低价,且易于取得纯度较高的纳米级超细粉体,因此被广泛选用。 缺陷:没有解决超细粉体的硬聚会问题,粉体的涣散性差,烧结活性低。 2.锆盐水解法长处:操作简洁。 缺陷:反响时刻较长(>48小时),耗能较大,所得粉体也存在聚会现象。 3.锆醇盐水解法长处:(1)简直全为一次粒子,聚会很少; (2)粒子的巨细和形状均一; (3) 化学纯度和相结构的单一性好。 缺陷:质料制备工艺较为杂乱,本钱较高。 以上三种办法的后工序都是煅烧,其温度越高,则粉体的晶粒度越大,聚会程度越高。这是因为煅烧升温进程当完成了从非晶态改变为晶态的成核进程今后便开端了晶粒长大阶段,而且晶粒中成晶结构单元的涣散速度随温度升高而增大,彼此接近的颗粒简略构成聚会。 4.水热法长处:粉料粒度极细,可到达纳米级,粒度散布窄,省去了高温煅烧工序,颗粒聚会程度小。 缺陷:设备杂乱贵重,反响条件较严苛,难于完成大规模工业化出产。 5.溶胶-凝胶法长处:(1)粒度纤细,亚微米级或更细; (2) 粒度散布窄; (3)纯度高,化学组成均匀,可达分子或原子标准; (4)烧成温度比传统办法低400~500℃。 缺陷:(1)质料本钱高且对环境有污染; (2)处理进程的时刻较长; (3)构成胶粒及凝胶过滤、洗刷进程不易控制。 6.微乳液法(反胶束法)长处:可制得 缺陷:出产进程较杂乱,本钱也较高。

用菱锰矿制备四氧化三锰工艺研究

2019-01-17 13:33:17

用菱锰矿制备四氧化三锰工艺研究,中国矿冶网,金属矿产资源矿冶技术中小企业服务平台,国家金属矿产资源综合利用工程技术研究中心,中国矿冶技术中小企业联盟 用菱锰矿制备四氧化三锰工艺研究 高纯四氧化三锰是电子工业生产锰锌氧软磁材料的重要原料之一。随着国家“绿色照明”工程的实施,电视机、移动通讯、计算机与节能灯等迅速发展,软磁铁氧体需求量迅速增长,使得四氧化三锰的需求量迅速增大。因而四氧化三锰的开发具有广阔前景。 目前四氧化三锰生产采用氧化法,此法以纯净的电解金属锰片为原料,制备高纯四氧化三锰,具有工艺简单,操作方便,锰回收高,污染小等优点,但需要使用电解金属锰作原料,生产成本相对较高。 用原生锰矿直接制备四氧化三锰工艺与氧化法相比,省去了电解工序,节省了大量的电力资源,对降低四氧化三锰的生产成本,提高产品竞争力具有重要的意义。 1 原料与试剂 原料:碳酸锰矿粉由金瑞新材料科技股份有限公司贵州分公司提供,粒度:-100目,化学成分列于表1。 试剂:H2SO4工业级、NH3·H2O工业级、SDD工业级、NH 4F工业级、NH4HCO3工业级 2 基本原理 硫酸浸出:用硫酸浸出碳酸锰矿粉的目的就是以硫酸为浸出剂,使碳酸锰矿粉中的低价锰转变成硫酸锰溶液。化学反应为:MnCO3+H2SO4→MnSO4+H2O+CO2↑ 硫酸锰溶液净化:碳酸锰矿粉中都不同程度地含有钙、镁、硅、铁、铝、铜、钴、镍和铅等杂质。在浸出过程中,这些杂质的除去是分四步进行的:第一步是氧化中和水解法除铁;第二步是硫化沉淀法除铜、钴、镍等重金属;第三步是氟化沉淀法除钙镁;第四步是浓缩絮凝除硅。

超细氢氧化铝的制备方法

2019-01-10 13:40:32

一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下碳化反响制备氢氧化铝凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成。本发明可利用中心商品NaAlO2溶液和CO2废气,采用螺旋通道型旋转床RBHC进行碳化反响为首要技术制备纳米级超细氢氧化铝的办法,解决了传统拌和槽法对CO2气体吸收率低,碳化时间长,商品纯度低、粒度不均匀和旋转填充床RPB碳化反响时易于堵塞等技术问题。别离制备出不一样晶型的纳米级超细纤维状和颗粒状氢氧化铝。本发明制备出约10nm颗粒状氢氧化铝可用作杰出的无机阻燃剂;制备出的粒径约5nm、长200~300nm纳米纤维状拟薄水铝石在催化范畴可广泛使用。   1、一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下以碳化反响方法制备拟薄水铝石凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成,其特征在于: 1)操控铝酸钠NaAlO2溶液浓度为0.05~2mol/L; 2)在铝酸钠NaAlO2溶液中参加质量含量为1~2%的有机高分子分散剂; 3)于反响器(4)中投入上述混合物,开机运转反响器(4),待反响器(4)内液体流量稳定后,向反响器(4)内通入含浓度的CO2气体,操控反响器(4)转速为200~3000rpm,气液比为0.5~20,碳化反响温度操控在0~100℃,守时记载温度和pH值,使pH值到达9~12时中止通入CO2气体,下降反响器(4)转速再循环一段时间,得氢氧化铝前驱体; 4)持续将上述商品作合适不一样晶型的进一步处置,如是不是需求老化的过程;上述的反响器(4)为旋转床超重力反响器(4),首要包含转子(5)、设置于转子(5)中心的散布器(15)以及进液口(8)、进气口(3、9)、废气排口(7)、出料口(14、16)。

微晶氧化铝陶瓷的制备、应用与发展

2019-01-02 15:29:20

20世纪二三十年代以来,科学技术的高速发展,对陶瓷提出了新的挑战。尽管陶瓷中的玻璃相使其变得坚硬致密,然而也正是它妨碍了陶瓷强度的进一步提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能差的根源。随着陶瓷制造工艺的不断进步,特别是对陶瓷烧结过程、显微结构的深入研究,人们已制造出玻璃相含非常低甚至几乎不含玻璃相而由许多微小晶粒结合成的结晶态陶瓷,实现了从传统陶瓷到先进陶瓷的重大飞跃。     先进陶瓷材料是指以精制高纯人工合成的无机化合物为原料,采用精密控制的工艺,经烧结而制得的陶瓷材料,以其具有的高强度、高硬度、耐磨损、耐腐蚀、耐高温及声、光、电、磁等优异性能而区别于传统陶瓷(日用陶瓷、建筑卫生陶瓷等),亦称为高技术陶瓷、精细陶瓷、精密陶瓷、现代技术陶瓷、工业陶瓷、特种陶瓷等。无论从材料本身性能或材料所采用的制备技术来看,先进陶瓷材料已成为陶瓷科学和材料与工程科学领域里非常活跃、极富挑战性的前沿研究学科,微晶氧化铝陶瓷也是先进陶瓷材料中异军突起的重要陶瓷材料之一。 国内微晶氧化铝陶瓷简介     作为引领我国先进陶瓷技术与产业发展方向的中材高新材料股份有限公司,在20世纪末已出色完成一批用于航天等高科技领域和现代军事技术所不可替代的先进陶瓷关键材料,进入21世纪,又依托其在工业陶瓷领域三十多年所取得的一系列科技成果和研发经验等优势,加快了公司一系列陶瓷制品的产业化进程。目前,公司已是国内最大的微精耐磨氧化铝陶瓷生产企业之一,拥有微晶耐磨氧化铝球石、衬砖和衬片三大类产品,其中氧化铝瓷球拥有从φ3到φ80的14种规格,从75MQ到95MQ的9大系列;氧化铝衬砖拥有H40、H50、H60、H70等4种规格,90、95两大系列;氧化铝衬片有5种规格,4大系列。年生产总量可达22000吨,产品规模始终处于国内同行业的领跑地位,并居亚洲第一,产品质量已获中国产品质量协会颁发的最高信誉AAA等级证书。     中材高新微晶耐磨耐腐蚀氧化铝产品具有高强度、高硬度、耐磨、耐腐蚀等特性,作为磨介和研磨护层应用于物料的物理粉碎过程中,广泛用于建筑卫生陶瓷、工业陶瓷、电子陶瓷、高档耐火材料、特种水泥、搪瓷、非金属矿产品深加工、化工及医药、涂料等行业。它不仅可以提高产品质量、大幅度提高化工产品的研磨细度、减少化工产品杂质的引入,而且能提高研磨效率25%-35%,降低能耗30%以上。     近年来,中材高新积极改进生产工艺,提高产品质量。90B系列氧化铝制品(球石、衬砖等)的当量磨耗≤0.2‰,已远远优于行业标准,90G耐磨氧化铝球石已达到与意大利BITOSSI公司高档球相当的质量水平,其当量磨耗≤0.10‰。滚制成型氧化铝小尺寸研磨球系列产品,通过设备改造和工艺改进,其抗冲击性能及其他质量指标稳步提高。

铅阳极泥的除硒、碲

2019-03-05 09:04:34

大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。 一、回转窑焙烧除硒碲。 该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。 焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。 二、马弗炉焙烧除硒碲。 阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。

高纯钴的制备技术

2019-01-31 11:06:04

一、前语纯度为 99.9%~99.99%的钴 现已广泛运用于磁性材料、超级合金的制作,99.999%乃至更高纯度的钴则用来做为先进电子元件的靶材。钴靶材中的杂质会影响电子器件的运用功用:碱金属(如 Na,K)、非金属(S,C,P)等杂质能够在半导体之间搬迁,然后影响其功用;Fe会导致电子器件磁功用的不一致;Ti,Cr,Cu元素会影响半导体元件的导电功用;气体杂质(如 O)能够添加半导体元件中的Co和 CoSi2的电阻;Ni会影响半导体的界面功用;放射性元素如U,Th能够辐射出α射线,使半导体失效。因而,研讨高纯钴的制备办法对进步钴靶材的质量有着重要的含义。 在国际上,1956年美国矿业局(Bureau of Mines)初次制备出纯度为 99.99%高纯钴。K.K.Kershner等人通过阳离子交流法和沉淀法除掉四合钴(Ⅲ)盐溶液中的铁、铜、镍等杂质,终究选用阴极电解法制备出高纯钴。跟着离子交流法的开展和高效萃取剂 P507,Cynex272,Cynex301等的呈现,钴溶液提纯技能得到长足开展。美国、加拿大、日本、韩国等国在钴提纯技能上进行了很多研讨工作 ,其间以日本最为杰出。日本 JMc公司于 1997年开端出产高纯钴 ,现有 99.998%高纯钴产品。日矿(Nikko)公司和 日本株式会社化学研讨现已出产出99.999%的高纯钴 ;日本 Furuchi公司出产的高纯钴能够到达 99.999 5%(分析 70种杂质元素),是现在报导中纯度最高的。 在国内,1961年上海有色金属的研讨所以粗钴为质料 ,用次溶液除镍,以离子交流除铝和锌 ,中和水解法除铁,制备高度纯洁的氯化钴溶液进行电解精粹,获得 99.99%高纯钴。金川镍钻研讨设计院的申勇峰等以l#电解钴为质料选用电溶 、离子交流法除掉溶液中的杂质离子电解提纯后的溶液,得到 99.994%的高纯钴。此外北京有色金属研讨总院和北京矿冶研讨总院也正在进行高纯金属的研讨工作。金川有色金属公司是我国镍钴首要出产基地,钴产值居全国之首,并且出产技能也代表了我国最高水平。其选用粗钴阳极隔板膜电解法出产出纯度大于 99.98%的电解钴 ,到达 1#电解钴的标准。 国外首要选用离子交流法除掉溶液中大部分杂质离子,然后通过电解得到金属钴,再选用区域熔炼、电子束熔炼等手法进一步提纯得到高纯钴。国内研讨工作首要会集在离子交流和电解精粹上,现在还没有扩大化出产的报导。 二、高纯钴的制备制备高纯钴的质料是工业电解钴、钴盐等,运用的冶金办法首要有湿法冶金、火法冶金、电化学冶金等。制备进程分为钴盐溶液净化和钴金属精粹 2个阶段:第 1阶段首要选用湿法冶金办法,如溶剂萃取、离子交流、膜别离、电解等,用以除掉粗钴溶液中的大多数金属杂质,首要是镍、铜、锌、铁等杂质,并经电解得到金属钴;第 2阶段首要选用火法冶金办法,如区域熔炼、真空脱气等,用以进一步脱除金属钴中的碱金属、碱土金属、非金属气体杂质,终究得到高纯金属钴。 (一)钴盐溶液的净化 1、溶剂萃取法溶剂萃取法是运用杂质离子在有机相和水相之间的分配比不同到达别离杂质的意图。Ritcey等在20世纪 70年代研讨了运用 D2EHPA进行钴、镍别离的工艺。N.B Devi研讨了硫酸盐系统中选用D2EHPA,PC88A,Cyanex272萃取 Co的行为,并评论了比较、皂化率对萃取因子的影响。M.V.Rane选用 LIX84从废旧的催化剂中萃取钴,然后用沉淀法除铁和铝 ,得到了纯度大于 99.9%的钴 。N.V.Thakur等选用 P204和 P507完成了钴与镍、铜等杂质的别离。 Wang Guangxin等选用溶剂萃取法和离子交流法净化钴溶液,然后经电解得到金属钴,其成果见表 1。能够看出,溶剂萃取法对大多数金属离子有很好的除杂作用,但对铜、锌、钛、铅等金属离子反而起了富集作用。溶剂萃取法适用于大规模提纯钴溶液,但在制备高纯钴方面作用却不显着。 表1  离子交流和溶剂萃取后的杂质含量(×10-4%)注:①溶剂萃取-电积工艺;② 离子交流-电积工艺;③ 溶剂萃取-4次离子交流-电积工艺。 2、离子交流法离子交流法是运用离子交流树脂的功用基团和溶液中杂质离子的交流、解析才能的差异到达别离的意图。K.Mimura等选用阴离子交流法净化钴溶液,再经电解、电弧熔炼、电子束熔炼得到纯度为99.999 7%的高纯钴。Nagao等选用阴离子交流法除掉 Fe,Zn,Sn,Ni,Ca,Mg,Na等,然后选用有机胺萃取别离其它杂质,得到的高纯钴盐溶液经结晶、枯燥后复原得到高纯钴粉,其间的Fe,Zn,Sn,Ni,Ca,Na,Mg含量都低于 0.000 l%。 钴盐溶液中的铜在酸性条件下始终能弱吸附在树脂上,难以与钴别离。为处理铜的共吸附问题,Masahito等将钴溶液 中的 Cu2+复原为 Cu+,再选用阴离子交流树脂除掉Cu+(Co2+不被吸附),净化后的高纯 CoCl2溶液结晶、枯燥后经复原得到纯度为 99.999 7%的金属钴(RRR=207),成果见表2。由表 2可见,铜杂质含量低于 0.000 005%。 表2  阴离子交流法制备的高纯钴中的杂质含量(×10-4% )离子交流法对 Zn,Mo,W,Cu的别离作用并不显着,对铅有显着的富集作用。 3、萃取色层法萃取色层法是运用吸附在大孔树脂上的萃取剂对溶液中离子的挑选性萃取到达别离意图。刘扬中等研讨了添加配位剂基乙酸 ,以替代传统的树脂转型办法进行萃取色层法净化钴溶液。他们调查了淋洗液 pH值、进样量及料液中Co、Ni比等要素对别离的影响,在 pH值为 3.40的条件下用5 g萃淋树脂完成将钴、镍质量比在 1~100范围内溶液中的钴、镍(总量为 1.6 mg)彻底别离,并研讨了基乙酸的配位、缓冲作用对别离进程的影响。 周移等将 P507萃淋树脂转型为 Mg型 ,进步了对 Co2+的萃取才能 ,完成了钴与镍的彻底别离 ,并进步了柱子运用寿数。周春山等选用转型后的 P204萃淋树脂以 pH值为 2.5的一钠为淋洗液,完成了钴与铜、锌、锰、铬等金属离子的彻底别离。刘展良等具体研讨了 HCl系统中 Zn、Ca、Mg、Fe、Co、Ni和稀土离子在 P507萃淋树脂上的淋洗行为,并探讨了 Fe3+在柱床上或许存在的反响 机理。萃取色层法既具有液一液萃取中萃取剂的高度挑选性 ,又具有离子交流色层别离的多级性,在别离性质附近的元素上有着优 良的功用,因而在湿法冶金中遭到越来越多的注重。一起萃取色层也存在一些 本身的缺陷 ,如柱子萃取容量比较低 ,萃取剂简单丢失 ,寿数相对较短等。进步柱子的萃取容量,战胜萃取剂丢失,开发挑选性更好的萃取剂是往后萃取色层法获得重大突破的要害。4、膜别离法膜别离法是运用液膜能够挑选性地透过离子并在水相富集而到达别离的意图。Jerzy等选用支撑液膜和大块液膜做载体 ,D2EHPA做萃取剂别离钴和镍 ,探讨了溶液酸度 、膜离子载体浓度、金属离子浓度对别离成果的影响。 Li Longquan等研讨了乳化液在硫酸系统中别离钴、镍的进程。他们选用 EDTA作为掩蔽剂掩蔽料液中的镍离子,以P204的乳化液膜作为载体从硫酸盐系统中收回钴。通过调查 pH值、别离时刻等要素,断定了最佳的别离条件。 虽然膜别离法具有高的挑选性和传质快等长处,但因膜的稳定性差、本钱较高级原因,现在还处于实验室中试阶段。5、电解法钴电解是在酸性钴盐溶液中进行的。电解液的组成、浓度、酸度、温度、电流密度等条件应该严格控制。因为溶液中的Cu2+,Cu+,Sn2+,Ni2+,Pb2+,As3+等杂质离子的电势比钴高(正)或许和钴挨近,在电解时会与Co2+一起分出;电势比钴更低(负)的金属离子如 Fe,Mn,Zn,Na等杂质离子的存在对钴的质量影响不大,但含量较高也会带来必定的损害。因而要严格控制溶液中的杂质离子含量。 净化后的钴溶液中溶解的少数萃取剂会添加金属钴的杂质含量经活性炭处理得到的电积钴中的 C,O,N,H含量大大下降,见表3所示。 表3  活性炭处理后电积钴的杂质含量(×10-4%)注:① 溶解的有机相用经6 mol/L的HCl处理过的活性炭除掉,经电解、EBM后得到的数据;② 进程相似Example 2经电积得到数据,运用的活性炭未经酸处理;③ 进程相似 Example 2,经电积得到数据,溶液未经活性炭处理。 Isshiki等选用聚乙烯电解槽,用直径为1 mm的高纯钴丝(99.998%)做 阴极,用铂板做阳极,电解高纯 COC12溶液得到直径 5 rain的钴棒。 Shindo等选用离子交流法除掉溶液中的杂质,然后经屡次电解和电子束熔炼得到金属钴 。屡次电解和电子束熔炼后的杂质含量见表4。 由表4能够看出,电解能够别离 Ni,Fe,K,U,Th等杂质,屡次电解精粹能够进一步下降杂质含量;电解精粹后的电子束熔炼能够有用去除Na杂质。 表4  钴电解精粹和电子束熔炼后的杂质含量(二)钻金属精粹为脱除金属钴中剩余的碱金属杂质和部分气 体杂质 ,电解得到的金属钴还需要通过火法精粹。常用的办法有电子束熔炼 、区域熔炼等。区域熔 炼是依据杂质元素在液态和固态平分配系数的差 别,使金属得到提纯。可是 ,对分配系数挨近 1 的元素,如 Fe,Ni,Co,Cr,Mn,A1,Cu,Si很难用区域熔炼法相互提纯。电子束悬浮区熔是制 备高纯金属常用的办法,它能够成长完好的单晶,显着进步金属的 RRR值,如表 5所示。通过区域 熔炼后 ,金属钴的 RRR值分别由236和 116进步到 334和 245。 表5  不同工艺下杂质含量及RRR值的改变(×10-4%)注:A,CoCl2质料;B,氢复原钻;C,电解+6次电子束悬浮区域熔炼;D,氢复原+4次电子束悬浮区域熔炼;E,氢复原+8次电子束悬浮区域熔炼 ;F,氢复原-处理+4次电子束悬浮区域熔炼。 Miller等运用真空脱气烧结法使金属钴中的Zn,Cd,S,O,C等杂质元素含量显着下降,成果如表6所示。 由表6能够看出,真空脱气烧结法能够有用地脱除金属中的 C,O,N等非金属杂质 ,但关于金属杂质作用并不显着。 表6  真空烧结脱气作用(×10-4%)三、结语 单一的提纯办法无法满意制备 5N以上高纯钴的要求。溶剂萃取法对大多数金属离子有很好的作用的,但对 Ni,Cu,Zn等金属离子的别离作用相对较差;膜别离法存在稳定性差 、本钱高的缺陷。离子交流和萃取色层法对别离性质附近的元素上作用杰出 ,但存在容量低一级问题。火法精粹进程中,区域熔炼可去除金属钴中的碱金属、碱土金属和气体杂质,并有利于生成纯度高、值大的完好钴单晶。因而,制备 5N以上的高纯钴合理的工艺流程为:首要选用离子交流或萃取色层法除掉钴盐溶液中的镍、铜、铁、锌等杂质,然后选用电解进一步除掉 Ni,Fe,K,U,Th等杂质得到高纯金属钴,终究选用区域熔炼除掉其间的碱金属和蒸气压较大的杂质,得到晶型完好的高纯钴产品。

钛液的制备

2019-02-13 10:12:38

在硫酸法钛出产中,第一步就是先把固体的钛铁矿经过酸分化制备成可溶性钛的硫酸盐溶液,一起钛铁矿中的铁和大部分金属杂质也变成可溶性的硫酸盐,以便今后将各种杂质别离。因为偏铁酸亚铁(钛铁矿)是一种弱酸弱碱盐,用强酸(H2SO4)与它反响基本上是不可逆的,反响能够进行得比较彻底。     钛铁矿的酸分化(简称酸解)有干法和湿法。干法是把磨细后的钛铁矿与硫酸混合进行加热、焙炒,待分化完结后加水稀释浸取,取得钛的硫酸盐溶液。该法不能进行大规模的工业化出产,现在在实验室中制备钛的硫酸盐溶液有时还用这种办法。     湿法就是现在遍及选用的硫酸法。湿法从开展的前史来看,曾有过5种不同办法:即液相法、固相法、两相法、加压法和接连法。     液相法:反响一直在液相状态下进行。在这里,硫酸(有用酸)浓度与钛总含量之比值非常重要叫做酸比值,一般以F来表明。选用55%~65%的硫酸酸比值较高(F值3~3.2),所以得到的钛液绝大部分以正硫酸钛—Ti(SO4)2的方式存在。该办法因为反响时间太长,耗酸、耗蒸汽多,加上F值太高形成今后水解困难,水解率低,工业出产一般不选用此法。实验证明液相法的硫酸浓度即便只要10%,也能取得硫酸钛溶液,但反响时间更长,因为10%硫酸的沸点只要10℃,在98℃下反响8h,酸解率只要30%。     两相法:两相法选用的硫酸浓度为65%~80%,F值操控在1.8~2.2之间,操作时先把硫酸加热至120℃左右,然后参加矿粉持续拌和加热到150~200℃,主反响3h,反响物为糊状物,接着冷却、加水浸取坚持必定的悬浮液浓度,至酸解率到达85%~90%时停止。两相法虽比液相法耗用硫酸少,但反响时间长,酸解率低仍不经济。     固相法:该法是现在硫酸法钛工厂遍及选用的办法,因为它与前两种办法比较具有反响温度高、反响进程短、耗用硫酸少的长处。用这种办法出产的硫酸浓度一般在85%~95%,反响剧烈、敏捷,因为浓硫酸的沸点高,最高反响温度可高达200~250℃,反响一般在5~15min内即可完结,反响放出很多的热,因而动力较省,耗酸也较少,F值一般操控1.7~2.1,所得产品为多孔的固相物,简单加水浸取,酸解率一般能够到达95%以上。     加压法:选用20%~50%浓度的稀硫酸,在一耐腐蚀的受压设备中进行,一般出产人工金红石或电焊条用的金红石有时选用此种办法。     接连法:该法运用和20%硫酸的混合酸,先制得半流体状的反响物,然后再高温固化。加压法、接连法对反响设备的原料要求很高,操作杂乱,在工业化钛出产中没有采用。

雾化热解法制备活性氧化锌

2019-02-11 14:05:30

超细氧化锌是一种近年来开展的新式高功用无机产品,它具有了其本体块状物料所无法比拟的优异功能。现在氧化锌的制备办法首要有:直接沉淀法、均相沉淀法、溶胶-凝胶法、微乳液法、水热法、醇盐水解法、溶剂蒸腾法等。     雾化热解进程作为一种新式的超细粒子制备技能,遭到材料、化学工程、气溶胶、超导等范畴研究人员的广泛重视。本文以锌焙砂为质料,用NH3-NH4·HCO3-H2O系统作为浸出剂,经浸出-雾化热解-锻烧制取活性氧化锌。     一、实验     (一)实验原理     锌焙砂的首要成分为ZnO,并伴有少数的ZnSO4、ZnO·SiO2、ZnO·Fe2O3及ZnS,在性系统中浸出时,锌焙砂中Cu、Ni、Cd、Co等杂质元素也生成合作物进入溶液,ZnO·SiO2、ZnO·Fe2O3及ZnS等不溶解,残留在渣中。     在净化进程中,因系统呈弱碱性,Cu、Ni、Cd、Co等杂质均易被锌粉置换除掉,净化后液选用并流式离心雾化枯燥器雾化枯燥,溶液通过高速旋转的离心盘雾化成微米级液滴,当即与热风触摸,在枯燥器中呈螺线型运动,而且随同枯炎热分化进程。雾化后的每一个球形液滴能够作为一个反响器,其阅历三个阶段,首要因为NH3蒸腾温度低,在高温下NH3敏捷蒸腾,导致溶液中[Zn(NH3)m]2+合作物失去平衡,分出碱式碳酸锌前躯体,此阶段相当于蒸进程;第二阶段为水的蒸腾,粒子表面的水蒸气分压远大于空气中的水蒸气分压,枯燥进程持续进行,分压差为枯燥进程的推动力;第三阶段为降速阶段,粒子表面的水蒸气分压等于空气中的水蒸气分压,两者之间的分压差等于零,不再进行枯燥,可是此刻物料分化敏捷,而得到高活性氧化锌。     因碱式碳酸锌分化不彻底,将前躯体在马弗炉中锻烧,锻烧温度300~600℃,锻烧时刻30~60min,而得到高活性氧化锌。     (二)试剂及试料     (25%~28%)、碳酸氢铵,分析纯;实验质料取自江西某炼锌厂的锌焙砂,其化学成分(%):Zn 53.17、S 2.58、Cu 1.03、Pb 1.48、Cd 0.09、Fe13.06、As 0.24、Sb 0.08。     (三)实验装置     浸出实验在1 L圆底三口烧瓶中进行,选用恒温磁力拌和器坚持稳定的反响温度,操控温度差错士1℃,拌和速度为450 r/mine     (四)实验及分析办法     每次取40 g氧化锌焙砂,按必定的液固比参加配好的及碳酸氢铵混合液,通过必定时刻的浸出后过滤,用EDTA滴定法分析滤液中Zn的浓度,核算Zn的浸出率。锌粉置换除杂反响所用锌粉粒度为145~175μm,在快速拌和下缓慢参加。净化液通过滤后在离心喷雾枯燥器中雾化、枯燥、分化得到中间产品,最终在马弗炉中煅烧得到活性氧化锌。以SEM、XRD等分析手法分析产品的粉体结构、描摹特征。     二、成果与评论     (一)浸出     1、 NH3/NH4+对Zn浸出率的影响     在总浓度8mol/L,液固比8∶1,温度35℃、时刻lh的条件下,调查NH3/NH4+对Zn浸出进程的影响,成果见图1。从图1可知,NH3/NH4+对Zn浸出率的影响显着,当NH3/NH4+从1∶1添加到2.5∶1时,Zn浸出率显着进步,通过预订的浸出时刻,Zn浸出率由75.96%添加到82.56%,当铵比持续增大,Zn浸出率缓慢下降。其原因首要是因为NH3/NH4+的改变,引起浸出液pH的改变,依据Zn浸出电位-pH图,pH的巨细直接影响ZnO的浸出进程,在NH3/NH4+=2.5∶1时,浸出液pH=12。因而断定浸出液NH3/NH4+=2.5∶1。图1  铵比对Zn浸出率的影响     2、液固比对Zn浸出率的影响     在总浓度8 mol/L、NH3/NH4+=2.5∶1、温度35℃,时刻1h的条件下,调查液固比对Zn浸出进程的影响,成果如图2所示。从图2可看出,液固比对Zn浸出率的影响非常显着,当液固比低于8∶1时,跟着液固比的添加,Zn浸出率显着添加;可是当液固比大于8∶1后,Zn浸出率改变不大。因而断定液固比为8∶1。图2  液固比对Zn浸出率的影响     3、总浓度对Zn浸出率的影响     在液固比=8∶1、NH3/NH4+=2.5∶1、温度35℃、时刻1h的条件下,调查总浓度对Zn浸出进程的影响,成果如图3所示。从图3可看出,总浓度对Zn浸出率的影响显着,当总浓度小于8 mol/L时,跟着总浓度的添加,Zn浸出率显着进步;可是总浓度大于8mol/L后,Zn浸出率改变不大。因而断定总浓度为8mol/L。图3  总浓度对Zn浸出率的影响     4、浸出时刻对Zn浸出率的影响     在总浓度8mol/L、NH3/NH4+=2.5∶1、液固比=8∶1、温度为35℃的条件下,调查浸出时刻对Zn浸出进程的影响,成果如图4所示。从图4可看出,浸出时刻对Zn浸出率的影响显着。在NH3-NH4·HCO3-H2O系统中,Zn浸出反响敏捷,在浸出时刻为10min时,Zn浸出率就到达72.28%,而且跟着时刻连续,浸出率快速进步,浸出40min时,Zn浸出率到达82%。当浸出时刻到60min,Zn浸出率到达82.34%,可浸Zn根本浸出彻底。     5、浸出归纳条件实验     依据以上实验成果,断定最佳浸出的归纳条件为:总浓度8 mol/L、NH3/NH4+=2.5∶1、液固比=8∶1,时刻1h。浸出液锌含量为54.34g/L,浸出率为82.56%,首要杂质元素含量(mg/L):Cu250、Pb 25.1、Co 0.52、Cd 31.6、Fe 3.3、As 0.43、Sb 0.15。按可溶性的氧化锌、硫酸锌核算,可溶锌浸出率大于97%。形成浸出率低的原因是焙砂中铁酸锌、硅酸锌含量较高。浸出液进行二次浸出,锌含量可到达97.62 g/L。图4  浸出时刻对Zn浸出率的影响     (二)净化     由上述成果可知浸出液中Cu、Ni、Cd、Co等杂质元素含量较高,本实验选用锌粉置换法除掉这些杂质,净化实验在高拌和强度下进行,选用的锌粉粒度为145~175μm,温度操控在50℃左右,反响时刻1h。在此条件下,溶液中Cu、Cd、Co、Fe等杂质均可被置换除掉,净化后液杂质元素含量(mg/L):Cu 0.32、Pb 0.79、Co 0.02、Cd 0.68、Fe 1.3、As0.06、Sb 0.0。Cu净化率到达99.87%,一起Co净化率为96.15%,净化后液中Fe含量为1.3 mg/L, 到达净化要求。     (三)雾化分化     雾化分化在并流式离心喷雾枯燥器中进行,溶液通过蠕动泵泵入雾化器中,经高速离心效果,将机械能转化成细微雾滴的表面能,而且在极短的时刻内完结蒸腾、水蒸腾、碱式碳酸锌的分出及分化进程。溶液的黏度及表面张力对雾化起阻止效果,其首要由物料的性质及组成操控。     雾化热解进程在人口温度为340℃,出口温度180℃以上,雾化转速为400n/s,进料速度为60mL/min;料液浓度为100g/L的条件下进行,产品进行SEM分析,成果如图5所示。从图5可看出,大部分为长度不大于2μm的针状物,其为前期跟着气蒸腾而分出的碱式碳酸锌,通过水分蒸腾枯燥分化而得的氧化锌。还有少部分为未彻底分化的前躯体,为表面润滑的实心球体。这是因为物料在枯燥器内与执风并行活动,目在枯燥器内只逗留20~30s,热风温度跟着水分的蒸腾直线下降,在出口温度仅能到达180℃左右,低于碱式碳酸锌的分化温度,所以有部分不能分化。图5  雾化分化粉体的SEM图     (四)煅烧     锻烧在马弗炉中进行,温度设定为400℃,时刻1h。锻烧后的粉末XRD谱图与ZnO的XRD标准卡片(JCPDS)对照分析标明,煅烧后制备的氧化锌微粒与JCPDS标准卡片相符,这阐明得到了六方晶系结构的氧化锌粉体,衍射峰都很尖利,而且几乎没有杂质衍射峰,阐明结晶程度和纯度都较高。     锻烧后描摹及粒度经电镜分析,其成果如图6~7。如图6所示,其间大部分针状物的描摹、粒度都没有发作显着的改变,少部分发作聚会现象。从图7能够看出,前躯体中的球形碱式碳酸锌则生成蜂窝状,增大了其比表面积。图6  400℃煅烧后针状ZnO粉体的SEM图图7   400℃煅烧后蜂窝状ZnO粉体的SEM     三、定论     (一)在总浓度8 mol/L,液固比=8∶1、NH3与NH4+的比为2.5∶1,温度35℃、时刻1h的条件下,一段浸出液锌含量为54.34 g/L,浸出率为82.56%,两段浸出液进锌含量可到达97.62 g/L,平均可浸锌浸出率到达97%以上;     (二)在性条件下,Fe根本不会浸出,浸出液铁离子浓度仅为3.3 mg/L,净化液中Co的净化率到达96.15%;     (三)在进口温度为340℃,出口温度为 180℃,雾化转速400n/s,进料速度为60mL/min,料液浓度为100g/L的条件下进行为行雾化热解,能够得到长度不大于2μm的针状活性氧化锌。可是因为温度不行,有部分前躯体没有分化彻底,有必要进行煅烧处理;     (四)前驱体在马弗炉中400℃煅烧1h后,为蜂窝状氧化锌。